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Abstract

Background: In this work we present evidence that the p53 tumor suppressor protein and NF-xB
transcription factors could be related through common descent from a family of ancestral transcription
factors regulating cellular proliferation and apoptosis. P53 is a homotetrameric transcription factor known
to interact with the ankyrin protein 53BP2 (a fragment of the ASPP2 protein). NF-xB is also regulated by
ankyrin proteins, the prototype of which is the IxB family. The DNA binding sequences of the two
transcription factors are similar, sharing 8 out of 10 nucleotides. Interactions between the two proteins,
both direct and indirect, have been noted previously and the two proteins play central roles in the control

of proliferation and apoptosis.

Results: Using previously published structure data, we noted a significant degree of structural alignment
between p53 and NF-xB p65. We also determined that IkBa and p53 bind in vitro through a specific
interaction in part involving the DNA binding region of p53, or a region proximal to it, and the amino
terminus of IxBo independently or cooperatively with the ankyrin 3 domain of IkBa In cotransfection
experiments, kBo. could significantly inhibit the transcriptional activity of p53. Inhibition of p53-mediated
transcription was increased by deletion of the ankyrin 2, 4, or 5 domains of IkBow Co-precipitation
experiments using the stably transfected ankyrin 5 deletion mutant of kBot and endogenous wild-type p53

further support the hypothesis that p53 and IxBo can physically interact in vivo.

Conclusion: The aggregate results obtained using bacterially produced IkBa and p53 as well as
reticulocyte lysate produced proteins suggest a correlation between in vitro co-precipitation in at least one
of the systems and in vivo p53 inhibitory activity. These observations argue for a mechanism involving direct
binding of IxBo to p53 in the inhibition of p53 transcriptional activity, analogous to the inhibition of NF-
kB by kBa and p53 by 53BP2/ASPP2. These data furthermore suggest a role for ankyrin proteins in the
regulation of p53 activity. Taken together, the NFkB and p53 proteins share similarities in structure, DNA
binding sites and binding and regulation by ankyrin proteins in support of our hypothesis that the two

proteins share common descent from an ancestral transcriptional factor.
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Background

In this work we present evidence that the p53 tumor sup-
pressor and NF-xB transcription factors could be related
through common descent from a family of ancestral tran-
scription factors regulating cellular proliferation and
apoptosis. P53 and related proteins are transcription fac-
tors that regulate DNA repair and cellular apoptosis in
response to stress and injury, notably those resulting in
DNA damage [1-4]. Although it is a non-essential gene,
loss of p53 function in humans through hereditary syn-
dromes is associated with a markedly increased rate of
malignancy. Furthermore, over 50% of malignancies have
mutated p53 alleles [5]. These observations suggest p53
and related proteins function as a checkpoint for malig-
nant transformation either by repairing DNA damage or
by eliminating cells with irreparably damaged DNA [6-8]

P53 is a homotetrameric transcription factor that binds a
consensus sequence 5' RRRRC(A/T)(T/A)GYYY-3' (where
R indicates purine, A or G; and Y indicates pyrimidine, C
or T)[9]. The consensus sequence is usually present as a
dimer in p53 inducible gene promoters such as the
p21WAF protein regulating cell cycle progression [10]. P53
protein can be divided into three functional domains, the
amino-terminal activation domain encompassing amino
acids 1-43, the core sequence-specific DNA-binding
domain (amino acids 100-300), and the multi-functional
carboxy-terminal domain (amino acids 300-393)
[11,12]. Point mutations in p53 identified in malignant
cells are clustered around volutionarily conserved regions
in the DNA binding region of p53 and simultaneously
eliminate both sequence-specific DNA binding and tran-
scriptional activity [12-14].

P53 is regulated on multiple levels including post-transla-
tionally by modifications such as acetylation, phosphor-
ylation, protein degradation, and protein-protein
interaction [15,16]. Phosphorylation of p53 induces con-
formational changes that alter interactions with regula-
tory proteins such as MDM2, which in turn can regulate
p53 stability, and can also activate site-specific DNA bind-
ing activity [17-22]. Additional cellular proteins that bind
to p53 include proteins of the general transcription
machinery such as CBP/p300 [23,24]. CBP/p300 binding
to p53 regulates acetylation and p53 transcriptional acti-
vation [25,26]. P53 is also regulated through association
with ankyrin repeat proteins such as p53 binding protein
1 (53 BP1) and p53 binding protein 2 (53BP2, now
known to be a fragment of apoptosis stimulating protein
of p53 or ASPP2) [27] and gankyrin [28,29]. Thus, it is
likely that p53 is modulated by association with and/or
modification by a variety of regulatory proteins including
kinases, transcription factors, and ankyrin-containing
proteins. In addition, viral proteins also bind to and mod-
ify p53 and may contribute to malignant transformation
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of infected cells by viruses such as papilloma [30,31],
cytomegalovirus  [32], and  Epstein-Barr  virus
(EBV)[33,34].

NF-xB transcription factors also play a central role in the
control of apoptosis [35-37]. NF-xB transcription factors
bind to the consensus sequence 5'-GGRNNYYCC-3' in the
promoters of both cellular and viral genes [38,39]. The
RelA/p65 subunit of NF-xB is regulated by the ankyrin
repeat protein IkBo. which masks the nuclear localization
signal of the p65/p50 NF-xB heterodimer [40,41]. NF-xB-
inducing signals are transmitted from the cell surface to
the cytoplasm resulting in site-specific phosphorylation at
two sites in the N-terminus of IxBa. [42-45], conjugation
of ubiquitin molecules to IxkBo., and subsequent degrada-
tion of ubiquitinated IxBo. by the 26S proteasome com-
plex [46-49]. Degradation of IxkBa in turn unmasks the
nuclear localization signal of p50/p65 followed by trans-
location of the active transcription factor to the nucleus.
Other NF-«B subunits including a homodimer of the p50
subunit also bind IxBo [50]. IxBo. deficient animals while
viable, die of uncontrolled inflammation in infancy, and
mice overexpressing IxBa display an abnormal immuno-
logic repertoire suggesting that a major physiologic role of
IxBo is to limit immune and inflammatory responses
through a feedback pathway [35,51,52].

Interactions between p53 and NF-kB have been noted, for
example both factors compete for a binding site in the reg-
ulatory factor CBP/p300 [53]. Transfection of a constitu-
tively active form of IxkBo protein can block p53
dependent cell death [54-56] and p53 regulatory factors
can modulate NF-xB pathways [57-59]. Not only are p53
and NF-xB transcription coregulated under a variety of
physiological conditions, but similarity has been noted
between the crystal structures of p53 and NF-xB p50
[14,60-62]. Both proteins contain a similarly sited zinc
atom that coordinates site specific DNA binding and sim-
ilar secondary and tertiary organization, but no primary
amino acid similarity was noted between the two pro-
teins. Furthermore, p65 has been shown to bind the
ankyrin protein p53-binding protein 2 (53BP2). 53BP2
has been shown to be a fragment of a larger protein,
ASPP2, that promotes the apoptotis-inducing effects of
p53 [27]. P65 apparently inhibits p53-mediated apopto-
sis by binding to 53BP2/ASSP2 [63]. As with p53, NF-xB
transcription is altered by viral pathogens [64-67].

In this work, we present evidence for the specific binding
of the NF-xB inhibitor and ankyrin protein, IxBa, to p53.
A physical interaction between p53 and IxkBo was also
reported by Chang [68], as well as Zhou, et al. [69], and
was shown to be regulated by proapoptotic and growth
suppressing stimuli. Our studies show the binding inter-
action to involve both ankyrin and non-ankyrin
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sequences in the IxBa protein, and the DNA binding core
domain of p53. We demonstrate that transient expression
of IxkBat is associated with NF-kB independent decreases in
p53 mediated transcription of a p53 reporter gene in vivo.
These observations were made in Akata cells, an EBV-
genome positive lymphoblastoid cell line originally
derived from a Burkitts lymphoma. Akata cells lack
endogenous functional p53 [33]. We propose that the
binding of the ankyrin protein IxBo. to p53 is based upon
the similarity in molecular structure of NF-kB and p53.

Results

Similarity between p53 and NF-xB transcription element
binding sites

The hemi-dyad DNA consensus binding sites of p53 and
NF-xB transcription factors are intriguingly similar as has
been noted previously by Foo, et al., [70]; for p53, the
binding site sequence is 5'-RRRRC(A/T)(T/A)GYYY-3"' and
for NF-kB the binding site sequence is 5'- GGGRNNYYCC-
3'where N, R, and Y indicate any nucleotide, purine (A or
G), and pyrimidine (C or T), respectively. Two changes in
the nucleotide sequence of the C(A/T)(A/T)G core (under-
scored, above) of a p53 binding site is sufficient to gener-
ate the RNNY core (underscored, above) of a NF-xB
binding site while sequences flanking the core are con-
served. Depending on the specific sequences, these bind-
ing sites potentially encode a hairpin structure that could
promote these nucleotide substitutions. Under these cir-
cumstances, only one mutagenic event would be neces-
sary, since the second nucleotide exchange could occur by
excision-repair following a mutagenic event in the first
site. Based on this observation, we hypothesized that both
regulatory factors shared descent from a common ances-
tral transcription factor, a proto-p53/NF-kB. An alterna-
tive possibility is that two independent families of
transcription factors, proto-p53 and proto-NF-xB, con-
verged to independently recognize a similar recognition
sequence.

If both p53 and NF-xB descended from a common ances-
tral protein, they might retain the ability to bind to com-
mon proteins or proteins of related structures in addition
to binding similar DNA sequences. With independent
descent converging upon a similar DNA binding sequence
no such common interactions would be expected. In sup-
port of descent from a common ancestral protein, the
crystal structure of NF-xB p65 aligns with that of p53 (Fig-
ure 1B and 1D, discussed below) a relationship that
would not be expected unless the two proteins were
related through phylogeny (descent) as well as ontogeny
(function). Furthermore, numerous p53 binding proteins
have in common the ankyrin repeat structure, a feature
shared with the IxB family of NF-xB regulatory proteins.
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Structural alignment of p53 and p65 and ankyrin proteins,
53BP2 and IxB«

To test the hypothesis that p53 and p65 may share struc-
tural homology, the known crystal structures of both mol-
ecules were aligned using the program C3D4.1 [71]. P53
(Figure 1A) has previously been crystallized in association
with the ankyrin protein 53BP2 (Figure 2C) [28]. Like
IxBow (Figure 2A), 53BP2 is also an ankyrin protein and
has been identified as a fragment of a larger protein
known as ASPP2 (apoptosis stimulating protein of p53)
[27]. The structure of p65 (Figure 1C) is taken from the
crystal structure of the dimer comprised of p65 and p50 in
association with IkBa [50]. P65 has also been crystallized
as a homodimer in association with IxkBf [72].

We used the information content algorithm of C3D4.1
which uses a BLOSUMG62 based matrix to calculate conser-
vation between the two pairs of proteins: p53 and p65
(Figure 1E); and IxBa and 53BP2 (Figure 2E). The amino
acids colored red in the aligned structures of 1D and 2D
and the amino acid sequences of 1E and 2E depict regions
of highest conservation while the grey areas are regions
where there is no conservation. As shown by the regions
of the two molecules colored red, we observed a surpris-
ing degree of structural alignment between the Rel homol-
ogy domain of p65 and the p53 core domain, supposedly
unrelated molecules (Figure 1D). The sequence alignment
corresponding to the structures in 1D is depicted in 1E.

Using these same methods, we aligned the structures of
the ankyrin proteins, IxkBo. [50] and 53BP2 (Figure 2D and
2E). The structure used for IxBo. (Figure 2A) contains 71-
280 of the wild-type protein. We omitted the SH3 domain
of the 53BP2 structure (Figure 2C) since it is not relevant
to this report. The IxBo protein contains six ankyrin
motifs while the 53BP2 contains four. As expected, the
two ankyrin proteins show a high degree of alignment.
The fourth and 5t ankyrins of IkBa are in very close align-
ment to the second and third ankyrins of 53BP2 (Figure
2D). The sequences corresponding to these structures is
shown in Figure 2E.

Specific binding between IxBa and p53 occurs in vitro

Purified IxBo protein was specifically labelled in vitro with
[32P] using p90rk which we have previously shown to
quantitatively phosphorylate IxBo. [32P] -labeled IxBa
was incubated with purified p53 (GST-p53) and precipi-
tated either with glutathione/Sepharose (Seph-GSH)
beads to bind the glutathione binding tag on GST-p53 or
a p53-specific antibody (Ab2) and protein A/G beads. As
shown in Figure 3, evidence of a specific association
between purified bacterially-produced p53 and purified
bacterially-produced wild-type IxBa. was observed in vitro
(Fig. 2A). The conformation-specific p53 antibody (Ab5)
does not recognize bacterially produced p53
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Figure |

Alignment of p53 (PDB ID:1YCS; I YCS_A dl) with p65 (PDB ID:1IKN; IIKN_A dl). A. The structures of p53 molecule (taken
from the crystal structure of p53 and p53 binding protein 2); B. The aligned structures of p53 and p65; C. The structure of the
Rel homology domain of p65 (taken from the crystal structure of the p65/p50 heterodimer bound to IkBa); D. The aligned

structures were colored according to information content based on a BLOSUM®62 matrix to calculate conservation using the
public domain program CN3D4.1 [70]. A spectrum of red to blue is used to denote the degree of conservation where red is
the most conserved. E. The sequence alignment of p53 and p65 is depicted using the same coloring scheme as in the structure

alignment in ID.
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Figure 2

Alignment of IkBo. (PDB ID:11KN; IIKN_D dI) with p53 binding protein 2 (PDB ID:1YCS; 1 YCS_B dl). (A) The structure of
IxBo (taken from the crystal structure of the p50/p65 heterodimer bound to I1kBa); (B) The aligned structures of lxBo and
53BP2; (C) The structure of 53BP2 (taken from the crystal structure of p53 bound to 53BP2); (D) The aligned structure in 2B
colored for conservation according to information content as described above; (E) The sequence alignment of IxBa and 53BP2
is depicted using the same coloring scheme as in the structure alignment in 2D. A four amino acid region near the N-termini of
each structure is colored yellow as a reference point.
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Figure 3

P53 and IkBo. proteins co-precipitate in vitro. A: Purified bacterially produced IxBa. protein co-precipitated specifically with p53.
Purified IxBo protein was specifically labeled with [y-32P]ATP using p90rsk (lane 5). [32P]-labeled lkBo. was incubated with puri-
fied p53 (GST-p53, lanes 1-3) or a control GST fusion protein (GST-c-Jun, lane 4). P53 was precipitated either by a glutathione
binding tag on GST-p53 and glutathione Sepharose beads (Seph-GSH, lane I) or a p53 specific antibody (Ab2, lane 2) and pro-
tein A/G Sephadex beads. IxBo. protein (position indicated) was not precipitated by p53 specific Ab5 (lane 3) that does not rec-
ognize bacterially synthesized p53 protein, or by incubation with GST-c-Jun and precipitation with glutathione Sepharose beads
(lane 4). Proteins were separated by PAGE and detected by autoradiography of [32P]-labeled protein. Electrophoresis of the
input IxBo used in this experiment is also shown in lane 5. B: Relatively less AN protein than ACI IkBo protein co-precipi-
tated with GST-p53 from COS cell lysates. After expression of IkBo in COS cells, whole cell lysates were incubated with bac-
terially produced purified p53 (GST-p53). P53/ IkxBa. complexes were then precipitated with glutathione Sepharose beads and
analyzed by PAGE/Western blotting. In the left panels, AN| and AA2 proteins were detected using a rabbit polyclonal antisera
directed at the C-terminus of IkBa, while in the right panels, AA2 and ACI proteins were detected using a rabbit polyclonal
antisera directed at the N-terminus of IkBa.. C: Structures of wild-type IkBo. and mutant constructs used in these studies.
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(unpublished observations), and Ab5 was used as a con-
trol for non-specific association between IxkBo, and anti-
body or Protein A/G beads. A c-Jun protein with a
glutathione binding protein tag (GST-c-Jun) was used as a
control for non-specific association between IxBo and
glutathione beads. As shown, no association between con-
trol proteins or antibodies was evident.

Relatively decreased in vitro binding between IxBo and
P53 results from deletion of the N-terminus of I kB
Initial experiments conducted with both p53 and IxBo
made in bacterial cells supported the hypothesis that the
p53 protein could bind to IxkBa. Post-translational modi-
fications of the proteins when expressed in eukaryotic
cells could affect the interactions noted, particularly with
respect to relative binding affinities of mutant proteins.
Furthermore, bacterially produced protein may differ in
conformation to those produced in mammalian hosts.
Overexpression of IkBa. alleles in COS cells was used to
confirm that binding to p53 was evident with IxBo pro-
duced in vivo and also to map the p53 binding to sites
within [kBo. Only some alleles of IxBo can be overex-
pressed in COS cells including IxBo. deleted of N-terminal
regulatory sequences, denoted AN1(missing amino acids
2-36), AA2 (missing amino acids 110-136), and AC1
deleted of the PEST-containing non-ankyrin C- terminus
(amino acids 264-317). A schematic of deletion mutants
of IxBa used is depicted in Figure 3C.

After expression of IkBa in COS cells, whole cell lysates
were co-precipitated with bacterially produced purified
GST-p53 (Figure 3B). These experiments confirmed that
binding between the proteins was not related to produc-
tion of an aberrant form of the IxBo protein in bacterial
cells since alleles of IkBo. protein produced in COS cells
were enriched by incubation and co-precipitation with
GST-p53. In representative experiments shown, relatively
less AN1 protein protein co-precipitated with GST-p53
from COS cell lysates as compared to the proportions of
AA?2 or AC1 IxBa proteins associating with p53 suggesting
that binding between the proteins at least in part required
an intact N-terminal region of IxBo. Relative co-precipita-
tion of the C-terminally deleted form of IxBo. was compa-
rable to that of wild-type protein (wild-type data not
shown), suggesting that the amino acids 264-317 of [xBo.
was not important for binding to p53.

The binding between IxBc and p53 is disrupted by an
antibody to the DNA-binding region of p53

Experiments detailed above confirmed that a specific
binding association occurs between IxkBo. and p53 in vitro.
Further experiments were designed to approximate the
region on p53 responsible for IkBoabinding by use of
epitope-specific monoclonal antibodies. Glutathione-
sepharose beads (G) were used to precipitate p53 (Figure

http://www.biomedcentral.com/1471-2172/6/12

4A, lane 1, and 4B, lanes 1 and 5) and were found to co-
precipitate IxBo. A monoclonal antibody directed at
amino acids 46-55 in the amino terminus of p53 (Ab2)
recognized purified bacterially produced p53 (4B, lanes 2
and 6) and also co-precipitated IkBo with p53 (4A, lane
2). In contrast, a different p53-specific monoclonal anti-
body directed at amino acids 212-217 within the DNA
binding core of p53 (Ab3), while able to recognize and
precipitate bacterially produced p53 protein (4B, lanes 3
and 7), did not co-precipitate IxBa (4A, lane 4). These
observations suggested that the binding site between puri-
fied IxBo and p53 in part coincided with the Ab3 epitope,
a region which is within the p53 DNA binding core. Alter-
natively, the antibody could hinder or disrupt IxBo bind-
ing to regions near the recognized. epitope or alter the
structure of p53 into a conformation unfavorable for IkBo
binding.

Overexpression of wild-type |xBo modulates p53
dependent transcription of a synthetic p53 reporter gene
in vivo

In vitro studies supported the hypothesis that a direct
physical association between p53 and IxBo can occur but
they did not provide evidence that such interactions occur
in vivo. We hypothesized that transient overexpression of
IxBa in cells with co-transfected transcriptionally active
p53 might reveal effects of [kBa upon p53 mediated tran-
scription. Using forced overexpression of both proteins
from identical viral CMV promoter elements rather than
endogenous promoters would eliminate confounding
transcriptional effects of IxkBa, upon transcription of p53
or vice versa. Any effect of NF-xB upon CMV would be nor-
malized as well.

Akata cells were used because these B-lymphoblastoid
cells are known to lack endogenous p53. Neither the wild-
type nor a mutant protein is expressed that could compli-
cate interpretation of results. P53 transiently transfected
into these cells using dextran sulfate is transcriptionally
active. As a control for non-specific effects of transfected
plasmid DNA, effects of IkBo expression plasmids were
compared to co-transfected plasmid containing an identi-
cal CMV promoter element (pCMV). Results shown were
also normalized to expression of co-transfected pRL-SV40,
a plasmid expressing a second form of luciferase as a con-
trol for cell viability and transfection efficiency. We found
that wild-type IxBa was associated with decreased p53-
dependent transcription of the p53 reporter gene
pG(13)PyLuc in Akata cells (Figure 5). Increasing the rel-
ative ratio of transfected expression plasmids between
IxBo and p53 from 1:1 (equivalent to 200 ng IxkBo plas-
mid transfected) to 10:1 (equivalent to 2000 ng IkBo. plas-
mid transfected) demonstrated a dose response effect that
varied with different IxBa: alleles. Immunoblotting for wt-
p53, AC-p53, and IxBo alleles show relatively equivalent
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Figure 4

A monoclonal antibody recognizing an epitope in the DNA binding domain of p53 (Ab3) interferes with IxBa: binding to p53.
Purified p53 with a glutathione binding protein epitope tag (GST-p53) and purified IkBo protein were incubated together in
vitro. A. P53 was precipitated either with glutathione Sepharose (denoted G, lane 2) or with p53-specific monoclonal antibodies
Ab2 (lane 3), Ab3 (lane 4), or Ab5 (lane 5) and Sephadex protein A/G beads. Precipitated proteins were separated by SDS-
PAGE and detected by Western blotting with a rabbit polyclonal antiserum directed against the N-terminus of IkBo.. Mobility
of [kBa protein is indicated (lane I). This also represents the total input IkBo.. Similar quantities of murine immunoglobulin
heavy chain (HC, lane 6) were precipitated by protein A/G beads and served as the negative control. B. GST-p53 was quantita-
tively precipitated in the absence (- IxBa) or presence (+ 1kBo) of IkBo by glutathione Sepharose (denoted G, lanes 1,5), Ab2
(lanes 2,6), and Ab3 (lanes 3,7), but not Ab5 (lanes 4,8), as detected with a rabbit polyclonal p53 antiserum. This blot is essen-
tially identical to that shown in panel A but for the antibody used in the Western blotting step. Since Ab5 did not precipitate
GST-p53, it served as a negative control for non-specific association between IkBo protein and either antibody or protein A/G
beads.
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Figure 5

Transient transfection of IkBo alleles specifically blocks p53 transcription in EBV-positive Akata cells. A. 200 ng of a p53-
dependent reporter plasmid encoding |3 copies of the p53 response element driving a firefly luciferase (pG(I3)Py/Luc) were
cotransfected into 2 x 105 cells with | ng of an SV40 promoter driven Renilla luciferase (pRLSV40) and 200 ng of a CMV-pro-
moter driven wild-type p53 cDNA construct (wt-p53, denoted below the x-axis) or a C-terminally deleted transcriptionally
active p53 (AC-p53, denoted below the x-axis). The effect of 800 ng of CMV-promoter driven IxBo alleles or a control con-
struct that did not contain DNA encoding IxBa. (to which all data were normalized) were used to determine the effect of IxBo
on wild-type p53-mediated transcription of pG(|3)Py/Luc while 1600 ng of CMV-promoter driven IxBa alleles (or control)
were used in experiments where the AC-p53 allele was used. Inmunoblotting controls for wt-p53, AC-p53 and IkBo alleles. B:
Western blot analysis of wt-p53 and AC-p53 in the presence of transfected kB alleles. Extracts were derived from Akata
cells as described for Figure 5A. None indicates transfection of empty CMV vector containing no IkBa allele. C: Western blot
analysis for IkBo in the presence of transfected wt-p53. A subset of extracts were analyzed both with C-term and N-term
directed IkBo antibodies. Endogenous IkBa. is detected by these methods. D: Western blot analysis of IkBa. in the presence of
AC-p53. AA3 was analyzed on a separate gel due to space limitations and showed a band intensity similar to that of AA4 and
AAS5 (data not shown).
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protein levels for these proteins in these extracts (Figure
5B-D).

Allele specific modulation of p53 transcription by I xBo are
independent of the effects of the alleles on NF-xB
transcription in vivo

The wild-type IxkBa protein is subject to signal-dependent
phosphorylation and subsequent degradation leading to
release of inhibition of NF-«xB. Deletion (e.g. as in the AN
allele deleting amino acids 2-36) or mutation of the
phosphorylation sites (S32 and S36) in the amino termi-
nus of IkBa leads to a stable mutant that constitutively
represses NF-kB transcription. Cotransfection at a 1 to 1
ratio of AN1 to p53 expression plasmid (200 ng each of
p53 and IxBa plasmid transfected) had no significant
effects upon p53 transcription (data not shown). Increas-
ing the relative ratio of AN1 expression plasmid to p53
showed that at higher ratios, AN1 could significantly
decrease p53-dependent transcription (Figure 5A, inhibi-
tion of the constitutively active AC-p53 is shown at 1600
ng AN1 plasmid. Similar results were obtained when the
ratio of AN1 to wild-type p53 was increased to 8:1, data
not shown). However, at the lower ratio of 4:1 shown for
the wild-type p53 allele, in Figure 5A, there was little inhi-
bition of transcriptional activity by AN1. The relatively
poor inhibitory activity of AN1 towards p53 is consistent
with its relatively poor binding affinity for p53 as shown
in Figure 3B and described above.

The finding that the AN1 allele is only partially competent
to inhibit p53 is consistent with our previous observation
that deletion of the N-terminus of IxBa reduced its phys-
ical affinity for p53 (Figure 3). While the ANT1 allele is a
super-repressor of NF-kB, the AA5 allele does not repress
NF-xB, and thus this allele could be used to ask whether
p53 repression and NF-kB inhibition are separable charac-
teristics of the IkBa molecule. Remarkably, AA5, which
cannot repress NF-xB transcription, had very pronounced
inhibitory effects upon transcription by p53 (Figure 5A),
comparable to that of wild-type.

Mapping of interactions between IxBoand p53 in vivo to

the ankyrin 3 domain of IxBo

Ankyrin regions in IkBa, shared with other members of
the IxB gene family are the sites of binding to NF-«B tran-
scription factor family members. Further experiments
were performed to define the effects of deletion of addi-
tional ankyrin domains of IkBo. upon p53 transcription in
Akata cells. In these experiments, shown in Figure 5, IxBa
plasmids were transfected at 800 ng (at a ratio of 4:1 rela-
tive to p53 plasmid). Deletion of either the second (AA2,
amino acids 110-136, not shown) or fourth ankyrin
domains (AA4, amino acids 182-208) had the most
potent inhibitory effects upon p53 transcription. Deletion
of amino acids 264-317 in the carboxyl terminus (AC1),
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distal to the 6th ankyrin domian, were similarly inhibitory.
This region retains the 6t ankyrin domain but deletes a
potentially regulatory acidic PEST region. Deletion of the
ankyrin 1 domain of IkBa was not evaluated in this work.

In multiple experiments with wild-type p53, deletion of
the ankyrin 3 (AA3) domain of IxBo. (missing amino acids
143-169) resulted in a loss of inhibitory activity towards
p53 transcription. Thus AA3 acts as a null allele for both
p53 and NF-xB transcription in vivo, while other ankyrin
deletion alleles of IkBo. (AA2, AA4, AA5) act as null alleles
for NF-xB but gain of function with respect to p53. Thus,
our data are consistent with the hypothesis that the
ankyrin 3 and N-terminus of IkBo are cooperatively or
independently involved in repressing p53. We cannot,
however, rule out an alternative possibility, that the dele-
tion of the ankyrin 3 (AA3) of IxBa resulted in a protein
with high turnover in Akata cells.

Relative effects of alleles of | kB are conserved with
constitutively active p53 and require transcriptionally
active p53

P53 transcription is regulated in part by phosphorylation
of the carboxyl terminus of the protein. Phosphorylation
induces a conformational change in p53 so that an auto-
inhibitory region of the carboxyl terminus no longer
inhibits DNA binding [73-75]. To determine whether the
effects of IxBa upon p53 transcription required the auto-
inhibitory carboxyl terminus of p53, experiments were
repeated with a truncated form of p53 containing the first
353 amino acids (Figure 5A, AC-p53) together with an 8-
fold excess of IkBa plasmid (1600 ng). As expected, these
experiments demonstrated increased p53 transcriptional
activity measured as p53 -dependent transcription of
pG(13)PY/Luc in Akata cells at the same plasmid concen-
trations compared to experiments using wild-type p53.
Co-transfection of a fixed concentration of a plasmid
expressing AC-p53 protein (200 ng), and IkBo alleles
(1600 ng) demonstrated that the carboxyl terminus of
p53 was not required for the association between p53-
dependent transcription and IxBo expression. As in
experiments with wild-type p53, deletion of the ankyrin 4
(AA4) domain of IkBa was associated with greater
decreases in p53-dependent transcription than other alle-
les of IkBa.. A transcriptionally inactive p53 mutated in
the p53 DNA binding core (pC53-CSX3, V193A) gave very
low levels of luciferase activity that were not altered by co-
transfection of any IxBa alleles (data not shown). Thus,
the effects of IxBa upon p53 transcription in Akata cells
were found to be entirely dependent upon the presence of
co-transfected transcriptionally active p53 but independ-
ent of the carboxyl-terminus regulatory sequences of p53.

Allele specific association between IxBcx and p53
synthesized in a rabbit reticulocyte lysate (RRL) system

Page 10 of 19

(page number not for citation purposes)



BMC Immunology 2005, 6:12

correspond to allele specific modulation of transcription in
vivo

Some alleles of [kBa including AA3 and AA4 were not sta-
ble in COS cells (unpublished observations). Therefore,
COS cells could not be used to determine the correlation
between IxkBoa and p53 binding in vitro (Figure 2B) and
transcriptional effects in Akata cells (Figure 5). Thus, to
overcome this technical problem, p53 and IxBa proteins
were both separately synthesized in a rabbit reticulocyte
lysate system (Figure 6). IxBa. synthesized in the reticulo-
cyte lysate system is functionally active in its effects upon
NF-«B transcription factors and ubiquitin-dependent deg-
radation. Likewise, but in contrast to bacterially synthe-
sized p53, p53 synthesized in RRL system is functionally
active as a site-specific DNA-binding protein and like IxBa.
is degraded in vitro by a ubiquitin-dependent pathway.
Experiments were performed to determine whether RRL
produced p53 that could interact with IxBa alleles like-
wise translated in vitro in RRL.

Coupled transcription/translation of a plasmid encoding
wild-type p53 in RRL (lane 1, Figure 6B) resulted in sev-
eral template-specific products that could be precipitated
from lysates with p53-specific monoclonal antibodies
(lanes 2 and 3, Figure 6B). These products appeared to be
a mixture of full length and less-than full-length p53 pro-
teins resulting from internal initiation sites in the p53
template. Negative control precipitation with IgG2A
immunoglobulin (lane 4) or protein G/A beads (lane 5)
resulted in undetectable levels of p53 recovery.

IxBo was precipitated with a polyclonal antiserum
directed at the IxBa C-terminus in the absence (p53-) or
presence of p53 (p53+) protein after both proteins were
synthesized in the reticulocyte lysate system (Figure GA).
Deletion of the carboxyl terminus of IxBa did not inter-
fere with binding between GST-p53 and IkBa synthesized
in COS cells (Figure 2), suggesting that binding of anti-
body directed at the IkBa carboxyl terminus would not
interfere with binding between p53 and IkBo. Visual
inspection and gel densitometry of these co-precipitation
experiments confirmed a specific association between
wild-type IxBo. and p53. The association of AA3 IxBo
allele to p53 was significantly reduced (Figure 6A, p53+,
lane 3) as determined by gel densitometry (Figure 6D, p <
0.05) relative to the association between the wild-type
IkBa, AA4, and AA5 alleles of IxBa to p53. Gel densitom-
etry was not sensitive enough to determine whether small
differences in the binding of other IxBo. alleles to p53
were significant. In the absence of labeled IxBa, bands
corresponding to p53 were still evident (5A, lane 1, p53+)
suggesting either non-specific binding or co-precipitation
with endogenous unlabeled IkBa. There are small quanti-
ties of immuno-detectable IxBa in certain preparations of
RRL (L. Ghoda, unpublished observations). Similar
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results were obtained in experiments in which an anti-
body against p53 (Ab2) were used to co-precipitate p53
and IxBo alleles (unpublished observations). Binding was
also evident between IxBa and p53-related proteins
smaller in size than full-length p53 although these inter-
actions could not be reliably quantitated due to variable
co-migrating protein species in the relevant portions of
the gel.

In vivo binding of AA5-1xBc to wild-type p53

The melanoma cell line A2085 expressing endogenous
wild-type p53 was stably transfected with the hemaglut-
tinin (HA)-tagged AAS allele of IxBo [76]. The AAS allele
was chosen because it has no effect on NF-«B activity but
is one of the more potent alleles of IxBa. in modulating
p53-dependent transcription. Several independent stable
clones as well as pooled transfectants were expanded and
used for experiments for which results of the pooled trans-
fectants (DA5) are shown here (Figure 7). Results were
qualitatively similar with pooled vs cells expanded from
single colonies. Pooled transformants resulting from anti-
biotic selection of vector transfected cells were used as
controls (Con). Association of AA5-IkBa with p53 was
evident when UV-irradiated cell extracts were immuno-
precipated using anti-p53 antibody and the immunopre-
cipitates probed with anti-IkBo. antibody (top panel).
Likewise, association between transfected IkBo, and p53
are evident when immunoprecipitates generated using
anti-HA were probed with anti-p53 (bottom row). Immu-
noprecipitation with normal rabbit serum (ns) precipi-
tated little or no IkBo or p53. Association between
endogenous wild-type IkBa and p53 are also evident as
seen by the upper band detectable with anti-IkBo western
blotting in Con and DA5 lanes when extracts are
precipitated with anti-p53. When extracts of irradiated
cells are immunoprecipitated with anti-HA, and immuno-
blotted with anti-IkBa, Both endogenous and AA5 are evi-
dent. This is likely due to the precipitation of wt- IxBo
with the p53/ AA5-IkBa complex since p53 exists as a
tetramer.

Discussion

In this work we determined that IxBo and p53 bind in
vitro through a specific interaction in part involving the
DNA binding region of p53, or a region proximal to it,
and the amino terminus of IkBo. independently or coop-
eratively with the ankyrin 3 domain of IxkBo. A physical
interaction between p53 and IxBa has been noted by two
other groups [68,69]. Generally, our data corroborate
these previously reported interactions and provide further
evidence for direct transcriptional modulation of p53 by
IxBo. There are some notable differences in our observa-
tions from that of others, in particular, the binding site on
IxBa was reported as existing in the non-ankyrin C-termi-
nus by Chang [68] in an yeast two-hybrid system using a
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Figure 6

Rabbit reticulocyte lysate (RRL) produced p53 and IxBa. proteins interact in vitro. A. Wild-type IxBo and mutant proteins were
synthesized in rabbit reticulocyte lysates (lane |, RRL no RNA; lane 2, AA2; lane 3, AA3; lane 4, AA4; lane 5, AAS5; and lane 6,
wild-type) and precipitated with a rabbit polyclonal antiserum against the C-terminus of IkxBo using protein A/G sephadex
beads either in the absence (p53-) or in the presence (p53+) of RRL synthesized, [3*S]-labeled, p53. Equal volumes of RRL were
used in all cases. For p53- reactions, RRL programmed with empty vector was incubated with [35S]-labeled methionine. A con-
trol reticulocyte lysate without IxBo. protein template (lane |) was included in these experiments. AA2 (lane 2), AA3 (lane 3),
AA4 (lane 4) AAS5 (lane 5) and wild-type (lane 6) IxBo. proteins were co-incubated with p53, precipitated and analzyed by SDS-
PAGE followed by radiography. B. Wild-type p53 protein translated in RRL (lane 1) produced both putative full-length p53 pro-
tein (denoted p53, mobility approximately 55 kD) and also at least two less-than-full length translation products (denoted * and
** lanes 1-3). Putative full-length and less-than full-length p53 translation products were precipitated by p53-specific mono-
clonal antibodies and protein A/G sephadex beads (lane 2, Abl recognizing the carboxyl terminus of p53; lane 3, Ab2 recogniz-
ing the amino terminus of p53). Less-than full-length proteins were more readily precipitated by Abl than Ab2. Control
precipitation with IgG2A immunoglobulin (lane 4) or protein G/A beads (lane 5) did not precipitate p53. C. IkBa: proteins were
precipitated in similar quantities by |kBo. antiserum. A shorter exposure of the gel than in panel A is shown. D. Densitometry
of p53 protein precipitated in association with various IkBa alleles. Data shows significant precipitation of p53 with AA4, AAS5
and wild-type, expressed as a ratio of label precipitating with |kBo. allele to beads alone. Data was calculated by first normaliz-
ing to the background in each lane followed by calculating the ratio of label precipitating with IkBo. to a corresponding area in
the beads alone lane.

deletion construct missing amino acids 244-317. This  nal deletion construct (A264-317) which also retains p53
construct in fact deletes the 6th ankyrin domain of IxBa,  binding and regulation. When the data are taken in toto, it
located at amino acids 244 - 263, retained in our C-termi-  can be inferred that in fact the 6% ankyrin domain,
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Figure 7

P53 associates with AA5-1kBa in UV-irradiated melanoma cells. A2085 cells stably transfected with the parent vector (Con) or
AAS5-IxBa allele (DAS5) were irradiated for 30" with UVB and harvested 4 hrs later. The extracts were subjected to immuno-
precipitation with non specific rabbit serum (ns), polyclonal rabbit anti-HA antibody (a-HA), or mouse monoclonal anti-p53
Ab2 antibody (0-p53) and probed by western analysis with mouse anti-lkBo antibody directed at the C-terminus of IxBa. (top
panel) or the Ab3 anti-p53 monoclonal antibody (bottom panel). Experiments were performed on stably transfected, pooled

transfectants of controls (Con) or AA5-IkBa. (DAS).

retained in our construct but deleted in Chang's, may in
fact contain another p53 contact point, the loss of which
were observed by Chang but not by us.

We also found that deletion of the ankyrin 2, 4, or 5
domains of IkBa increased the inhibitory effect of IxBa
on p53-dependent transcription in Akata cells. We specu-
late that the compacting of the structure by elimination of
an ankyrin domain may promote better binding of the
protein to p53 as it may convert [KBa to a structure closer
in size to that of 53BP2 which only contains four
ankyrins. Mutations in the ankyrin regions of IxBo have
been characterized regarding their effects upon NF-kB-
mediated transcription as well as nuclear translocation,
with most deletions of ankyrins including deletion of
ankyrin 5 leading to a null phenotype (confirmed in part
in this work in Akata cells) with respect to NF-xB tran-
scription. Nevertheless, over-expression of AA5-IkBo was
more effective than wild-type at decreasing p53 transcrip-

tion at all but the lowest concentrations examined. Thus,
it was evident that over-expression of some alleles of IkBo
could influence p53 transcription independently of their
effects upon transcription by NF-xB. Deletion of the
ankyrin 3 region of IxkBa eliminated detectable interac-
tions between IkBo and p53 in vivo and in vitro suggesting
a critical role of the ankyrin 3 region in a specific in vivo
interaction with p53. The combined results obtained
using bacterially produced IxBa and p53 (Figure 2) as
well as RRL produced proteins (Figure 6) suggest a corre-
lation between in vitro co-precipitation in at least one of
the systems and in vivo p53 inhibitory activity. These
observations argue for a mechanism involving direct
binding of IkBa to p53 in the inhibition of p53 transcrip-
tional activity.

Our interpretation of these observations is that binding
between IxkBo and p53 occurs primarily between the p53
DNA-binding core or a region proximal to it, and the
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Figure 8

A model for molecular evolution of p53 and NF-kB from a common ancestral transcription factor, proto-p53/ NF-xB. A. P53
(first row) and NF-kB (fourth row) DNA binding sites share eight out of ten nucleotides as shown by the sequence depicted in
the second row (consensus). R represents purine, A or G; Y represents pyrimidine, C or T. The red X denotes nucleotides
where there is no match. The predicted DNA binding site sequence of the ancestral proto-p53/NF-xB is shown in the third
row. B. An ancestral transcription factor proto-p53/ NF-kB, also regulated by an ankyrin protein, with a DNA binding site
shown in A, above, could have been the precursor to both p53 and NF-xB. C. An ankyrin-like region in EBV protein BZLF-1
(ZEBRA\) is shown in alignment with ankyrin motifs in lkBo, NF-xB p50, as well as invertebrate ankyrin like regulatory repeats
from Drosophila Cactus and C. elegans Unc22.
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ankyrin 3 and N-terminal regions of IxBa.. Binding results
in decreased p53-dependent transcription when both
IxBo and p53 are overexpressed in vivo. These results are
consistent with those published by Zhou, et al. [69] where
induction of p53 regulatable genes such as p21 and
Mdm2 in response to doxorubicin was abrogated by
expression of a degradation-resistant form of IxBo.. These
interactions are strikingly similar to the known interac-
tions between IxBa and its physiologic ligand, NF-xB. We
suggest that these interactions are a result of a conserved
relationship, i.e., that of a common descent, of p65 and
p53 from a primordial transcription factor which we term
proto p53/NF-kB (Figure 8B). Not only do the two tran-
scription factors bind ankyrin proteins but both NF-xB
and p53 have similar DNA binding sites (Figure 8A). Fur-
thermore, both factors bind a viral protein encoded by the
EBV BZLF-1 open reading frame (also known as ZEBRA)
and can transcription can be modulated by this viral pro-
tein when overexpressed in lymphoblastoid cell lines
[64,77]. As shown in Figure 8C, we found that a cryptic
ankyrin like region is present in the dimerization region of
BZLF-1, coincident with the region required for binding to
both p65 and p53. With the exception of ankyrin
domains, BZLF-1 and IxkBa are otherwise not similar in
sequence, structure, or function.

Thus, ankyrin repeat domains appear to be key points of
interaction between diverse proteins in the NF-xB and
p53 superfamilies. A similar conclusion is suggested by
the crystal structure of a complex between p53 and 53BP2
[28]. 53BP2 is a 1002 amino acid protein containing four
ankyrin repeats that has been found to be a fragment of an
even larger protein known as ASPP2. Residues TYSD
located in the 4th ankyrin repeat of 53BP2/ASPP2 (Figure
2E, 133 TYsd) binds to the L2 loop of p53 immediately
after the zinc ligand site in p53, while the non-ankyrin,
SH3 domain of 53BP2 also contribute to the binding
interactions. These four residues in 53BP2/ASPP2 are
exactly aligned with an equivalent block in the sixth
ankyrin repeat of IxBo. (Figure 2E, 181 TYqq). It is inter-
esting to note that this corresponds to the 6% ankyrin
domain predicted to be a contact point for p53 as out-
lined above. Paradoxically, 53BP2/ASPP2 is exclusively
cytoplasmic thus it may only inhibit and sequester p53 in
the cytoplasm. IkBa thus may fall into a paradigm of
endogenous and viral p53 regulatory proteins where
ankyrin and non-ankyrin domains contribute to p53
binding and transcriptional modulation. Other ankyrin
proteins that bind to either NF-xB or p53 could also bind
and potentially modulate each other.

Conclusion

In conclusion, modulation of p53 transcription by IxkBo
and related host and viral proteins could play a role in the
regulation of p53-dependent apoptosis in vivo. Both p53
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and IxBo are members of multi-gene families, and both
protein families regulate apoptosis. Previously, a coopera-
tive relationship between p53-dependent apoptosis and
NF-xB activation had been reported [59]. Our observa-
tions may represent the converse of this situation where
inactivation of NF-kB (i.e. as a result of elevated IxBa. lev-
els) results in inhibition of p53 transcriptional activity.
Alternatively, a situation where accumulation of IxkBao. free
of NF-kB, as a result of phosphorylation of p65 by RSK1
and ensuing dissociation of NF-«B from IxBa, could result
in the regulation of p53 by IxBa [78]. Another setting
where our observations may play a significant physiolog-
ical role is during herpesvirus infection. The Epstein-Barr
nuclear antigen (EBNA1) contains a region enriched in
gly-ala repeats, and this repeat sequence inhibits the 26S
proteasome leading to inhibition of peptide presentation
by the MHC Class I restricted pathway [79]. EBNA1 is
expressed during viral latency, a condition where it is ben-
eficial for the virus to inhibit apoptosis. Proteasome inhi-
bition will lead to inhibition of all cellular protein
degradation and the impact would be the greatest on
those proteins with extremely short half-lives such as p53
and IxBo. Thus, the accumulation of IkBo under these cir-
cumstances may down regulate the activity of p53.

Decreased p53-dependent transcription could limit the
ability of p53 to trigger cellular apoptosis in the presence
of inflammation since levels of targets of NF-xB, including
IxBa, are up-regulated. If, in fact, IxBa inhibits or
dampens p53 function, cells could continue to proliferate
and differentiate in the presence of an inflammatory event
even if there is DNA damage or other cellular injury that
would normally activate p53-dependent cell cycle arrest
and apoptosis. Thus, a combination of inflammation and
cellular damage could increase malignant transformation
of cells since the threshold for p53 levels to trigger apop-
tosis may be elevated. It is notable that we know little
about what thresholds regulate p53 function - in particu-
lar, what determines whether a cell repairs DNA and
resumes transit through the cell cycle or dies. A molecule
such as IxkBo may be involved in influencing threshold-
dependent cell fate decisions. The observation that
truncated p53 proteins may bind to IxBa raises the possi-
bility that short p53-related peptides could alter the bind-
ing between IxBa and p53, in turn altering a putative
regulatory relationship between these proteins in vivo.
Modulation of this regulatory interaction by pharmaco-
logic or other means could potentially alter the balance
between cellular proliferation and cell cycle arrest/apop-
tosis in the context of inflammation.

Methods

In vitro precipitation of p53 and IxBo

Bacterially produced 6xHis-tagged IxBo(His-IkBa) was
labeled in wvitro with 32P using [y-32P]ATP and Xenopus
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laevis p90rsk (a gift of Dr. James Maller, Howard Hughes
Memorial Institute and UCHSC, Denver CO) [80] and
detected with polyclonal rabbit antiserum specific to the
N- or C-terminus of IxBa as described (a gift of Dr. Warner
Greene, the Gladstone Institute for Virology & Immunol-
ogy, UCSF, San Francisco, CA) GST-p53 produced from a
pGEX construct in bacteris was incubated with
hexahistidine-tagged IxBo. purified as described in [44] in
IP buffer buffer containing 25 mM Hepes, pH 7.5, 75 mM
KCl, 2.5 mM MgCl,, 0.1 mM EDTA, 0.15% NP-40, and 1
mM DTT. Protein complexes were purified using either
glutathione conjugated Sepharose beads to bind GST
(Pharmacia) for GST-p53 or Protein A/G conjugated
Sephadex beads (Oncogene Science, CA). Proteins were
separated by polyacrylamide gel electrophoresis (PAGE)
on either 10% or 12% gels which were dried and autora-
diographed on photographic film (Fuji) for detection of
radiolabeled protein or transferred to supported nitrocel-
lulose or PVDF membrane and probed with antibodies
using the Renaissance system for western blotting (NEN,
Boston, MA). p53 specific monoclonal antibodies Abl,
Ab2, Ab3, Ab5, and Ab6 were obtained from Oncogene
Science [81].

Expression of 1xB« alleles in cells

COS cells and Akata cells were transiently transfected
using Superfectin (Qiagen, Chatworth, CA) with expres-
sion vectors for IxBa. alleles in an expression plasmid reg-
ulated by a CMV promoter (pCMV5) obtained from Dr.
S.C. Sun (Penn State, Hershey, PA). COS cells were lysed
in IP buffer (see above) and incubated with p53-pGEX.
Overexpression and coprecipitation of IxBo proteins in
COS cells was complicated by the apparent instability of
some IxkBo alleles (AA3, AA4) these cells and lack of an
association between other alleles (AA5) and p53-pGEX
(unpublished observations). Following PAGE, AN1 IxBa
protein was detected using a rabbit polyclonal antisera
directed at the C-terminus of IkBa, while AC1 IxBo pro-
tein was detected using a rabbit polyclonal antisera
directed at the N-terminus of IxBo. in these experiments
(antibodies to N- and C-termini of IxkBo were a gift of Dr.
W.C. Greene, the Gladstone Institute for Virology and
Immunology and the University of California, San Fran-
cisco, CA).

Transient transfection of Akata cells

Akata cells were obtained from Dr. J. F. Jones (National
Jewish Medical Research Center, Denver, CO). The iden-
tity of Akata cells was confirmed by expression of EBV lytic
gene products following ligation of surface IgG (data not
shown). Cells were cultured using standard conditions in
RPMI medium (GIBCO-BRL) supplemented with 10%
fetal calf serum, penicillin/streptomycin (100 U/ml) and
L-glutamine (2 mM). As previously reported, endogenous
p53 protein was not detected in Akata cells by Western

http://www.biomedcentral.com/1471-2172/6/12

blotting with a rabbit polyclonal antisera directed at the
entire p53 coding sequence (Santa Cruz Biologicals, Santa
Cruz, CA) [21,81].

Akata cells were transiently transfected with plasmids
using dextran sulfate (Pharmacia). p53 protein transiently
expressed by plasmids transfected into Akata cells could
be detected in nuclear extracts of transfected cells (data
not shown). Levels of transfected wild-type IxBa. protein
were not detected by Western blotting above a high back-
ground of endogenous IxBo proteins in Akata cells,
although expression of IkxBo. protein could be inferred by
effects on transcription of NF-kB reporter genes. Akata
were grown to a density of 1 x 106 cells/ml and 1 ml of
cells for each experiment were transfected with Dextran.
After transfection, cells were incubated in fresh culture
medium for 24 hours prior to determination of luciferase
activity.

Luciferase assay

A luciferase reporter gene regulated by 13 tandem copies
of a p53 response element, denoted pG(13)PyLuc, or p21
promoter reporter, denoted WWP/Luc, were transfected
into Akata cells in experiments at concentrations indi-
cated. As noted in the text the relative effects of different
alleles of IxBa. upon p53 dependent luciferase expression
varied with the relative ratios of expression vector for IkBo
to expression vector for p53. CMV-promoter driven p53
expression plasmids encoding wild-type p53 (pC53-SN3)
and a DNA binding mutated p53 (pC53-CSX3 V193A)
were obtained from Dr. B. Vogelstein, (Johns Hopkins
University, Baltimore, MD). An expression plasmid
encoding a carboxyl-terminus deleted p53 (pCEP4-353)
was obtained from Dr. J. Pietenpol, Vanderbilt Univ.,
Memphis, TN). Plasmids were prepared using either the
Promega (Madison, WI) or Qiagen (Chatsworth, CA) pro-
cedures with similar results.

A plasmid encoding a second form of luciferase (Renilla
luciferase) driven by an SV40 promoter was used as an
internal control for transfection efficiency and cell viabil-
ity (pRL-SV40, Promega, Madison WI). Similar results
were obtained without pRL transfection by normalization
of luciferase activity to total cellular protein. Luciferase
activity was measured using the Stop and Glo assay
(Promega) and an Analytical Luminescence Laboratory
luminometer (San Diego, CA). Each data point shown
from luciferase assay experiments represents pooled data
from at least three independent experiments. Standard
error and significant differences (p < 0.05, indicated with
an asterick, *) were as determined by the students t-test for
multiple comparisons of data points using statistical soft-
ware (SAS Institute Inc, Cary, NC).
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Reticulocyte lysate expression and immunoprecipitation
For reticulocyte lysate expression and immunoprecipita-
tion studies, IkBo expression vectors were digested with
Xbal/HindIII and ligated into the Xbal/HindlIII site of pBS
KS(Stratagene) to place the open reading frames down-
stream of a T7 RNA polymerase promoter element. These
IxBa constructs lack epitope tags. Vectors encoding p53
wild-type (SN3) and DNA binding mutant p53 protein
(pBKS-273) for reticulocyte lysate expression were
obtained from Dr. B. Vogelstein. 35S-Cysteine/methionine
labelled IxBo and p53 proteins were produced in the TNT
coupled transcription/translation system (Promega)
using T7 RNA polymerase for wild-type p53 and IxBo and
T3 for mutant p53. 10 pl of reticulocyte lysates, as indi-
cated, were incubated in a total volume of 100 pul IP buffer
for 2 hours at 4°C. Antibodies were added and incubated
for an additional 1 hour, and proteins were precipitated
with Protein G plus/A Sephadex (Oncogene Science).
Beads were washed once with 500 ul IP buffer and pro-
teins denatured in Laemmli sample buffer and separated
on 10 or 12% PAGE gels dried and visualized by autoradi-
ography. Despite possibly confounding variables due to
the presence of the p65 (RelA) subunit of NF-xB and pos-
sibly other related factors in reticulocyte lysates (unpub-
lished observations), a correlation was evident between
the quantity of p53 coprecipitated with IkBa and the rel-
ative effect of individual alleles upon in vivo p53 transcrip-
tion in Akata cells. In particular, there was a lack of a
detectable interaction between the ankyrin 3 deletion
mutant of IkBa and p53 in vivo or in vitro.
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53BP2, p53 binding protein 2

ASPP2, apoptosis stimulating factor of p53 -2
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