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With the increase of communication frequency, terahertz (THz) communication technology has been an important research
	eld; particularly the terahertz modulator is becoming one of the core devices in THz communication system. 
e modulation
performance of a THz communication system depends on the characterization of THz modulator. THz modulators based on
di�erent principles and materials have been studied and developed. However, they are still on the way to practical application
due to low modulation speed, narrow bandwidth, and insu�cient modulation depth. 
erefore, we review the research progress
of THz modulator in recent years and evaluate devices critically and comprehensively. We focus on the working principles such
as electric, optical, optoelectrical, thermal, magnetic, programmable metamaterials and nonlinear modulation methods for THz
wave with semiconductors, metamaterials, and 2D materials (such as graphene, molybdenum disul	de, and tungsten disul	de).
Furthermore, we propose a guiding rule to select appropriate materials and modulation methods for speci	c applications in THz
communication.

1. Introduction


e terahertz (THz) wave is 	rstly used to describe the
spectral line frequency coverage of Michelson interferometer
by Fleming in 1974 [1]. It is referred to as the “THz gap”
in the electromagnetic spectrum until the mid-1980s [2, 3]
due to the lack of e�ective methods for generating and
detecting THz radiation. With development of femtosecond
laser, the technology of THz wave generation and detection
has been improved [4]. Generally, THz wave is referred to as
the frequency range from 0.1THz to 10THz (corresponding
to wavelengths between 30 �m and 3 mm), which is the
	eld of the transition from electronics to photonics [5,
6]. THz wave position in the electromagnetic spectrum is
shown in Figure 1. THz wave occupies a crucial frequency
range, because it usually carries vital physical information [7]
which can be used in cutting-edge technologies [8, 9] such
as wireless high-speed communications [10, 11], biomedical
diagnostics [12–14], security imaging [15, 16], signal detection
[17], and product quality control [18, 19]. However, the

existing optical and microwave theories are unsuitable for
THz wave perfectly [8].

In particular, THz wave is responsible for communi-
cations to achieve 10 Gbps wireless transmission speeds
that are 100 to 1000 times faster than the current ultra-
wideband (UWB) technologies. Naturally, THz band as
unoccupied spectrum resources is new choice for com-
munication. THz communication has the merits which
combined that of microwave communication and optical
communication [20–22]. (1)
e frequency of THz wave is
1∼4 orders higher than microwave communication, which
exhibits a larger communication capacity. (2) 
e narrow
beam and good directivity of THz wave lead to strong anti-
interference ability and high security. (3) THz wavelength
is relatively short. 
erefore, the size of antenna is small,
which makes THz communication system relatively simple
and compact. THz communication has maybe grown up
as next generation communication technology [23–26]. To
clarify the di�erences among THz wave, microwave, and
visible-infrared light in communication, the comparison of
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Figure 1: THz wave position in the electromagnetic spectrum.

Table 1: 
e comparison of di�erent carrier communication characteristics.

Carrier
Microwave THz Optical

communication communication communication

Transmission mode Wireless networks Wireless networks Wired networks

Transmission distance Long range Visual range Ultra-long range

Message capacity Mbit/s Between Gbit/s

Directionality Bad Between Fine

Security Low Low-radiation High photon energy

di�erent carrier communication characteristics is presented
in Table 1.

As seen from Table 1, it illustrates that THz wave tech-
nology is equivalently suitable for communication occasions
with various special requirements such as close-range secure
communication and space-based communication [27, 28].
In THz communication system, modulators play a key role.
Consequently, it has become a “hot” research 	eld. More and
more materials have been used to develop THz modulation
devices currently, such as photonic crystals, metamaterial
structures, phase change materials, high electron mobility
transistors (HEMTs) structures, and graphene.

A�er reviewing and comparing recently developed THz
modulators, we presented merits and drawbacks of di�erent
THz modulators. 
ese THz modulators were classi	ed by
various approaches such as electronic, optical, photoelec-
tric, thermal, magnetic modulation. 
e materials used in
modulators focus on semiconductors, two-dimensional (2D)
materials, and metamaterials. At last, the future development
direction and application of THz modulator was proposed.

2. THz Modulation Technique


e THz communication mainly depends on the THz mod-
ulation and demodulation technology, THz detection and
reception technology, and THz generation technology. 
e
rational use of modulators can e�ectively reduce the com-
plexity, cost, and geometry of THz systems. Consequently,
modulation technology is the focus of research in THz
communication technology. Signal modulation refers to a

process of using the modulation signal to control one ormore
parameters (amplitude, phase, etc.) of the carrier signal [29].
In recent years, various THz modulators based on di�erent
materials and structures [30–32] have been reported to
achieve large modulation depth, fast modulation speed, and
wide modulation bandwidth [33]. Figure 2 shows a diagram
of the elementary THz communication [9].

2.1. Optically Tuned THzModulator. 
e earliest THzmodu-
lator is based on hybrid multiquantum well structure, which
is optically tuned to realize THz modulation [34]. Optical
modulation o�en used a laser as the excitation light source.

e laser irradiates the substrate material to generate carriers
which can a�ect the conductivity of the material. 
e change
in conductivity changes the transmittance and re�ectivity of
the THz wave transmitting in the material, which realizes the
modulation of THz wave [35, 36].

2.1.1. Modulator Based on Semiconductor Materials andMeta-
materials. 
e semiconductor materials and metamaterials
can arti	cially control the electromagnetic waves by design-
ing the reasonable structure and size of unit cell [37]. In 2004,
Tanaka et al. used 2D metal hole arrays (2D-MHAs) as a
THz modulator [38]. Inspired by this work, many research
groups began to use laser to modulate the THz wave. In
THz wave region, the electric 	eld response mechanism of
conventional semiconductor materials can be explained by
the Drude model [39] which treats free carriers in semicon-
ductor materials as free electron gas. When laser irradiates
on semiconductor materials, free carriers may be generated
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Figure 2: Diagram of THz communication.

so long as the energy of the photon ℎ� is greater than the
bandgap of the semiconductor ��. 
e equivalent relative
dielectric constant is given as

���� (�) = 1 − �2��2 + �Γ� (1)


e plasma frequency is given as

�� = √ ��2�0
��� (2)

where Γ is related to the propagation loss; �� is the electron
plasma frequency;� is the electron density; � is the electron
charge;
��� is the e�ective mass of the electron.

For semiconductor materials at normal temperature,
microwave or THz wave transmitting in the material will be
strongly attenuated, and it cannot even propagate. For the
ultraviolet or higher band of � ≥ ��, materials are almost
“transparent.” To obtain an electric 	eld response in THz
wave, it is necessary to lower the electron plasma frequency�� of materials. From the expression of plasma frequency, it
is well known that the electron plasma frequency of materials
can be varied by changing the e�ective mass and density of
the electron. 
erefore, using a laser with an energy greater
than the forbidden bandwidth of materials can modulate the
THz wave.

A THz modulator by exciting free electrons in a hybrid
multiple-quantum-well structure was demonstrated by Libon

et al. 
e electron density could reach 1011 cm−2 in a periodic
quantum well structure. It realized a modulation depth of
40% in the range of 0.2-1 THz [34]. 
is was the 	rst
demonstration of optically tuned THz wave. In subsequent
following research, semiconductor materials commonly used
include high-resistance Si, high-resistance GaAs, and Si on
sapphire. Meanwhile, combined with some structural design,
such as photonic crystal, anisotropic medium, and surface
plasma array, modulator could achieve better modulation
e�ect. 
e modulator used in Li’s work was a high-resistance
Si wafer [40]. Unfortunately, the modulation speed was only
0.2 kHz, given that the lifetime of carriers in ultra-high-
resistivity Si wafer was long. On the contrary, the lifetime of
carriers in GaAs is short. Fekete et al. reported a method of
embedding a GaAs defect layer in alternately stacked SiO2
andMgOperiodic structures to constitute a one-dimensional

photonic crystal. 
e e�cient modulation of the THz beam
can be achieved even at low photocarrier concentrations by
exciting the front GaAs surface via ultrashort 810 nm laser
pulses [41].


eoretically, the modulation speed of the THz wave
can reach to GHz. 
e di�culty lies in the carrier lifetime
of the semiconductor substrate material. Usually, high laser
energy can also solve this problem. 
e pump laser dynam-
ically modi	es the plasma frequency of the localized surface
plasmon, rather than changing conductivity. In 2013, Deng
et al. experimentally demonstrated the modulation speed
of 1.2 GHz on InSb gratings fabricated on semi-insulating
GaAs substrate (Figure 3(1)). 
is provided more creative
possibilities for optical tuning in future THz devices [42].
Modulation e�ciency depends on the energy level of the
material, the crystal arrangement of the organic molecules,
and the transported carriers at the interface. Actually, the
active modulators can implement near-perfect modulation
e�ciency for THz communication applications [43]. Yoo et
al. used a hybrid dual-layer system consisting of molecu-
lar organic semiconductors and Si to implement optically
controlled active THz modulator (Figure 3(2)). 
e 98%
modulation e�ciency was achieved due to the rapid light-
induced electron transfer from Si to C60 layer, which is
almost fully modulated. At present, some studies have shown
that the deposition of organic 	lm on Si can also achieve
full modulation [45, 46]. Since nanomaterials have unique
physical properties, semiconductor nanostructures become a
research hotspot [47]. 
e modulator used in Shi’s work was
a Si nanotip (SiNT) array (Figure 3(3)). 
e nanotip could
be used as a THz wave antire�ection layer to achieve low
loss. 
is optically driven THz modulator with low loss and
high modulation depth has the potential to be used in THz
imaging [44].


e negative refractive index metamaterial is mainly
realized by lattice of thin wires and open resonant rings.

e unique electric 	eld response of lattice of thin wires can
achieve a negative dielectric constant; accordingly, the mag-
netic 	eld response of the open resonant rings can achieve
a negative magnetic permeability [48, 49]. Like the THz
metamaterial modulator reported by Padilla, the modulator
consists of a metal open resonant ring array structure on
a GaAs substrate. When laser is illustrated on the GaAs
substrate, photogenerated carriers a�ect opening capacitance
with varying laser power. 
us, the transmission intensity
of the THz wave would be modulated [50]. “Metasurfaces”
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Figure 3:Optically tunedTHzmodulator based on semiconductormaterials andmetamaterials. Panel (1). (a) SEM images of the fabricated InSb
grating. (b) Normalized THz signals as a function of delay time measured by OPTP under di�erent pump laser �uences and the exponential
curve 	ttings. Reproduced from [42]. Panel (2). (a) Schematic view of THzwave transmissionmeasurement for bilayer samples. (b) Dielectric
functions obtained from pentacene/Si thermally annealed at various temperatures. Reproduced from [43]. Panel (3). (a) Prototype and spatial
con	guration of the Si-nanotip-based spatial THz modulator. (b) THz transmission amplitude (le�) and the modulation depth (right) of
di�erent modulators as a function of the laser pumping power. Reproduced from [44].

are the two-dimensional version ofmetamaterials. Compared
to three-dimensional bulk metamaterials, the thickness of
the metasurfaces relative to the operating wavelength is
negligible. 
ey consume less physical space and have lower
insertion loss. Longqing Cong et al. demonstrated an active

hybrid metasurface integrated with patterned semiconductor
inclusions for all-optical active control of terahertzwaves [51].
It achieved ultrafast modulation of the polarization state. By
properly incorporating silicon islands into the metamaterial
unit cells, Xieyu Chen et al. presented a metasurface which
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Figure 4: Schematic diagram of energy band structure of graphene. (a) Band structure of graphene. (b) Fermi level is at Dirac point. (c) Fermi
level is in valence band. (d) Fermi level is in conduction band.

can be optically controlled with amodulation depth reaching
68% and 62% for horizontal and vertical polarizations [52]. It
opens up new avenues for the design of active metamaterials.

2.1.2. Modulator Based on 2D Materials. 2D materials have
unusual electrical and optical properties. In recent years, they
attracted increasing attention for applications in optoelec-
tronics. Graphene, the best-known 2D material, has been
widely used for THz modulators tuned by light since being
discovered in 2004 [53]. 
e carbon atom arrangement
of graphene determines its unique conical band structure.

e conductivity of graphene is contributed by the in-band
transition of electrons and the transition between bands.
In the THz range, the in-band transition of electrons plays
a decisive factor due to the photon energy being small.

erefore, we can approximate the thin layer conductivity of
graphene by the Drude model as [54]

� (�) = − ��� (� − �Γ) (3)

� is the Drude weight, and it is given as

� = V��2ℏ (4)

V� = ��ℏ√|�| (5)

where Γ contributed to the acoustic phonon scattering; V� is
the Fermi velocity; � is the carrier concentration.


us, the thin layer conductivity of graphene is closely
related to the Fermi level. In general, the concentration and
type of carriers can be dynamically modulated by changing
the Fermi level position of graphene. Figure 4(a) is the band
structure of grapheme [55, 56]. When the Fermi level is in
the conduction band, the main carrier is free electrons; when
the Fermi level is in the valence band, the main carrier is
a hole; when the Fermi level is at Dirac point, the carrier
concentration is at a minimum and the conductivity of
graphene is also very low.

Graphene has low insertion losses which is extremely
ideal for optical modulation. Zhang Xiang’s team 	rstly

demonstrated it. 
ey proposed an optical modulator by reg-
ulating the Fermi level of graphene [57]. 
e most graphene
modulators consist of graphene and semiconductor material
to formheterojunction. Laser beampenetrates Si to produce a
large number of carriers; meanwhile, photogenerated carriers
di�use into the graphene layer and change its conductivity,
which results in an amount of THz wave absorption by
graphene layer. 
e most classic work is light-modulating
graphene devices formed with graphene on Si (GOS) demon-
strated by Weis in 2012 (Figure 5(1)). 
is modulator was
pumped by a 780 nm femtosecond laser. 
e graphene layer
absorbed the modulated beam of approximately 2.3%. As
excited with wavelength of 750 nm and power of 40 mW
pumped laser, this modulator could realize the modulation
about 68%. 
e tunable THz bandwidth was in the range of
0.2-2 THz. When the optical pump energy reached 500 mW
(@750 nm), the transmission THz wave almost completely
disappeared [58]. By replacing Si with Ge, an optical modula-
tor of full modulation based on graphene was demonstrated
(Figure 5(3)). A laser with a wavelength of 1550 nm could be
used to pump e�ectively. 
e measurement results presented
that the modulation frequency range, modulation depth,
and modulation speed were 0.25-1 THz, 94%, and 200
kHz, respectively [59]. Although it achieved full modulation,
it required a high-power laser. With development of 2D
material fabrication, an e�cient THz modulator with low
power was demonstrated. It needs only an external 450 nm
continuous wave laser. It is mainly coated with a high-quality
monolayer graphene 	lmon a Si substrate.With external light
excitation, the proposedmodulator could reach amodulation
depth of 74%. Incidentally, its modulation depth can be
further improved [60].

Monolayer transition metal dichalcogenides (TMDs,
such as MoS2 and WS2) are direct-bandgap semiconductors
o�ering properties complementary to graphene [89]. A great
number of modulators based onmonolayer TMDs have been
reported. For example, a bidimensional material modulator
(Figure 5(4)) based on MoS2 and Si improved modulation
depth as high as 64.9% at 0.9 THz pumped with an 808 nm
laser. 
e modulation can be much higher a�er annealing
MoS2. Under a larger pump power of 4.56 W, this depth was
about 96%. 
ese results suggested that MoS2 is a promising
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Figure 5: Optically tuned THz modulator based on 2D materials. Panel (1). (a) Schematic view of graphene on Si sample. (b) Normalized
transmission (le�) and depth (right) from the three phthalocyanine structures. Reproduced from [58]. Panel (2). Layer structure of the THz
modulator based on WS2 and Si. Reproduced from [61]. Panel (3). 
e modulator consists of a single-layer graphene sheet on a germanium
substrate. 
e beam of the THz wave is completely overlapped by the laser beam. Reproduced from [59]. Panel (4). A sketch map of the
experiment. Reproduced from [62]. Panel (5). Experimental setup of the THz-CW for measuring transmission and re�ection. Reproduced
from [45]. Panel (6). (a) 
e AFM image of liquid-exfoliated WS2 nanosheets. (b) 
e image of the prepared WS2-Si sample. (c) 
ickness
distribution map of WS2 	lm measured by white light interferometer. Reproduced from [63].

material [62]. Later on, many studies have been reported for
improvement in terms of cost, manufacturing process, pump
power, response speed, and modulation depth. Liu et al.
studied a highly e�cient activeTHzwavemodulator based on
MoS2/Ge structure. Monolayers of MoS2 and graphene sam-
ples were grown on n-doped Ge substrates by chemical vapor
deposition (CVD). 
e light control bandwidth was greatly
widened to reach 2.6 THz [90]. In addition to the expansion
of the modulation bandwidth, Fan et al. demonstrated a THz
modulator (Figure 5(2)) based on p-type annealed tungsten
disul	de (WS2) and high-resistivity Si (n-type) structure.
is
modulator presented a laser power-dependent modulation
mechanism. Ranging from 0.25 to 2 THz, the modulation

depth reached 99%when the pumping laser was 2.59W/cm2

[61]. Other researchers have adopted new methods to realize
similar modulators. 
e size and thickness of WS2 	lm are
controlled by innovatively depositing liquid-released WS2
nanosheets on Si instead of CVDmethod (Figure 5(6)). With
raising the pump power, the modulation depth continues to
increase, eventually reaching 94.8% under 470mW [63].

2.1.3. Modulator Based on Flexible Substrate. Compared to
rigid substrate THz modulators [91], �exible substrates have
many advantages such as transparency, lightweight, low cost,
and consistent adhesion [9, 92], which o�er a new potential
for THz modulator. For example, in 2006, D. Y. Khan
et al. proposed a THz modulation on �exible substrates
(Figure 6(1)). 
ey made single-crystal Si with a thickness
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of 20 nm to 320 nm into a Si ribbon with a width of 5�m to 50 �m and a length of 15 mm. When supported by
a �exible substrate, this wavy Si ribbon could be reversibly
stretched or compressed under high horizontal stress without
damaging it. Considering the electrical properties of Si
ribbon, its electrical parameters can bemodi	ed by changing
the surface shape of the �exible substrate [64]. An optically
tuned metamaterial modulator on a �exible polymer sheet,
which had a frequency modulated in the THz range, was
proposed by Liu et al. Electric split-ring resonators (eSRRs)
are attached to a thin polyimide layer and assembled into the
modulator (Figure 6(2)). 
e optical excitation of the GaAs
patch changed the response of the metamaterial. 
e meta-
material e�ectively adjusted the e�ective dielectric constant.
In their experiment, amodulation depth of 60%was achieved
in the frequency range of 1.1-1.8 THz. 
is kind of �exible

device can be more widely used and created on nonplanar
structures for extensive applications in the future [65]. For
current studies, high repeatability has not been obtained a�er
multiple bending of the �exible substrate due tometal fatigue
property [78, 93].

2.1.4. Summary. 
e modulation properties based on dif-
ferent materials are summarized in Table 2. 
e material
dominates the modulation depth and speed of THz wave,
rather than the light source. Graphene and other 2Dmaterials
can achieve close to 100%modulation depth withmodulation
speed reaching the order of MHz. On the other hand, more
experimental works should be carried out to explore those
modulators based on simulations. 
e modulation e�ciency
of optically tuned THz modulator based on �exible substrate
has yet to be improved. Lower insertion loss and more
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Table 2: 
e comparison of optically tuned modulation properties based on di�erent materials.

Work Description Year Frequency Modulation depth Ref.

Libon et al. Multiple quantum well 1999 0.2-1 THz 40% [34]

Deng L. et al. InSb gratings 2013 1.5 THz 46.70% [42]

Peter W. et al. Graphene on Si (GOS) 2012 0.2-2 THz 99% [56]

Wen Q. Y. et al Graphene on Ge 2014 0.25-1 THz 94% [57]

Cao Y. et al. MoS2 2016 0.5- 1.5THz 96% [62]

Fan Z.Y. et al. WS2 2017 0.25- 2 THz 99% [61]

Hyung K. Y.et al. C60 2014 0.5- 1.5THz 98% [43]

He T. et al. AlClPc 2015 0-2.5 THz 99% [45]

Shi Z. et al. Si Nanotip 2017 0.25-1 THz >90% [44]

compact integration will be the future direction of optically
tuned THz modulator.

2.2. Electrically Tuned THz Modulator. 
e other route for
modulating THz wave is electrically tuned THz modulator.
Using a mixed type-I/type-II GaAs/AlAs multiple-quantum-
well sample, Libon et al. have demonstrated 	rstly an
electrically controllable modulator in 2000 [94]. Electrical
modulation is to control the concentration of electrons in
the substrate materials or structures by applying bias voltage,
which modulate the amplitude of the incident THz wave
[94].
e transmission bandwidth andmodulation depth and
speed are limited by dielectric constant, loss, and response
time of the materials. Consequently, to achieve high-speed
band-pass modulation or broadband 	lter, it is necessary
to 	nd high-speed, low-loss THz functional materials and
design novel structures.

Similar to the main idea of optically tuned THz mod-
ulator, charge injection can also modulate the THz wave.
In the past decade, 2D electron gas (2DEG) in HEMTs
has been demonstrated to modulate THz wave e�ectively.
HEMT is a 	eld e�ect transistor that provides a 2DEG
quantum well at the heterojunction interface of a highly
doped semiconductor (typically AlGaAs) and an original
undoped semiconductor (GaAs). In 2000, Kersting presented
a GaAs/AlGaAs heterostructure device which powered up
the phase modulation of THz signals [94]. 
is modulator
contained 	ve parabolic quantum wells (PQWs). THz wave
modulation can be realized by stimulating electrically low-
energy electron to high-energy states. Figure 7(1)(b) shows
the power spectrum of the di�erential modulation signal
and the power spectrum of the incident pulse. It led to the
development of THz electronics chip due to a reduction of
the device dimensions. Nevertheless, it cannot operate at low
temperatures. To allow THz modulator to be operated at
room temperature, Kleine-Ostmann et al. presented room-
temperature THz wave modulator by using a device based on
a gated 2DEG [66]. 
is modulator mainly included a 2DEG
whose density could be controlled by the gate voltage. 
is
major breakthrough illustrated that 2DEG in semiconductors
could be used to control THz wave e�ectively [95]. Similarly,
it has also been used for THz emission [96], THz detection
[97], etc. Other 2DEG systems can be also used to realize
the modulation; for example, a THz modulator based on

2DEGof a GaN/AlGaN heterostructure was demonstrated by
Zhou (Figure 7(3)).
emodulator had amaximum intensity
modulation depth of 93% and a 3dB operating bandwidth of
400 kHz. It required only a low driving voltage amplitude of
2V under 8.7 K. 
is active plasma-based THz modulator
may provide a promising solution in THz technology 	elds
for the metamaterial THz modulator [67].

2.2.1.Modulator Based on Semiconductors andMetamaterials.
In addition, metamaterials are also a hot spot in THzmodula-
tor [98]. Kebin Fan et al. demonstrated a metamaterial active
device which consists of gold split-ring resonators (SRRs) on
GaAs thin 	lm grown on Si substrate [8]. It has achieved
50% modulation depth and 100 kHz modulation speed.
Schottky/n-doped GaAs devices had been developed to
increase greatly the modulation speed. In further studies, the
modulation speed had reached 10 MHz; however, the modu-
lation depth of this modulator was only 30% [99].
e single-
particle nonresonant absorption mechanism described in
Drude model has been used in the related studies. As seen
from experiments mentioned above, Drude model has not
yet been e�ective enough for the theory of metamaterial
modulator [100].

2.2.2. Modulator Based on Graphene. To further improve the
modulation depth and modulation speed of THz modulator,
di�erent active medium as substrate has been tested. 
e
refractive index of those materials can usually be written in
the form of a complex refractive index: � = �� + ��	, where ��
is the real part of the refractive index and �	 the imaginary
part of the refractive index. When the voltage is adjusted,
the real and imaginary parts are usually changed at the same
time. By using those changes, di�erent electric modulators
can be developed. For example, electroabsorption modulator
is based on imaginary part changing. When the real part
of the refractive index changed with applied voltage, the
transmission phase of THz wave changed. 
erefore, for
the electroabsorption modulator based on 2D material, a
better modulation e�ect can be obtained by changing the
refractive index through applied voltage. In fact, electromod-
ulators based on 2D materials mainly focused on graphene.
Graphene has many particular properties, such as adjustable
thin layer conductivity and long mean free path, due to its
unique conical energy band structure [101–103]. Its linear
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dispersion relationship between energy and crystal momen-
tum makes graphene superior to other semiconductor mate-
rials.

S. Rodriguez utilized graphene to modulate THz wave
(Figure 8(1)). 
e modulation depth and modulation speed

could reach 15% and 20 kHz, respectively [68]. Meanwhile,
the same research group presented a re�ective THz modu-
lator, as shown in Figure 8(2). 
e silver 	lm on the back
of the re�ective THz modulator acted as both gate and
mirror, which improved the modulation depth with 64%
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Table 3: 
e comparison of electrically tuned modulation properties based on di�erent substrate materials.

Work Description Year Frequency Modulation depth Ref.

Huang Y. D. Plasmonic 2016 - 93% [67]

Zhou G. VO2 2017 0.3-1.0THz >50% [100]

Sensale-R. B. Graphene 2012 10THz 100% [106]

Liang G. Graphene 2015 3THz 94%-100% [71]

Huang Z. Monolayer Graphene 2018 1-7THz >85% [72]

Chikhi N. Liquid crystals 2018 1-3THz >90% [107]

Kaya E. Flexible Substrate 2018 0.2-1.5THz 100% [74]

and expanded bandwidth ranging 0.57-0.63 THz compared
to their early works. However, its insertion loss and mod-
ulation speed only reach 2 dB and 4 kHz, respectively
[69]. 
e essence of those works is to change the Fermi
level of graphene by adjusting applied voltage. 
e follow-
ing graphene THz modulators with di�erent structures are
also based on this method. To improve modulation depth,
multiple layers of graphene are a choice [102]. As shown in
Figure 8(3), a THz electroabsorption modulator based on
two-layer graphene with periodic micron-belt pattern was
presented. 
e THz wave was vertically illustrated on the
surface of graphene, which enhanced the absorption of light
because of the plasma e�ect. 
is modulator could operate
at frequencies up to tens of THz, and the modulation depth
could even reach 100% [103].

Usually, the modulation depth of most modulators based
on monolayer graphene can only reach 80% [69]. However,
monolayer graphene combined with other structures or
devices can improve the modulation depth. For example,
G. Liang puts monolayer graphene on top of quantum
cascade laser (QCL) to demonstrate modulation depth of
100% (Figure 9(1)) and modulation speed of 110 MHz [71].

e high modulation depth was a consequence of a strong
interaction between the graphene and THz wave, whereas
the high modulation speed can be improved by reducing
the dimension of device. It has recently been demonstrated
that a THz modulator can realize full modulation with a
wide modulation bandwidth and fast modulation speed.
Using monolayer graphene, Huang proposed an adjustable
complementary ring resonator (Figure 9(2)). It was worth
mentioning that in the range of 1-2 THz and 3-7 THz, three
signi	cant resonant peaks can be modulated. 
e maximum
modulation depth reaches 98.8% at 7.47 THz [72].

2.2.3. Modulator Based on Flexible Substrate. Flexible sub-
strate was used to fabricate optical modulator with many
merits [104, 105] as described in Section 2.1.3. For electric
modulator, �exible substrate plays also an important role. For
example, Kocabas et al. presented a graphene metamaterial
THz modulator based on a �exible substrate (Figure 10(1)),
which consists of two large-area graphene electrodes trans-
ferred onto THz transparent substrates with ionic liquid
electrolytes between them. 
e bias can change electrostatic
doping of graphene, which a�ects its optical properties. In
this case, the maximum modulation depth reaches only 50%
at 0.1-1.4 THz working at a bias of 3V. 
e modulation speed

was slow [73]. Virtually, thismodulator showed excellent �ex-
ibility, which has not been deformed a�er being �exed many
times. Modulator based on �exible substrate can also realize
a high modulation depth. For example, E. Kaya et al. have
demonstrated that polyvinyl chloride (PVC) and polyethy-
lene (PE) were selected as �exible substrates (Figure 10(2)).
A multilayer graphene modulator was fabricated on those
�exible substrates by chemical vapor deposition. 
is device
could fully modulate THz wave with a frequency range of
0.2-1.5 THz at a low voltage of 3.4V [74]. 
e comparison of
electrically tuned modulation properties based on di�erent
substrate materials is shown in Table 3.

2.2.4. Summary. 
e modulation properties of di�erent
materials reported in literatures are given in Table 2.
Graphene can achieve modulation depth close to 100% and
the modulation speed in the order of kHz. At present, there
are few reports on �exible THz modulators since organic
functional materials and �exible substrates cannot fully be
compatible with micronanofabrication processes. Based on
reviewing the electric modulator, it implied that electric
modulation device needs to miniaturize the structure, to low
insertion loss, and to improve modulation speed, which will
be the future direction.

2.3. Photoelectric Hybrid Tuned THz Modulator. Sections 2.1
and 2.2 described the modulation methods using electricity
or light separately. If two methods can be combined together,
better modulation e�ects may be obtained. 
e photoelectric
hybrid modulation method is a method of synthesizing elec-
tric and optical modulation. Its basic principle is using pump
light excited carriers in a base semiconductor material. In the
meantime, the motion direction of the carrier is adjusted by
an external bias [108]. For example, an optoelectric hybrid
modulator was exhibited by Q. Li et al. [75]. Its structure
was shown in Figure 12. Si substrate was pumped with a
continuous laser of 532 nm to generate a large number of
electron-hole pairs. Under the drive of the concentration
di�erence, the photoelectrons in the Si di�used into the
graphene until the equilibrium state was established. A
structure similar to a PN junction was formed between the
twomaterials. When the bias was varied from 0 V to -3 V, the
peak modulation of the time-domain signal peak achieved
51% at optical pump power with 420 mW. When the bias
changed from 0 V to -4 V, the modulation amplitude depth
became 83%. Based on this structure, Ran Jiang et al. used a
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Si:HfO2 material added between graphene and Si substrate
to realize a device that had a modulation e�ect under
both biasing directions [76]. However, it is more di�cult
to implement a hybrid modulation method since there are
completely di�erent responses when applying positive or
negative biases. Quan Li et al. realized an active modulation

at low voltage (∼1V) by a photoelectric hybrid modulator
with a two-dimensional material on a structured Si substrate
[77].

As a newmodulation method, photoelectric hybrid tuned
THzmodulator has not drawnmuch attention. However, this
extreme high sensitive method is in need urgently.
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2.4. Mechanically Tuned THz Modulator. THz modulators
on �exible substrates have been introduced in Sections 2.1.3
and 2.2.3. 
ese devices can also be applied to complex
nonplanar surfaces such as communications 	bers, aircra�,
and radar surfaces [75, 109]. Alternatively, the modulation of
THz wave was achieved by preparing metal metastructures
on the surface and changing space between them [110]. For
example, in 2013, Li et al. presented a �exible and tunable
THz metamaterial (Figure 11(1)). 
e tensile deformation of
substrate caused change of the pitch, which in turn a�ected
the transmission of THz waves. 
us, this THz device can
be used to detect the deformation of di�erent objects. When
the deformation appeared multiple times, there were metal

fatigue phenomena which a�ected the stability. 
is method
can also achieve phase modulation. For example, an ultrathin
THz wave phase shi�er was described by Z.L. Han [79]. Each
metamaterial unit consists of double-layered structure. 
e
distance change between two layers a�ects phase shi� which
caused phase delay. 
is phase shi�er has high transmission
with a coe�cient of 91%. Compared to traditional THz wave
phase shi�ers, this ultrathin �exible phase shi�er has better
signal transmission or re�ection (Figure 11(2)). It could be
integrated with other systems to improve device adjustability.

ese 	ndings paved the way for �exible THz electronics
and contributed to the development of THz technology
[111].
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Nowadays, �exible electronic devices have gradually
become a research hotspot with the development of wearable
electronic devices, �exible displays, and health monitoring
devices. One type of modulator a�ects the intensity variation
of the THz wave by its self-deforming [112]. Unfortunately,
there are no reports on THz modulation devices with high
stability in the deformed state [113]. 
erefore, studying a
THz modulator with stable modulation performance under
�exible deformation is a problem to be solved.

2.5. 	ermally Tuned THz Modulator. In many transition
metal oxides, the modulation of THz wave is achieved by
external stimuli, including temperature, light, electric 	eld,
mechanical strain, or magnetic 	eld [80, 114, 115]. Tempera-
ture changes can a�ect the mobility and lifetime of free carri-
ers in thosematerials. Vanadiumdioxide (VO2 ) 	lm is ametal
oxide with an insulator-metal phase transition property,
which can be converted from insulating state (monoclinic
structure) to metallic state (tetragonal structure) under heat
[116, 117]. It leads to reversiblemutation in physical properties
[118, 119]. Both theory and experiment have exhibited that
VO2 	lm has high transmittance in the insulating phase
and opposite property in the metal phase [120]. 
erefore,
VO2 is a good thin 	lm phase change material suitable for
the THz modulator (Figure 13) which consists of periodic
metastructure on the surface of VO2; then THz wave can be
modulated by controlling the temperature [121].

2.6. Magnetically Tuned THz Modulator. Magnetic-tuned
terahertz modulator was based on the magnetooptical e�ect
under an external magnetic 	eld. For example, magnetized
plasma 2D photonic crystal THz wave modulator was pre-
sented byWen (Figure 14(1)) [81].
e resonant frequency can
be tuned with the insertion loss of 0.3 dB. 
e modulation
speed was as high as 4 GHz. 
us, this modulator has

the potential for THz wireless broadband communication
system.

A THz wave modulator based on Fe3O4-nanoparticles
was reported recently (Figure 14(2)) [82]. 
is modulator
consists of a magnetic �uid and metamaterial structure. 
e
modulator con	rmed a 34% modulation depth. It is worth
mentioning that metamaterials cause a 33 GHz frequency
shi� at low magnetic 	eld. 
is modulator will have many
potential applications in THz 	ltering, modulation, and
sensing.

Although magnetically tuned THz has more applications,
unfortunately, they are poorly controllable in the current
study.

2.7. MEMS Tuned THz Modulator. Microelectromechani-
cal systems (MEMS) are a high-tech frontier discipline in
modern information technology [122–124]. 
e continuous
improvement of MEMS technology provides superiority for
THzmodulator. For example,H. Tao et al. [83] achievedmod-
ulation of the resonant intensity in the THz band (0.5 THz)
based on thermal drive technology in 2009. Q. Bai [84] et al.
demonstrated a planar semiconductor metamaterial device
utilizingMEMS-based slow-light tunable e�ects, which could
tune over a wide frequency range in the THz band. Ozbey
and Aktas [85] presented THz metamaterial device that used
magnetically driven resonant frequency (Figure 15(1)). Z.
Han demonstrated a recon	gurable metamaterial structure
fabricated byMEMS technique [125].
e resonant frequency
can be tuned by using the voltage to control the height of
the center metal ring (Figure 15(2)). 
e modulation range
was relatively narrow, which could only achieve modulation
between 0.45 THz and 0.65 THz [86]. According to the
merit ofMEMS technology, theMEMS tunedTHzmodulator
with high modulation e�ciency could achieve extensive
applications in high-power 	eld.
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2.8. THz Modulator Based on Coding and Programmable
Metamaterials. 
e unique electromagnetic properties of
electromagnetic metamaterials result in rapid evolving. For
example, in 2014, Giovampaola and Engheta proposed a
method of constructing metamaterials through spatially
mixed “digital metamaterial bits” [126]. 
is new concept
metamaterial can be used in THz modulator. At the same
year, Tie Jun Cui et al. proposed the concept of coded
metamaterials [87]. 
ey abandoned the traditional method
of e�ective medium theory and designed the encoded meta-
materials of 1-bit code sequences, which were used to �exibly
modulate THz waves. As shown from Figure 16, the “0”
and “1” elements represent the ideal magnetic and electrical
conductors, respectively. 
e phase di�erence a�er re�ection
is 180∘. According to the traditional phase-array-antenna
theory, the scattering pattern on the metasurfaces under the

coding sequence can be calculated to design di�erent coding
sequences. Take the coded metasurfaces composed of N×N
square grids with dimension D as an example [87, 127].

��� (�, �) = 4� ����� (�, �)����2∫2�0 ∫�/20 ����� (�, �)����2 sin ����� (6)

where � and � are the elevation and azimuth angles,
respectively, and �(�, �) is the pattern function of a lattice.

at is to say, di�erent encodings produce di�erent modu-
lation e�ects. When the normal incident wave illuminates
the metasurfaces, two and four re�ected beams are formed
(Figure 16), which illustrate that metasurfaces can modulate
the THz wave. A 2-bit random coding arrangement was used
to obtain the expected low-scattering pattern, which achieved
wide-band di�use re�ection of terahertz waves [88]. Shuo
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Liu et al. proposed the concept of anisotropically encoded
metamaterials in 2016 [128]. 
eir function depends on
the polarization direction of the incident wave. 
e beam
splitter used in metasurface can separate the orthogonal
polarization modulated terahertz signals, which can be used
to increase the transmission rate in ultra-high-speed wireless
communication in the future. Coding and programmable
metamaterials, a new approach to study and design from
the information perspective, provide us with great �exibility
in controlling the radiation of the electromagnetic wave in
both amplitude and phase [129].
e research results illustrate
that programmable metamaterials are a possible route to
implement more functional THz modulators in the future.

3. Conclusions and Outlook

We have extensively reviewed modulators operating in THz
frequency range and summarized the principles, current
status, and advantages and disadvantages of various methods.

At present, electrical and optical modulation THz devices
have achieved exciting results in terms of modulation depth
and modulation speed. Compared with electrical modula-
tion, optical modulation has deeper modulation depth, faster
modulation speed, and easier modulation method. Although
the photoelectric hybrid modulation can be more �exible,
the modulation method is obviously complicated. Other
methods provide new attempts for THzmodulation; however,
the extension and simple implementation in the frequency
range need further study. In terms of material selection, 2D
materials and �exible substrates have become the focus of
recent experimental research due to their huge advantages.
Programmable metamaterials dynamically control the phase
responses for each element. It can be considered as a possible
route for the future realization of THz modulators with far
more functionalities.

THz modulator research is a dynamic, fast-growing, and
challenging 	eld. An ideal modulation device needs a higher
degree of miniaturization, lower insertion loss, and higher
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modulation speed, which will be the core of building a THz
communication system. More explorations are required for
various actual devices to get an excellent modulation e�ect.
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