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In this work, we run a numerical experiment to study the behaviour of
incompressible Newtonian fluids with anisotropic temperature-dependent viscosity in
forced convection turbulence. We present a systematic analysis of variable-viscosity
effects, isolated from gravity, with relevance for aerospace cooling/heating applications.
We performed an extensive campaign based on pseudo-spectral direct numerical
simulations of turbulent water channel flow in the Reynolds number parameter space.
We considered constant temperature boundary conditions and different temperature
gradients between the channel walls. Results indicate that average and turbulent fields
undergo significant variations. Compared with isothermal flow with constant viscosity,
we observe that turbulence is promoted in the cold side of the channel, characterized
by viscosity locally higher than the mean: in the range of the examined Reynolds
numbers and in absence of gravity, higher values of viscosity determine an increase of
turbulent kinetic energy, whereas a decrease of turbulent kinetic energy is determined
at the hot wall. Examining in detail the turbulent kinetic energy budget, we find
that turbulence modifications are associated with changes in the rate at which energy
is produced and dissipated near the walls: specifically, at the hot wall (respectively
cold wall) production decreases (respectively increases) while dissipation increases
(respectively decreases).
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1. Introduction

Prediction of turbulent flows characterized by large temperature gradients and high
heat transfer rates is of great importance in engineering. Heat exchangers, combustion
chambers, nuclear reactors and cooling systems in electronic devices are just some
of the well-known examples in which significant temperature variations typically
occur within the flow. Applications relevant for the present study can be found
in aerospace systems, which operate in micro-gravity conditions and require liquid-
based cooling technologies to meet high thermal transfer demand (Zonta, Marchioli
& Soldati 2008; Campolo, Andreoli & Soldati 2009; Lee et al. 2010). In these
systems, thermal and viscous properties of the liquid are critical design parameters that
vary with temperature. In micro heat exchangers, for instance, the required pumping
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power and momentum transfer are influenced by temperature-dependent viscosity (Lee
et al. 2010). Similarly, in nanofluids viscosity changes with temperature but also with
nanoparticle concentration in a complex way (Maiga et al. 2005; Lee et al. 2010;
Yu et al. 2010). Assessing the influence of temperature-dependent viscosity variations
separate from those induced by nanoparticles can set a benchmark to evaluate different
nanofluid performances (Zonta et al. 2008).

For most conventional heat transfer liquids, density, specific heat and (to a
lesser extent) thermal conductivity are relatively independent of temperature, whereas
viscosity is not. Compared with constant-viscosity flows, this temperature-dependent
variation alters velocity profiles and changes important flow quantities such as the
Nusselt number and friction factor. In spite of such effects, it is common practice
to account for viscosity variations by adjusting constant-viscosity solutions through
empirical correction factors which obviously have limited physical and theoretical
justification (Buyukalaka & Jackson 1998). In early times, Sieder & Tate (1936)
studied experimentally the effect of non-uniform viscosity on heat transfer in
heating and cooling pipe flow, and adjusted the constant-viscosity solution with
a correction factor defined by the ratio of viscosities evaluated at bulk and wall
temperatures, proposing the following correlations for Nusselt number and friction
factor: Nu/Nuconstant = (µbulk/µwall)

n and f /fconstant = (µbulk/µwall)
−m, where n and m

depend on the specific flow conditions. Since then, other experimental studies were
performed, and further correlations proposed (see Buyukalaka & Jackson 1998, for
a brief review). These works, however, focused mainly on the determination of
coefficients n and m for different flow configurations (e.g. channels and pipes), rather
than on the characterization of the flow behaviour from a physical viewpoint.

Among analytical and numerical studies dealing with temperature-dependent
viscosity problems, a large majority was devoted to the analysis of laminar heat
convection. Shin et al. (1993) developed a finite-volume algorithm to study laminar
heat transfer in a rectangular duct. The authors focused on the numerical prediction
of friction factor and Nusselt number when constant flux boundary conditions are
enforced at the top and bottom walls, and imposed temperature conditions are
prescribed at the sidewalls. Results revealed an increase in the Nusselt number with
respect to the case of constant viscosity. Pinarbasi, Ozalp & Duman (2005) studied
the influence produced by variations in both thermal conductivity and viscosity of a
Newtonian fluid for the case of laminar Poiseuille flow in a two-dimensional channel
with constant-temperature boundary conditions. Momentum and energy equations,
coupled through the linear dependence of viscosity on temperature, were solved using
the Chebyshev collocation method. Non-uniform viscosity and thermal conductivity
affected the temperature field, while very scarce effects were observed on the
velocity field. A more systematic study to analyse the effect of heating/cooling on
the growth of instabilities in turbulent channel flow was performed by Sameen &
Govindarajan (2007) who used linear stability analysis to single out the effects of
viscous stratification, heat diffusion and buoyancy. Relevant to the present study is the
finding that a decrease of viscosity as the wall is approached has a large stabilizing
effect on the flow, the opposite being true for viscosity increase. Albeit under different
flow conditions (laminar/turbulent transition in Sameen & Govindarajan (2007), fully
developed turbulence here), our results lead to similar conclusions.

From the previous review, phenomenological and statistical analyses of turbulent
forced convection with variable fluid properties appear not yet complete for Earth
and micro-gravity conditions. In this work we run numerical experiments based on
direct numerical simulation (DNS) to investigate on the behaviour of turbulence when
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the fluid viscosity varies significantly with temperature and gravity is negligible. This
study provides useful information on the forced-convection heat transfer processes, but
it has been used in further investigations (Zonta, Onorato & Soldati 2012; Zonta 2010)
also to benchmark the influence of the different temperature-dependent fluid properties
on the flow (e.g. in stratified flows). We observe that, for Earth gravity environments,
the influence of variable viscosity may be cancelled (by buoyancy effects and/or
variations of thermal expansion coefficient, for instance) but only at Reynolds numbers
higher than those considered in this study (Zonta et al. 2012).

Simulations are based on a pseudo-spectral solver of the momentum and energy
equations coupled by the explicit dependence of viscosity on temperature through an
exponential law. The numerical methodology, described in detail in § 2, is applied to
turbulent channel flow using water as a working fluid. Different values of the shear
Reynolds number, Reτ , are considered while the Prandtl number is kept constant. The
range of Reτ was chosen taking into account that the viscous term exhibits a Re−1

τ

scaling in our methodological framework, and variable viscosity effects are expected
to vanish at very large Reynolds number. Therefore, we selected four values of Reτ in
the low/intermediate turbulent range to explore in detail and put accurate boundaries to
these effects.

The flow field statistics, presented here for the first time, are discussed in § 3 and
compared with those obtained for the same flow configuration with constant viscosity.
Results for velocity moments up to fourth order, turbulent kinetic energy (TKE) and
shear stress are then linked in a phenomenological causal relationship to coherent flow
structures: a mechanistic view of the boundary layer coherent structures is given to
provide qualitative evidence of the non-trivial observed statistical behaviour. Finally,
the interplay between microscopic transfer parameters (viscosity) and macroscopic
turbulence characteristics are explained in connection with the underlying energy
production and dissipation mechanisms.

We remark that the variable-property algorithm employed in this work is similar
to those developed by Bae, Yoo & Choi (2005), Li et al. (2008), Sewall & Tafti
(2008) and Kang, Iaccarino & Ham (2009). In all of these cases the viscosity, density
and thermal conductivity vary with temperature. However, the main purpose of those
works was to validate the algorithm against benchmark numerical studies, analytical
solutions and experimental measurements rather than to analyse the effect produced by
variable fluid properties on the flow. In particular, Sewall & Tafti (2008) focused on
differentially heated cavity flow and unsteady Poiseuille–Bénard flow and used air as a
working fluid. Kang et al. (2009) considered conjugate heat transfer around a cylinder
in a channel heated from below where the working fluid is water, yet its dependency
upon temperature is implemented using tabulated data. Bae et al. (2005) performed
DNSs of turbulent CO2 fluid at supercritical pressure in heated vertical tubes with
low-Mach-number approximation and considering buoyancy effects, whereas Li et al.

(2008) analysed a similar problem (supercritical CO2 turbulent flow) in a different
geometry (channel flow) and with a fully compressible approach (albeit neglecting
buoyancy effects).

2. Governing equations and numerical modelling

With reference to the schematics of figure 1, we consider an incompressible and
Newtonian turbulent flow of water in a plane channel with differentially heated walls:
the hot wall is kept at temperature T∗

H while the cold wall is kept at temperature
T∗

C. The superscript ∗ is used to denote dimensional quantities. The origin of the
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Sketch of the
computational domain.

coordinate system is located at the centre of the channel and x-, y- and z-axes point
in the streamwise, spanwise and wall-normal directions, respectively. The size of the
channel is 4πh∗ × 2πh∗ × 2h∗ in x, y and z, where h∗ is the half-channel height. The
balance equations are written expressing the fluid viscosity as

µ∗(T∗) = µ∗
ref + µ∗

v(T
∗), (2.1)

where µ∗
ref is the viscosity at the reference temperature T∗

ref = (T∗
H + T∗

C)/2, i.e.

µ∗
ref = µ∗(T∗

ref ) = 5.494 × 10−4 Pa s, and µ∗
v(T

∗) is the local viscosity deviation from
µ∗

ref . Note that µ∗ does not depend explicitly on the shear rate: hence, the fluid can be
assumed Newtonian.

All other thermophysical fluid properties (density ρ∗, specific heat c∗
p and thermal

conductivity λ∗) are kept constant and are evaluated at T∗
ref . This assumption is made

primarily because our study focuses on forced-convection heat transfer in zero-gravity
conditions and aims at isolating the effect of variable viscosity on the flow field. In
the absence of buoyancy and stratification effects, the assumption is further justified
within the range of temperature differences between the walls considered in the
simulations (and reported in table 1). For the largest temperature difference (1T∗ =
T∗

H − T∗
C = 60 K), the dynamic viscosity varies between µ∗|293 K = 0.98 × 10−3 Pa s

and µ∗|353 K = 0.347 × 10−3 Pa s (∼65 % variation), while thermal conductivity
varies between λ∗|293 K = 0.604 W m−1 K−1 and λ∗|353 K = 0.673 W m−1 K−1 (∼11 %
variation). Variation of density and specific heat are even smaller (≃2.7 and ≃ 0.3 %,
respectively).

Based on these arguments, the following set of dimensionless time-dependent
variable-viscosity equations is obtained:

∂ui

∂xi

= 0, (2.2)

http://journals.cambridge.org/flm
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Reynolds Grid Temperature Viscosity
number points gradient

Nx × Ny × Nz 1T (K) µ∗

S1.1 110 128×128×129 — Constant
S1.2 110 128×128×129 40 µ = µ(T) — (2.5)
S1.3 110 128×128×257 60 µ = µ(T) — (2.5)

S2.1 150 256×256×257 — Constant
S2.2 150 256×256×257 40 µ = µ(T) — (2.5)
S2.3 150 256×256×257 60 µ = µ(T) — (2.5)

S3.1 180 256×256×257 — Constant
S3.2 180 256×256×257 40 µ = µ(T) — (2.5)
S3.3 180 256×256×257 60 µ = µ(T) — (2.5)

S4.1 300 256×256×257 — Constant
S4.2 300 256×256×513 60 µ = µ(T) — (2.5)

TABLE 1. Summary of the simulation parameters.

∂ui

∂t
= −uj

∂ui

∂xj

+ δi,1 −
∂p

∂xi

+
1

Reτ

[(
∂2ui

∂xj
2

)

+
∂

∂xj

(

µv

∂ui

∂xj

)]

, (2.3)

∂T

∂t
= −uj

∂T

∂xj

+
1

ReτPr

(
∂2T

∂xj
2

)

, (2.4)

where ui is the ith component of the velocity vector, δ1,i is the mean pressure
gradient, p is the fluctuating kinematic pressure, T is temperature, Reτ is the shear
Reynolds number and Pr is the Prandtl number. Note that µv = µ∗

v/µ
∗
ref . In our

approach, both Reτ and Pr are macroscopic input parameters defined considering
the thermophysical fluid properties at the reference temperature: Reτ = ρ∗

ref u
∗
τ h∗/µ∗

ref

and Pr = µ∗
ref c

∗
p,ref /λ

∗
ref , where u∗

τ is the shear velocity. For isothermal flows with

symmetric axial velocity profile, the shear velocity is defined as u∗
τ =

√
τ ∗

w/ρ∗
ref ,

where τ ∗
w is the shear stress at the wall. The problem under investigation, however,

is characterized by a non-symmetric distribution of the axial velocity (see § 3 for a
detailed discussion), and the value of the shear stress is not the same at the two walls.
Therefore, the choice of u∗

τ is not trivial. In this study, we exploit the condition of

imposed mean pressure gradient δ∗
1,i to compute the shear velocity as u∗

τ =
√

δ∗
1,ih

∗/ρ∗
ref .

This is equivalent to replacing τ ∗
w with δ∗

1,ih
∗, which is readily obtained by a simple

force balance on the entire channel yielding δ∗
1,i2h∗ = τ ∗

w,C + τ ∗
w,H = 2τ ∗

w, where τ ∗
w,C

(respectively τ ∗
w,H) is the mean wall shear stress at the cold wall (respectively hot wall),

and τ ∗
w is the average value between τ ∗

w,C and τ ∗
w,H .

Equations (2.2)–(2.4) are discretized using a pseudo-spectral method based
on transforming the field variables into wavenumber space, through Fourier
representations for the periodic (homogeneous) directions x and y, and Chebyshev
representation for the wall-normal (non-homogeneous) direction z. Note that
periodicity in x and y is assumed for both velocity and temperature, while no-slip
and constant temperature conditions (Verzicco & Sreenivasan 2008) are imposed at the
walls. As commonly done in pseudo-spectral methods, the convective nonlinear terms
are first computed in the physical space and then transformed in the wavenumber
space using a de-aliasing procedure based on the 2/3 rule; derivatives are evaluated
directly in the wavenumber space to maintain spectral accuracy. Once the velocity field
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FIGURE 2. Viscosity of water as a function of temperature for 273 < T∗ < 373 K. The
temperature differences between the hot wall and the cold wall considered in simulations
(S1.2, S2.2, S3.2) and (S1.3, S2.3, S3.3, S4.2) are also shown.

is known, the temperature field is computed as a solution of the energy equation, and
finally viscosity is updated. The procedure is described in detail in Appendix.

Exponential (or Arrhenius-type) relations are usually employed to represent the
dependency of viscosity on temperature in analytical and theoretical studies (Sameen
& Govindarajan 2007), given the ease of integration. In the present study the following
relation was adopted (Popiel & Wojtkowiak 1998):

µ∗(T∗) = A · 10B/(T∗−C) (2.5)

because it best matches experimental data (Weast 1988) within the range of
temperatures examined. Constants A, B and C are associated with the specific
fluid considered. For water, A = 2.414 × 10−5 Pa s, B = 247.8 K and C = 140 K.
A graphical representation of (2.5) is given in figure 2, which shows that the ratio
of viscosity values at the walls, µ∗(T∗

C)/µ∗(T∗
H), is ≃ 2 if 1T∗ = 40 K and ≃2.85 if

1T∗ = 60 K. Note that (2.5) generates an asymmetric viscosity profile associated with
larger viscosity variations at lower temperatures and vice versa.

A summary of the relevant simulation parameters and grid resolutions is given in
table 1. Four different values of the reference shear Reynolds number were simulated:
Reτ = 110, 150, 180 and 300. For each value of Reτ , we performed an extensive
code validation against DNS datasets available for the case of uniform and constant
fluid viscosity, simply referred to as constant-viscosity simulations hereinafter (Kim,
Moin & Moser 1987; Iwamoto, Suzuki & Kasagi 2002; Marchioli et al. 2008). All
simulations are performed at Pr = 3. The spatial resolution is chosen to fulfil the
requirements imposed by the DNS. When Pr > 1, this choice is driven by the smallest
spatial scale of the temperature field, ηθ , which is smaller than the Kolmogorov scale,
ηk, in accordance with the following relation (Monin & Yaglom 1975):

ηθ ∼ ηk

(
1

Pr

)1/2

. (2.6)
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In our simulations we computed ηθ = 0.577ηk. The streamwise and spanwise grid
spacings are 8ηθ < 1x < 12ηθ and 4ηθ < 1y < 6ηθ depending on the value of Reτ ,
while the wall-normal grid spacing varies from a minimum value 1zmin ≃ 10−2ηθ at
the wall to a maximum value 1zmax ≃ 2ηθ in the centre of the channel for all values of
Reτ . The spatial resolution was chosen also accounting for the decrease of ηk (and of
ηθ ) at increasing Reτ .

3. Results and discussion

To the best of the authors’ knowledge, DNSs of turbulent channel flow aimed at
evaluation of variable viscosity effects isolated from gravity are not available in the
literature. In our simulations, viscosity depends on temperature, which is in turn a
function of the wall-normal coordinate. Local changes in viscosity may produce large
fluctuations that are expected to influence significantly the turbulent flow, especially
in the near-wall region. In the following we try to characterize this influence from
a statistical viewpoint. All results are presented considering dimensionless variables
in wall units (denoted by superscripts +) obtained normalizing by u∗

τ , ρ∗
ref and

ν∗
ref = µ∗

ref /ρ
∗
ref .

3.1. Influence of variable viscosity on fluid velocity statistics

In this section we analyse the statistical moments of the fluid velocity field up to
fourth order. We discuss only results relative to the simulations at Reτ = 110, since the
effects of viscosity we wish to emphasize are qualitatively similar in all cases under
consideration but trends become more evident at lower Reynolds numbers.

In figure 3(a) wall-normal profiles of the mean streamwise velocity 〈u+
x 〉 from

simulations with temperature-dependent viscosity (S1.2, dashed line; and S1.3, dash-
dotted line) are compared with the profile obtained with constant viscosity (S1.1,
solid line). Angular brackets 〈 〉 denote averaging in time and over the homogeneous
directions. The time window selected to average steady-state statistics is 1T+ = 2200.
In the Reτ = 110 simulations this corresponds to ∼20 eddy turnover times, defined
as Teddy = h∗/u∗

τ . Arrows in this figure, as well as in the following figures, point
in the direction of increasing temperature difference between the walls. As apparent
from figure 3(a), the symmetry of the velocity profile is lost due to the occurrence
of higher velocity gradients at the hot wall, favoured by the decrease of viscosity
with temperature, and lower gradients at the cold wall, where increased viscosity has
a damping effect on the rate of change of 〈u+

x 〉 with z+. The wall-normal profile of
the TKE, 〈E+

k 〉 = 〈u′
iu

′
i〉 with u′

i = u+
i − 〈u+

i 〉, is also asymmetric with respect to the
geometric channel centreline, as shown in figure 3(b). Counterintuitively, turbulence
intensity is reduced near the hot wall (up to ≃12 % in terms of peak value), but
increased near the cold wall (up to ≃5 % in terms of peak value). Note that the
location of the peak for 〈E+

k 〉 does not change dramatically for the two cases with
temperature-dependent viscosity, since it remains within a distance z+ ≃ 20 ÷ 25 from
the wall. However, compared with the case of constant viscosity, the peak location
for 〈E+

k 〉 shifts slightly towards the hot wall and away from the cold wall: the
behaviour of 〈u+

x 〉 and 〈E+
k 〉 seems to indicate that the effects due to the increase

of viscosity near the cold wall propagate over a proportion of the channel much wider
than that influenced by the decrease of viscosity near the hot wall. To appreciate
further the effect of temperature-dependent viscosity on turbulence intensities, in
figure 4 the root mean square (r.m.s.) of the fluid velocity fluctuations, 〈RMS(u′

i)〉,
is shown. Again, profiles are not symmetric and deviations from the constant-viscosity
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FIGURE 3. (a) Mean fluid streamwise velocity 〈u+
x 〉 and (b) TKE, 〈E+

k 〉, at Reτ = 110:
comparison between simulation with constant viscosity (S1.1, solid line) and simulations
with temperature-dependent viscosity (S1.2, dashed line; S1.3, dash-dotted line).

situation are evident, particularly in the buffer region. Turbulence intensity decreases
in all directions near the hot wall and increases near the cold wall: variations are
pronounced in the spanwise direction (figure 4b) and in the wall-normal direction
(figure 4c), where deviations up to 15 % between ‘constant’ and ‘variable’ viscosity
conditions are observed. This finding is in agreement with previous observations that a
reduction in viscosity has a stabilizing effect on boundary layers, whereas an increase
in viscosity has a destabilizing effect (Sameen & Govindarajan 2007). This result,
obtained from stability analysis, is here demonstrated through the explicit computation
of the turbulence intensities.

To emphasize the Reτ dependency of viscosity variations on turbulence intensities,
in figure 5 we compare the behaviour of 〈RMS(u′

i)〉 at increasing Reτ . Profiles are
shown as a function of the normalized wall-normal coordinate z+/Reτ . With no
stratification effects (as occurs in zero-gravity conditions), variable-viscosity effects
become less significant as Reτ increases in agreement with the Re−1

τ scaling prescribed
by (2.3). We quantified this trend computing

∆RMS[%] =
〈RMS (u′

i)〉µ=var
−〈RMS (u′

i)〉µ=const

〈RMS (u′
i)〉µ=const

. (3.1)
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FIGURE 4. Root mean square of fluid velocity fluctuations at Reτ = 110: (a) streamwise
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x)〉; (b) spanwise component, 〈RMS(u′
y)〉; (c) wall-normal component,

〈RMS(u′
z)〉. Lines are as in figure 3.

where 〈RMS (u′
i)〉µ=var

refers to the ith variable-viscosity r.m.s. component and

〈RMS (u′
i)〉µ=const

to its constant-viscosity counterpart. The behaviour of ∆RMS[%] is

shown in figure 5(d) for the wall-normal r.m.s. component: the decrease of turbulence
intensity modulation due to viscosity at Reτ = 300 is evident. Similar results are
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FIGURE 5. Root mean square of fluid velocity fluctuations at varying Reynolds number:
(a) Reτ = 150; (b) Reτ = 180; (c) Reτ = 300. Variable-viscosity results (dash-dotted lines)
are contrasted with constant-viscosity results (symbols). The relative per cent change of the
wall-normal r.m.s. values (taken here as a reference) with Reτ is quantified by ∆RMS[%] in (d).

obtained for the other components. We remark that the low-Reτ effects on turbulence
intensities discussed here for zero-gravity conditions have been observed also in stably
stratified wall-bounded flow, where Earth gravity conditions apply (Zonta et al. 2012).

Finally, the higher-order moments (skewness and flatness) are shown in figure 6.
Significant viscosity effects are observed in the streamwise and wall-normal directions.
The skewness factor of the fluid velocity fluctuations, 〈S(u′

i)〉, is shown in figure 6(a,b).
A high positive value of the skewness means that velocity fluctuations more frequently
attain large positive rather than negative values, the opposite being true for negative
skewness. For the streamwise component (figure 6a), the turbulent channel flow in the
constant-viscosity simulation exhibits more frequent large positive fluctuations at the
wall and more frequent large negative fluctuations in the channel centre. The main
effect of variable viscosity is to increase the skewness in the near-wall region: this
effect is limited to few wall units at the hot wall, but extends to the entire buffer
region at the cold side. Note that the maximum value of 〈S(u′

x)〉 at the cold wall is
shifted by roughly 5 wall units away from the wall. The skewness of the wall-normal
fluctuations (〈S(u′

z)〉, figure 6(b), appears shifted towards the hot side when viscosity is
allowed to change with temperature. The increase (in magnitude) of 〈S(u′

z)〉 in the wall
proximity may indicate higher dissipation (Soldati & Banerjee 1998). High positive
fluctuations are a typical signature of coherent sweep events that bring high-speed fluid
towards the wall and produce high shear-stress regions at the wall. In the present case,
higher skewness may indicate an increase either in the number of sweeps or in their
intensity, leading in both cases to shear stress production. The reader is referred to
§ 3.3.2 for further discussion of these issues.
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z)〉;

(c) streamwise component of flatness, 〈F(u′
x)〉; (d) wall-normal component of flatness,

〈F(u′
z)〉. Lines are as in figure 3.

The flatness of the velocity fluctuations, 〈F(u′
i)〉, is shown in figure 6(c,d). A normal

distribution has a flatness factor equal to 3. Higher values of the flatness factor are
observed for the streamwise fluctuations near the cold wall, particularly when the
temperature gradient increases. This indicates that fluctuations are often larger than
the variance of the distribution and have a more intermittent character. As already
observed for 〈S(u′

x)〉, also the flatness factor attains a maximum at ∼5 wall units from
the cold wall. The flatness of the wall-normal component (figure 6d) decreases near
the cold wall and increases near the hot wall (up to ≃40 % variations for 〈F(u′

z)〉
in the S1.3 simulation), while remaining substantially unchanged in the centre of the
channel. A high/low flatness factor value is an indicator of the high/low intermittent
character of the velocity fluctuations: in the wall-normal direction, in particular, it
gives an indication of the intermittent nature of the Reynolds shear stress producing
events near the wall. From a quantitative viewpoint, the intensity of these events can
be quantified using the non-dimensional (i.e. normalized by ρ∗

ref u
∗
τ

2) turbulent shear
stress τ t

xz = −ρ〈u′
xu

′
z〉, where u′

xu
′
z is the instantaneous fluctuating Reynolds stress in

the longitudinal x–z plane. We remind that ρ = ρ∗/ρ∗
ref = 1 in our simulations. The

behaviour of τ t
xz along the wall-normal direction is shown in figure 7(a), together with

the total shear stress of the fluid τ tot
xz = τ t

xz + τ v
xz, where

τ v
xz = −〈µ〉

∂〈u+
x 〉

∂z+

1

Reτ

, (3.2)

is the viscous shear stress. In (3.2), µ = µ∗/µ∗
ref is a function of temperature and

∂〈u+
x 〉/∂z+ is the mean strain rate. The contribution 〈µ′(∂u′

x/∂z)〉 to τ v
xz due to the
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FIGURE 7. (a) Wall-normal behaviour of the total shear stress, τ tot
xz , and of the turbulent shear

stress, τ t
xz, with/without temperature-dependent viscosity at Reτ = 110 (simulations S1.1 and

S1.3). (b) Wall-normal behaviour of the viscous shear stress, τ v
xz, and of the mean strain rate,

∂〈u+
x 〉/∂z+, for simulation S1.3.

fluctuating component of viscosity was found to be negligible: hence, it was not
included in (3.2) (see also Bae et al. 2005). As apparent from figure 7(a), the shape of
the stress profiles is qualitatively similar for all simulations at Reτ = 110 (indeed, such
similarities are observed for all of the values of Reτ examined). Viscosity variations
shift the profiles towards lower values. The peak value of τ t

xz decreases near the
hot wall (roughly −15 % for simulation S1.3), indicating the lower intensity of the
stress-producing events; conversely, the peak value increases in magnitude near the
cold wall (roughly +15 % for simulation S1.3), indicating higher event intensity. No
such effect is observed within the viscous sublayer, in agreement with the behaviour of
the skewness in the streamwise direction. As already observed for the r.m.s. profiles,
the location of the peak of τ t

xz is slightly displaced (≃5 wall units): towards the
channel centreline for the negative peak, and towards the wall for the positive peak.

As far as the total shear stress is concerned, the behaviour in the constant-viscosity
case is well known: τ tot

xz varies linearly in the range ±1 vanishing at the geometric
channel centreline z+ = 110. With variable viscosity, profile is still linear, but not
symmetric with respect to the centreline: we obtain τ tot

xz < 1 at the hot wall, τ tot
xz = 0 at
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z+ ≃ 95 and |τ tot
xz | > 1 at the cold wall. Owing to macroscopic force balance, the shear

surplus at the cold side is balanced by the shear deficit at the hot side.
The changes just described are consistent with those already observed for the mean

streamwise velocity (figure 3a), and are produced by a change of both τ t
xz (dash-dotted

line in figure 7(a) and τ v
xz. This latter contribution is shown in figure 7(b) together with

the mean strain rate to highlight the interesting behaviour caused by variable viscosity.
In the hot side of the channel, both viscous stress and strain rate reach their peak value
right at the wall. The viscous stress, however, attains a lower value due to the decrease
of viscosity with temperature. In the cold side of the channel, the viscous stress is
still maximum at the wall but the strain rate reaches its negative peak away from the
wall. This is associated with the occurrence of an inflection point and an inversion
of slope in the strain rate profile. Figure 7(b) indicates clearly that, with variable
viscosity, the wall-normal shear stress is determined by the local balance between
mean shear (which actually decreases very near the cold wall) and viscosity (which
strongly increases due to lower fluid temperature). Building on this datum we will
show later that a change of viscosity alters significantly the transport mechanisms near
the cold wall, leading to an off-the-wall shift of the location at which macroscopic
transfer coefficients are maximized.

3.2. Influence of variable viscosity on the bulk Reynolds number

Previous observations of the decrease (respectively increase) of turbulence intensity
near the hot wall (respectively cold wall) seem counterintuitive. A first-glance
reasoning would be the following: in pipe/channel flow, when viscosity is reduced
inertial effects are less damped and fluctuations are bound to increase. By analogy,
one would expect the same reasoning to hold for the two sides of the channel and
would intuitively justify a behaviour of turbulence opposite to that we found. We try
to justify our findings with simple scaling arguments to show that in zero-gravity
conditions the above intuitive reasoning is indeed wrong. To discriminate variable-
viscosity effects on the boundary layer structure, we can subdivide the flow domain
into two distinct subchannels, one on the hot side and the other on the cold side,
separated by the x–y plane where the mean shear stress vanishes (located at z+ = 95
in the reference simulation S1.3). For each subchannel, we obtain the following bulk
Reynolds numbers:

Recoldb =
ucold

b 4hcoldρref

µcold
b

= 3356, (3.3)

Rehotb =
uhot

b 4hhotρref

µhot
b

= 3084. (3.4)

In the above equations, hcold = 2.27 × 10−2 m and hhot = 1.73 × 10−2 m are the heights
of each subchannel, ucold

b = 4.34 × 10−2 m s−1 and uhot
b = 4.43 × 10−2 m s−1 are the

bulk velocities and µcold
b = 5.818 × 10−4 Pa s and µhot

b = 4.925 × 10−4 Pa s are the bulk
viscosities. All of the above quantities are expressed in dimensional units (superscript
∗ has been suppressed for ease of notation) and space-averaged over the corresponding
subchannel height. Based on equation (3.3) and (3.4), we can conclude that, when
the pressure gradient that drives the flow is imposed, the mass flow rate in the cold
subchannel is higher than the mass flow rate in the hot subchannel. We have examined
also the variation of inertial forces, FI , and viscous forces, FV , in the two subchannels.
With straightforward meaning of symbols the following scaling holds:

FI ∼ ρref u
2
bh2; FV ∼ µb(ub/h)h2. (3.5)
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Upon computation of these forces in each subchannel, at Reτ = 110 we obtain

Fcold
V

Fhot
V

= 1.52;
Fcold

I

Fhot
I

= 1.69. (3.6)

As expected, in the cold subchannel there is a significant increase of the viscous forces
(+52 %) due to the increase of viscosity. However, there is an even larger increase
of the inertial forces (+69 %), in agreement with the values of Recoldb and Rehotb .
This is mostly due to the cold subchannel extending over a much wider wall-normal
proportion of the flow domain. For increasing Reτ , both force ratios should converge
to unity and the flow symmetry should be recovered. In our simulations we obtain
hcold/hhot ≃ 1.31, 1.28, 1.25 and 1.05 at Reτ = 110 (S1.3), 150 (S2.3), 180 (S3.3) and
300 (S4.2). This result confirms that the variable-viscosity effects we observe will fade
out at higher Reynolds numbers.

3.3. Influence of variable viscosity on instantaneous turbulence structures

The aim of this section is to provide causal connection between the statistical results
of § 3.1 and the dynamics of the turbulence coherent structures. We consider those
structures that are important to sustain the regeneration cycle of near-wall turbulence:
low-speed streaks, bursting events (i.e. sweeps and ejections) and quasi-streamwise
vortices. For details on the turbulence regeneration mechanisms, we refer the reader to
Adrian (2007) and Soldati (2005) and references therein. As before, results are shown
only for reference simulations at Reτ = 110 to simplify the discussion.

3.3.1. Low-speed streaks
Fluid velocity streaks are shown in figure 8 for the cold wall (figure 8a) and for the

hot wall (figure 8b), respectively. A greyscale mapping is used for the instantaneous
streamwise fluid velocity fluctuations u′

x taken in the wall-parallel x–y plane located at
a distance z+ = 5 from each wall. Dark-grey areas indicate regions of negative u′

x and
mark the location of low-speed streaks, light-grey areas indicate regions of positive u′

x

and mark the location of high-speed streaks. Low-speed streaks appear to be stronger,
more pronounced (as shown by the steeper greyscale gradients) and arguably more
persistent at the hot wall. This is in agreement with the behaviour of the strain rate
shown in figure 7: near the hot wall strain is increased slightly yet enough to favour
streak formation, with an opposite behaviour near the cold wall. The persistence of
the streaks, defined by their extent in the wall-normal direction, is connected directly
to the local shear rate and to the turbulent dissipation rate. In § 3.4, we provide a
criterion to quantify modification of streak persistence due to variable viscosity.

3.3.2. Sweeps, ejections and quadrant analysis
Quantitative information on sweeps and ejections are obtained through quadrant

analysis of the −〈u′
xu

′
z〉 component of the Reynolds stress tensor (Willmarth & Lu

1972). Results are shown in figure 9, where lines and symbols refer to Reynolds stress
contributions in the hot subchannel and in the cold subchannel, respectively. Here we
are specially interested in quadrants II (u′

x < 0, u′
z > 0) and IV (u′

x > 0, u′
z < 0), since

quadrants I (u′
x > 0, u′

z > 0) and III (u′
x < 0, u′

z < 0) correspond to isolated events with
low occurrence frequency. In the near wall region, sweep events predominate over
the ejection events. Far from the wall the situation reverses, and there is dominance
of ejection. The scenario just described is observed also in the simulations at higher
Reτ and is qualitatively similar to that observed in constant-viscosity flows (Willmarth
& Lu 1972). The cross-over point from ‘sweep dominance’ to ‘ejection dominance’
occurs at z+ ≃ 14 for the constant-viscosity simulations, this location changing only
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FIGURE 8. Velocity streaks in the near-wall region of the channel for flow with temperature-
dependent viscosity at Reτ = 110 (simulation S1.3): (a) cold wall; (b) hot wall. Velocity
contours are taken on a wall-parallel plane located at z+ = 5 from the wall.

slightly with the Reynolds number. With temperature-dependent viscosity, the cross-
over changes significantly: at Reτ = 110, the cross-over occurs at z+ ≃ 12 near the
hot wall and at z+ ≃ 18 near the cold wall. A larger region of ejection dominance
corresponds to lower shear stress generated near the hot wall, the opposite holding
near the cold wall, where the stress is generated by stronger (albeit less frequent)
sweeps impinging on the wall. This result provides a mechanistic explanation for the
shear stress behaviour shown in figure 7.

Strong sweeps/ejections are quasi-periodic events with a characteristic frequency, its
inverse corresponding to the time elapsed between subsequent events, indicated here
as t+elaps. In our constant-viscosity simulations we compute t+elaps ≃ 80 at Reτ = 300

(simulation S4.1) and t+elaps ≃ 120 at Reτ = 110 (simulation S1.1), in agreement
with the fact that bursting activity is expected to increase with the flow Reynolds
number (see Luchik & Tiederman 1987). To benchmark against these values, we also
computed t+elaps in the simulations with temperature-dependent viscosity. Computations
were made recording the mean time span between two consecutive sweeps or two
consecutive ejections at both walls, over the sampling period 1t+ ≃ 2200. Such
sampling period was estimated a priori to be long enough to cover at least 10
characteristic times t+elaps, and allowed us to post-process more than 100 instantaneous
realizations of the flow field. Following previous works (Lombardi, De Angelis &
Banerjee 1996; Marchioli & Soldati 2002), we focused on strongly coherent events
occurring in the fluid layer between the wall and the plane at z+ ≃ 18, where the
inversion from sweeps-dominance to ejections-dominance is recorded near the cold
wall at Reτ = 110. Results are shown in figure 10 in the form of probability density
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FIGURE 10. Probability density functions of strongly coherent sweep/ejection events versus
the mean time between consecutive events, t+elaps. Results refer to simulation S1.1 for the

constant-viscosity case (−•−) and to simulation S1.3 for the temperature-dependent viscosity
case (−N−, hot wall; −�−, cold wall).

function (p.d.f.). It is observed that bursts become more frequent at the cold wall and
less frequent at the hot wall, confirming that turbulence increases locally in regions
of higher fluid viscosity. This finding is consistent with the statistical results discussed
in the previous sections. Examining further the shape of the different curves, it can
be noticed that the variance of t+elaps increases and the p.d.f. spreads more around the
most probable value when viscosity is allowed to change with temperature. This is
particularly evident near the hot wall where tails of the probability distribution become
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(b)(a)

FIGURE 11. (Colour online) Near-wall vortices in turbulent channel flow with variable
viscosity. The reference simulation for visualizations is simulation S1.3 (Reτ = 110).
Vortices are rendered as isosurfaces of the absolute value of the streamline rotation vector:
‖Ω‖/‖Ωmax‖ = 0.16. The values of Ωmax in the cold/hot side of the channel were used to
normalize ‖Ω‖. (a) cold side; (b) hot side. Isosurfaces of the near-wall fluid temperature are
also plotted (((T∗ − T∗

ref )/1T∗) ± 0.45).

remarkably broad, indicating that the spectrum of bursting frequencies is sampled
more homogeneously.

3.3.3. Near-wall vortical structures
The vortical structures that can be identified in our channel flow are shown in

figure 11, superposed to isosurfaces of the near-wall fluid temperature. Vortices are
visualized using the streamline rotation vector Ω (Perry & Chong 1987), which is
particularly suited for regions of the flow with high shear rate (Pan & Banerjee 1995).
In vector form:

Ω = −λi

ea

|ea|

ea · (r × c)

|ea · (r × c)|
, (3.7)

with λi the imaginary part of the complex eigenvalues of the velocity gradient tensor, r
and c are real and imaginary part of the conjugate complex eigenvectors corresponding
to the complex eigenvalues and ea eigenvector corresponding to the real eigenvalue.

The prominent structures in figure 11 are quasi-streamwise vortices confined within
∼100 wall units of the boundary. Their streamwise length varies up to ∼400 shear-
based units, in agreement with previous findings for channel flow with constant fluid
viscosity (Bernard, Thomas & Handler 1993). Observing figure 11, we notice that
vortical structures are larger near the cold wall, which is also more densely populated.
In this region turbulence levels are lower and spots of incoherent turbulence are
attenuated, confirming that turbulent activity is higher in the cold side of the channel
where stronger and more frequent bursting phenomena occur (see figure 10). The
behaviour of the thermal structures is essentially the same, due to the analogy existing
among transport of momentum and heat.

3.4. Influence of variable viscosity on TKE balance

In this section, we examine the TKE balance. We consider the following transport
equation of the ensemble-averaged TKE, 〈k〉 = 1

2
〈u′

iu
′
i〉, to analyse the Reynolds stress
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transport processes that take place within the flow:

D〈k〉

Dt
= −〈u′

iu
′
j〉

∂〈ui〉

∂xj
︸ ︷︷ ︸

Pk

−
1

ρ

∂〈p′u′
i〉

∂xi
︸ ︷︷ ︸

Πk

+
1

ρ

〈

p′ ∂u′
i

∂xi

〉

︸ ︷︷ ︸

Φk

× −
1

2

∂〈u′
iu

′
iu

′
j〉

∂xj
︸ ︷︷ ︸

Tk

+
1

2

∂

∂xj

[

ν(z)
∂〈u′

iu
′
i〉

∂xj

]

︸ ︷︷ ︸

Dk

− ν(z)

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉

︸ ︷︷ ︸

ǫk

. (3.8)

Terms on the right-hand side of (3.8) represent the rate of TKE production by mean
flow (Pk), pressure diffusion (Πk), pressure–strain correlation (Φk), turbulent diffusion
(Tk), viscous diffusion (Dk) and viscous dissipation rate (ǫk). Note that the expression
used for Dk and ǫk in (3.8) refers to the condition of variable fluid viscosity. The
material rate of change of 〈k〉 on the left-hand side of (3.8) is zero since the flow is
statistically steady and homogeneous in the streamwise and spanwise directions, with
the mean pressure gradient driving the flow being imposed in the streamwise direction
(Soldati & Banerjee 1998). Also, Φk = 0 from continuity.

Profiles of all non-zero terms included in (3.8) are shown in figure 12. All terms
are normalized by (u∗

τ )
4 /ν∗

ref . For validation purposes, in figure 12(a) we compare
our constant-viscosity results (symbols) to those previously published by Iwamoto
et al. (2002) for the same Reτ (solid lines). In this case, Dk = 1/2ν∂2〈u′

iu
′
i〉/∂xj∂xj

and ǫk = −ν〈∂u′
i/∂xj ∂u′

i/∂xj〉. Figure 12(a) highlights some known features of TKE
redistribution in channel flow when the viscosity of the fluid does not change with
temperature. Energy for the velocity field is supplied to the fluid by the action
of the mean flow through production Pk. This energy can be either dissipated
directly by molecular viscosity (ǫk) or converted into turbulent velocity fluctuations
(Dk). Energy is received entirely by the streamwise component and is transferred
to the other components: mean flow energy derived from the imposed pressure
gradient is convected to the wall by turbulence and once in the near-wall region,
production increases due to the presence of large mean velocity gradients (i.e. large
∂〈u+

x 〉/∂z+). Outside the buffer layer, dissipation is balanced by production in the
region 40 < ‖z+ −zwall‖ < 100, and by turbulent transport in the region 100 < z+ < 120.

To analyse possible changes in TKE redistribution with variable viscosity, we
examine figure 12(b). Particular emphasis is put on production and dissipation, which
are the terms most affected by viscosity variations: for ease of comparison, the
constant-viscosity profiles of Pk and ǫk are plotted again using the same symbols
as in figure 12(a). The main conclusion that can be drawn from figure 12(b) is that
peak production of TKE decreases near the hot wall and increases near the cold wall.
This is in agreement with the finding that turbulence is damped at the hot wall and
promoted at the cold wall (see also figure 4). In the hot side of the channel, dissipation
decreases outside the viscous sublayer but increases right at the wall where ǫk is
maximum. This is a direct consequence of the high-velocity fluctuation gradients in
this region (ǫk is proportional to such gradients by definition). In the cold side of the
channel, the behaviour is opposite: dissipation increases outside the viscous sublayer
and decreases sharply at the wall. Two local peaks of dissipation (relative maxima)
occur at roughly 5 and 15 wall units from the cold wall. Near the cold wall, the
dissipation profile develops one additional inflection point, and in turn an additional
inversion of slope, not observed near the hot wall. Such behaviour is common to all
simulations with variable viscosity and can be ascribed to the sharper rate of change
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FIGURE 12. Budget of TKE: (a) simulation S1.1; (b) simulation S1.3. In (a) lines represent
reference data from validation database of Iwamoto et al. (2002); symbols represent present
calculations.

of viscosity near the cold wall. As for the other budget terms, only viscous diffusion
shows non-negligible changes: Dk increases at the hot wall whereas a decrease of Dk

associated with an inflection point is observed at the cold wall.
The present findings put the statistical description of the turbulent flow field

and the phenomenological causal dynamics of the coherent structures given in the
previous sections on a firmer ground. They explain, for instance, the behaviour of the
wall-normal component of the skewness factor 〈S(u′

z)〉, which increases (respectively
decreases) near the hot wall (respectively cold wall), as shown in figure 6(b), and thus
may be used to analyse further the streaky structures near the walls. As mentioned,
the ratio between production and dissipation defines the so-called ‘local’ shear rate

S̃ = Pk/ǫk, a non-dimensional parameter which bears useful information about the
conditions under which streaks strengthen or weaken (Lam & Banerjee 1992). The

critical condition to ensure streak formation is S̃ > 1: as S̃ gets larger, streaks become

more evident and persistent. The wall-normal evolution of S̃ in our simulations is
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FIGURE 13. Wall-normal profiles of non-dimensional shear rate S̃.

given in figure 13. In the constant-viscosity simulation (S1.1, dashed line), S̃ is equal
to zero at the wall, reaches a peak value of ∼1.92 in the near-wall region and
then vanishes in the centre of the channel. In the variable-viscosity simulation (S1.3,

solid line), the qualitative behaviour is the same except that S̃ increases (respectively
decreases) in the fluid slab comprised between the hot wall (respectively cold wall)

and the closest location at which the peak value S̃ ≃ 1.85 (respectively S̃ ≃ 1.77)

occurs. Note that the thickness of the region where S̃ > 1 near the cold wall is

larger than near the hot wall. In the centre of the channel, where S̃ < 1, a change

of viscosity makes S̃ decrease toward the hot side and increase toward the cold

side. These modifications of S̃ are functional to explain the behaviour of the streaky
structures shown in figure 8, where streaks become less evident in the regions where
production reduces relative to dissipation. Another way to consider the significance of

S̃ is to notice that it provides a measure of the degree of anisotropy of the turbulent
motions combined to a measure of the rate of deformation of the fluid imposed by

the mean shear rate. The critical condition for S̃ thus means that streaks can become
more persistent if the mean deformation is sufficiently rapid compared with turbulent
fluctuations and/or significant shear component of the turbulent stresses exist (Lam &
Banerjee 1992). This is roughly what we observe at the hot wall, and exactly the
opposite of what we observe at the cold wall.

4. Conclusions and future developments

Convective heat transfer in turbulent shear flows is characterized by complex
macroscopic phenomena that are rich in physics yet difficult to model and/or
to reproduce. Complexity becomes particularly clear in situations where the
thermophysical properties of the fluid depend strongly on temperature. This is the case
of water-based convective heat transfer equipments, in which the occurrence of large
temperature gradients produces significant variations of density, dynamic viscosity and
thermal conductivity. In this paper, we focus on the effects produced by temperature-
dependent fluid viscosity, isolated from gravity, on the flow field in turbulent forced
convection. To study these effects, which are relevant for aerospace applications,



170 F. Zonta, C. Marchioli and A. Soldati

we performed numerical experiments based on an extensive campaign of direct
simulations of convective heat transfer in turbulent channel flow with temperature-
dependent viscosity. Simulations were run at Reynolds numbers Reτ = 110, 150, 180
and 300 and Prandtl number Pr = 3. Comparison against companion constant-viscosity
simulations is made for the case of constant-temperature boundary conditions. The
temperatures at the hot wall, T∗

H , and at the cold wall, T∗
C, were varied to generate

temperature differences between walls (T∗
H − T∗

C = 40 and 60 K) while maintaining a
constant average temperature, (T∗

H + T∗
C)/2. Having neglected gravity, we have been

able to emphasize the non-trivial behaviour due to variable viscosity and the way it is
modulated by a change in Reτ . The effects we observe in zero-gravity conditions fade
out as Reτ increases: for low Reynolds numbers, however, the same effects are found
in Earth gravity conditions, e.g. in stable stratification problems (Zonta 2010; Zonta
et al. 2012).

When compared against with constant-viscosity simulations, the statistical moments
for the fluid velocity obtained with temperature-dependent viscosity exhibit significant
differences throughout the entire channel, particularly in the near-wall regions.
Counterintuitively, we find that turbulence is promoted in the cold side of the channel,
where viscosity is higher; turbulence is damped in the hot side of the channel, where
viscosity is lower. The increase of viscosity near the cold wall, in particular, enhances
TKE, while reducing the mean velocity gradient. An opposite behaviour is observed at
the hot wall, where viscosity attains lower-than-mean values and turbulence is damped
due to higher viscous dissipation. In addition fluctuations at the hot wall become more
intermittent, a situation that is encountered also outside the buffer region within the
cold side of the channel. We have justified these observations with scaling arguments
based on local viscosity effects on the inertial and viscous forces of the flow. We
have also provided qualitative explanation of the observed statistical behaviour based
on examination of the instantaneous flow structures in the near-wall region. We find
that streak characteristics, spacing and length, change between the hot wall and the
cold wall. Also, bursting frequencies are altered: compared with the constant-viscosity
case, the time between two subsequent sweep/ejection events increases at the hot
wall and decreases at the cold wall. The cross-over point from sweeps dominance
to ejections dominance in the hot side (respectively cold side) of the channel shifts
to reduce (respectively expand) the sweep-dominated region near the wall, all of this
leading to drag reduction (respectively increase) and to different density in the spatial
distribution of the quasi-streamwise vortices, which appear larger and more frequent
near the cold wall than near the hot wall. This behaviour is common to all cases with
temperature-dependent viscosity covered by the present study.

We have also examined the TKE budgets, to investigate the mechanisms of
turbulence production, dissipation and transport in the presence of anisotropic
fluid viscosity. Our findings indicate that the macroscopic flow behaviour and the
microscopic features of the turbulent field can be explained by modifications of the
turbulence production and dissipation mechanisms near the two walls. Moving from
the central region of the channel toward the hot wall, both production and dissipation
decrease. Very close to the hot wall, the decrease of viscosity no longer affects
production but is high enough to increase dissipation with respect to the case of
constant viscosity. In the cold side of the channel, production and dissipation increase
reaching a maximum value a few viscous units from the wall. Moving further toward
the wall, the increase of viscosity reduces dissipation significantly compared with the
constant-viscosity case while leaving production practically unchanged. As a result, the
ratio between production and dissipation increases near the hot wall and decreases near
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the cold wall, where more favourable conditions for streak formation and persistence
are found.

Present findings apply to forced-convection turbulent heat transfer in the absence of
gravity (e.g. stratification) effects. Further step of this study will be the inclusion of
variable thermal conductivity and coefficient of thermal expansion, which at present
times have been investigated mostly for Rayleigh–Bénard convection problems (see,
for instance, Shishkina & Thess 2009; Stevens, Verzicco & Lohse 2010, and references
therein). Many questions concerning the effects produced by temperature-dependent
fluid properties on mixed convection in stratified shear flow remain open and demand
further analysis. We also believe that our study may provide information useful for
developing reliable two-phase mixture models for the prediction of turbulent forced
convection of nanofluids, in which the dependence of viscosity on both temperature
and nanoparticle volume concentration is explicitly taken into account (Behzadmehr,
Saffar-Avval & Galanis 2007). Finally, we remark that current results are obtained at
a constant pressure gradient. It is perhaps non-straightforward to derive conclusions on
experiments run at a constant flow rate, which deserve an independent investigation.
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Appendix. Description of the numerical methodology

The algorithm employed in this study is based on the following solution procedure.

A.1. Velocity field calculation

We solve for the following time-differenced Navier–Stokes equations obtained from
the Fourier transform of (2.3):

ûn+1
i − ûn

i

1t
=

3

2
Ŝn

i −
1

2
Ŝn−1

i +
1

Reτ

∂2

∂xj∂xj

(
ûn+1

i + ûn
i

2

)

−
∂

∂xi

(
p̂n+1 + p̂n

2
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, (A 1)

where Si = −uj(∂ui/∂xj)+ δi,1 + (1/Reτ )(∂/∂xj)(µv∂ui/∂xj) and superscript n represents
the time step. Note that an implicit Crank–Nicolson scheme is used for the uniform
part of the viscous terms, while an explicit Adams–Bashforth scheme is used for both
the non-uniform part of the viscous terms and the nonlinear terms Si. Taking the
curl of (A 1) and dropping superscript n + 1 for the unknown variables, the following
second-order differential equation for the wall-normal component of vorticity, ω̂z, is
obtained

(
∂2

∂z2
−

1 + γ 2

γ

)

ω̂z = −
1

γ

(

ikxĤy − ikyĤx

)

, (A 2)

where γ = 1t/2Reτ , kx and ky are the Fourier wavenumbers, and terms Ĥi group all
working variables evaluated at time steps n and n − 1. Taking twice the curl of (A 1),
the wall-normal velocity component can be obtained from the following fourth-order
equation:

(
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∂z2
−

1 + γ 2

γ

)(
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− k2

)

ûz =
Ĥ

γ
, (A 3)
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where Ĥ = k2Ĥz + ∂(ikxĤx + ikyĤy)/∂z and k2 = k2
x + k2

y . Equations (A 2) and (A 3) are

of Helmholtz type and are solved using a Chebyshev–Tau method. Once ω̂z and ûz are
available, ûx and ûy can be obtained from the definition of wall-normal vorticity:

−ikyûx + ikxûy = ω̂z, (A 4)

and from the discretized form of the continuity equation:

ikxûx + ikyûy = −
∂ ûz

∂z
. (A 5)

Such a procedure ensures mass conservation at each time step. Dirichlet boundary
conditions are applied in the solution procedure to satisfy the no-slip restriction at the
walls. The numerical implementation is based on that of Lam & Banerjee (1992).

A.2. Temperature field calculation

The time-differenced energy equation (2.4) reads as

T̂n+1
i − T̂n

i
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3

2
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2
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T +
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PrReτ
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i

2

)

, (A 6)

where ST = −uj(∂T/∂xj). Upon transforming (A 6) in the wavenumber space,

temperature T̂ can be obtained from the following differential equation:

(
∂2

∂z2
−

1 + γ 2
T

γT

)

T̂ = −
ĤT

γT

, (A 7)

where γT = 1t/(2Pr ·Reτ ) and ĤT = [γT∂2/∂z2 + (1 − γTk2)]T̂n + 1T(3Ŝn
T/2 − Ŝn−1

T /2).
Equation (A 7) is solved with the Chebyshev–Tau method to update the temperature
field. Dirichlet boundary conditions are applied to impose wall temperature, mimicking
the situation in which heat is supplied from a source (the hot wall) and released to a
sink (the cold wall).

A.3. Viscosity field update

Once T̂n+1 is available, viscosity is updated to its new value through (2.5). Finally, all
working variables are initialized for calculation of the next time step and the algorithm
loops back to § A.1.
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