
Abstract. – OBJECTIVES: Oxidative stress
plays a major role in the pathogenesis of is-
chemic and reperfusion injury to many organs,
including the brain. Chronic metformin treat-
ment is associated with a lower risk of stroke in
clinical populations. The aim of the present
study was to investigate the effect of metformin
on the oxidative stress induced in experimental
model of incomplete global cerebral ischemia
and ischemia/reperfusion in adult male Wistar
rats.

MATERIALS AND METHODS: Metformin was
administered to rats orally by gavage 500 mg/kg
once daily for one week before induction of cere-
bral ischemia (rats were subjected to 30 min of is-
chemia before decapitation) and ischemia/reper-
fusion (rats were subjected to 30 min of ischemia
then 60 minutes of reperfusion before decapita-
tion). The selected parameters for oxidative stress
were the activities of the antioxidant enzymes:
glutathione peroxidase (GSHPx), superoxide dis-
mutase (SOD), and catalase as well as malondi-
aldehyde (MDA) levels.

RESULTS: Metformin reduced the elevated ac-
tivites of GSHPx, SOD and catalase as well as
MDA levels in cerebrum of rats exposed to is-
chemia and ischemia/reperfusion injures.

CONCLUSIONS: Metformin improved the ox-
idative stress induced by ischemia and is-
chemia/reperfusion injuries. This may be a
mechanism that explains the cerebroprotective
effect of the drug.
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Abbreviations

GSHPx = Glutathione peroxidase; ROS = Reac-
tive oxygen species; MDA = Malondialdehyde;
SOD = Superoxide dismutase.
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Introduction

Stroke is a serious and common pathological
condition1. It is one of the main causes of death and
disability worldwide2. It is becoming increasingly
clear that oxidative stress and excessive inflamma-
tory response are implicated in the pathogenesis of
ischemic and reperfusion injury to many organs, in-
cluding the brain3. Reactive oxygen species (ROS)
have been indicated as one of the earliest and most
important components of tissue injury after reperfu-
sion of ischemic organ and the extent of brain in-
jury appears to depend on the experimental pattern
of ischemia/ reperfusion: free radical production is
continuous during ischemia, while during reperfu-
sion it is primarily confined to the early stage when
fresh oxygen is supplied to the ischemic region4.
The brain is very susceptible to the damage caused
by oxidative stress, due to the high rate of oxidative
metabolic activity, high polyunsaturated fatty acid
(PUFA) contents, relatively low antioxidant capaci-
ty and inadequate neuronal cell repair activity5.
Overproduction of reactive oxygen species (ROS)
results in oxidative damage, including lipid peroxi-
dation, protein oxidation and DNA damage, which
can lead to cell death6.
Metformin is used for the management of type 2

diabetes mellitus. Its effects are mainly the conse-
quence of reduced hepatic glucose output through
inhibition of gluconeogenesis and, to a lesser ex-
tent, of increased insulin-stimulated glucose uptake
in skeletal muscle and adipocytes7. In clinical pop-
ulations, chronic metformin treatment is associated
with a lower risk of stroke, reducing cardiovascular
mortality by 26%. This protection is independent
of its glucose-lowering effect8. Several studies have
shown reduced cardiovascular-related mortality
rates in metformin users compared with sulfony-
lurea monotherapy users9, indicating that met-
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formin might have some additional cardiovascular
protective effects beyond its antihyperglycaemic
properties. In that way, many studies have demon-
strated that metformin possesses antioxidant prop-
erties that could participate to its cardiovascular
protective effects. Such antioxidant properties
could explain some of the pharmacological actions
of this drug through a modulation of redox-depen-
dent transduction pathways10.
In mice, short-term metformin treatment (for 3

days) exacerbated stroke damage; in contrast, rela-
tively long-term treatment (for 3 weeks) with met-
formin given before stroke was neuroprotective11.
The present study was designed to investigate

the effect of one week treatment with metformin
on the neurotoxicity caused by cerebral ischemia
and ischemia/reperfusion injury in the rat. The
malondialdehyde (MDA) levels as well as the ac-
tivities of the enzymes; glutathione peroxidase
(GSHPx), superoxide dismutase (SOD), and
catalase have been estimated in the cerebrum
with, and without pretreatment with metformin.

Materials and Methods

Animals
Adult male Wistar rats, weighing 180-200 g,

were obtained from National Research Laborato-
ry, Cairo, Egypt. Animals were housed under
controlled environmental conditions, fed stan-
dard pellet chow (El Nasr Chemical Co., Cairo,
Egypt) and permitted free access to tap water. All
experimental protocols were approved by the
Ethics Committee of Zagazig University.

Drugs and Chemicals
Ethyl carbamate “Urethane” crystals (Prolabo,

Paris, France), metformin powder (CID Pharma-
ceutical Co, El Talbeya, Egypt). Metformin was
dissolved in saline (vehicle) and administered
500 mg/kg12, via adjusted gavage tube, 0.2
ml/rat, daily for 7 days before induction of cere-
bral ischemia and ischemia/reperfusion.

Experimental Procedures

Study Design
30 rats were randomly allocated into five

groups, each group contain six rats: Sham operat-
ed group: Rats were subjected to the same surgi-
cal procedures as described below, except for
common carotid artery ligation. Ischemia-un-

treated group: Rats were subjected to 30 min of
ischemia before decapitation.
Ischemia metformin-treated group: Rats pre-
treated with metformin were subjected to 30
minutes of ischemia before decapitation.

Ischemia/reperfusion-untreated group: Rats
were subjected to 30 min of ischemia then 60
minutes of reperfusion before decapitation.

Ischemia/reperfusion metformin-treated
group: Rats pretreated with metformin were
subjected to 30 minutes of ischemia then 60
minutes of reperfusion before decapitation.
The animals in the control groups were admin-
istered saline 0.2 ml/rat (vehicle for met-
formin) orally through gavage tube for 7 days
before the surgical procedures.

Induction of Ischemia and
Ischemia/Reperfusion
Rats were anaesthetized through i.p. injection

of 1.25 g/kg urethane. Both common carotid ar-
teries were exposed over a midline incision, and a
dissection was made between the sternomastoid
and the sternohyoid muscles parallel to the tra-
chea. Each carotid artery was freed from its ad-
ventitial sheath and vagus nerve, which was care-
fully separated and maintained13. Ischemia was
achieved by clamping the bilateral common
carotid arteries for 30 min using non-traumatic
artery clamps. For induction of ischemia/reperfu-
sion, recirculation of blood flow was established
by releasing the clamps and restoration of blood
flow in the carotid arteries was confirmed by
careful observation. Reperfusion was allowed for
60 min. Sham-operated rats underwent identical
surgical procedures except that no artery clamps
were applied. After decapitation, both cerebral
hemispheres of each rat were dissected, ice
cooled, weighed, homogenized and centrifuged
to obtain the cerebrum extract. The activities of
the enzymes, glutathione peroxidase (GSHPx),
superoxide dismutase (SOD), and catalase were
measured in the brain extract.

Preparation of Cerebrum Homogenate
Preparation of the homogenate and measure-

ment of total cerebrum proteins were carried out
as previously described by Wong et al14 with
some modifications. Briefly, cerebral hemi-
spheres were weighted and washed twice in
phosphate buffered saline (PBS, O°C), then im-
mersed in liquid nitrogen for 10 minutes followed
immediately with grounding and the brain tissue
powder were resuspended in 9 vol (W/V) of
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Measurement of SOD
SOD activity was measured by the inhibition

of pyrogallol autooxidation according to Mark-
lund and Marklund 17.

Assay of GSHPx Activity
GSHPx activity was measured as described by

Lawrence and Burk18.

Statistical Analysis
Results were tabulated as mean ± SEM of six

animals in each group. Data were analyzed using
one-way analysis of variance (ANOVA test) fol-
lowed by LSD (Least Significance Difference)
test. Statistically significant difference was con-
sidered when p < 0.05.

Results

Cerebral ischemia resulted in significant (p <
0.05) increments in the level of MDA and activi-
ties of the antioxidant enzymes SOD and GSHPx
in cerebrum extract of the control subjected to
cerebral ischemia (vehicle pretreated group) com-
pared to the sham operated group. However, the
catalase activity was not significantly affected. In
the metformin-pretreated group the level of MDA
as well as the activities SOD, GSHPx and cata-
lase activities were insignificantly affected in re-
lation to sham operated group (Figures 1 and 3).
The activities of the antioxidant enzymes SOD,

GSHPx, and catalase as well as the MDA level, in
cerebrum extract, were significantly (p < 0.05) in-
creased in vehicle-pretreated group subjected to

0.1%. Triton X-100 containing 1.0 mM potassi-
um phosphate buffer (pH 7.2). Homogenates
were centrifuged at 5000 rpm for 15 minutes at
4°C, the clear supernatant was removed, and
aliquots were then taken and stored at –80°C.
Protein content of the supernatants determined
using protein assay kit. Catalase, SOD and GSH-
Px activities as well as MDA level were assayed
in the prepared homogenate supernatant.

Determination of MDA Level
MDA level was measured according to Poli-

dori et al15.

Assay of Catalase Activity
Catalase activity was measured according to

Abei16.

Figure 1. The activities of the antioxidant enzymes SOD,
GSHPx and catalase in sham operated, ischemia-untreated
and ischemia metformin-treated groups. *Significantly dif-
ferent (p < 0.05).

Figure 2. The activities of the antioxidant enzymes SOD,
GSHPx and catalase in sham operated, ischemia/reperfusion-
untreated and ischemia/reperfusion metformin-treated groups.
*Significantly different (p < 0.05).

Figure 3. The levels of MDA in sham operated, ischemia-
untreated, ischemia metformin-treated, ischemia/reperfusion-
untreated and ischemia/reperfusion metformin-treated groups.
*Significantly different (p < 0.05).



ment of rats daily with metformin for one week,
caused a substantial reduction of injury induced
by cerebral ischemia and ischemia followed by
reperfusion. In particular, in the cerebrum of rats
that had undergone ischemia or I/R, metformin
attenuated the extent of oxidative stress and re-
duced the elevated levels of GSHPx, SOD, MDA
and catalase. These results suggest that the pro-
tective effects of metformin against I/R injury
may be attributed to its ability to reduce oxidative
stress. These results are in agreement with that
obtained with Huo et al27 who suggested that
metformin reduces ROS levels by inducing an-
tioxidant thioredoxin (Trx) expression through
activation of the AMP-activated protein. Previous
papers reported that acute activation of AMPK
increased ischemic damage further confirms that
acute AMPK (adenosine monophosphate-activat-
ed protein kinase) activation is detrimental in
stroke, consistent with previous findings from
other pharmacological and genetic studies11. The
detrimental effect of acute AMPK activation may
be mediated, at least in part, by enhancement of
lactic acidosis. Chronic metformin treatment may
lead to sublethal metabolic stress and downregu-
late AMPK protecting the brain from subsequent
injury. Hypoglycemia during biguanide therapy is
essentially unknown. These agents are, therefore,
more appropriately termed “euglycemic”
agents28. Impairment of insulin sensitivity was
occurred under ischemic stress that results in hy-
perglycemia. Furthermore, the development of
hyperglycemia/glucose intolerance after cerebral
ischemic stress, called post-ischemic glucose in-
tolerance, may trigger the aggravation of neu-
ronal damage29. Metformin is the only oral antidi-
abetic medication that has been shown to de-
crease diabetic cardiovascular complications in
large-scale clinical trials9. It has been shown to
reduce intracellular ROS30. However, the precise
mechanism of metformin’s antioxidant actions is
not completely understood. Metformin acts par-
tially through activation of the AMPK, which
mediates many of its cardiovascular-protective
effects. AMPK is involved in regulating many
cellular functions including endothelial nitric ox-
ide synthase (eNOS) activation, angiogenesis and
proliferation31. Activation of AMPK pathway in-
hibits vascular inflammation, prevents endothe-
lial injury induced by hyperglycemia and FFAs32.
The findings of this work are in parallel with
Mahrouf et al10 who demonstrated that metformin
possesses antioxidant properties that could partic-
ipate to its cardiovascular protective effects. Such

cerebral ischemia/ reperfusion compared to the
sham operated group. In metformin-pretreated
group, there were no significant change in the MDA
level as well as the activities SOD, GSHPx and cata-
lase after cerebral ischemia/reperfusion as compared
to the sham operated group (Figures 2 and 3).

Discussion

The majority of in vivo models of cerebral is-
chemia rely on vessel occlusion predominantly
affecting the forebrain19. Bilateral occlusion of
the common carotid arteries in rats is a common
model of incomplete global cerebral ischemia20,
and results in a 50% decrease in cerebral blood
flow21. This induced partial ischemia, without af-
fecting the circle of Willis (collateral circulation),
has been suggested to reflect the early events oc-
curring during transitory ischemic attacks more
closely22. In this study, the MDA level which is a
product of lipid peroxidation was increased as a
sequence of brain ischemic insult and a further
increase in its activity was reported after is-
chemia/Reperfusion (I/R). These results are in
agreement with many works that demonstrate an
increase of lipid peroxidation products in experi-
mental studies during cerebral I/R injury as indi-
rect evidence of oxidative stress23. It was reported
an elevation of free radicals in the first 5 minutes
of 1 hour cerebral ischemia; moreover, a second
elevation of free radicals gradually occurred on
reperfusion24. The present study demonstrated
that the cytosolic activities of GSHPx and SOD
were increased as a result of brain ischemic in-
sult and more increments were detected on I/R.
However, the catalase enzyme level was, only, el-
evated after I/R. This increase may be related to
reperfusion-induced free radicals overproduction.
In the present study we demonstrated that cere-
bral ischemia and I/R resulted in an increase in
SOD activity indicating that the brain’s antioxi-
dant machinery is activated in response to exces-
sive generation of ROS. The enzyme SOD cat-
alyzes the conversion of superoxide anions to
molecular oxygen and hydrogen peroxide, which
requires to be scavenged further by tissue thiols,
such as GSH, and by catalase25. Furthermore,
apart from its own toxicity, hydrogen peroxide in
the presence of iron leads to the generation of
toxic hydroxyl radicals26. Collectively, the results
obtained in the present model confirm the pres-
ence of a significant level of oxidative stress re-
sulting from I/R. In this investigation, pre-treat-
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antioxidant properties could explain some of the
pharmacological actions of this drug through a
modulation of redox-dependent transduction
pathways. Metformin exerts antioxidant proper-
ties at the cellular level, by inhibition of intracel-
lular ROS production in stimulated endothelial
aortic cells, through the reduction of PKC mem-
brane translocation and/or activity. Whether such
inhibition of the PKC pathway by metformin
might be associated to a modulation of the
AMPK pathway, the proposed redox-dependent
mechanism for the pharmacological effect of the
antidiabetic drug remains to be clarified. Also the
present findings agree with Arpita et al33 who
concluded that metformin therapy protects
against diabetes associated oxidative stress and
inflammation which indicates that it may be con-
sidered as a preferred oral antidiabetic agent in
type 2 diabetes mellitus. Other reports postulated
that, metformin protects against myocardial is-
chemia/reperfusion injury by activating AMP-ac-
tivated protein kinase34. It was demonstrated that
the widely used diabetes drug metformin is suffi-
cient to activate the atypical protein kinase C
transcription cofactor CBP pathway in neural
precursors and, thereby, to enhance neurogenesis
and raise the possibility that metformin could
provide the basis for a therapeutic strategy for the
human nervous system35.

Conclusions

Treatment with metformin for one week before
induction of cerebral ischemia or I/R exerts cere-
broprotective effects, possibly by reducing the ox-
idative stress. Further experimental and clinical
studies are required to confirm this effect.
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