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Abstract

According to the Scalar Expectancy Theory, humans are equipped with a biological internal

clock, possibly modulated by attention and arousal. Both emotions and pain are arousing

and can absorb attentional resources, thus causing distortions of temporal perception. The

aims of the present single-event fMRI study were to investigate: a) whether observation of

facial expressions of pain interferes with time production; and b) the neural network subserv-

ing this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects

were asked to perform a temporal production task and a concurrent gender discrimination

task, while viewing faces of unknown people with either pain-related or neutral expressions.

Behavioural data showed temporal underestimation (i.e., longer produced intervals) during

implicit pain expression processing; this was accompanied by increased activity of right mid-

dle temporal gyrus, a region known to be active during the perception of emotional and pain-

ful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle

temporal gyrus was positively related to that of areas previously reported to play a role in tim-

ing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right ante-

rior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional

connectivity of supplementary motor area with several frontal regions, anterior cingulate cor-

tex and right angular gyrus was correlated to the produced interval during painful expression

processing. Our data support the hypothesis that observing emotional expressions distorts

subjective time perception through the interaction of the neural network subserving process-

ing of facial expressions with the brain network involved in timing. Within this frame, middle

temporal gyrus appears to be the key region of the interplay between the two neural systems.

Introduction

Time processing is crucial for every-day life and is flexibly modulated by ongoing experiences.

The temporal perception literature shows that emotions are one of the most significant sources
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of temporal distortion. Different types of emotional stimuli, such as affective images [1–4],

fear-inducing stimuli [5] and emotional sounds [6], have been used to investigate the mecha-

nisms underlying emotional modulation of subjective time experience. In particular, consis-

tent findings have been obtained using emotional facial expressions [7,8]: fearful, angry, happy

and sad expressions were perceived as lasting longer than neutral expressions presented for the

same duration.

Studies dealing with pain-driven temporal distortions have shown conflicting results.

Indeed, both temporal over and underestimation have been reported during painful stimula-

tion. Longer perceived durations for painful than neutral stimuli have been described in ani-

mals [9] and in healthy humans using prospective time judgments (time reproduction and

production, verbal estimation) during electric shock [10,11] and hot thermal stimulation [12],

and in adult [13] and pediatric [14] population of migraineurs. On the contrary shorter esti-

mates have been observed in humans using retrospective time judgments (verbal estimation)

during cold thermal stimulation [15] and in patients with chronic headache [16].

In retrospective paradigms, participants are not aware that they will have to estimate the

duration of a target until the target is over. Therefore, focusing attention to time is not required

to retrospectively assess duration, because retrospective estimates rely on incidental memory

for temporal information [17]. On the contrary, prospective time estimates focus on experi-

enced duration [18] and attention to time is essential [17]: participants are informed that they

will have to estimate the duration of a target. Prospective paradigms have been largely adopted

in order to study emotional temporal distortions which have been interpreted within the

framework of the internal clock theory. According to the Scalar Expectancy Theory (SET)

[19], timing is achieved via a biological internal clock consisting of a pacemaker that emits

pulses, a switch, and an accumulator. The number of pulses collected by the accumulator rep-

resents the duration of the interval. The collected pulses are transferred to the accumulator via

the switch, which closes at the beginning of the interval to be timed, thus allowing the passage

of the pulses, and opens at the end (clock stage). Subsequently, the duration of the interval (the

number of collected pulses) can be transferred from working memory to long-term memory

(memory stage) to be compared with abstract temporal references (decision-making stage).

The rate at which pulses are emitted is sensitive to arousal, with increase in the level of arousal

leading to increase in the number of produced pulses and thus in the perceived duration [20–

24]. Emotions are arousing and cause overestimation of the interval to be timed; they are

therefore thought to affect perceived time by speeding up the pacemaker [25–27]. More arous-

ing facial expressions of emotion, such as fearful and angry expressions, cause larger overesti-

mation of time, compared to less arousing emotions (sadness and happiness) [28]. It has been

found also that valence and arousal interact in affecting duration judgments [3]: the duration

of unpleasant stimuli was overestimated in high arousal conditions, whereas it was underesti-

mated in low arousal conditions; the opposite effect was found for pleasant pictures. These

authors suggest that an attention-driven mechanism may be triggered during low arousal emo-

tional situations. The SET suggests that the amount of attentional resources allocated to time

will affect the subjective perceived duration [29], influencing the functioning of the switch.

When attention is diverted to non-temporal information at the beginning of the interval, the

switch either closes with a longer latency, or it begins to flicker. The resulting underestimation

of the duration is due to the loss of some pulses [30].

The interpretation of emotional facial expressions plays an important role in everyday

social functioning [31]. In some instances, facial expression of pain has been reported to be

specific and distinct from the expressions of basic emotions, thus clearly recognizable as pain-

related by observers [32,33]. Pain signals have, indeed, important survival value: demand rapid

detection allowing adaptive behavioral responses of the observer [34]. Recent findings have
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shown that observing painful facial expressions increases cerebral activation within portions of

the neural circuit active during the direct experience of pain and within the cerebral network

of emotional face processing (fusiform gyrus, superior/middle temporal gyrus, STG/MTG,

inferior frontal gyrus, IFG, medial prefrontal cortex, amygdala) [35], both when processing is

explicit [36–38] and when it is implicit [39]. To our knowledge, only two neuroimaging studies

have examined subjective temporal perception during the observation of socially relevant sti-

muli, such as aversive/non-aversive pictures [4] and angry/happy faces [40]. Therefore, the

neural substrates of the emotional modulation of time perception are poorly understood and

further data is needed; studies on facial expressions of pain may be used to improve our knowl-

edge of this issue.

The aims of the present single-event fMRI study were to investigate: a) whether observation

of facial expressions of pain interferes with time production; and b) the neural substrates of

potential subjective temporal distortions due to concurrent processing of painful expression.

We have explored these issues in healthy volunteers observing facial expressions, either

neutral or painful. A dual-task procedure was used: a gender discrimination task and a concur-

rent temporal production task. We preferred to adopt an implicit pain processing task in order

to avoid the differential employment of cognitive resources required for the explicit recogni-

tion of emotional expression.

Materials andmethods

Participants

Thirty right handed volunteers (15 women; mean age 21.7 ± 2.2; range: 19–30; mean educa-

tion: 13.6 years) with no history of psychiatric or neurological disease took part in the fMRI

study. Sample size was chosen according to published guidelines for fMRI experiments in

healthy volunteers [41]. The experimental protocol had been approved by the local Ethics

Committee of Modena (protocol number 3903/C.E.) and all subjects gave their written

informed consent to take part in the study.

Stimuli validation

In order to offer a real representation of pain expressions, we chose to select the most expres-

sive frames belonging to video clips previously recorded during cutaneous mechanical stimu-

lations in thirty-five volunteers (6 males; mean age 22 ± 2). These subjects were different

from the ones participating in the validation phase and in the fMRI experiment (see below).

Forty video-clips (20 painful, 20 neutral), each lasting two seconds, were recorded from each

volunteer while he/she was receiving painful or tactile (non painful) stimulation to their right

hand dorsum or palm by means of a custom-built stimulator. VirtualDubMod (http://

virtualdubmod.sourceforge.net/) was used to extract one hundred three frames from the most

expressive recorded videos, according to the evaluation of the experimenters. The extracted

faces were presented to another group of healthy volunteers (37 healthy participants, 15 male;

mean age 28 ± 3; range 24–37), different from the ones who took part in the fMRI session.

Twenty-two frames depicted neutral faces, whereas eighty-one frames showed expressions of

pain. Each frame was presented twice. At the first presentation of each frame, the volunteers

were asked to freely classify the facial expression and to rate the intensity of the expression on

a 0–10 point scale (free validation). After the free validation phase was concluded for all the

frames, subjects were asked to indicate whether each face was painful or not and to rate how

painful each stimulus was on a 0–10 point scale (guided validation). Of all the responses

provided during the free validation of pain-related stimuli, 59% was “pain”, 10.5% was “sad-

ness”, 6.4% was “disgust”, 4.7% was “fear”, 0.6% was “anger”, 18.7% referred to heterogeneous
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descriptions (e.g., “bored”, “fatigued” etc.). The stimuli identified as painful by at least 25% of

the subjects in the free validation phase, and by 75% of the group in the guided validation

phase, were selected for the fMRI study. Pictures evoking pain evaluation> 1.5 were not

included among the neutral stimuli.

Experimental design

The final series of stimuli administered during the fMRI session consisted of 38 expressions,

27 related to pain (P; mean pain rating obtained in the guided validation phase = 6.02) and 11

neutral (N; mean pain rating obtained in the guided validation phase = 0.6; see Fig 1). Eleven

different identities were used (2 males). The presented facial expressions (pain and neutral)

were counterbalanced within each volunteer: 50% of the trials were pain, 50% were neutral.

The proportion of the presented faces gender (22% male, 78% female) was the same for all vol-

unteers. The individuals whose pictures were included in this manuscript have given written

informed consent (as outlined in PLOS consent form) to publish these case details.

The experimental protocol included a training phase, which took place outside the scanner,

and a test phase, performed during the fMRI acquisition.

Training phase. During the training phase (Fig 2A), the participants were presented with a

green cross appearing at the center of a computer screen. Subjects were asked to produce a 3 s

interval by pressing two buttons of a response pad in sequence. The same time interval has

been used in previous studies during temporal production/reproduction tasks [3,42] and for a

dual-task paradigm [43]. First, the subjects had to press the central button with the right hand

middle finger to start the interval; then, depending on the arrow appearing at the center of the

screen, the volunteers were requested to press either the left or the right button of the response

pad to stop the subjective 3 s interval. This was done to accustom subjects to use either button,

as they would be requested to do in the test phase (see below). A visual and acoustic feedback

on the accuracy of the temporal production task was presented for 500 ms after each trial. The

intervals were considered to be correct when longer than 2,850 ms and shorter than 3,150 ms.

The inter-trial interval (ITI) lasted 1,500 ms, during which a white cross appeared on the com-

puter screen. One hundred trials were administered to each participant. For each subject the

above mentioned criterion was applied to the median of the produced intervals for the training

session in order to verify the improvement in temporal production and to decide whether fur-

ther training was necessary. Fifty additional trials were administered if the median of the pro-

duced intervals didn’t fall within the correct range. The training phase was completed just

before (10–15 min) the test phase.

Test phase. During the test phase (Fig 2B), subjects were assigned a dual-task, which con-

sisted of a temporal production task and a gender discrimination task, performed concur-

rently. Therefore, the influence of painful facial expressions on time processing was explored

using an implicit task. An event-related fMRI paradigm was used. Each subject performed 3

runs, 24 trials each, for a total of 72 trials. At first, a white cross was presented at the centre of

the screen (1 s) followed by a green cross. From the appearing of the green cross, 16 s were

available for the participants to produce the subjective interval (3 s). Therefore, each trial lasted

17 seconds. The beginning of the interval and the appearing of the face were defined by press-

ing the central button of a response pad using the right hand middle finger. Subjects were

instructed to watch the face and to press the left button of the response pad (using their right

index finger) or the right button (using their right ring finger) to indicate the gender of the

face at the end of the subjective time interval. The association between stimulus (male or

female) and response (left or right button) was counterbalanced between the subjects. The

pseudo-random order of stimuli (faces) was different for each participant. Each stimulus was
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presented no more than 3 times during the experiment and covered a visual angle of 18˚. Two

rest blocks lasting 15 and 16 seconds, respectively, were included at the beginning and at the

end of each run. At the beginning of each run, in order to isolate the brain activations associ-

ated with motor response, the volunteers were asked to press left, right or central button

according to the stimulus appearing on the screen (the arrow facing left, right or the green

cross, respectively). The green cross was presented six times, whereas the two arrows were

Fig 1. Experimental stimuli. Examples of painful and neutral facial expressions presented during the fMRI temporal production experiment.
F = Female, M =Male.

https://doi.org/10.1371/journal.pone.0193100.g001
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presented three times each (in pseudo-random order). The participants were told that these

responses were used to check the functioning of the response pad.

During the scanning phase, custom-made software developed in Visual Basic 6 (http://

digilander.libero.it/marco_serafini/stimoli_video/) was used to present stimuli via the ESys

functional MRI System (http://www.invivocorp.com) remote display, and to collect behavioral

responses.

At the end of the scanning session, participants were presented with the same stimuli again

and were asked to rate the intensity of the facial expression and how painful each stimulus was

on a 0–10 point scale. Finally, two different personality scales were administered to the volun-

teers: the Interpersonal Reactivity Index (IRI) [44], a self-report rating index developed to

measure personal empathy defined as the “reactions of one individual to the observed experi-

ences of another”, and the Pain Catastrophizing Scale [45], a 13-item instrument developed to

assess the subject’s level of catastrophic thinking about pain.

fMRI data acquisition

Functional imaging was performed using a Philips Achieva system at 3T and a gradient-echo

echo-planar sequence from 30 axial contiguous slices (repetition time, TR = 2,000 ms; in-plane

matrix = 80x80; voxel size: 3x3x4 mm). A total of 756 volumes was acquired over three 8 min

24 s runs per volunteer. A high-resolution T1-weighted anatomical image was acquired for

each participant to allow anatomical localization. The volume consisted of 170 sagittal slices

(TR = 9,9 ms; TE = 4,6 ms; in plane matrix = 256x256; voxel size = 1x1x1 mm). fMRI data pro-

cessing was performed using Matlab 7.11 and SPM12 (Wellcome Department of Imaging Neu-

roscience, London, UK). Functional volumes of each participant were corrected for slice-time

Fig 2. Experimental paradigm. Schema of the training (A) and fMRI (B) sessions. A) During the training session, the
following visual stimuli were sequentially presented at the center of the screen: a white cross (1.5 s), a green cross
persisting until the central button was pressed, an arrow facing left or right (signaling whether the left or right button
had to be pressed to stop the time interval), and a visual/acoustic feedback (500 ms) about the accuracy of the produced
interval. B) During the fMRI session, the same sequence was adopted, but with male or female (painful or neutral)
faces instead of arrows. During both sessions, production of a 3 s time interval was requested during each trial. No
feedback was given on the accuracy of the time intervals during the fMRI experiment.

https://doi.org/10.1371/journal.pone.0193100.g002
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acquisition differences, realigned to the first volume acquired, normalized to the MNI (Mon-

treal Neurologic Institute) template implemented in SPM12, and smoothed with a 9x9x12 mm

FWHMGaussian kernel. Sixteen trials were excluded because subjects didn’t respond, whereas

the third run of one subject was discarded because of excessive movement.

Behavioral data analyses

At the end of the training phase, the median of the produced intervals was determined for

each volunteer; for all of them, it fell within the accepted interval (2,850–3,150 ms).

Two separate measures were obtained from the dual-task performed during the fMRI

acquisition session: the medians of the produced intervals and the coefficients of variation

(standard deviation /mean). Two separate ANOVAs were made to compare these measures

using the factors Condition (P, N) and Run (1, 2, 3). In order to minimize type I statistical

errors, we decided to use a conservative post hoc test (Scheffé’s test) for statistical comparisons.

A t-test was used to compare the post-scanning evaluation of perceived pain of P and N

stimuli.

Free online software (https://www.psychometrica.de/effect_size.html) was used to estimate

the effect size (Cohen’s d) of the ANOVAs and t-tests.

Finally, linear regressions were used to explore the relation between the medians of the pro-

duced time intervals during the fMRI experiment and the individual personality trait assessed

in the post-scanning questionnaires (IRI and PCS).

GLM analysis

At first, functional data from each volunteer were analyzed individually by means of the

SPM12 general linear model (GLM). Two different analyses were performed in order to

emphasize temporal processing (analysis 1) or observation of painful expressions (analysis 2).

Analysis 1: fMRI activity changes related to temporal production. Two types of conditions

were used: pain (P) and neutral (N). Trials were classified according to the a priori categori-

zation of the stimuli as painful or neutral. Stimulus duration corresponded to the subjec-

tively determined interval in each trial. The main weighted contrasts of interest were

“P+N>motor response” and “P> N”;

Analysis 2: fMRI activity changes related to the observation of painful faces during temporal

production. Subjectively determined onset and end in each painful and neutral trial were

considered separately in this analysis. Events were therefore classified as P-onset (Po), P-

end (Pe), N-onset (No), N-end (Ne). Considering that faces are perceived in the first 120

ms after they are presented [46], events were modeled as instantaneous. The contrast of

interest was “Po> No”.

The design matrices contained the experimental conditions and the motor response (refer-

ring to the initial response pad test) as regressors of interest, and the 6 motion correction

parameters as confounds. Condition-specific effects were estimated according to the GLM and

compared using linear contrasts.

The resulting contrast images were entered in the second-level random effect analyses.

PPI analysis

In order to investigate task-specific functional interactions between cortical areas, two differ-

ent psycho-physiological interaction (PPI) analyses [47,48] were carried out. The first PPI

used the supplementary motor cortex (SMA) cluster resulting from “P+N vs. motor response”
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GLM contrast in Analysis 1 (see Results) as seed. A second PPI analysis was implemented

using the right MTG identified in the “Po> No” conventional GLM contrast in Analysis 2

(see Results) as seed. Recent findings suggest that the SMAmay be part of the putative clock

mechanism as temporal accumulator [49], whether the MTG has been previously reported as

active during emotional face perception [35,50,51] and the presentation of painful facial

expressions [38].

In each participant, the signal from the peak voxel in SMA was extracted from the contrast

“P> N”, whereas the map of the contrast “Po> No” was used to extract the peak voxel activa-

tion in MTG. A 6-mm-radius sphere was built around the activity peak to define a volume of

interest (VOI; MNI average coordinates: SMA: x = -2.2, y = -0.4, z = 62.8; MTG: x = 59.7, y =

-54.7, z = 2.4). Each participant’s data were re-modeled with regressors for: the time-course in

the seed region (physiological regressor); the experimental condition (vision of painful versus

neutral faces during temporal production; psychological regressor); the interaction between the

experimental condition and the region of interest activation signal (psychophysiological interac-

tion, PPI). The latter was chosen as the regressor of interest and the corresponding contrast

images of the single-subject PPI analyses were used for the random-effect analyses. A one sam-

ple t-test was utilized.

Finally, regression analyses were implemented to explore which brain regions showed a

correlation with the median of the produced intervals.

For all analyses, except for “P+N vs. motor response” contrast, a double statistical threshold

(voxel-wise p< 0.001 and spatial extent) was adopted to achieve a combined significance,

corrected for multiple comparisons, of α< 0.05, as assessed by 3dClustSim (https://afni.nimh.

nih.gov/pub/dist/doc/program_help/3dClustSim.html). For the contrast “P+N vs. motor

response”, a Family Wise Error (FWE) correction was used. The Matthew Brett correction

(mni2tal: http://www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html) was applied to the

SPM-MNI coordinates to obtain the coordinates in Talairach space [52].

Results

Behavioural data

For all the following data, median ± standard deviation (SD) are provided.

During the training session, the volunteers produced a median time interval of 2,985 ± 61.8

ms. ANOVA on the medians of the produced intervals during the fMRI experiment (dual-

task) showed a significant effect of the factor Condition (F(2,87) = 5.13; p< 0.05); post hoc test

showed that the volunteers produced longer intervals in the P condition (3,372 ± 596 vs.

3,333 ± 550; p< 0.05; d = 0.38). No significant effect of the factor Run (F(1,87) = 0.02; p = 0.98)

nor of the Condition x Run interaction (F(2,87) = 2.2; p = 0.12) were found. ANOVA on the

coefficients of variations didn’t show any significant effect of the factors.

In the post-scanning evaluation, the mean intensity (6.4 ± 1.3 vs. 1.4 ± 0.9; t(29) = 22.3;

p< 0.001; d = 5.18) and perceived pain (6.06 ± 1.3 vs. 0.5 ± 0.6; t(29) = 20.4; p< 0.001; d = 6.3)

ratings were significantly different between painful and neutral stimuli, corroborating the

results of the stimuli validation.

No significant correlation was found between the medians of the produced time interval

and the individual scores in either personality trait, considering all the subscales of IRI (r<

-0.26; p> 0.16) and PCS (r< -0.35; p> 0.06) data.

GLM analysis

Analysis 1: fMRI activity changes related to temporal production. The contrast “P + N

vs. motor response” (Table 1; Fig 3) revealed activity in areas previously reported to play a role
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in temporal processing [49,53–57], including SMA bilaterally, right anterior insula (AI), right

IFG and angular gyrus, middle cingulate cortex (MCC), and bilaterally in cerebellum, hippo-

campus and parahippocampal gyrus. Activated foci were also found bilaterally in fusiform

gyrus and in middle occipital gyrus. Subcortical activations were found bilaterally in thalamus,

putamen and caudate nucleus (body and tail).

Analysis 2: fMRI activity changes related to the observation of painful faces during tem-

poral production. The contrast “Po vs. No” showed the activation of the posterior portion of

right MTG (Table 2; Fig 4).

PPI analysis: SMA connectivity

Viewing painful expressions during temporal processing modulated SMA functional connec-

tivity with several cortical regions, including anterior cingulate cortex (ACC) and MCC, right

Table 1. fMRI activity changes related to temporal production (results of the “P+N vs. motor response” contrast; p< 0.05 FWE corrected, k� 10 voxels).

Spatial Coordinates

MNI Tal

Anatomical regions Side k Z x y z X y Z

Middle occipital gyrus (BA 17, 18), fusiform gyrus (BA 19, 37), cerebellum L/R 1469 > 8 -27 -88 -10 -27 -86 -4

> 8 -15 -94 -10 -15 -91 -4

> 8 27 -91 2 27 -88 6

Hippocampus, parahippocampus, thalamus, caudate nucleus (body and tail), putamen L/R 1002 7.22 27 -28 -2 27 -27 0

6.76 -27 -31 -2 -27 -30 0

6.21 -3 -19 18 -3 -18 17

Supplementary motor cortex (BA 6), mid-cingulate gyrus
(BA 24, 32)

L 382 6.50 -3 -1 66 -3 2 61

5.79 -3 11 46 -3 13 42

5.68 -6 17 38 -6 18 34

Amygdala, hippocampus, parahippocampal gyrus (BA 34, 28) L 67 5.71 -18 -4 -14 -18 -4 -12

Middle and inferior frontal gyri (BA 9) R 50 5.68 57 11 34 56 12 31

5.35 54 8 42 53 10 38

Anterior insula (BA 13) R 31 5.32 30 20 14 30 20 12

Middle frontal gyrus
(BA 6)

L 32 5.27 -48 -7 50 -48 -4 46

4.84 -45 2 54 -45 4 50

Angular gyrus (BA 39) R 11 4.95 30 -61 46 30 -57 45

Amygdala, parahippocampal gyrus (BA 34) R 19 4.82 18 -1 -18 18 -2 -15

BA = Brodmann Area, R = right, L = left

https://doi.org/10.1371/journal.pone.0193100.t001

Fig 3. fMRI activity changes related to temporal production. Results of the “P+N vs. motor response” contrast,
shown on axial slices of a standard structural T1 weighted brain image (p< 0.05 FWE corrected, k� 10).

https://doi.org/10.1371/journal.pone.0193100.g003
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AI and IFG, bilateral cerebellum, middle and inferior occipital gyri and fusiform gyrus

(Table 3A; Fig 5). Moreover, functional connectivity between SMA and several frontal regions

(bilateral orbito-frontal cortex, medial superior frontal gyrus, left ventro-lateral prefrontal cor-

tex), ACC and right angular gyrus, was correlated to the median produced time interval during

painful facial expression processing (“P> N” contrast; Table 3B).

PPI analysis: MTG connectivity

The PPI analysis showed that the neural activity of MTG was related to the activity of the cere-

bral network subserving time processing during observation of painful vs. neutral faces. In par-

ticular, increased activity was found in left primary sensorimotor cortex, right AI and IFG,

Table 2. fMRI activity changes related to the observation of painful faces during temporal production (results of the “Po vs. No” contrast; 3dClustSim correction
for multiple comparisons, α< 0.05: voxel-wise intensity threshold of p< 0.001, k> 64 voxels).

Spatial Coordinates

MNI Tal

Anatomical regions Side k Z x y z X y Z

Middle and superior temporal gyri (BA 21, 22) R 70 3.99 60 -55 2 59 -53 5

3.97 60 -43 2 59 -42 4

BA = Brodmann Area, R = right, L = left

https://doi.org/10.1371/journal.pone.0193100.t002

Fig 4. fMRI activity changes related to the observation of painful faces during temporal production and MTG
connectivity. Results of the PPI between neural activity in the right middle temporal gyrus (MTG) and the
psychological variable of interest (implicit observation of pain expression during temporal processing). Left: Focus of
activity in the right MTG related to the presentation of P faces, superimposed on a surface rendering of the brain.
Right: positive (top) and negative (bottom) PPI between neural activity within the right MTG and the psychological
variable of interest; foci are shown on sagittal, coronal, and axial slices of a standard structural T1 weighted brain
image. A double statistical threshold was adopted to correct for multiple comparisons, α< 0.05 (3dClustSim): voxel-
wise intensity of p< 0.001, and k> 64 voxels, for GLM analysis, k> 70 voxels, for PPI analyses.

https://doi.org/10.1371/journal.pone.0193100.g004
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right MCC, bilateral SMA, cerebellum, putamen, caudate nucleus and globus pallidus. Positive

PPI was also found bilaterally in fusiform and middle occipital gyri (Table 4A; Fig 4).

Foci showing negative correlations with MTG were found in posterior insula, ACC, pri-

mary and secondary somatosensory cortex, cortical regions involved in pain perception [58–

60], and in cerebral areas crucial for time processing, such as dorso-lateral prefrontal cortex

(dlPFC), bilaterally. Superior parietal lobule of the right hemisphere, left middle occipital

gyrus, precuneus/posterior cingulate cortex and, bilaterally, superior frontal gyrus (Table 4B;

Fig 4), also showed negative correlation.

Discussion

The main results of this study were as follows: a) as expected, the concurrent gender discrimi-

nation task interferes with temporal production [29], causing underestimation of time inter-

vals (namely, participants produced longer intervals); the underestimation was significantly

higher when observing facial expressions of pain, as compared to neutral expressions; b) the

implicit observation of pain expressions during time production modulated activity in the

right MTG; c) functional connectivity between SMA and several cortical regions was corre-

lated to the produced time interval during painful facial expression processing; d) neural activ-

ity of right MTG was positively related to the activity of regions belonging to the timing

network, whereas it was negatively related to the activity of cortical regions involved in tempo-

ral decision making and in processing pain-related information.

Mechanisms underlying time underestimation. According to the internal clock theory, sub-

jective experience of time can be differently modulated by attention and arousal. Increasing

arousal is thought to speed up the pacemaker rate, leading to temporal overestimation [19–

21]. Previous EEG and TMS studies suggest that negative emotions trigger action preparation

Table 3. SMA connectivity changes when comparing painful and neutral faces observation during temporal processing (A; 3dClustSim correction for multiple com-
parisons, α< 0.05: voxel-wise intensity threshold of p< 0.001, k> 69 voxels) and correlation between the SMA activity and the median produced time interval (B;
3dClustSim correction, α< 0.05: voxel-wise intensity threshold of p< 0.001, k> 68 voxels).

Spatial Coordinates

MNI Tal

Anatomical regions Side K Z X y z x y z

A Middle and inferior occipital gyrus (BA 17, 19), fusiform gyrus (BA 37), cerebellum L 761 4.65 -9 -97 2 -9 -94 7

4.55 -12 -82 -22 -12 -80 14

4.47 -18 -94 -2 -18 -91 3

Middle and anterior cingulate cortex (BA 24, 32), supplementary motor area (BA 6) L/R 363 4.63 6 20 38 6 21 34

4.15 6 8 66 6 11 60

3.95 -6 2 62 -6 5 57

Anterior insula (BA 13), inferior frontal gyrus (BA 44) R 108 3.95 36 17 10 36 17 8

3.86 54 11 22 53 12 20

3.42 45 14 -2 45 13 -2

B Medial superior frontal gyrus (BA 10), medial orbito-frontal cortex (BA 11), anterior cingulate cortex (BA 32) L/R 388 4.26 6 56 26 6 55 21

4.11 12 56 -6 12 54 -8

4.04 -15 53 -2 -15 51 -4

Inferior frontal gyrus, ventrolateral pre-frontal cortex (BA 47) L 102 3.87 -39 35 -10 -39 33 -10

3.63 -51 32 -10 -50 31 -10

3.49 -45 44 -6 -45 42 -7

Angular gyrus (BA 39) R 86 3.82 39 -55 30 39 -52 30

BA = Brodmann Area, R = right, L = left

https://doi.org/10.1371/journal.pone.0193100.t003
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Fig 5. SMA connectivity. Results of PPI between neural activity in the SMA and the psychological variable of interest (implicit observation of pain
expression during temporal processing). The SMA cluster of activation used as seed is displayed at the center, superimposed on a surface rendering of
the brain. Areas of significant positive PPI are shown in axial slices of a standard structural T1 weighted brain image. A double statistical threshold was
adopted to correct for multiple comparisons, α< 0.05 (3dClustSim): voxel-wise intensity of p< 0.001, and k> 69 voxels. FG = fusiform gyrus,
SMA = supplementary motor area, ACC = anterior cingulate cortex, AI = anterior insula, IFG = inferior frontal gyrus.

https://doi.org/10.1371/journal.pone.0193100.g005
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[61,62], and several authors [8] hypothesize that temporal overestimation during perception of

emotional faces (angry and fearful) may facilitate action in potentially threatening situations.

Attention is thought to control the switch: when attentional resources are divided during tim-

ing, some pulses are lost because of the flickering of the switch or the prolonged latency of its

closure, thus causing temporal underestimation [29,30]. Conflicting results on time estimates

were reported by previous research using noxious stimulations [10–12,15]. However, actual

noxious stimulation is conceivably more arousing than the observation of facial expressions of

pain, especially when the latter are implicitly processed; therefore, the behavioral effect of

Table 4. Right MTG connectivity changes when comparing painful and neutral faces perception during temporal processing (A: Positive PPI; B: negative PPI;
3dClustSim correction, α< 0.05: voxel-wise intensity threshold of p< 0.001, k> 70 voxels).

Spatial Coordinates

MNI Tal

Anatomical regions Side K Z X y z x y z

A Middle occipital gyrus (BA 17), fusiform gyrus (BA 19, 37), cerebellum L 692 4.86 -36 -58 -18 -36 -57 -12

4.83 -27 -85 -6 -27 -83 -1

4.75 -15 -94 -2 -15 -91 -3

Middle occipital gyrus (BA 18), fusiform gyrus (BA 19, 37), cerebellum R 806 4.75 30 -52 -22 30 -51 -16

4.71 42 -46 -6 42 -45 -3

4.64 30 -85 -6 30 -83 -1

Primary somatosensory cortex (BA 3), primary motor cortex (BA 4), pre-motor cortex (BA 6) L 205 4.63 -36 -10 62 -36 -7 57

4.14 -51 -7 46 -50 -5 43

3.75 -30 -25 50 -30 -22 47

Supplementary motor area (BA 6), mid-cingulate cortex (BA 24, 32) L/R 339 4.52 -3 -1 62 -3 2 57

3.74 12 20 34 12 21 30

Putamen, globus pallidus L 311 4.47 -21 -1 6 -21 -1 6

4.00 -24 -13 6 -24 -12 6

3.77 -30 -31 2 -30 -30 3

Putamen, globus pallidus, caudate nucleus, anterior insula (BA 13), inferior frontal gyrus (BA 47) R 434 4.34 18 5 2 18 5 2

3.85 36 23 2 36 22 1

3.82 48 11 22 48 12 20

B Posterior insula (BA 13), primary and secondary somatosensory cortex (S I, S II), superior temporal gyrus (BA
41)

R 289 4.97 48 -19 14 48 -18 14

4.85 45 -10 14 45 -9 13

4.30 60 -19 14 59 -18 14

Superior parietal lobule (BA 5), primary somatosensory cortex (BA 3), precuneus/posterior cingulate cortex (BA
31)

L/R 430 4.86 21 -46 70 21 -41 67

4.66 27 -37 70 27 -33 66

4.11 -15 -40 38 -15 -37 37

Anterior cingulate cortex (BA 24, 32), medial frontal gyrus (BA 10) R 252 4.74 3 50 2 3 49 -1

Middle and superior frontal gyrus (BA 8, 9) L 210 4.28 -21 29 46 -21 30 41

4.11 -24 14 58 -24 16 53

4.09 -30 17 42 -30 18 38

Middle and superior frontal gyrus (BA 8, 9) R 120 4.24 21 29 42 21 30 37

3.90 30 23 46 30 24 41

Middle occipital gyrus (BA 19), angular gyrus (BA 39) L 95 4.07 -33 -79 38 -33 -75 39

4.05 -39 -76 30 -39 -72 31

Precuneus/posterior cingulate cortex (BA 23, 31) L 103 3.90 -12 -64 22 -12 -61 23

3.56 -12 -88 26 -12 -84 28

BA = Brodmann Area, R = right, L = left

https://doi.org/10.1371/journal.pone.0193100.t004
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observing pain expressions revealed in our experiment may not be necessarily similar to what

happens during actual pain perception.

According to a previous study [3], unpleasant pictures are underestimated in low arousal

conditions, whereas they are overestimated in high arousal conditions. There is the possibility

that our stimuli were not very arousing and that their emotional valence diverted attention

away from time, thus causing underestimation. It should be underlined that we neither col-

lected subjective, behavioral or physiological measures of arousal, nor quantified the attention-

catching effect of painful faces during our fMRI study. Therefore, we can not directly assess

whether the observed temporal distortions were mainly related to attention or arousal effects.

At this regard, it would be interesting to evaluate the effect of painful facial expression using

other temporal tasks; indeed, previous studies showed different modulations on time judg-

ments as a function of the task used [63]. Namely, the temporal bisection task, which has

commonly been used to study time perception [64–67] and the effect of facial emotional

expression on time [28,68,69], may be better suited for disambiguating mathematically

between arousal-based and attentional effects, since arousal-related changes are multiplicative

[9], whereas attentional effects are additive [70]. Finally, a limitation of the study was that only

one emotional facial expression (i.e., painful) was used. Consequently, it is not possible to

demonstrate whether the attention-catching effect of the emotional expression was specifically

due to pain or to the greater intensity of the expression compared to neutral faces. In particu-

lar, the comparison between pain and disgust should be taken into account in future studies,

because the experience of disgust increases pain sensitivity [71], and because pain and disgust

share a common neural pattern of activity in various cortical regions [72].

Modulation of emotion- and time-related neural circuits. Our fMRI results show the func-

tional modulation of right MTG when comparing implicit pain-vs.-neutral expression process-

ing during temporal production. Previous studies showed that this region belongs to the

cortical network subserving emotional face processing [35,50,51] and contributes to decoding

the emotional meaning of painful faces [38]. Because the anterior insular cortex is activated

during both temporal processing and emotional experience [73], Craig (2009) suggests that

emotion-induced distortions of time may depend on insular activity. Indeed, the only two pre-

vious neuroimaging experiments [4,40] examining the neural mechanisms of emotional mod-

ulation of time revealed activity in the insular cortex, but also in other regions belonging to the

network typically engaged during timing. The first study showed that the incorrect judgment

of an aversive image as lasting longer than a non-aversive picture was associated with modula-

tion of neural activity in the amygdala, putamen and insula [4]. The effect of facial emotion on

neural activation within the timing network was explored in another study, further demon-

strating the tendency to overestimate the duration of angry and happy faces when compared

to neutral expressions; emotional expressions were shown to modulate the activity of SMA,

IFG and AI [40]. In both studies, functional data resulted from analyses implemented within

a-priori selected regions of interest belonging to the timing network, and did not take MTG

into consideration.

We hypothesize that time processing alterations related to the perception of painful faces

may rely on the interaction between the neural substrates of pain expression processing and

the cerebral timing network. Our first PPI analysis suggests that MTGmay be the key region

mediating the interplay between these two neural systems.

Indeed, as expected, the activity of right MTG was positively related to neural activity within

regions belonging to the timing network and mediating the clock stage [49,53,57,74,75], includ-

ing: a) bilateral putamen, caudate nucleus and globus pallidus, sub-cortical regions engaged in

formulating representations of time; b) right AI, IFG and cerebellum, areas involved in the

accumulation of the pulses; c) primary sensorimotor cortex, commonly activated during
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temporal production tasks; d) bilateral SMA. A recent meta-analysis showed that SMA contains

the largest number of significant voxels across all timing studies, suggesting that this region

may be part of the putative clock mechanism as temporal accumulator [49]. Our results show

that neural activity of this region is mainly related: i) to the activation of right IFG/right AI and

cerebellum during implicit pain processing, and ii) when longer intervals are produced, to the

activation of bilateral orbito-frontal cortex, medial superior frontal gyrus, left ventro-lateral

prefrontal cortex, ACC and right angular gyrus.

Moreover, our results show a negative correlation between the neural activation of right

MTG and of bilateral dlPFC. This prefrontal area is thought to be recruited during the deci-

sion-making stage: when time evaluation is required, the activation of this region mediates the

comparison between the estimated interval and the abstract temporal references, thus allowing

the response selection [75]. Our data suggest that this decisional process may be hindered by

neural activity related to emotional processing.

Finally, our functional analyses showed that increasing activity of MTG was related to

decreasing activity within several cortical regions involved in pain perception [59,76,77] as well

as in the observation of painful stimulations and facial expressions of pain [36,38,39,60,78–80],

such as posterior insula, ACC, primary and secondary somatosensory cortex.

In summary, our findings demonstrate that the activation of a region decoding emotional

meaning (posterior MTG) is positively related to cortical areas mediating the clock stage,

whereas it is negatively related to key regions involved in the temporal decision-making stage

and in processing pain-related information. We can speculate that, at the beginning of the

interval to be produced, attention was automatically captured by the expression of pain, thus

reducing attentional resources available for the temporal task, interfering with the closure of

the switch and causing the loss of some pulses. Therefore, the resulting underestimation of the

interval may depend on the concurrent engagement of regions subserving implicit processing

of painful expressions and of cerebral areas that mediate emission and accumulation of pulses,

but also temporal decision-making.

Conclusions

The present study provides the first evidence that observation of facial expressions of pain

interact with timing at the behavioral and neural level. The right posterior MTG appears to be

the key region mediating the interaction between the brain network analyzing painful expres-

sions and the neural network involved in timing.
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