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Abstract
We propose the use of modulation spectrogram features in spea-
ker diarization. These features carry longer term characteristics
of the acoustic signals than the widely used MFCCs, thus pro-
viding potential improvement by using both features in combi-
nation. Using the state-of-the-art ICSI speaker diarization sys-
tem, an improvement of 20.77% relative DER is obtained on the
NIST Rich Transcription 2007 task with respect to the MFCC
only system.
Index Terms: modulation spectrogram, speaker diarization

1. Introduction
A small set of standard features, such as MFCC or PLP, in dif-
ferent dimensionalities tends to be used for almost any speech
related task. In speaker diarization, the task is to segment audio
into speaker-homogeneous regions with the goal of answering
the question “Who spoke when?”. Current systems usually rely
on the combination of Gaussian Mixture Models (GMMs) of
frame-based cepstral features (MFCCs) [1].

In the following article, we show that despite the dominance
of short-term cepstral features in speaker recognition, a range
of longer term features can provide significant information for
speaker discriminability. As suggested in [2], looking at pat-
terns derived from a larger segment of speech can reveal indi-
vidual characteristics of the speakers’ voices as well as their
speaking behavior, which cannot be captured by frame-based
short-term cepstral analysis.

The modulation spectrogram (hereafter referred to as MSG)
was first introduced by Kingsburey et al. [3]. These features
were proposed to improve speech recognition in reverberant au-
dio conditions. However, other authors [4] have noticed that
these features also carry speaker specific information. In the
task of speaker diarization we show that, due to the different
characteristics that both MFCC and MSG features extract from
the spectrogram, the features can help solving the diarization
task.

We use the combination of these features to achieve a 21 %
relative improvement of the Diarization Error Rate (DER). The
results were measured on both the NIST RT06 and RT07 test
and evaluation datasets and are compared to the top performing
system as of the NIST RT evaluation in 2007.

The article is structured as follows. Section 2 surveys re-
lated work in speaker diarization and the use of alternative fea-
tures, i.e. non short-term cepstral features, in speaker recog-
nition. Section 3 describes the MSG features and its potential
application to Speaker Diarization. Section 4 presents our base-
line, namely the ICSI speaker diarization system. Section 5
discusses the actual integration of the features into the ICSI
speaker diarization system and presents the experimental results
on different NIST benchmarks. Section 6 summarizes the arti-
cle and presents future work.

Figure 1: A diagram showing the process of MSG extraction.
After computing the spectrogram, a window of 21 frames is
used. For each of the 18 frequency bands, the signal is filtered
using a low-pass and a band-pass filter, and two values for each
band is obtained (to sum a total number of features of 36). Dia-
gram modified from [4].

2. Related work

Most state-of-the-art speaker diarization systems, including the
ICSI Speaker Diarization engine, use a one stage approach, i.e.
the combination of agglomerative clustering with Bayesian In-
formation Criterion (BIC) [5] and Gaussian Mixture Models
(GMMs) of frame-based cepstral features (MFCCs) [1] (see Sec-
tion 4). While many different machine-learning strategies have
been explored around this basic idea, exploration of features
for use in this approach has been limited to varying the dimen-
sionality of the cepstral features. [6] proposed a framework for
combining MFCC features with PLP. In [7], the authors intro-
duce the use of delay features —that is, the delay between sig-
nals between different microphones in an array— to improve
the DER. These kinds of features can only be extracted in the
multiple distant microphone (MDM) condition, where several
far-field signals are available. However, this paper concentrates
on improving the single distant microphone (SDM) case using
acoustic features only. The use of MSG features has been ex-
plored in the related task of speaker identification, where these
features have been used in isolation and together with MFCCs
to model speakers [4].
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Figure 2: A diagram illustrating the baseline ICSI Speaker Di-
arization Engine which is described in Section 4. The audio
signal, given as cepstral features (MFCC) undergoes a two stage
process: Speech/Non-Speech filtering, and one-step segmenta-
tion and clustering.

3. The modulation spectrogram
The modulation spectrogram provides an alternative and com-
plementary representation of the speech signal with a focus on
temporal structure. Developed by Kingsbury et al. and detailed
in [3], the modulation spectrogram represents a filtered version
of the spectrogram of a speech signal. The spectrogram of the
signal is computed using an FFT with step size of 10 ms and an
analysis window of 25 ms. In contrast to MFCC features, where
for each frame the DCT coefficients of the Mel log-FFT ampli-
tudes are computed, the MSG analyzes the spectrogram using
18 bands from 0 to 8 KHz, filtering the resulting 18 temporal
signals with two different filters: a 0-8 Hz filter and an 8-16 Hz
filter. For each frame, the MSG features capture the low-pass
and band-pass behavior of the spectrogram of the signal within
each of the 18 subbands, resulting in a total of 36 features per
frame.

As we stated, in contrast to MFCCs, the modulation spec-
trogram provides information about longer temporal phenom-
ena as it uses 0.21 seconds of analysis to extract the features.
Thus, we expect that, jointly with MFCCs, this representation
of the spectrum of the signal will be richer and perform better
in the task of speaker diarization.

4. Baseline ICSI speaker diarization engine
As explained in Section 1, the goal of speaker diarization is
to segment audio into speaker-homogeneous regions with the
ultimate goal of answering the question “Who spoke when?”
[1]. In contrast to speaker recognition or identification, speaker
diarization attempts to use no prior knowledge. This means,
usually, no specific speaker models are trained for the speakers
that are to be identified in the recording. A speaker diarization
system conceptually performs three tasks: First, discriminate
between speech and non-speech regions, second, detect speaker
changes to segment the audio data, third, group the segmented
regions together into speaker-homogeneous clusters. Some sys-
tems unify the two last steps into a single one, i.e. segmentation
and clustering is performed in one step. Over the years, many
different algorithms have been developed in the speech commu-
nity. A summary can be found in [8].

The speaker diarization engine developed at ICSI uses an
agglomerative clustering approach to perform both the segmen-
tation of the audio track into speaker-homogeneous time seg-
ments and the grouping of these segments into speaker-homo-
geneous clusters in one step.

Figure 3: The agglomerative clustering approach of the ICSI
Speaker Diarization Engine as explained in Section 4. Retrain-
ing and re-segmentation ends when no more models can be
merged as of the BIC score. At the end, the number of clus-
ters is hoped to be equal to the number of speakers.

A speech/non-speech detector is used to filter out regions
that do not contain speech. This is usually either done using
threshold-based heuristics (for example, using a pitch detec-
tor and only considering voiced-regions of the speech) or using
a trained approach (for example by training Gaussian Mixture
Models on speech and noise, respectively).

The audio track is usually processed as 19th-order MFCC
features using a frame size of 10 ms. The non-speech regions
are excluded from the agglomerative clustering. Figure 2 illus-
trates the big picture of the algorithm.

The algorithm is initialized using a much higher number
of clusters than speakers assumed in the audio track. Let this
number be k. An initial segmentation is generated by uniformly
partitioning the audio track into k segments of the same length.
Using the initial segmentation, k Gaussian Mixture Models are
trained. As classifications based on 10 ms frames are very noisy,
a minimum duration of 2.5 seconds is assumed for each speech
segment, and then Viterbi alignment is performed. The algo-
rithm then performs the following loop:

• Re-Segmentation: Run the Viterbi alignment to find the
optimal path of frames and models, with a minimum du-
ration of 2.5 seconds.

• Re-Training: Given the new segmentation of the audio
track, compute new Gaussian Mixture Models for each
of them.

• Cluster Merging: Given the new Gaussian Mixture Mod-
els, try to find the two models that most likely repre-
sent the same speaker. This is done by computing the
BIC score (Bayesian Information Criterion) of each of
the models and the BIC score of a new GMM trained
on the merged segments for two clusters. If the BIC
score of the merged Gaussian Mixture Model is smaller
than or equal to the sum of the individual BIC scores,
the two models are merged and the algorithm loops at
the re-segmentation using the merged Gaussian Mixture
Model. If no pair is found, the algorithm stops.

Figure 3 illustrates the steps of the algorithm. A more detailed
description can be found in [9, 10, 11].

The output consists of meta-data describing speech seg-
ments in terms of starting time, ending time, and speaker cluster
name. This output is usually evaluated against manually anno-
tated ground truth segments. A dynamic programming proce-
dure is used to find the optimal one-to-one mapping between
the hypothesis and the ground truth segments so that the total
overlap between the reference speaker and the corresponding
mapped hypothesized speaker cluster is maximized. The differ-
ence is expressed as Diarization Error Rate which is defined by
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NIST1. The Diarization Error Rate (DER) can be decomposed
into three components: misses (speaker in reference, but not in
hypothesis), false alarms (speaker in hypothesis, but not in ref-
erence), and speaker-errors (mapped reference is not the same
as hypothesized speaker).

The ICSI speaker diarization system has competed in the
NIST evaluations of the past several years and established itself
well among state-of-the-art systems2.

The current official score is 21.74 % DER for the single-
microphone case (RT07 evaluation set). This error can be de-
composed in 6.8 % speech/non speech error and 14.9 % speaker
clustering error. The speaker error includes all incorrectly clas-
sified segments, including overlapped speech and very short
segments.

5. Integration into the ICSI diarization
system and experimental results

In this section, we describe several techniques using the MSG
features on the ICSI Speaker Diarization system, as well as an
extensive error analysis on where and why the MSG features
helped in diarization.

The test setup is as follows: MSG features are extracted ev-
ery 10 ms. We extract 18 subbands of the spectrum and use two
filters (0-8Hz and 8-16Hz) to perform the modulation of each
band. Thus, the dimensionality per frame is 36. In all our ex-
periments the speech/non-speech detection was the same as in
the RT07 submission. The segmenter performs iterative train-
ing and re-segmentation of the audio into three classes: speech,
silence, and audible nonspeech. To bootstrap the process, an
initial segmentation is created with an HMM trained on broad-
cast news data. A detailed description can be found in [11].

To perform an analysis of the performance and improve-
ment of the MSG features, all the following experiments were
performed on the NIST Rich Transcription 07 meeting data (for
the single distant microphone condition). It contains eight meet-
ings recorded in several geographic locations with differing num-
bers of people (this set is named hereafter as Eval07). Even
though the diarization task is unsupervised, there are some pa-
rameters like the amount of gaussians to start with or the weight
for several feature stream that should be learned. Another set of
21 meetings, based on NIST meeting data of previous years, is
used for parameter selection (named hereafter as Dev07).

The approach we propose for combining several features is
similar to the one in [7]. In particular, the diarization engine
performs a maximization of an objective function based on the
likelihood of the observed data given the model (in our case, the
model is an ergodic HMM). We can then define the combined
likelihood for the emission probabilities as:

p(xMFCC , xMSG|θi) =

= p(xMFCC |θi1)p(xMSG|θi2)
α

where θi1 represent the parameters of cluster i using the MFCC
observed data and θi2 represents the parameters using the MSG
features. The model we use for the emission probabilities are
GMMs where the number of components varies for each fea-
ture stream. Note that there is an assumption of independence
between the two set of features. Finally, as we observed that
MFCC features tend to perform better than MSG features, we

1http://nist.gov/speech/tests/rt/rt2004/fall
2Unfortunately, we are not allowed to present any rank-

ing. Please refer to the NIST website for further information:
http://www.nist.gov/speech/tests/rt/rt2007/

Features used DER Dev07 DER Eval07
MFCC 17.57 21.74
MFCC + MSG 13.26 17.28

Table 1: DER on the Dev07 and Eval07 using ICSI diarization
with MFCC and MFCC+MSG.

used the α parameter to modify the confidence given to each
feature stream. As α is decreased, the likelihoods of the MSG
features given each class become more similar in values (the ex-
treme case where α = 0 maps all the likelihoods to 1). Hence,
the effect of this parameter is to give different confidence value
to each feature stream.

The Dev07 set of meetings is used to find the optimal value
of α. The initial number of gaussians of the MSG features is
set to 1. The rest of the parameters of the system are the same
as the ones used in the RT07 evaluation (16 initial clusters and
5 gaussians per cluster for the MFCC feature vector). Table 1
shows the results on the development set with the optimal value
of α = 0.1. The use of the MSG features resulted in a 24.53 %
relative improvement of the DER on the Dev07 and 20.77 %
on the Eval07 set. The results are compared to the system that
competed in the 2007 NIST RT evaluations.

5.1. Further analysis

Figure 4 shows the DER evolution per each algorithm stage of
the baseline system vs. our combined approach. As can be seen,
the MSG features contribute especially in the last stages of the
agglomerative clustering approach. Since the α value found us-
ing the development set was low, the effect of the MSG features
on the first iterations will be unnoticed by the algorithm: the
MFCCs alone are able to refine the segments and merge clus-
ters that belong to the same speaker.

As the clusters are merged, the average length increase and
thus the long-term dependencies that the MSG features extract
are more robust. Moreover, in the last stages of the algorithm
the clusters are more pure (each cluster contains speech from
only one person), and, as a consequence, the discriminative
power that the MSG features have is amplified by the fact that
the clusters represent speech from mostly one person. If we
observe the tail of Figure 4, it is clear that the information pro-
vided by the MSG features is quite useful in the last stages,
where otherwise the MFCCs were not able to correct some er-
rors, and thus providing the 24.53 % final relative improvement
on the Dev07 set.

6. Conclusions and future work
In this paper we presented the use of the modulation spectro-
gram as an additional stream of features to improve speaker di-
ariziation. In combination with the commonly used MFCCs, we
observed a significant improvement of our system with respect
to the official submission on the last NIST RT 2007 evaluation
task. This result was also verified on a larger set of meetings,
which we call Dev07, which contains 21 meetings from previ-
ous evaluations. Error analysis is performed to confirm where
and why the usage of this complementary features, which cap-
ture longer term dependencies than MFCCs, affect our current
system.

In the future, we would like to explore other methods to
combine the features. In particular, it seems reasonable to set
the α value dynamically per iteration instead of statically as it
is now: as seen in the error analysis, it is in the later stages of the
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Figure 4: The average DER per iteration of the ICSI diarization engine across the Dev07 meetings. There are 16 clusters and so the
potential number of cluster merging is 15. The asterisk denotes a merging of two clusters while other iterations are re-alignment of the
models and the data.

agglomerative clustering approach that the MSG features help
most, and so setting the weight higher might provide in further
improvement.
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