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Abstract

Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The

level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside

diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated

families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the

NPP family, namely NPP1Y3, are known to hydrolyze nucleotides. The enzymatic action of NPP1Y3 (in)directly results in

the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP,

adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby,

generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and

analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune

response and cell motility.

Abbreviations: Ado – adenosine; ADP – adenosine 50 diphosphate; AMP – adenosine 50 monophosphate; ApnA – diadeno-

sine polyphosphate; ATP – adenosine 50 triphosphate; CSF – cerebrospinal fluid; E-NTPDases – ectonucleoside triphosphate

diphosphohydrolases; GPC – glycerophosphorylcholine; LPA – lysophosphatidic acid; LPC – lysophosphatidyl choline;

MCC – mucociliary clearing; NAD+ – nicotinamide adenine dinucleotide; NMN – nicotinamide mononucleotide; NPP –

nucleotide pyrophosphatase/phosphodiesterase; Pi – inorganic phosphate; PPi – pyrophosphate; SM – sphingomyelin; SMB –

somatomedin-B like domain; S-S bridges – disulfide bridges; UDP-glucose – uridine diphosphate glucose

Introduction

Extracellular nucleotides function as autocrine or paracrine

signaling molecules. Their binding to P2 purinergic

receptors leads to both short-term and long-term effects

[1]. Short-term effects, like neurotransmission and hor-

mone secretion, are mediated by the ionotropic P2X

receptors that bind mainly ATP, while long-term effects,

including cell proliferation, differentiation and migration,

occur via the metabotropic G-protein coupled P2Y recep-

tors that interact with a broader range of nucleotides [2Y5].

In keeping with their importance in cell signaling, the

extracellular concentration of nucleotides is tightly regu-

lated. Nucleotides can be released from cells primarily by

exocytosis or selective transport through the plasma

membrane [1, 6], but they can also be generated extracel-

lularly by nucleoside diphosphokinase and adenylate

kinase activities [7Y9] (Figure 1). There are four major

families of ectonucleotidases, namely E-NTPDases (ecto-

nucleoside triphosphate diphosphohydrolases), alkaline

phosphatases, NPP-type ectophosphodiesterases and the

50-nucleotidase [10]. Often these ectonucleotidases work in

concert or consecutively (Figure 1). ATP, for instance, can

be degraded in one step to either ADP or AMP by E-

NTPDase or NPP isoenzymes. ADP can be further

hydrolyzed to AMP by E-NTPDases and NPPs, and AMP

is converted to adenosine by alkaline phosphatases or the

50-nucleotidase. This sequential degradation mechanism

not only terminates ATP signaling but also generates

intermediates with distinct signaling properties. Thus,

ADP selectively interacts with P2 receptor subtypes and

is the principal platelet recruiting factor [11, 12], while

adenosine, acting through P1 receptors, plays a major role

in the regulation of blood flow and the immune response

[13Y15]. The relative contribution of the distinct ectonu-

cleotidase species to the modulation of purinergic signaling

may depend on differential tissue and cell distribution,

regulation of expression, targeting to specific membrane

domains, but also on substrate availability and substrate

preference. For example, the localization of NTPDase1 and
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NTPDase2 to distinct cell types within the vascular wall,

combined with their substrate preference, may have direct

implications for the control of platelet activation and

coagulation responses in vivo [16, 17]. The former

ectonucleotidase metabolizes both ATP and ADP while

the latter acts primarily as an ATP phosphohydrolase.

The family of NPPs (nucleotide pyrophosphatases/

phosphodiesterases) consists of seven members, numbered

according to their order of cloning (Figure 2). Only NPP1-

3, which have a common ancestor, have been implicated in

the hydrolysis of nucleotides [10, 18, 19], while NPP6Y7

are only known to hydrolyze phosphodiester bonds in

lysophospholipids or other choline phosphodiesters

[20Y22]. Remarkably, NPP2 acts on both nucleotides and

lysophospholipids [23, 24]. Established nucleotide(-de-

rived) substrates of NPP1Y3 include ATP, diadenosine

polyphosphates (ApnA), UDP-glucose, NAD+ and 30-
phosphoadenosine-50-phosphosulfate (Figure 2). In vitro,

NPP isoenzymes have an alkaline optimum pH, but the

physiological relevance of this property has not been

explored.

Except for NPP2, all NPPs are single-span transmem-

brane proteins. NPP1 and NPP3 have a type-II orientation,

with their N-terminus facing the cytosol, while NPP4Y7

Figure 1. NPPs are part of the extracellular nucleotide-metabolizing network. The concentration of nucleotides in the extracellular milieu is the net

result of the release of nucleotides from cells, their synthesis by nucleoside diphosphokinases and adenylate kinases, and their hydrolysis by

ectonucleotidases. The examples shown here apply to ATP, the prototype extracellular nucleotide. Members of the E-NTDPase family, also known as

apyrases, generally act as ATP diphosphohydrolases and hydrolyze ATP to ADP + Pi, and ADP to AMP + Pi, or ATP directly to AMP + 2Pi. Individual

members however display substrate preference. For instance, E-NTPDase-1 metabolizes equally well ATP and ADP, while E-NTPDase-2 prefers ATP as

a substrate. ATP can be regenerated from ADP by nucleoside diphosphokinase or adenylate kinase. NPPs, at least NPP1-3, have a nucleotide

pyrophosphatase activity and metabolize ATP directly to ADP + Pi or to AMP + PPi. The hydrolysis of AMP to adenosine by 50-nucleotidase/CD73

completes the dephosphorylation pathway of ATP. Adenosine can be taken up by cells such as lymphocytes and be re-used for intracellular nucleotide

synthesis (nucleotide salvage). Several ectonucleotide species can be expressed by a given cell type, but the relative abundance, sorting to specific

membrane domains and substrate availability are ultimately responsible for the net outcome of the nucleotide metabolism at the cell surface.

Figure 2. The phylogenetic tree of the NPP-family and some key substrates. Protein sequences for the human isoforms were retrieved from Genbank

and aligned with CLUSTAL W. Accession numbers are: hNPP1, P22413; hNPP2, NP_006200.2; hNPP3, NP_005012.1; hNPP4, AAH18054.1; hNPP5,

CAB56566.1; hNPP6, NP_699174.1; hNPP7, AAH41453.2. Representative nucleotide and/or lipid substrates are shown for each NPP isozyme. NPP1-3

have a common ancestor, and are the only known NPPs capable of hydrolyzing nucleotides. The overall aminoacid identity for the human isoenzymes, as

obtained by Blast-2 sequence analysis at the NCBI site, is 41% (NPP1YNPP2), 52% (NPP1YNPP3) and 40% (NPP2YNPP3). LPC Lysophosphatidylcho-

line, GPC glycerophosporylcholine, SM sphingomyelin.
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have been predicted to adopt a type-I orientation, with their

N-terminus facing the extracellular milieu [18, 20Y22]

(Figure 3). This prediction is supported experimentally

for NPP6 and NPP7. Thus, truncated forms of NPP6 or

NPP7 lacking the C-terminal putative transmembrane

domain are not retained at the plasma membrane and are

secreted [22, 25]. In addition, a soluble form of NPP7 is

released from the plasma membrane by trypsin, which acts

on tryptic arginine site(s) located upstream of the trans-

membrane domain. Soluble forms have also been identified

for NPP1, NPP3 and NPP6, but the mechanisms for their

generation remains to be elucidated [22, 26Y29]. NPP2 is

synthesized as a pre-pro-enzyme and only exists as a

secreted protein [30].

Our understanding of the structural and functional

diversity of NPPs has increased considerably in the last

few years. This review deals primarily with the domain

structure and enzymatic properties of NPPs, and with their

putative role in the modulation of purinergic signaling, in

particular in relation to epithelial and neural functions, the

immune response and cell motility. The reader can find

complementary information on NPPs in other recent

reviews [31, 32].

Domain structure and catalytic properties of NPPs

NPPs are modular proteins (Figure 3). In addition to a

catalytic domain they also contain subcellular targeting or

anchoring domains as well as regulatory domains.

The catalytic domain: The NPP signature

All NPPs have a catalytic domain of about 400 residues

that shows up to 60% identity at the amino acid level

between the different human isoforms. This catalytic

domain is predicted to adopt a fold similar to that of

alkaline phosphatases, phosphopentomutases and cofactor-

independent phosphoglycerate mutases, which all belong to

the superfamily of phospho-/sulfo-coordinating metalloen-

zymes [33, 34]. Also, the residues that coordinate two

metals in the catalytic site of alkaline phosphatases and

their spatial arrangement towards the catalytic site, are

conserved in NPPs. Furthermore, the reaction mechanism

of NPPs appears to be similar to that of the other phospho-/

sulfo-coordinating metalloenzymes and involves a two-step

mechanism [18]. In the first step, the catalytic-site threo-

nine/serine forms an intermediate with a phosphate group

Figure 3. Domain structure and subcellular localisation of NPPs. Except for NPP2, which is secreted in the extracellular medium, NPP ectoenzymes are

single-span membrane proteins with type-II (NPP1 and NPP3) or type-I orientation (NPP4Y7). In all cases, the bulk of the protein lies outside the cell, with

only short fragments facing the cytosol. Soluble NPP1 can be generated by cleavage of the membrane-associated form (arrow). The intracellular domains

of NPP1 and NPP3 contain determinants for targeting to the basolateral or apical side of the plasma membrane, respectively. The common structural

element of NPPs is the catalytic domain. Aminoacid identity of the catalytic domain, as obtained by Blast-2 sequence analysis of the human isoenzymes

at the NCBI site is between 24% (NPP2YNPP6) and 60% (NPP1YNPP3). The position of the threonine/serine that mediates the formation of the catalytic

intermediate is marked with white circles. The nuclease-like domain and the two somatomedin B-like domains (SMB1 and SMB2) are found only in

NPP1Y3.
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of the incoming substrate. In the second catalytic step, a

water molecule is used to regenerate the catalytic-site

threonine/serine and to release the phosphorylated product.

For example, ATP is hydrolyzed into either AMP + PPi or

ADP + Pi, via an AMP- or phosphate-bound intermediate,

respectively, depending on how the substrate approaches

the catalytic site [18].

The N-terminus: Signal peptide or signal anchor?

The N-terminal 21Y76 residues harbour the determinants

for the subcellular localization of human NPPs. In NPP1

and NPP3 this region functions as a signal anchor, ensuring

a type-II orientation across the membrane, with the N-

terminus facing the cytosol. In the polarized epithelial

cells, NPP1 and NPP3 are expressed at different sides of

the plasma membrane. A di-leucine motif in the intracel-

lular domain targets NPP1 to the basolateral membrane

[35]. The N-terminus of NPP3 does not contain this motif

and is therefore targeted apically, in part after it transiently

reaches the basolateral area [36]. The first 27 residues of

NPP2 function as a signal peptide that is removed co-

translationally by the signal peptidase in the endoplasmic

reticulum. The resulting soluble pro-NPP2 is further

cleaved by furin-type proteases along the secretory path-

way to generate the mature, fully active NPP2 [30]. The

N-terminus of NPP6Y7 comprising about 20 residues

functions as a signal peptide that is cleaved co-translation-

ally. However, NPP6Y7 have a C-terminal transmembrane

domain, which accounts for their type-I transmembrane

orientation, leaving the bulk of the protein extracellularly.

The somatomedin-B like domains of NPP1Y3: An elusive

function

Two cysteine-rich somatomedin-B like domains lie be-

tween the transmembrane and the catalytic domain of

NPP1Y3. One suggested function has been that of a Fstable

stalk_ between the transmembrane and the catalytic

domains [10]. Also, NPP1 is a disulfide-linked homodimer

and cysteines in these domains have been proposed to

participate in interchain SYS bridges [18, 37]. However, the

crystal structure of the somatomedin-B domain of vitro-

nectin revealed that this domain forms a Fdisulfide-knot_,
with all eight cysteines engaged in intrachain disulphide

bonds [38]. This strongly indicates that the determinants

for the dimerization of NPP1 lie outside the somatomedin-

B like domains. Consistent with this view, secreted NPP2

does not form dimers although it also has two somatome-

din-B like domains [30]. It is therefore likely that in

NPP1Y3 these domains function as protein interaction

domains, similarly to those in vitronectin [38].

The C-terminal portion of NPP1Y3: A multifunctional,

nuclease-like domain

A stretch of about 250 residues that flanks the catalytic

domain of NPP1Y3 C-terminally shows similarities with

DNA/RNA non-specific endoribonucleases, both with

respect to its primary structure and the predicted fold

[37]. This Fnuclease-like_ domain does not endow NPPs

with a nuclease activity because the residues that are

essential for catalysis by endoribonucleases are not

conserved in NPP1Y3. However, the nuclease-like domain

does appear to contain isoform-specific determinants for

catalysis by NPP1 and NPP2, since the swapping of their

nuclease-like domain results in an inactive NPP2, while

NPP1 with the nuclease-like domain of NPP2 is fully

active [39]. The nuclease-like domain also appears to be

essential for the translocation of NPPs from the endoplas-

mic reticulum to the Golgi-apparatus, possibly because it is

required for the correct folding of NPPs [37]. Finally,

recent evidence indicates that the nuclease-like domain of

NPP2 has an anti-adhesion function and may function as a

ligand for a G-protein coupled receptor [40].

The substrate specificity of NPPs: Many unanswered

questions

NPPs can hydrolyze pyrophosphate or phosphodiester

bonds in a wide variety of substrates, although each isoform

has a well-defined substrate specificity (Figure 1). For

example, NTPs and diadenosine polyphosphates are

substrates for NPP1-3, while lysophosphatidylcholine is

only hydrolyzed by NPP2 and NPP6. Remarkably, NPP2

and NPP6 hydrolyze distinct phosphodiester bonds in

lysophosphatidylcholine, generating choline and phospho-

choline, respectively. The determinants of the substrate

specificity of NPPs are poorly understood. Clearly, the

pyrophosphate or phosphodiester bond is not the only

substrate-specifying element of NPPs. Site-directed muta-

genesis and domain swapping studies revealed that the

non-catalytic domains as well as residues near the

catalytic site control the activity and substrate specificity

of NPP1 and NPP2 [39]. The catalytic domain of NPP1

contains a GxGxxG motif that resembles part of a consensus

dinucleotide-binding motif and is essential for catalysis by

NPP1, but it does not appear to be a substrate-specifying motif

[39]. Lipid-consensus motifs, similar to those found in

phospholipases D are not present in NPP2. [41]. Neverthe-

less, it cannot be excluded that NPPs contain hitherto

unrecognized nucleotide or lipid binding sites similarly to,

for example, the substrate-specifying Fpockets_ of serine

proteases.

Role of NPP1Y3 in the metabolism of extracellular

nucleotides

NPP1Y3, alone or in combination, are expressed in every

cell type that has been analyzed for their presence [18, 31].

It therefore seems likely that these NPPs fulfill a broad

range of functions. NPP isozymes may even Fmoonlight,_
in that they can fulfill multiple, apparently unrelated

functions. For example, NPP1 is not only implicated in

nucleotide metabolism but also appears to have an anti-

insulin action by a mechanism that does not require

catalytic activity [42, 43]. By far the best studied NPP
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function concerns the role of NPP1 in bone and soft-tissue

mineralization [44, 45], which is the subject of a separate

review in this issue. We only discuss here how NPP1Y3

contribute, as nucleotide-metabolizing enzymes, to the

epithelial and neural functions, the immune response and

cell motility.

NPP1Y3 and epithelial functions

Most epithelial cells release nucleotides, either constitu-

tively or when challenged with stimuli like mechanical

stress or hypotonicity-induced swelling. In the extracellular

environment of epithelial cells, purinergic signaling is of

prime importance for ion transport, cellYcell communica-

tion and cell migration [46Y48].

Airway epithelia

Nucleotide metabolism at the surface of human airways

has received much attention because of the critical role of

nucleotides in the protective mechanism against bacterial

and viral infections, known as mucociliary clearance

(MCC) [49Y53]. This defense mechanism involves com-

plex signaling by diadenosine polyphosphates, ATP and

adenosine, affecting overall fluid homeostasis via a control

of epithelial chloride secretion and sodium uptake. In fact,

nucleotide-based treatments combined with ecto-nucleotid-

ase inhibitors are used for the improvement of MCC in

chronic obstructive lung diseases such as cystic fibrosis.

Some efforts have been undertaken to identify the

ectonucleotidases expressed by airway epithelia. There is

good biochemical evidence for the presence of both

NTPDase-type [51] and NPP-type activities [54] in

the airway epithelia. Transcript analysis revealed the pre-

sence of various ectonucleotidases including NTPDase2,

NTPDase3, NTPDase5 as well as NPP1Y3 [55]. However,

not all of them may be expressed at the protein level

equally well. Importantly, human airway ectonucleotidases

are cell-associated and are predominantly apical [51].

Within the NPP family, this suggests a role for NPP3,

which is indeed targeted to the apical surface, while NPP1

is expressed at the basolateral one, and NPP2 only exists as

a secreted form. However, NPP2 might also fulfill a critical

function in the lung because the transcript level in the lung

is among the highest of all tested organs [56]. In airways an

NPP-type pyrophosphatase activity may be mainly in-

volved in regulation of signaling by diadenosine poly-

phosphates, which were recently shown to bind to P2Y

purinergic receptors distinct from those activated by ATP

[57]. Other ectonucleotidases identified in human airway

epithelia are the tissue non-specific alkaline phosphatase,

exclusively expressed at the apical surface, and 50-
nucleotidases, expressed at both apical and basolateral

sides [58].

Liver epithelia

The liver epithelial cells, i.e. hepatocytes and cholangio-

cytes, contribute to bile formation and secretion, one of the

primary functions of the liver. Bile is formed by the

parenchymal hepatocytes and is further enriched in

bicarbonate by cholangiocytes, the cells that line the bile

ducts [59, 60]. The biliary epithelium constitutively

releases ATP into the bile from a vesicular storage site,

and increase in cell volume promotes the exocytosis of

ATP through a phosphoinositide 3-kinase-dependent mech-

anism [61]. Hepatocytes, too, contribute to the biliary pool

of ATP [59]. NPP3 is the major NPP isoenzyme at the

apical membrane of both hepatocytes and cholangiocytes

[62, 63]. An apical localization in hepatocytes has also

been established for 50-nucleotidase [59]. By regulating the

breakdown of biliary ATP these nucleotide-hydrolyzing

enzymes may interfere with purinergic signaling at the bile

canaliculi, and thereby modulate the process of bile

formation. In cholangiocytes, NPP3 may be one of the

major apical ectonucleotidases, consistent with the func-

tional expression of a single, dominant ATP degradation

pathway at this site [64]. By contrast, NTPDase2/CD39L1

has been identified in portal fibroblasts and appears to be

the main ectonucleotidase that indirectly controls puriner-

gic signaling at the basolateral membrane of cholangio-

cytes [65]. The role of basolateral nucleotides in bile

ductular secretion is relatively minor when compared to

that of apical nucleotides, but there is evidence that

basolateral nucleotides modulate the growth and differen-

tiation of cholangiocytes [66].

The role of NPP3 in cholangiocytes may extend beyond

the regulation of bile formation. Indeed, large amounts of

NPP3 are found in the extracellular matrix and in the

serum of chemically induced rat cholangiocarcinoma [67],

an adenocarcinoma of intrahepatic bile ducts. Neoplastic

transformation of biliary cells leads to an overexpression of

NPP3 but also to its inappropriate targeting to the

basolateral rather than to the apical side of the cholangio-

cytes. Since NPP3 can stimulate migration of cultured cells

it may also be involved in metastasis of neoplastic

cholangiocytes, by an as yet unknown mechanism [63].

NPP1 is also abundantly expressed in hepatocytes and

localizes basolaterally [63]. An enticing hypothesis is that

this pool of NPP1 controls the turnover of extracellular

ATP, which functions as a potent hepatic mitogen by

increasing immediate early gene expression in a P2-

receptor dependent manner [68]. Consistent with this

notion, the level of NPP1 is considerably decreased during

liver regeneration following 70% partial hepatectomy and

only reaches its initial level again after the major growth

phase of the liver has passed [69]. We speculate that the

transient drop in the concentration of NPP1 enables the

accumulation of extracellular ATP, needed to stimulate cell

proliferation.

Intestinal epithelia

Enterocytes constitute the major fraction of intestinal

epithelial cells and their primary function is to absorb

nutrients from the diet. Nucleotides are semi-essential or

conditionally essential nutrients [70]. Cells can synthesize

nucleotides de novo and re-use them through the nucleo-

tide salvage pathway. However, rapidly proliferating

tissues such as the intestine have an insufficient biosyn-

thetic capacity and are dependent on an exogenous supply
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of nucleotides. NPP3 is the major NPP isoenzyme at the

brush border of enterocytes [62]. Given its very high

expression, combined with its co-localization with 50-
nucleotidase [71] or alkaline phosphatase, it seems likely

that these ectonucleotidases play an important role in the

digestion of dietary nucleotides and their derivatives but a

direct evidence for this contention is lacking.

NPP1Y3 and neural functions

Extracellular nucleotides, in particular ATP, have multiple

functions in the central nervous system. ATP acts as a

neurotransmitter and modulator of neurotransmitter re-

lease, but also as a trophic factor that stimulates prolifer-

ation and differentiation of neural cells [5, 72Y75].

Neurons, glial cells and endothelial cells are established

sources of extracellular purines. Initial evidence reveals

important functions for NPPs in the nervous system, at

least in part by their ability to modulate purinergic

signaling.

Within the brain, a panel of P2X receptors as well as

NPP2 and NPP3 are expressed by the choroid-plexus

epithelial cells [76Y78]. The latter cells secrete cerebrospi-

nal fluid (CSF), the major extracellular fluid in the central

nervous system. CSF provides the central nervous system

with nutrients and signaling molecules, and removes

metabolites [79]. It seems likely that NPP2/3 contribute

to the secretion of CSF by modulating purinergic signaling

[78]. In rodents NPP2 can also be detected in the CSF

itself. This pool of NPP2 possibly originates from the

choroid-plexus epithelial cells and/or from the leptome-

ningeal cells and has recently been shown to function as a

neurite retraction factor [80]. Remarkably, in humans

NPP2 is absent from the CSF of healthy persons, but is

found in the CSF from patients with multiple sclerosis [81].

NPP2 is also secreted by oligodendrocytes, the myelin

producing cells [82]. A tight correlation was noted between

the expression of NPP2 in oligodendrocytes and the initial

stages of myelination, a complex process that includes the

movement of oligodendrocytes to the sites of myelination.

NPP2 has been identified as an autocrine Fcounteradhesive_
factor and may thus be implicated in the movement of

oligodendrocytes to their target sites [82]. Surprisingly, this

function does not require the catalytic domain of NPP2 and

appears to be mediated by the nuclease-like domain, which

possibly interacts with a G-protein coupled receptor [40].

In the developing brain NPP3 is first scattered through-

out the neuroepithelium and adjacent mesenchymal tissue,

but later appears in distinct brain regions to reach the

strongest expression on meninges, ependymal layers and

choroid plexus [77]. The latter structures maintain a strong

expression of NPP3 until adulthood. NPP3 was also found

to be transiently expressed in a population of neural

progenitor cells that can differentiate into radial glial-like

cells, a subset of astrocytes and ependymal cells [77].

Since NPP3 is not expressed by mature astrocytes, this may

suggest an involvement of this isoenzyme in keeping their

progenitor cells dedifferentiated. Consistent with this

notion, it was reported that the expression of NPP3 in

NPP3-negative cell lines induces the expression of glial

fibrillary acidic protein, an intermediate-filament protein

specific for the cytoskeleton of astroglial cells and non-

myelin-forming Schwann cells. Interestingly, the over-

expression of NPP3 has also been associated with

increased motility and invasive properties of cultured cells

[83].

Figure 4. Role of NPP1Y3 in the metabolism of extracellular nucleotides. NPP1 and CD38 are co-expressed in T-lymphocytes. Extracellular NAD+ is a

substrate for NPP1, a NAD+-pyrophosphatase, as well as for CD38, a NAD+-glycohydrolase. The coordinated expression of NPP1 and CD38 is part of a

protective mechanism against NAD+-induced apoptosis of T cells. The hydrolysis of NAD+ by the concerted action of NPP1, CD38 and 50-nucleotidase

also allows activated T cells to re-use the products for their own anabolic processes. At the apical membrane of hepatocytes and cholangiocytes, NPP3

hydrolyzes bile ATP and modulates purinergic signaling at these sites. Diadenosine polyphosphates (Ap3Y5A) and other nucleotides are hydrolyzed at the

apical surface of the human airways by an NPP-type pyrophosphatase. Likely candidates are NPP3 and/or NPP2.
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Expression of NPP1 in glia cells under physiological

conditions has not been reported. However, NPP1 is the

major ectonucleotidase in the rat C6 glioma cell line [84,

85]. This cell line is morphologically similar to glioblas-

toma multiforme, the most common aggressive glioma

resistant to therapeutic interventions [86].

NPP1 and lymphocyte signaling

NPP1 is a marker of a late stage in the differentiation of

antibody-producing B cells, but its expression is not

required for the synthesis and secretion of antibodies.

Although initially believed to be lineage-specific [87], in

the meantime it has been established that low levels of

NPP1 are also found in T cells and that its expression in

these cells is increased through signaling by protein

kinases A and C, the same pathways that also up-regulate

the expression of the NAD+ glycohydrolase CD38 [88].

The coordinated expression of NPP1 and CD38 enables the

hydrolysis of extracellular NAD+ by activated T cells to

nicotinamide mononucleotide + AMP or to nicotinamide +

ADP-ribose, respectively (Figure 4). In doing so, NPP1 and

CD38 control the substrate availability for NAD+-depen-

dent ADP-ribosylation by ADP-ribosyltransferases at the

cell surface. This can be seen as a protective mechanism

against apoptosis at sites of inflammation, where the

release of NAD+ results in ADP-ribosylation and activation

of the pro-apoptotic P2X7 receptors [89, 90]. By the same

mechanism NPP1 and CD38 also provide a protection

against the ADP-ribosylating bacterial toxins, such as

cholera or C. botulinum C3 toxins, which exert their

cytotoxic effects through ADP-ribosylation of host signal-

ing molecules [91]. Both NAD+ and its degradation

product ADP-ribose are potent inhibitors of T-cell prolif-

eration [92]. Their hydrolysis by CD38 and NPP1 is thus

expected to promote T-cell proliferation. Finally, in

combination with 50 nucleotidase, CD38 and NPP1 are

part of the nucleotide-salvage pathway [88] (Figure 4).

NPP2 and cell motility

NPP2 is secreted by various cancer cells including skin,

lung and breast cancer cells. Its tumour growth and

motility effects have been primarily attributed to its ability

to produce lysophosphatidic acid (LPA) from lysophos-

phatidylcholine (LPC) [93]. LPA binds to dedicated G-

protein-coupled receptors, LPA1Y4, and activates multiple

signaling pathways, leading to cell proliferation, cell-shape

changes and migration. These effects explain why NPP2

promotes tumour growth, angiogenesis and metastasis

(Figure 5). However, it can be envisaged that NPP2 also

promotes tumour growth by its ability to hydrolyze

nucleotides. Indeed, solid tumours are well known to

release adenine nucleotides and NPP2 can hydrolyze

ATP, which is an inhibitor of tumour-cell proliferation

[49]. Moreover, the concerted action of NPP2 and

50-nucleotidase on ATP and ADP generates adenosine, a

tumour-growth promoter and stimulator of angiogenesis

(Figure 4) [94Y96]. In this respect, it is also worthy of note

that the Wnt/b-catenin signaling pathway is activated in

many human tumours, resulting in an increased expression

of both NPP2 [97, 98] and 50-nucleotidase [99].

Conclusions and perspectives

The family of NPP-type ectophosphodiesterases com-

prises a versatile group of seven ecto-enzymes that

hydrolyze pyrophosphate and phosphodiester bonds in a

broad range of metabolites, yet each isozyme has a rather

narrow substrate-specificity. Only NPP1Y3 are known to

hydrolyze nucleotides and they are part of a complex

nucleotide interconversion network at the cell surface.

NPP1Y3 contribute to ectonucleotide signaling both by

removing active compounds and by generating nucleotide

metabolites with distinct signaling properties. The com-

plexity of signaling via NPPs is further increased by their

ability to hydrolyze non-nucleotide substrates. For exam-

ple, NPP2 can hydrolyze both phospholipids and nucleo-

Figure 5. Tumour growth and metastasis: Role of NPP2-catalyzed

reactions. In the extracellular milieu the tumour-motility stimulating

factor NPP2 generates LPA from LPC. LPA promotes cell proliferation,

migration and angiogenesis. In a coupled reaction with 50-nucleotidase,

NPP2 has the potential to hydrolyze ATP, which is cytotoxic for tumours,

to adenosine, a tumour-growth promoting factor and stimulator of

angiogenesis. The expression of both NPP2 and 50-nucleotidase is

increased by the Wnt/b-catenin pathway, which is activated in many

cancers.
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tides and the generated products have the potential of

acting antagonistically or synergistically. A surprising

finding has been that NPP1 and NPP2 have also functions

that do not require catalytic activity. This can imply that

NPPs moonlight, although it cannot be ruled out that their

noncatalytic functions are somehow connected to their

catalytic functions.

Much remains to be learned about the enzymatic

properties, regulation and functional diversity of NPPs. A

lot is expected from the phenotyping of knockout models

for each NPP isoenzyme. Also, the availability of isoen-

zyme-specific NPP inhibitors would be of great help to

study their function. The latter also have therapeutic

potential as they hold great promises for the treatment of

devastating diseases like cystic fibrosis and bone-mineral-

ization pathologies.
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