
Module Assignment for Low Power�

Jui-Ming Chang and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Abstract
In this paper, we investigate the problem of minimizing

the total power consumption during the binding of opera-
tions to functional units in a scheduled data path with func-
tional pipelining and conditional branching for data inten-
sive applications. We first present a technique to estimate
the power consumption in a functionally pipelined data path
and then formulate the power optimization problem as a
max-cost multi-commodity flow problem and solve it opti-
mally. Our proposed method can augment most high-level
synthesis algorithms as a post-processing step for reducing
power after the optimizations for area or speed have been
completed. An average power savings of 28% has been ob-
served after we apply our method to pipelined designs that
have been optimized using conventional techniques.

1 Introduction
Low power has become a primary concern for the class of
portable computer and consumer electronic devices as well
as wireless communications and imaging systems. It has
thus become necessary to develop estimation and optimiza-
tion techniques that help achieve low power in these sys-
tems. This is a challenging task that requires power mod-
eling, estimation and minimization at all levels of design
abstraction from system and behavioral down to logic and
layout levels. This paper focuses on the behavioral level.

The behavioral synthesis process consists of three
phases: allocation, assignment and scheduling. These pro-
cesses determine how many instances of each resource are
needed (allocation), on what resources a computational op-
eration will be performed (assignment) and when it will be
executed (scheduling) [GaDu92] [Stok91] [DeMi94]. Tra-
ditionally, behavioral synthesis attempts to minimize the
number of resources to perform a task in a given time or
minimize the execution time for a given set of resources.
With the increasing demand for low power circuits, it has
become necessary to modify the three phases of the behav-
ioral synthesis process to minimize the power dissipation.

A number of researches have addressed the problem of
minimizing power dissipation during module allocation and
binding [RaJh94], scheduling, register allocation and bind-
ing [RaJh94][ChPe95a] and by trading off area for power
through pipelining or parallelization combined with voltage
scaling [GoOr94] [ChPo92]. The work of [ChPe95a] de-
scribes a single-commodity network flow solution for the
register assignment in a non-pipelined data path. Of par-
ticular relevance to the present work is however the work
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of [RaJh94] where the authors describe a heuristic mod-
ule binding scheme for low power based on iterative im-
provement of some initial solution. In contrast, we address
the optimization problem in a functionally pipelined data
path with conditional branching under arbitrary input statis-
tics and our solution technique is provably optimal with-
out increasing the controller and multiplexor cost or the
circuit delay. Our proposed method can also work with
most high-level synthesis algorithms (i.e., those which per-
form scheduling before resource allocation and binding) as
a post-processing stage for reducing power optimization af-
ter the optimizations for area or speed have been completed.

The paper is organized as follows. Section 2 provides
some terminology and gives an overview of the proposed
algorithm. In Section 3, we describe our switching activ-
ity calculation procedure. Section 4 describes our power
model and the module binding problem. Section 5 casts the
problem as a multi-commodity flow problem. Experimental
results are reported in Section 6 while further discussions,
future extensions and concluding remarks are given in Sec-
tion 7 and 8, respectively.

2 Terminology and Overview
This paper assumes a data flow graph (DFG) with condi-
tional branches and functional pipelining that has already
been scheduled with a scheduling algorithm (such as the
feasible-scheduling in Sehwa [PaPa88]). The scheduling al-
gorithm takes the data flow graph and the given latency (the
number of time steps between two consecutive initiations
of the data flow algorithm) and produces a feasible sched-
ule subject to constraints on the total number of available
modules (functional units) of each type.

The resulting information can be compactly represented
in abasic allocation table (AT). In this table, rows represent
functional units (operators) and columns representc-steps.
A c-steprefers to a group of concurrent time steps across
different pipeline initiations. For example, if a data flow
graph is scheduled with a latency of 3, thenc-step1 in the
associatedAT represents time steps 1 and 4 in the original
data flow graph whilec-step2 in thatAT represents time
steps 2 and 5 in the DFG, etc. Furthermore, we annotate
each operation in the table with its initiation index (shown
as a superscript on each operation).

In the previous work [PaPa88], after scheduling and al-
location of the functionally pipelined data path, the main
optimization tasks on the data path are complete as the cir-
cuit speed and the hardware resources have already been
determined. Although the binding of different operations
of the compatible type to a set of functional units(FU’s)
is not yet determined, to a first order, this binding does not
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have much of an impact on the circuit speed or area (see
Section 7 for a detailed discussion). The binding however
has an important effect on the power dissipation as is ex-
plained next. Operations that are assigned to a FU in some
c-step may be permuted with other compatible operations
that are scheduled in the samec-step but are assigned to a
differentFU . This permutation may have a big effect on
the power consumption in the functional units as it changes
the sequence of data values going through each functional
unit in the data path, thus influencing the switching activity
at the inputs of the functional unit.

In a functionally pipelined data path, for a given latency
L, there areL c-steps in the allocation table. Operations
which share the same FU across consecutive c-steps form
a directed cycle ofL vertices starting with some vertex in
c-step 1 and ending with the same vertex in c-stepL + 1.
The total switching activity across all cycles can be deter-
mined once we select specific permutations of compatible
entries in each c-step (cf. Section 3). The problem of min-
imizing total switching activity is then equivalent to finding
the optimal permutation of the entries in each column of the
allocation table. This problem can be formulated as a max-
cost multi-commodity network flow problem and solved op-
timally (cf. Section 5). Since latency of most problems is
small even when the data flow graph has a large numbers
of levels1, exhaustive search is also possible. Experimen-
tally, we have observed that the ratio of power consumption
in a data path between the power-minimal binding and the
area-minimal binding is an average of 0.72.

Our method can be used in conjunction with all other
techniques aimed to optimize power consumption at the
system or behavioral levels of design. For example tech-
niques of Hyper-LP[ChPo92] that permit a reduction ofVdd
(such as pipelining or parallelism) may be augmented with
the technique developed in this paper to further reduce the
power consumption without increasing chip area caused by
additional multiplexors or increased controller complexity.

3 Switching Activity Calculation
Consider two operations that share some FU consecutively
(that is there is no other operation that uses this FU in be-
tween). Let the two ordered operands for the first operation
bex1 andy1, the two ordered operands for the second oper-
ation bex2 andy2, and the outputs of the two operations be
z1 andz2, respectively. The switching activity at the inputs
of the FU for executing these operations is given by:

sw
FU(op1; op2) =

X
(x1;x2)2E

fx1x2(x1; x2) �H(x1; x2) +

X
(y1;y2)2F

fy1y2(y1; y2) �H(y1; y2) (1)

wherefx1x2(x1; x2) is the (word-level) joint probability
density function (pdf) [Papo91] of variablesx1 andx2 and
H(x1; x2) is the Hamming distance of the binary represen-
tations ofx1 andx2, setsE andF are thelegal sets (do-
mains) of pairs(x1; x2) and(y1; y2), respectively.

In a functionally pipelined data path, the same algorithm
(data flow graph) is initiated everyL time steps. We can
associate with each different instance of the data flow graph

1This is also referred as turn around time or computation time of one
input sample for the data flow graph.

an initiation index. Similarly, the arcs in the data flow graph
can also be indexed by an integer tag associated with their
data flow instance. Note that the internal arcs of each data
flow graph can be converted into only functions of the pri-
mary inputs indexed by their initiation index.

Consider a data flow graph with 4 primary inputsa,b,c
and d. Suppose we want to calculate the switching ac-
tivity between two operationsop(i)

1
and op(i+2)

2
that be-

long to pipeline initiationsi and i + 2, respectively. (We
use superscript of an operation to denote its pipeline ini-
tiation index). Furthermore, assume that the two ordered
operands ofop1 are x1 and y1 while the two ordered
operands ofop2 arex2 andy2 and the outputs of the two
operations arez1 andz2, respectively. Ifx1 = a + b, y1
= c � d; x2 = a � b, y2=c=d, thenx(i)

1
=a(i) + b(i), y(i)

1
=

c(i) � d(i); x(i+2)
2

=a(i+2) � b(i+2), y(i+2)
2

=c(i+2)=d(i+2).
To utilize equation ( 1), we must have the the joint pdf of
the corresponding random variables. Here we createv

(i)
1

=

x
(i)
1

=a(i) + b(i) andv(i)
2

=x(i+2)
2

=a(i+2) � b(i+2); u(i)
1

=y(i)
1

=c(i) � d(i) andu(i)
2

=y(i+2)
2

=c(i+2)=d(i+2); w(i)
1

= z
(i)
1

and

w
(i)

2
=z(i+2)

2
.

If a large number of primary input vectors, sayN , is
given, then we can calculate the sequence of vector pairs
(v

(i)
1
; v

(i)
2

), i = 1; 2; 3; : : :. If we assume that the se-
quences of primary inputs< a(1); a(2); : : : ; a(N) >,< b(1),
b(2), : : : ; b(N) >, etc. are identically distributed, then we
can show that each one of the the intermediate sequences
< v

(1)

1
,v(2)
1

, : : :, v(N)

1
>, < v

(1)

2
,v(2)
2

, : : :, v(N)

2
>, etc.

is also identically distributed. We can therefore conclude
that the time average can be used to approximate ensemble
average, and using the classical frequency interpretation of
probability, the joint pdf ofv1 andv2, fv1v2(v1; v2) is ap-
proximated by calculating the frequency of occurrence of
each(v1; v2) pair in the sequence [Papo91]. Similarly, the
joint pdf ofu1 andu2, fu1u2(u1; u2) and the joint pdf ofw1

andw2, fw1w2
(w1; w2) is calculated.

Consider two sequences of data values< v
(1)

1
,v(2)
1

, : : :,

v
(N)

1
> and< v

(1)

2
,v(2)
2

, : : :, v(N)

2
> applied to the inputs

of aMux. Switching activity at the inputs of theMux is
given by

sw
Mux(v1; v2) = sw(v1) + sw(v2)

sw(vi) =
1

N � 1

N�1X
t=1

H(vi(t); vi(t+ 1)) (2)

Calculation of the switching activity at the inputs of the
Mux can be done concurrently with calculation of the joint
pdf fu1u2(u1; u2). Using above procedures, we only need
a single scan through the input vectors to obtain all of the
switching activities and jointpdf 0s. The run time is thus
proportional to the number of the primary input vectors.

We need the sequence of input vectors for the above
switching activity calculation procedure to work. This
sequence may be a “short” (in hundreds of vectors) se-
quence of typical data stream obtained by statistical sam-
pling [BuNa93] or may be a “long” (in tens of thousands of
vectors) obtained from a dynamic execution trace for a pro-
gram/application data runs on the target chip. We make no
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Figure 1:The definition ofAI andTC. Note that the superscript
on each operation denotes the pipeline initiation index (or data
sample index)

assumption about the data statistics, hence, our technique
is applicable to both DSP chips where the data tends to
exhibit a pseudo-random white noise behavior and ASICs
or general-purpose processor chips where the data may ex-
hibit any probability distribution. Furthermore, we only as-
sume that the sequence of input vectors is identically dis-
tributed. A similar assumption is commonly used in other
fields like digital modulation, communication system per-
formance evaluation and spectral analysis. This assumption
is empirically justified and allows one to use formal meth-
ods to analyze the input streams [Gall68] [ViOm79].

4 Low Power Module Binding
4.1 Power dissipation of a functional unit
We assume that the dynamic power dissipation in a func-
tional unit when it executesop2 afterop1 is given by a sim-
ple equation as follows:

PFU = 0:5 � � � V
2
� f � sw

FU(op1; op2) (3)

whereV is the supply voltage,f is the clock frequency,
and the proportionality constant� (which represents the
physical capacitance of the functional unit) is calculated
for each functional unit using circuit or gate level simula-
tion [Deng94][BuNa93] and curve fitting. Obviously this
proportionality constant depends on the module type, in-
put data width, technology and logic style used and in-
ternal module structure. Equation ( 3) is the basis of
all macro-modeling techniques for power estimation and
has been used in the works of [PoCh91][LaRa94][SvLi94]
[MeRa94]. Power estimation accuracies of 10-15% have
been reported for this model in [LaRa94] [ChPe95b].

4.2 A functionally pipelined data path
Data path is assumed to be functionally pipelined. If the
operations that share the same functional unit belong to dif-
ferent pipeline initiations, then the joint pdf’s of any two
random variables belonging to different pipeline initiations
will account for both spatial and temporal dependencies.

Definition 4.1 In Fig. 1, suppose we have a sequence of
operations[a2i�1 ! d2i�1 ! h2i�1 ! b2i ! e2i] (for
i = 1; 2; : : :) that share the same functional unit. The time
span of this sequence is defined asTC, which is equal to
5 time steps. The alignment interval of this sequence,AI
is defined as the number of time steps required to allow the
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# 1) will be replicated across all frames.

execution of this sequence periodically. In this example,AI
is 6, which is equal to two (time) frames. We use time frame
to refer to a sequence ofc-steps of lengthL whereL is the
latency of the pipeline.

Lemma 4.1 Consider a data flow graph which executes
with latency L for the functional pipeline. Suppose there
are k operations,op1, : : :, opk that share some functional
unit consecutively, and that the time span (in number of time
steps) of the sequence of operations isTC. To sustain this
sequence of operations on the FU in question periodically
across many frames in the pipeline, the alignment interval
AI for this set ofk operations must be an integer multiple
of L which is larger than or equal toTC. Proof follows
from definition ofAI .

In the past, most of the work on functionally pipelined
data path has focused on the treatment of only a frame of
lengthL. For the problem of sharing a FU among many op-
erations which are scheduled in differentc-steps, one should
however consider a sharing chain longer thanL as two op-
erations which share a FU may belong to differentc-steps in
different time frames(cf. Fig. 3). One can easily show that
this kind of sharing results in little reduction in power con-
sumption, but creates large sharing chains and thus leads to
large controller complexity and multiplexor cost which tend
to offset power reduction due to sharing the FU across mul-
tiple frames. For this reason, we have decided to consider
FU sharing only for operations in the same time frame.

4.3 The optimization problem
The problem is to find the power optimal way of binding
operations to a set of compatible modules. Each binding so-
lution corresponds to a permutation of the column entries of
theAT . The solution also specifies multiple chains of oper-
ations where each chain denotes all operations that are con-
secutively executed on a functional unit. The total switch-
ing activity of the chain consists of the sum of switching
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activities between two consecutive entries, plus the switch-
ing from the last entry of the row in the current frame to the
first entry of the same row in the next frame of lengthL (see
Fig. 4). The total binding cost is the sum of the costs of all
chains. Because each operation is executed on exactly one
module, these chains must be node disjoint.

Definition 4.2 A basic allocation table consists ofm rows
corresponding tom compatible modules andL columns
corresponding toL c-steps. An extended allocation table
(EAT ) is obtained by concatenating the first column of the
basic allocation table after its rightmost column thus ob-
taining a new table withL+ 1 columns where the first and
the last columns are identical (cf. Fig. 5).

The optimization problem is then equivalent to finding
the optimal way to permute the elements in each column
(except the first and the last column in theEAT ) for the
rows corresponding to the set of compatible modules and
minimizing the switching cost in all rows.

Definition 4.3 The requirement that the(i; 1)th entry of
theEAT be equal to the(i; L + 1)th entry of the table
for i = 1; : : : ;m will be referred as theinter-frame bind-
ing constraint. This condition is imposed to gauranttee the
cyclic nature of the execution on the functionally pipelined
datapath without having to incur a large cost in terms of
controller complexity and size of the MUX’s.

5 Network Flow Formulation
In Section 4.2, we described optimization of the total
switching activity using theEAT . In the following, we cast
the optimization problem as aMax-Cost Multi-Commodity
Flow problem. Condition that makes the original problem
hard is that we must meet the inter-frame binding constraint.
Without this constraint, a simpleMax-Cost Flowwould give
the optimal solution [ChPe95a].

Suppose there arem rows andn columns (n = L + 1)
in theEAT . During scheduling and allocation of a func-
tionally pipelined data path, we use the minimum possible
number of modules and hence the feasible scheduling re-
sults in an allocation table which contains at least one full
column. Suppose this column is at c-stepi in the basicAT ,
we can rotate columns of this table until the full column oc-
cupies the first position in the table. Then we construct the
EAT from the newAT by augmenting it with a rightmost

a1

b2

c1

d1

e2

f1 c1

d1

e2

f1 a2

b3

L=3 L=3

g1g1

c1

d1

e2

f1 a2

b3

L=3

g1

c2

d2

e3

Figure 6:Rotating the basicAT and obtaining the newEAT

column which contains the entries of the first column in the
newAT in the next frame of lengthL. Fig. 6 shows an ex-
ample of rotating a basicAT and obtaining the newEAT
where first and last columns are full. If the first and the last
columns in theEAT have empty entries, then the flow on
the network which will be constructed from thisEAT will
no longer represent all of the feasible permutations. This is
the reason for theEAT construction given above.

Let NH=(V;E, s1; : : : ; sm, t1; : : : ; tm; C;K). There is
a vertexv 2 V for each nonempty entry in theEAT (with
m rows andn columns). We will refer toV as internal node
set ofNH . We add a column of verticessi, i = 1; : : : ;m
in front of the vertices corresponding to the operations in
the first column of theEAT . We also add a column of ver-
ticesti, i = 1; : : : ;m after the vertices corresponding to the
operations in the last column of theEAT . There is an arc
connectingsi to the vertex corresponding to the(i; 1)th en-
try of theEAT and an arc connecting vertex corresponding
to the(i; n)th entry of theEAT to vertexti, 8 i = 1 : : :m.
The vertices are then levelized (withsi vertices at layer0
andti vertices at layerL + 2). There are arcs from all of
the vertices in layeri to all of the vertices in layeri + 1,
8 i = 1 : : : n � 1. Besides, there are arcs from all of the
vertices at layeri � 1 to all of the vertices at layeri + 1
if there exists some empty entry in columni of theEAT ,
8 i = 1 : : : n. If there are empty entries in both columns
i � 1 andi in theEAT , we add arcs from all vertices at
layeri� 2 to vertices at layeri+ 1 in NH , and so on.

The capacity functionK is 1 for every arce 2 E.
The cost of all arcs incident onsi or ti is 0. All other
internal arcs have costC(u; v) � 0 which is equal toH
� bM� swFU (opu; opv)c, whereM is used to scale the
switching activity into an integer andH is a sufficiently
large integer that makes the resulting costs for all of in-
ternal arcs satisfy thetriangular inequality. 2 Let �()
be the maximum (minimum) ofbM� swFU (opu; opv)c
over all u, v. H is any integer that satisfiesH � 2�
� . This is needed to ensure that the network flow al-
gorithm covers all of the vertices inNH . Fig. 7 shows
the network constructed from the newEAT shown in
Fig. 6. The demand functionD is defined as follows:
Di(v) = 0; 8v 2 V & 8i = 1; : : : ;m:; Di(sj) =�
�1 if i = j
0 otherwise ;Di(tj) =

�
+1 if i = j
0 otherwise . This

function captures the inter-frame binding constraint.

Definition 5.1 [Leng90]Min-Cost Multi-Commodity Flow:

� Instances: A directed graph G=(V,E), edge capacity
K(e) 2 R+ and edge costs C(e)2 R for e 2 E,
demandsDi(v) 2 R for all vertices v2 V and form
commoditiesi = 1, : : :, m.

2That is,C(i; j) � 0, 8 (i; j) andC(i; j)+C(j; k) � C(i; k), 8
internal arcs(i; j),(j; k) and(i; k) (if the arcs exist).



fi

gi

ci

di

ei+1 ei+2

ai+1

bi+2

ci+1

di+1

s1

s2

s3

t1

t2

t3

Layer 0 1 2 3 4 5

Figure 7: NetworkNH construct from the newEAT shown in
Fig. 6. Dark edges represent edges from leveli to i+1 while light
edges represent edges from leveli to j > i + 1

� Configurations: All sequences of edge labeling
fi: E ! R+, i=1, . . . ,m

� Solutions: All sequences of edge labeling that satisfy
the following constraints:

1. Capacity Constraints: For all e2 E,Pm

i=1 fi(e) � K(e)
2. Flow-Conservation Constraints: Define the net

flow of commodity i into vertex v to be
fi(v) =

P
e: u!v fi(e)�

P
e: v!w fi(e)

Then, for alli = 1, : : :,m andv 2 V, we have
fi(v) = Di(v)

� Minimize: C(f)=
P

e2E(C(e)�
Pm

i=1 fi(e))

In [Stok91], a multi-commodity flow formulation of the
register allocation problem in a cyclic data flow graph is
proposed. We however proposed a multi-commodity flow
formulation of the module allocation and binding in a func-
tionally pipelined data flow graph. In addition to this, our
network structure is quite different from that of [Stok91]
due to empty entries that we have in theEAT which leads
to cross-over edges (arcs that connect non-adjacent layers
in the network). In [Stok91], the network has a node for
each register at each time step and uses a dummy node for
every time step boundary even when no variable has to be
stored there. We could not minimize the total switching ac-
tivity by simply replacing the cost on each arc in their net-
work by the actual switching activity. The reason is that the
switching activity to and from the dummy nodes could not
be defined and there is no way to make the resulting network
flow represent the total switching activity. In our network,
we do not have any dummy nodes and each arc has its own
(possibly) distinct cost. Eliminating the dummy nodes how-
ever creates the situation that some internal node may not be
covered in the max-cost multi-commodity flow. We there-
fore enforce the triangular inequality on the costs of all arcs
(and this is always doable) to ensure that the max-cost flow
covers all of the internal vertices. This enforcement has no
impact on the optimality of our solution as will be proved
in Theorem 5.1.

Definition 5.2 In the max-cost multi-commodity-flow prob-
lem, we maximize the total cost of flowC(f) in the network
while satisfying constraints 1 and 2 of definition 5.1.

The extra verticessi andti, i = 1, : : : ,m, will serve as
the sources and sinks of commodityi, respectively. We ship

Module �

add16 18.91
mult16 400.64
Mux16: 2 to 1 3.96
Mux16: 4 to 1 11.16

Table 1:Different�’s obtained from simulation

from si one unit ofi and sink one unit ofi at sinkti. To en-
sure that the flow paths are node-disjoint, we apply a node
splitting technique onNH . After applying the node split-
ting on the internal node set ofNH , we obtainN 0

H=(V 0; E0,
s1; s2; : : : ; sm, t1; t2; : : : ; tm; C;K). We will refer toV 0 as
the internal node set ofN 0

H .
The flow with valuem on the new networkN 0

H givesm
node disjoint paths; each path starting from sourcesi and
ending at sinkti, for all i. We conduct themax-costm-
commodity flow onN 0

H , which minimizes the total switch-
ing activity while satisfying the inter-frame binding con-
straint. The network formulation provides the exact solution
to the original problem as shown by the following theorem.

Theorem 5.1 A max-cost multi-commodity flow of valuem
onN 0

H gives the minimum total power consumption for the
m compatible modules in the circuit while satisfying the
inter-frame binding constraint of Definition 4.3.

Although our network is constructed differently from
[Stok91], a similar method for solving the remaining step
can be used after the multi-commodity network flow prob-
lem is translated into aLP . Since we are considering a
functionally pipelined data path where the latencies of most
pipeline designs are quite small, exhaustive search on the
EAT can also give the optimal solution while meeting the
inter-frame binding constraint in a very short time.

6 Experimental Results
In Table 1, we show values of� parameter for 16-bit adder,
multiplier, 2 to 1Mux and 4 to 1Mux. This is all the data
we need since our benchmark circuits have a datapath width
of 16-bits and a latency of less than 4. Table 2 givesPtotal,
the total power dissipation in each circuit after scheduling,
allocation and binding. Values of� in equation ( 3) are in
unitrs ofpF , while values ofswFU (op1; op2) are obtained
from the binding solution as detailed in Section 4. Table
3 givesP 0total which isPtotal + PMux0s; Again � for the
Mux is read from Table 1 while switching activity for Mux
is calculated from the binding solution.

We performed feasible scheduling and our new method
on various other benchmarks including an example taken
from [PaPa88], AR Filter, Elliptical Wave Filter[GeEl92],
2nd order Adaptive Transversal Filter [Hayk91], Robotic
Arm Controller, Differential Equation Solver [CaWo91],
and Discrete Cosine Transform. Power dissipation results
are given in Tables 2 and 3. Latency used in each bench-
mark is shown in the 2nd column of the tables. In our ex-
periment, we also generate all possible minimal-area bind-
ings from the same basicAT for each DFG using feasible
scheduling algorithm [PaPa88]. From these tables, we can
see that the ratios ofPtotal for minimum-power binding to
maximum-power and average-power bindings are 56.88%
and 70.64%, respectively. Even after including the power



Circuit L. max.pw avg.pw min.pw min

max

min

avg

% %
Ex # 1 3 2.09e4 1.73e4 1.24e4 59.21 71.57
ARF 3 1.06e6 7.76e5 5.04e5 47.60 65.01
EWF 3 5.32e5 4.00e5 3.03e5 56.86 75.64
ATF2 2 3.10e5 2.61e5 1.75e5 56.55 67.13
Robo 2 1.21e6 1.07e6 5.53e5 45.49 51.40
DifE 2 3.16e5 2.68e5 2.04e5 64.68 76.31
FDCT 3 1.01e6 8.22e5 6.23e5 61.15 75.77
Avg. - - - - 56.88 70.64

Table 2:Ptotal (power dissipations (�W ) in FU 0s), whereL is
the latency of the functional pipeline

Circuit L. max.pw avg.pw min.pw min

max

min

avg

% %
Ex # 1 3 2.65e4 2.29e4 1.79e4 67.79 78.49
ARF 3 1.07e6 7.87e5 5.15e5 48.12 65.49
EWF 3 5.47e5 4.15e5 3.17e5 58.04 76.52
ATF2 2 3.14e5 2.65e5 1.79e5 57.08 67.61
Robo 2 1.22e6 1.08e6 5.65e5 46.05 51,97
DifE 2 3.19e5 2.71e5 2.07e5 64.96 76.53
FDCT 3 1.03e6 8.34e5 6.35e5 61.61 76.13
Average - - - - 58.97 72.07

Table 3:P 0

total (power dissipations (�W ) in FU 0s + Mux0s)

dissipation due toMux0s (which our algorithm does not
directly attempt to minimize), we obtained power saving ra-
tios of 58.97% and 72.07%, respectively.

7 Discussion
The main idea is to permute the compatible operations dur-
ing the module binding step so as to minimize the switching
activity at the inputs of the functional units in a functionally
pipelined design. This permutation takes place over a time
frame ofL c-steps, and therefore, the number of multiplex-
ors doesn’t vary by much; and in any case, the power dissi-
pation in Mux’s is significantly lower than that in functional
units as seen by the relative magnitude of� parameters in
Table 1. Hence, we can safely assume thatPMux will vary
minimally as a function of the binding solutions and when
it does, it causes little change inPtotal. This is also seen in

Tables 2 and 3, whereP
0

total

Ptotal
is only 1.072 on average.

The number of registers (obtained by performing reg-
ister allocation on a functionally pipelined data path by a
program such as REAL [KuAl87]) will also not change as
the life time of data values in the data flow graph will not
change after the permutation (see Section 4.3). The cir-
cuit speed will not change as we only permute compatible
operations in the samec-step (same column in theEAT )
and the number ofc-steps is not altered. The only impact
of this permutation is to vary the interconnect structure of
the design in some undetermined fashion (for worse or for
better).

Extensions to handle multicycle operations, conditional
branches and register binding can be found in [ChPe95b].

8 Conclusion
This paper presented a new method to calculate the switch-
ing activity of modules in a functionally pipelined data
path with conditional branches based on the assumption

that a large number of primary input data vectors are given.
The power consumption model for a functionally pipelined
data path was presented and its properties were explored.
The power optimization problem was then formulated as a
multi-commodity flow problem and solved optimally with-
out increasing the area or delay of the data path or the con-
troller complexity compared to the pipelined data path de-
sign before using our new method. Both techniques cover
a general class of applications and are practical for larger
problem sizes with complicated control flow. Experimental
results demonstrate that the above methods can reduce the
power consumption substantially.
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