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Abstract: An optical modulator is proposed using the double clamped nanoelectromechanical resonator. Electro-

mechanical-optical analysis has been performed to validate the idea. The electromechanical simulation involves 

the nonlocal effect as the resonator is in nanometre scale. Stimulated emission theory has been used to model the 

luminescence of the nanowire due to the addition of piezoelectric charges subjecting to mechanical strains. Results 

successfully demonstrate both the intensity modulation and frequency filtering, providing an integrated solution in 

applications such as quantum entanglement experiments.  

OCIS codes: (130.4110) Modulators, (130.3990) Micro-optical devices, (160.4236) Nanomaterials.  

 

1. INTRODUCTION 

Recent advances in nanotechnology have greatly promoted research 
and development of many engineering and science areas. A variety of 
nanomaterials have emerged attracting vast interests form 
international researchers. In particular one of the nanomaterials (ZnO) 
has been extensively researched, which includes ZnO thin films used in 
sensors [1], ZnO nanowires used in energy harvesting [2], electronics 
[3], and sensors [4]. The most attractiveness of this material is the co-
existence of semiconducting and piezoelectric properties [5], which 
can be utilized to construct devices whose performances are adjustable 
by the piezoelectric effect. Inspired by the phenomenon of the 
mechanical pressure induced change of the optical emission in the ZnO 
nanowires [6], it is reasonable to propose a device that can modulate 
the incident light using a nanoelectromechanical systems (NEMS) 
resonator made of piezoelectric materials such as ZnO. The nanometre 
resonator based optical modulator will have all the advantages of the 
ordinary MEMS/NEMS resonators such as very high frequency 
dynamic behaviour [7], which can be applied as an electronic device 
for radio communications [8], high sensitivity mass sensors [9], 
nanoscale mass spectrometers [10], label-free detection of specific 
biological molecules and cells [11]. Due to the optical modulation 
behaviour, the deflection of the resonator can be read through output 
optical spectrum in the case of device being applied as sensors. The 
device can be also employed as an adjustable optical modulator. In 
recent century, quantum internet has been intensively investigated, 
which requires transmitting quantum states encoded into photons 
between nodes of the networks[12]. In the experimental setup for 
quantum entanglements, intensity modulation is heavily needed[13] 
[14], which is currently accomplished by acousto-optic modulator 
(AOM). In this work, a high frequency Electro-mechanical optic 
modulation has been introduced using the resonating nanowire, which 

possesses both intensity modulation and frequency filtering functions. 
Multiphysical simulation has been conducted to validate this idea. The 
paper starts from electromechanical analysis of the ZnO nanowire 
resonator to find out its dynamic behaviour, followed by quantum 
optics analysis of the stimulated emission from the nanowire. Through 
combined opto-electro-mechanical analysis, the demonstration of 
optical modulation mechanism is presented.   
 

 
Fig. 1. Schematic of the optical modulation. The amplitude of 
stimulated emission of the nanowire can be tuned by increasing the 
number of the free electrons, and the piezoelectric mechanism is used 
to increase the number of the free electrons. The modulation of the 
light can be achieved using deformed piezoelectric nanowire. (a) The 
nanowire is at original position. (b) The nanowire is deformed by 
external electrostatic force, and extra electron-hole pairs created by 
piezoelectric effect enhance the stimulated emission. 

2. ELECTRO-MECHANICAL MODEL 



The vibrating mechanical device in the design can be structured 
by a double clamped nanowire resonator driven by the 
electrostatic force applied between itself and the bottom 
electrode (Figure 1). Normally the driving voltage V(t) is the 
combination of ac and dc components, expressed by VDC and VAC 

cos(ft), respectively, where f is the driving frequency. The 
cylindrical nanowire has length L and diameter r. The material 
of the nanowire is chosen to be ZnO having density  , Young’s 
modulus Y and moment of inertia I. Because of the nanometer 
scale of the resonator, mechanical nonlocal effect is considered 
in calculating the dynamic behaviour [15]. The nonlocal stress 
tensor

N is expressed by: 

  ''' )(, xdxvxxNN

  

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where  vxxN ,' 
  is the nonlocal modulus in which xx


' is 

the distance between two points in the lattice. )( '
x
 is the 

stress tensor without considering the nonlocal effect. v is the 
material-depended parameter. In order to consider the 
nonlocal theory into the beam dynamic equation, the Eq. (1) 
can be equivalently expressed as [16] [15]: 
 

  ,1 22
0  

 Nu     22
0

22
0 exin LpLvu                    (2) 

where Lin and Lex are the internal and external characteristic 
lengths, p0 is the material constant. By combining the nonlocal 
theory and beam dynamic theory, the equation describing the 
motion of the nanowire resonator can be written as [17]: 
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where W(x,t) is the dynamical displacement of the resonator 
along the x-axis, with the dot and prime denoting the 
differentiation with respect to the t and x, respectively. Ti and 
Tin are the initial and induced mechanical tension in the 
nanowire, respectively. As is the cross-section of the nanowire. 
F(x,t) and dr are the distributed force applied on the nanowire 
and the damping ratio, respectively, and they have been 
derived in previous work [18] , as: 
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where a is the dielectric constant of the gaseous medium 
surrounding the resonator. d is the initial distance between the 
nanowire and the bottom electrode. In Eq. (4), the 
approximation has been made based on the assumption that 
the displacement of the nanowire is much smaller than the gap 
d. P and Tk are the air pressure and temperature respectively, 

akBT mTkv / is the air molecule velocity at Tk, and kB is the 

Boltzmann constant. ma is molecular mass of air. Galerkin’s 
method has been employed [16] [19] in order to calculate the 
deflection of the centre of the nanowire, by which W(x,t) can be 
written as: W(x,t) = z(t)Φ(x), where Φ(x) = (2/3)1/2[1-cos(2x/L)] 
is the deflection eigenmode and z(t) is the time dependent 
displacement of the nanowire centre. Φ(x) has the boundary 

conditions: 0)()0()()0( ''''  LL  . Substituting 

W(x,t) = z(t)Φ(x) into Eq. (3) and multiplying Φ(x) on both sides 
of the equation, then integrating the equation from 0 to L, the 
equation for the centre displacement z of the nanowire is:  
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Numerical simulation can be conducted to arrive at the 
dynamic displacement of the nanowire centre, from which the 
curvature of the deflected nanowire is calculated. In the 
fundamental mode, the deflected nanowire can be considered 
as a partial arc, whose curvature Ck is reciprocal of the total 
radius Rt, expressed as 
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According to piezoelectric theory, due to the stress and strain of 
the vibrating clamped-clamped beam, electrical charge can be 
generated if the nanowire is made of a piezoelectric material. 
Coupling of the stress Ts and strain S, electrical field Ee and 
electrical displacement D is explained by 
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where d31 and ε33T are the transverse coefficient and 
permittivity of the piezoelectric material at constant stress, 
respectively. s11E is the mechanical compliance. The strain S of 
the surface of the nanowire can be described in terms of the 
curvature Ck 
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where zs is the distance from the neutral plane. For the circular 
cross-section of the nanowire, the neutral plane is the 
horizontal line across the origin. A quarter of the circle is 
divided to N sections, and the distance between each section 

and the neutral line is ),
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the external electrical field Ee = 0, the stress distributed in the 
piezoelectric beam is given by  
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Then the electrical charge generated on the top half of the 
surface by the stress within the piezoelectric nanowire is 
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In equation (5), dr is the damping ratio that is determined by 

the quality of the surrounding air 
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akBT mTkv / , 

where P and Tk are the air pressure and temperature 
respectively, Tv is the air molecule velocity at Tk, kB is the 

Boltzmann constant and ma is molecular mass of air. In the 
initial calculation, we set Tk =300 K, P=1.01325x105 Pa, and 
ma=5.6x10-26 kg, resulting in a dr=5.85x10-6. If the surrounding 



pressure is changed to a smaller values, i.e. P is within the range 
of 0.05x105 Pa – 1x105 Pa), comparison of the maximum 
displacement for the driving condition of Vdc=0.5 V and Vac=1 V 
has been made as shown in Figure 2a. It is shown that the 
temperature of the surrounding air makes difference and the 
relationship of the temperature vs. maximum displacement is 
also displayed in the Figure 2b. 
 

 
Fig. 2. Calculated impact due to surrounding air properties 
(pressure (a) and temperature (b)) on the dynamic 
displacement of the electrostatic actuated double clamped 
nanowire. 
 

3. SIMULATION OF OPTICS 

 
Next we will theoretically validate the hypothesis that varying 
charge density of the material modulates the stimulated 
emission by the quantum optics theory, more specifically Fermi 
golden rule describing light-matter interactions. It is supposed 
that the incident light is expressed by an electromagnetic wave 
express as )cos(),( 0 trqAtrA  , where the wave vector

c

n
q r
 , nr is the refractive index of the media, c is the speed 

of incident light and   denotes the angular frequency of the 
plane wave. The stimulated emission rate caused by an electron 
migrating from high energy states to low energy states is 
described by the golden rule, which is  
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is the perturbation Hamiltonian qeA
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the incident wave.   is the reduced Planck’s constant. Ev and Ec 
are conduction band minimum and valence band maximum 
respectively. Indicated in the equation (12), the transition rate 
R is determined by the strength of the coupling between initial 
and final states. Assume that a number of transitions happening 
per unit volume V of material per second, the total transition 
rate is the sum of the all transition probabilities, that is 

he

k

St ffR
V

R )(
2                                  (13) 

where fe and fh are Fermi-Dirac distribution functions of 
electrons and holes in the material respectively 
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where 2

np
  is squared momentum matrix element depending 

on the electron wave vector k and also the polarization 
direction of the incident electromagnetic wave. In most of III-V 
and II-IV semiconductors, a constant value of the matrix can be 
given to the average value 2

np
 

 of the momentum matrix 

element [20], expressed in terms of the Kane energy Ek, as 
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materials can be found from [21]  [22]. The 3D integral 
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three-dimensions. Bandgap Eg = Ec – Ev. g(E) is defined as the 
number of states in a conductor per unit energy. For 
nanostructures, electrons are likely confined in three 
dimensions, like quantum dots. The DOS for electrons confined 
in 3D is  
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The width of the Lorentzian (equation (15)) at half its peak 
value (full width at half maximum, or FWHM) is / . The 
coupling between the photon and the electron within the 
nanowire can be described by the coupling energy / . In 
this work, the  is taken to be 20 meV. Substitute equation (15) 
to equation (14), one can get  
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Re-arrange equations (7), let 2

npM
  , and substitute q by 

(ωnr)/c, it becomes 
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where  is the photon energy. It is seen that the stimulated 
emission is determined by the combined effect from the 
incident photon energy, refractive index, DOS and Fermi 
distributions of electrons and holes. According to equation (17), 
stimulated emissions have been calculated numerically. The 
chemical potential for a number of electrons and holes per unit 
volume at certain temperatures is required to calculate the fe 
and fh. To calculate the chemical potential for electrons or holes, 
the following process is used. First of all, an initial value of the 
chemical potential needs to be estimated. The maximum 
possible value of the chemical potential is given by the Fermi 

energy
m

k
E F

F
2

22

max


   3/12 )3( cF nk  , nc is the carrier 

density. The minimum possible value of the chemical potential 
is given by the high-temperature limit ( T ). In this limit the 
Fermi-Dirac distribution becomes Boltzmann distribution  
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A three dimensional electron gas in this high temperature limit 
has chemical potential  
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Carrier density n’ can be calculated using an integral over 
energy 
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A computer iteration process is used to calculate the chemical 
potential for both electrons and holes respectively (

he  , ). In 

the process, an initial chemical potential value taking the 
average of the maximum and minimum chemical potential is 
used to calculate a carrier density n’ for a given temperature by 
calculating the integral described by the equation (20). If the n’ 
is less than the actual value nc, the new best estimate for 

'min   . The new estimated μ is given, and the process 

iterate until the value reaches to a desired level of accuracy. 
The calculated chemical potentials for electrons and holes are 
then used in equation (17) to calculate the stimulated emission 
rate.  
Numerical calculation is conducted to demonstrate the modulation 
effect through jointly solving equations (6), (11), and (17). In the 
calculations, the nanowire has the length and diameter of 3 μm and 20 nm. Young’s modulus and density of ZnO are taken as 240 GPa and 
5610 kg/m3. Distance between nanowire and the bottom electrode is assumed as 200 nm. Standard parameters for the Planck’s and 
Boltzmann constants are used. Nonlocal factor of 0.04*L2 is designated 
in the mechanical simulation. Bandgap of 3.375 eV is used for the ZnO 
nanowire. Firstly, low driving voltages (Vdc = 0.5 V, Vac = 1 V) are 
applied, under which the results are shown in Figure 3. 

 
Fig. 3. Simulation results of the vibrating nanowire from the 
starting time to stabilized periodic vibration. The driving 
condition is Vdc = 0.5 V, Vac = 1 V. (a) Displacement versus time. 
(b) Velocity versus time. (c) Phase space trajectory shows the 
vibration is periodic. (d) Charge generation versus time. 

 
Fig. 4. Dynamic behaviour of the optical modulator under Vdc = 1 V, Vac 
= 2 V. (a) Displacement versus time. (b) Velocity versus time. (c) Phase 
space of the system indicates it is still in periodic state. (d) Charge 
induction over time. 
 

 
Fig. 5. Dynamic behaviour under large driving signals, Vdc = 15 V, Vac = 
20 V. (a) Displacement versus time. (b) Velocity graph. (c) Trajectory 
demonstrates chaotic vibration. (d) Charge generation in correlation 
with the vibration amplitude. 
 
Figures 3-5 are results from dynamic theory described by the 
differential equation 6 together with the piezoelectric charge 
generation theory by the equation 11. Figure 6 has been 
obtained from the combination of dynamic theory and 
stimulated emission theory described in the equation 17. The 
vertical axis in Figure 6 is calculated emission amplitude from 
the equation 17. The values of intensity have a relative unit (a.u.) 

to show scaled intensity expression
MA
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 . Filter effect 

(resonances in Fig. 7a) due to mechanical strains can be 
demonstrated with ZnO materials. In the calculation, the 
wavelength of the stimulating light varies from 360 nm to 380 
nm, there is a calculated peak emission at wavelength of 367 
nm (Fig. 7a). The relationship between wavelength of the light 
and the stimulated emission is governed by the Fermi Golden 
rule (Equations 12 and 17). Experimentally this resonance 
effect (filtering effect) was observed in reference [23]. 
 



 
Fig. 6. Modulated peak amplitude of the optical emission. (a) Periodic 
modulation stabilized at 94.2 MHz. (b) Periodic modulation for slightly 
larger amplitude, same resonant frequency as in (a). (c) Chaotic 
modulation at large driving signals. 
 
Figures 3a-3c display results for the deformation, velocity and 
trajectory, all of which prove that under such driving conditions, the 
nanowire oscillates periodically. This is attributed to that under small 
signal driving conditions; the oscillating amplitude is small, therefore 
the z3 term in the equation 6 is much smaller than the linear term z. 
Hence the dynamic vibration of the nanowire is dominated by the 
linear term. Figure 3d displays generated charges corresponding 
dynamic strains in Figure 3a. The results in Figure 3d are obtained by 
the combined electro-mechanical-piezo-optical procedure. Essentially 
large displacement induces more free piezoelectric charges, 
subsequently generating much more stimulated emissions. Increasing 
driving voltages to (Vdc = 1 V, Vac = 2 V), changes on the deformation 
and velocity are observed together with related piezoelectric charges, 
which are shown in Figures 4a-4d, where the nanowire resonator still 
vibrates at the periodic manner. It is expected that nonlinear behavior 
will appear when the driving voltages are extraordinary large. This is 
proven by using (Vdc = 15 V, Vac = 20 V), the results shown in Figures 
5a-5d clearly demonstrate that the device is at the chaotic state. 
Modulated emission intensities under the above three driving 
conditions have been simulated using the Golden rule and results are 
displayed in Figure 6. It indicates that modulation effect can be 
achieved by the piezoelectric nanowire, which may find promising 
applications in nanometer sized optical laser sources, high sensitivity 
sensors. Static simulation on the stimulated emissions using various 
carrier densities from small to large, corresponding to small to large 
deflections has been performed, which is displayed in Figure 7. Figure 
7a shows the increasing emission intensity for large carrier density 
and demonstration of the filtering effect, and Figure 7b shows scaled 
emissions (from dim to bright) of three wires undergoing small to 
large deflections. In Figure 7a, the Δn represents strain induced 
piezoelectric charges. Increasing piezoelectric charges will affect the 
Fermi-distributions fe and fh through equations 18-20. More 
piezoelectric charges will increase stimulated emission according to 
the equation 17. For stimulated emission, the emitted light has the 
same wavelength as the excitation light, hence it is used to increase the 
amplitude of the stimulating light for the purpose of making lasing [24]. 
In the calculation, the wavelength of the stimulating light varies from 
360 nm to 380 nm, there is a calculated peak emission at wavelength of 
367 nm (Fig. 7a). The relationship between wavelength of the light and 
the stimulated emission is governed by the Fermi Golden rule 
(Equations 12 and 17). The proposed idea is to use electrostatic force 
to deflect the nanowire, therefore generating electrons based on 

piezoelectric effect. These generated electrons will then increase the 
amplitude of the stimulated emission. Amplitude modulation is 
achieved by applying electrostatic force on the piezoelectric nanowire. 
The radiation pressure (PR) of the incident light can be used to 
generate strain of mechanical structures. However the RP force is 
usually very small, and these mechanical strains are only about a few Å 
[25] [26], which is not enough to induce any piezoelectric charges. To 
summarise, the main theories used here are piezoelectric induced 
charges (equation 11) and Fermi golden rule (equation 17). For the 
equation 11, it has been mainly derived from the classic piezoelectric 
constitutive equation (equation 8) following the procedure described 
in [27].  With regards to the equation 17, it is from the Fermi Golden 
rule that is widely used for describing stimulated emission rate. 
 

 
Fig. 7. Optical emission when the nanowire experiences static 
deformation. (a) Stimulated emission spectrum at different 
induced charges. (b) Simulated emission of the double clamped 
nanowire for different deflection amplitudes. 

4. CONCLUSION 

In summary, a new optical modulator is reported using a double 
clamped vibrational nanowire. The wire is made of piezoelectric 
material; so that the vibration induced charge generation modulates 
the stimulated emission intensity. In this way an electrical controllable 
optical modulator can be achieved. Coupled electro-mechanical-optical 
model has been constructed and subsequently simulated. Results 
demonstrate intensity modulations of the optical signal through 
driving the nanowire in periodic and non-periodic oscillations. 
Nanoelectromechanical resonator normally having fast response 
speed will have great potential in atomic-physics and spectroscopic 
applications.  
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