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Abstract. Let G be a finite loop space such that the mod p cohomology of the clas-
sifying space BG is a polynomial algebra. We consider when the adjoint bundle associated
with a G-bundle over M splits on mod p cohomology as an algebra. In the case p = 2,
an obstruction for the adjoint bundle to admit such a splitting is found in the Hochschild
homology concerning the mod 2 cohomologies of BG and M via a module derivation.
Moreover the derivation tells us that the splitting is not compatible with the Steenrod
operations in general. As a consequence, we can show that the isomorphism class of an
SU(n)-adjoint bundle over a 4-dimensional CW complex coincides with the homotopy
equivalence class of the bundle.

1. Introduction. LetG be a connected finite loop space, in other words,
a connected topological group with the homotopy type of a finite CW com-
plex. Let LG denote the loop group which is the space of free loops on G.
In [12], the notion of the module derivation has been introduced when con-
sidering the bar type and cobar type Eilenberg–Moore spectral sequences
converging to the mod p cohomology algebra of the classifying space BLG
of LG. In this paper, by investigating the mod p cohomology algebra over
the Steenrod algebra of the total space of an adjoint bundle, we show that
the module derivation is relevant in analyzing the first line of the bar type
Eilenberg–Moore spectral sequence for some fibre square.

Let P → M be a principal G-bundle over a connected space M and
P ×ad G→M the adjoint bundle, namely, the bundle associated with P →
M via the adjoint map ad : G × G → G defined by ad(g, h) = ghg−1.
If M = BG and P → BG is the universal G-bundle, then P ×ad G can be
regarded as the classifying space BLG of the loop group LG. In the category
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of differentiable manifolds, if M is a finite-dimensional manifold and G is a
Lie group, then the bundle P×adG→M is the object on which gauge theory
is developed. We also wish to mention the theorem due to Tsukuda [18]
which says that there is a one-to-one correspondence between appropriate
isomorphism classes of gauge groups and those of adjoint bundles. These
facts give us a motivation to investigate the topology of P ×ad G.

In order to state our results exactly, we begin with some definitions
concerning algebras. Let A be a graded commutative algebra over Fp and
N a graded commutative algebra over Fp equipped with a left (resp. right)
A-module structure, where p is a prime or zero and F0 represents the rational
number field. Then N is said to be a left (resp. right) A-algebra if the A-
module structure map A ⊗ N → N (resp. N ⊗ A → N) is a morphism of
algebras. We say that an A-bimodule N is an A-bialgebra if N is a right and
left A-algebra. To simplify, we shall refer to a left A-algebra simply as an
A-algebra.

Henceforth, it will be assumed unless otherwise stated that the
H∗(M ;Fp)-algebra structure of H∗(E;Fp) is defined by composing π∗ ⊗ 1
with the multiplication on H∗(E;Fp) when a map π : E →M is given. We
say that a fibration F → E → M is homotopy equivalent to another fibra-
tion F → E′ →M with the same fibre and base if there exists a homotopy
commutative diagram

F E M

F E′ M

j // //

=

OO

j′ // //

φ

OO
=

OO

in which φ is a homotopy equivalence. Under this assumption, the induced
homomorphism φ∗ on mod p cohomology is an isomorphism of H∗(M ;Fp)-
algebras and enjoys the compatibility j ′∗ ◦φ∗ = j∗. By algebraically modify-
ing the case where F → E′ →M is the trivial fibration F in2−→M×F pr1−→M ,
we propose a definition of the cohomological splitting of a fibration.

Definition 1.1. A fibration F
j→ E →M admits a mod p cohomological

splitting if there exists an isomorphism of H∗(M ;Fp)-algebras

φ : H∗(E;Fp) ∼= H∗(M ;Fp)⊗H∗(F ;Fp)

such that in∗2 ◦ φ = j∗. We also say that such a fibration splits on mod p
cohomology . Moreover, if the isomorphism φ is a morphism over the Steen-
rod algebra A(p), that is, φ is compatible with the action of the Steenrod
operations, then we say that the fibration F → E → M admits an A(p)-
cohomological splitting.

In what follows, the fibrations we consider are the adjoint bundles G→
P ×adG→M in which the mod p cohomology of M is of finite type and the
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mod p cohomology ofBG is a polynomial algebra for a given prime number p.
Firstly, we investigate the algebra structure of the mod p cohomology of
P ×ad G without the action of the Steenrod operations, and obtain the
following theorem.

Theorem 1.2. If p = 0 or H∗(G;Z) is p-torsion free, then every adjoint
bundle G→ P ×ad G→M splits on mod p cohomology.

Theorem 1.2 asserts that mod p cohomological splittings of adjoint bun-
dles do not depend on the equivalence classes of G-bundles over M .

In [10], Kono and Kozima proved that ifG is a compact simply connected
Lie group, then the following three conditions are equivalent: (i) H∗(G;Z)
is p-torsion free; (ii) the adjoint action Ad : G × ΩG → ΩG defined by
Ad(g, l) = glg−1 and the second projection pr2 on ΩG induce the same
homomorphism on mod p cohomology; (iii) the bundle G → BLG → BG
splits on mod p cohomology. Later Iwase [7] showed that the equivalence
of the three conditions holds even if G is a simply connected finite loop
space and p 6= 2. Recently, Iwase and Kono [8] and Kuribayashi [12] have
proved, by different methods, that for finite loop spaces the assertion remains
true even for p = 2. Theorem 1.2 is a generalization of the assertion that
(i) implies (iii). We mention that Theorem 1.2 is proved without using the
result of Kono and Kozima. Of course, the converse does not hold in general.
In fact the adjoint bundle associated with the trivial G-bundle is also trivial
for any G.

One may ask for a criterion for an adjoint bundle with structure group G
to admit a mod p cohomological splitting in the case where H∗(G;Z) has
p-torsion. It is well known that if G is a compact simply connected Lie group,
then H∗(G;Z) is p-torsion free if and only if H∗(BG;Fp) is a polynomial
algebra generated by elements with even degrees. Therefore, we pursue the
problem for p = 2 assuming that G is a connected finite loop space and
H∗(BG;F2) is a polynomial algebra which admits generators of odd degrees.
In this case, we find an obstruction for P ×ad G → M to split on mod 2
cohomology in the Hochschild homology

HH∗(H∗(BG;F2),H∗(M ;F2))

= TorH∗(BG;F2)⊗H∗(BG;F2)(H
∗(BG;F2),H∗(M ;F2)).

More precisely, we establish the following theorem.

Theorem 1.3. Let P →M be a principal G-bundle with the classifying
map f : M → BG. Let D : H∗ → HH∗(H∗(BG;F2)) denote the module
derivation defined in [12]. Suppose that H∗(BG;F2) is a polynomial algebra.
Then the following three conditions are equivalent :

(i) the adjoint bundle P ×ad G→M splits on mod 2 cohomology ;
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(ii) there exists a normalized system S of generators satisfying the fol-
lowing condition C(D, f): the composition

{Sqdeg yi−1 yi}yi∈S ∩ (H∗ ·H∗) D−→ HH∗(H∗(BG;F2))
HH∗(1,f∗)
−−−−−→HH∗(H∗(BG;F2),H∗(M ;F2))

is the zero map, where H∗ =
⊕

i≥1H
i(BG;F2);

(iii) the condition C(D, f) holds for any normalized system S of gener-
ators.

See Section 2 for the definitions of the module derivation and of the
normalized system of generators of H∗(BG;F2).

Theorem 1.3 leads us to the following proposition.

Proposition 1.4. Let n be an integer greater than 1. For any SO(n)-
bundle P →M over a connected space M , the adjoint bundle P ×ad SO(n)
splits on mod 2 cohomology if and only if the map H∗(BSO(n);F2) →
H∗(M ;F2) induced by the classifying map of the bundle P → M is
trivial.

As mentioned above, if H∗(G;Z) has no p-torsion, then all G-adjoint
bundles admit mod p cohomological splittings without depending on the
classifying maps of the corresponding principal G-bundles. However, the
isomorphisms which give the natural splittings are not compatible with the
Steenrod operations in general; even the isomorphisms due to Kono and
Kozima [10] and Iwase [7] do not have this property (see Example 3.6 below).
The absence of the compatibility enables us to obtain a theorem concerning
the cohomology of the classifying space of the loop group.

Theorem 1.5. Let p be an odd prime and G a connected finite loop
space with

H∗(G;Q) ∼= Λ(x2m1−1, . . . , x2ml−1),

where deg x2mi−1 = 2mi − 1 and m1 ≤ . . . ≤ ml. Suppose that the least
integer of m1, . . . ,ml greater than 1 is prime to p, if any. Then the bundle
G → BLG → BG admits an A(p)-cohomological splitting if and only if
H∗(G;Fp) ∼= H∗(T ;Fp) as an algebra, where T denotes an appropriate torus.

As an immediate corollary, it follows that if G is simply connected, then
a mod p cohomological splitting is not realizable with any map from BLG
to BG×G nor from BG×G to BLG even though such an algebraic splitting
is possible. Observe that the condition on the rational cohomology of G in
the above theorem is satisfied when G is a connected Lie group. In this case,
we can take 2 as the least integer mentioned in Theorem 1.5.

Some explicit calculation of the Steenrod operations in the mod 2 coho-
mology of SU(n) and Sp(n) allows us to obtain the following theorem.
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Theorem 1.6. Let H be a compact simply connected simple Lie group.
Suppose that a given simply connected finite loop space G is a fake Lie
group of type H in the sense of Notbohm and Smith [13]. Then the bundle
G → BLG → BG admits an A(p)-cohomological splitting if and only if G
is a fake Lie group of type S3 and p = 2.

It is interesting to mention geometrical facts due to Iwase and Kono
[8] and Castellana and Kitchloo [3] which are related to Theorems 1.5 and
1.6. The first one relies on Hubbuck’s Torus Theorem. The second has been
deduced by applying the localization functor due to Farjoun.

Fact 1 ([8]). Let G be a connected finite loop space. There is a homotopy
equivalence φ : BLG → BG × G which satisfies φ ◦ j ' in2 if and only if
G ' T .

Fact 2 ([3]). For any compact simply connected simple Lie group G,
BLG is not homotopy equivalent to BG × G even after completion at any
prime p.

These facts describe the geometrical rigidity of the classifying space
BLG, which is not detected exactly at the cohomology algebra level. Our
geometrical result below follows from knowledge of the Steenrod operations
on H∗(BLG;Fp) which we gain in the proof of Theorem 1.5.

Corollary 1.7. If G is a simply connected finite loop space, then for
any non-negative integer n, there is no homotopy equivalence φ : ΣnBLG→
Σn(BG×G) such that φ ◦Σnj ' Σnin2.

By analyzing the action of the Steenrod operation ℘1 on the algebra
H∗(P ×ad SU(n);Fp) with the Wu formula due to Shay [14], we obtain an-
other geometrical result. It asserts that, under an appropriate assumption
on M and the integer n, the isomorphism type of an SU(n)-adjoint bun-
dle over M coincides with the homotopy type of the bundle in the sense
mentioned before Definition 1.1.

Theorem 1.8. Let M be a 4- or 5-dimensional CW complex for which
H4(M ;Z) = Z/p, where p is odd prime. Then the natural surjection

Z/p ≈ {SU(n)-adjoint bundles over M}/∼=
→ {SU(n)-adjoint bundles over M}/'

from the set of isomorphism classes of SU(n)-adjoint bundles over M to
that of homotopy equivalence classes of the bundles is bijective if n = p or
p− 1.

We now briefly describe the organization of this paper. In Section 2, we
recall the definition of a module derivation and the Koszul–Tate resolution
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for explicit calculation of an Eilenberg–Moore spectral sequence. In Sec-
tion 3, after proving Theorem 1.2, we study the Steenrod operations on the
mod p cohomology of P ×ad G using a module derivation. Section 4 is de-
voted to proving Theorems 1.3, 1.5 and 1.6 and Proposition 1.4. In Section 5,
we prove Theorem 1.8 after a comment on the classification of G-adjoint
bundles under rational homotopy equivalence in the sense of Halperin and
Thomas [6]. Our further expectations concerning module derivations are
described in the last section.

2. Preliminaries. In order to determine the algebra structure of
H∗(P ×ad G;Fp) over A(p), we shall calculate explicitly the Eilenberg–
Moore spectral sequence, which is constructed in Section 3. To this end,
we need the Koszul–Tate resolution and a morphism between this resolu-
tion and the bar resolution.

Lemma 2.1 ([17, Proposition 3.5], [11, Propositions 1.1, 1.5]). Let A be
a polynomial algebra over Fp, say A = Fp[y1, . . . , yn].

(i) There exists a projective resolution K• ϕ→ A → 0 of A as a left
A⊗ A-module such that

K• = A⊗ A⊗ Λ(y1, . . . , yl),

d(yi) = yi ⊗ 1 − 1 ⊗ yi and ϕ is the multiplication of A, where bideg yi =
(−1,deg yi).

(ii) Let B•(A ⊗ A,A) → A → 0 be the bar resolution of A as a left
A ⊗ A-module. Then there exists a morphism of resolutions Ψ ] = {ψ]−n} :
B•(A ⊗ A,A)→K• such that ψ]0(a ⊗ b ⊗ c) = a ⊗ bc and ψ]−1(1 ⊗ 1[yi ⊗ 1
− 1 ⊗ yi]1) = yi. Hence, for any graded commutative right A-algebra N ,
Ψ ] induces an isomorphism of algebras

Ψ : TorA⊗A(N,A)B
∼=→ TorA⊗A(N,A)KT

for which Ψ(1N [yi ⊗ 1 − 1 ⊗ yi]1A) = yi, where TorA⊗A(N,A)B and
TorA⊗A(N,A)KT denote the torsion products obtained from the bar reso-
lution and the Koszul–Tate resolution respectively , and the A ⊗ A-module
structure on N is defined by composing the multiplication of A with the
A-module structure of N .

The Steenrod operations in the Eilenberg–Moore spectral sequence can
be expressed in terms of the bar complex which computes the E2-term (see
[16]). Therefore Lemma 2.1 plays a crucial role in our computation using
the Eilenberg–Moore spectral sequence.

Following [12], we recall the general definition of a module derivation.

Definition 2.2. Let A be a graded commutative algebra over Fp and L
a left A-module. A module derivation of A with values in L is an Fp-linear
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map D : A→ L of degree −1 such that

D(ab) = (−1)(deg a+1) deg bbD(a) + (−1)deg aaD(b)

for any a and b in A.

Observe that module derivations satisfy the uniqueness condition in the
sense that, for module derivations D1 and D2 from A to L, if D1(xi) =
D2(xi) for algebra generators xi of A, then D1 = D2 on A.

Let N be a graded commutative A-bialgebra over Fp. We now define an
Fp-linear map

DN : A→ HH(A,N) = TorA⊗A(N,A) = H(N ⊗A⊗A B•(A⊗ A,A), 1⊗ ∂)

by x 7→ 1N [x ⊗ 1 − 1 ⊗ x]1A. An explicit calculation of the differential
of the bar complex shows that DN is a module derivation with values in
the Hochschild homology HH(A,N) ([12, Proposition 3.2]). To simplify, we
denote the module derivation DN by D if N = A. In particular, putting A =
H∗(BG;F2), we obtain the module derivation mentioned in Theorem 1.3.

Let A be a polynomial algebra Fp[y1, . . . , yl]. Observe that generators
with odd degrees are allowed in A if p = 2. By Lemma 2.1(ii), we can
identify the Hochschild homology of A given by the bar complex with
TorA⊗A(A,A)KT. Thus the module derivation D is regarded as the map

D : A = Fp[y1, . . . , yl]→ HH(A,A) = Fp[y1, . . . , yl]⊗ Λ(y1, . . . , yl)

defined by yi 7→ yi.
We now introduce the notion a normalized system of generators of

H∗(BG;F2) and show the existence of such systems. Let A be a polyno-
mial algebra over the Steenrod algebra A(2) with finitely many generators.

Definition 2.3. A set S = {yi}1≤i≤l of indecomposable elements of A
is said to be a normalized system of generators if:

(1) A ∼= F2[y1, . . . , yl] as an algebra,
(2) if Sqdeg yi−1 yi is an indecomposable element, then Sqdeg yi−1 yi ∈ S.

For the rest of this paper, we denote by Sq∗ : A → A the operation
defined by Sq∗ x = Sqdeg x−1 x. Notice that the set S ∪{0} is not necessarily
invariant under the action of Sq∗.

Lemma 2.4. Every polynomial algebra A over A(2) has a normalized
system of generators.

Proof. We argue by induction on the degree of A. Let k be the least
degree such that Ak 6= 0 and k > 0. We begin the induction by letting
Sk be a basis of (QA)k. Suppose that there exists a set Sl consisting of
indecomposable elements of A such that conditions (1) and (2) are satisfied
below degree l. Then we can write

(QA)(l+2)/2 = 〈yi〉i∈J0 ⊕ . . .⊕ 〈yi〉i∈Js .
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Here 〈yi〉i∈Jr denotes the vector space spanned by the elements yi for i ∈ Jr
such that

yi = (Sq∗ ◦ . . . ◦ Sq∗)︸ ︷︷ ︸
r times

yk =: (Sq∗)ryk

for some yk ∈ Sl and yi is not in the image of the (r + 1)-fold composition
(Sq∗)r+1. In what follows, if yi = (Sq∗)sy for some y ∈ Sl, then we denote
by (Sq∗)−s0yi the element (Sq∗)s−s0y.

Choose a subset J ′s of Js so that Sq∗ yi (i ∈ J ′s) are linearly independent
in the vector space 〈Sq∗ yi〉i∈Js . For any j ∈ Js\J ′s, we can write Sq∗ yj =∑

i∈J ′s αi Sq∗ yi for some αi ∈ F2. Replace (Sq∗)−s0yj with

(Sq∗)−s0yj −
∑

i∈J ′s
αi(Sq∗)−s0yi

for any s0 (0 ≤ s0 ≤ s). After the replacement, it is readily seen that
(Sq∗)yj is decomposable for any j ∈ Js\J ′s and that the new set Sl also
satisfies (1) and (2) below degree l. By extending {Sq∗ yi}i∈J ′s , we choose a
basis of 〈Sq∗ yi〉i∈Js−1∪J ′s , say {Sq∗ yi}i∈J ′s−1

∪ {Sq∗ yi}i∈J ′s . The same argu-
ment applies to replacing (Sq∗)−tyj for j ∈ Js−1\J ′s−1 and 0 ≤ t ≤ s − 1.
Thus we obtain a new set Sl such that (Sq∗)yj is decomposable for any
j ∈ Js−1\J ′s−1 and satisfies (1) and (2) below degree l. In consequence, by
choosing appropriate elements yi ∈ (QA)q+1 (i ∈ I0), we can write

(QA)l+1 = 〈yi〉i∈I0 ⊕ 〈Sq∗ yi〉i∈J ′0 ⊕ . . .⊕ 〈Sq∗ yi〉i∈J ′s .
Put Sl+1 = Sl ∪ {yi}i∈I0 ∪ {Sq∗ yi}i∈J ′0∪...∪J ′s . Then Sl+1 satisfies (1) and (2)
below degree l + 1.

3. Proof of Theorem 1.2 and the A(p)-action on the cohomology
of P×adG. In the proof of Theorem 1.2, we use an Eilenberg–Moore spectral
sequence converging to H∗(P ×ad G;Fp). In order to obtain the spectral
sequence in the usual manner, we first construct an appropriate homotopy
fibre square.

Let H be a closed subgroup of G2 = G×G which acts from the left on
G by (k, h) · g = kgh−1. Let δG denote the closed subgroup of G2 defined
by δG = {(g, g) ∈ G2 | g ∈ G}. In [4, Section 3], Eschenburg has introduced
a bundle map

(3.1)

EG2 ×H G EG2/δG

BH BG2
��

//

p′

��% //

which is a homeomorphism on the fibres. Here % : BH → BG2 is induced
by the inclusion H → G2.
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The diagonal homomorphism ∆ : G → G × G induces the maps E∆ :
EG → EG2 and η = B∆ : BG → EG2/δG which are homotopy equiva-
lences. Moreover, since there exists a morphism of fibrations:

G G

EG×ad G EG2 ×δG G

BG EG2/δG

��

= //

��

��

E∆×1//

��
η //

it follows that the spaces EG×adG and EG2×δGG are of the same homotopy
type. By taking H = δG and by combining the above fibre square with (3.1),
we obtain a fibre square

(3.2)

EG×ad G EG2/δG

BG BG2
��

//

p′

��
B∆ //

Let f : M → BG be the classifying map of a given G-bundle P →M . Then
the map f fits in the diagram of fibre squares

(3.3)

P ×ad G EG×ad G EG2/δG

M BG BG2
��

//

��

//

p′

��f // B∆ //

Moreover we have a commutative diagram

(3.4)

EG2/δG BG BGI

BG2 EG2/δG× EG2/δG BG×BG

p′

��

∆̃

�
�

�
�

�
�

�
�

�
�

�
� ((

ηoo ' //

∆

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� ))
(ε0,ε1)

��

ξ
' //

η×η
'oo

in which εi(γ) = γ(i) for γ ∈ BGI , the map ξ is a homotopy equivalence
defined by ξ((x1, y1)t ⊕ . . .) = ((x1, x1)t ⊕ . . . , (y1, y1)t ⊕ . . .) and ∆̃ = ξp′.
Combining the diagrams (3.3) and (3.4), we get a morphism of homotopy
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fibre squares

(3.5)

LBG BG

P ×ad G

BG BG×BG

M

//

��

∆

��

��

f̃

ff�
�

�
�

�
�

�
� �

�
�

�
�

�
�

�
�

� 66

∆ //

f

ff�
�

�
�

�
�

�
�

� ∆◦f
�

�
�

�
�

�
�

�
�

�
� 66

where LBG denotes the space of free loops on BG. Observe that ξ◦B∆◦f =
(η× η) ◦ (∆ ◦ f). The right front square enables us to obtain the Eilenberg–
Moore spectral sequence {E∗,∗r , dr} converging to H∗(P ×ad G;Fp) with

E∗,∗2
∼= Tor∗,∗H∗(BG;Fp)⊗H∗(BG;Fp)(H

∗(M ;Fp),H∗(BG;Fp))

as an algebra. Let F ∗H∗ denote the filtration of H∗(P ×ad G;Fp) which
is given by the Eilenberg–Moore spectral sequence {E∗,∗r , dr} and let q :
F−1H∗→E−1,∗

0 =F−1H∗/F 0H∗ be the projection, unless otherwise stated.

Proof of Theorem 1.2. Suppose that H∗(G;Z) is p-torsion free. Then
H∗(BG;Fp) is a polynomial algebra with generators in even degrees, say
H∗(BG;Fp) ∼= Fp[y1, . . . , yl]. By using the Koszul–Tate resolution K• ϕ→
H∗(BG;Fp) → 0 of H∗(BG;Fp) as an H∗(BG;Fp) ⊗ H∗(BG;Fp)-module
(Lemma 2.1(i)), we see that, as an algebra,

E∗,∗2
∼= H(H∗(M ;Fp)⊗H∗(BG;Fp)⊗H∗(BG;Fp) K•; 1⊗ d)
∼= H(H∗(M ;Fp)⊗ Λ(y1, . . . , yl); d(yi) = (∆f)∗(yi ⊗ 1− 1⊗ yi)),

where bideg x = (0,deg x) for x ∈ H∗(M ;Fp) and bideg yi = (−1,deg yi).
Since the differential d of this complex is trivial, it follows that E∗,∗2

∼=
H∗(M ;Fp) ⊗ Λ(y1, . . . , yl) and E∗,∗2

∼= E∗,∗∞ for dimensional reasons. It is
immediate that, for p 6= 2, there is no extension problem in the E∗,∗∞ -term.
Thus we have an isomorphism of algebras H∗(P ×ad G;Fp) ∼= H∗(M ;Fp)⊗
Λ(y1, . . . , yl).

Observe that the elements yi (i = 1, . . . , l) in H∗(P ×ad G;Fp) can be
chosen so that s∗(yi) = 0, where s : M → P ×ad G is a section of the
projection π : P ×ad G → M . In the case p = 2, we must solve extension
problems that whether y2

i = 0 or not. Since y2
i = 0 in E−2,∗

∞ , it follows that y2
i

belongs to F−1H∗. Moreover, using the Steenrod operation in the spectral
sequence [16], we see that y2

i = Sqdeg y1−1 yi = Sqdeg y1−1(1[yi⊗1−1⊗yi]1) =
1[Sqdeg y1−1 yi ⊗ 1− 1⊗ Sqdeg y1−1 yi]1 = 0 in F−1. Thus y2

i = π∗Q for some
Q ∈ H∗(M ;Fp). It is now readily seen that 0 = s∗(y2

i ) = Q.
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In order to define an isomorphism which gives a mod p cohomological
splitting, consider the morphism of homotopy fibre squares

(3.6)

G BG

P ×ad G

∗ BG×BG

M

��

j
�

�
�

�
�

�
� &&

//

∆

��

��

�
�

� �
�

�
�

�
�

� 66

�
�

�
�

�
�

�
� &&

//

∆◦f
�

�
�

�
�

�
�

�
�

� 66

Let {Ê∗,∗r , d̂r} be the Eilenberg–Moore spectral sequence for the back fibre
square in the above diagram. By making use of the Koszul–Tate resolution,
we see that, as algebras,

Ê∗,∗2
∼= TorH∗(BG;Fp)⊗H∗(BG;Fp)(Fp,H∗(BG;Fp))
∼= H(Fp ⊗H∗(BG;Fp)⊗H∗(BG;Fp) K•, 1⊗ d) ∼= Λ(ỹ1, . . . , ỹl).

For dimensional reasons, it follows that Ê∗,∗2
∼= Ê∗,∗∞ ∼= Ê∗,∗0 as bigraded

algebras. Comparing {E∗,∗r , dr} and {Ê∗,∗r , d̂r} with the morphism of spec-
tral sequences induced by the morphism of the fibre squares, we obtain a
morphism of bigraded algebras E0(j) : E∗,∗0 → Ê∗,∗0 = Λ(ỹ1, . . . , ỹl) such
that E0(j)(yi) = ỹi and the restriction of E0(j) to E0,∗

0 is the trivial map.
Define an isomorphism φ : H∗(P ×ad G;Fp) → H∗(M ;Fp) ⊗ H∗(G;Fp) of
H∗(M ;Fp)-algebras by φ(yi) = ỹi. Since H∗(G;Fp) is regarded as the total
complex Total Ê∗,∗0 , it follows that in∗2 ◦ φ = j∗.

As mentioned in the introduction, the natural isomorphism ofH∗(M;Fp)-
algebras in Theorem 1.2 is not compatible with the Steenrod operations in
general. In the rest of this section, we show that this follows from some ex-
plicit calculation of the Steenrod operations on H∗(P ×ad G;Fp) and that
the module derivation DH∗(M ;Fp) : H∗(BG;Fp) → HH∗(H∗(BG;Fp),
H∗(M ;Fp)) plays an important role in the calculation. We remark that the
H∗(BG;Fp)-bimodule structure of H∗(M ;Fp) is defined naturally via the
homomorphism f∗ and multiplication on H∗(M ;Fp), where f : M → BG is
the classifying map of the given G-bundle P →M .

We consider the A(p)-algebra structure of H∗(P ×ad G;Fp) assuming
that H∗(BG;Fp) is a polynomial algebra Fp[y1, . . . , yl]. As for the case p = 2,
the polynomial algebra is not necessarily evenly generated.

Consider the Eilenberg–Moore spectral sequence {E∗,∗r , dr} converging
to H∗(P ×ad G;F2). As in the proof of Theorem 1.2, the spectral sequence
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collapses at the E2-term and hence

H∗(P ×ad G;F2) ∼= H∗(M ;F2)⊗∆(y1, . . . , yl)

as an H∗(M ;F2)-algebra, where ∆(y1, . . . , yl) denotes the algebra gener-
ated by a 2-simple system of generators y1, . . . , yl. In the case p 6= 2, we
recall the H∗(M ;Fp)-algebra structure of H∗(P ×ad G;Fp) from the proof
of Theorem 1.2:

H∗(P ×ad G;Fp) ∼= H∗(M ;Fp)⊗ Λ(y1, . . . , yl).

Theorem 3.1 below asserts that the action of the Steenrod operations
on H∗(P ×ad G;Fp) is determined explicitly by the actions on H∗(BG;Fp)
and H∗(M ;Fp) via the induced map f ∗ : H∗(BG;Fp) → H∗(M ;Fp) and a
module derivation with values in H∗(P ×ad G;Fp).

Theorem 3.1. There exists a module derivation

D′f : H∗(BG;Fp)→ H∗−1(P×ad G;Fp)

which is compatible with the action of the Steenrod operations. In particular ,
Sqi yj = D′f Sqi yj and ℘iyj = D′f℘

iyj , β℘iyj = 0 if p 6= 2.

In what follows, we denote by D′ the module derivation D′id : H∗(BG;Fp)
→ H∗−1(BLG;Fp).

Let X be a simply connected space and LX the free loop space. In
order to prove Theorem 3.1, we first consider the Eilenberg–Moore spectral
sequence {Er, dr} of the homotopy fibre square

(3.7)

LX X

X X ×X
π

��

//

∆
��

∆ //

where ∆ denotes the diagonal map and π : LX → X is the projection de-
fined by π(γ) = γ(0) for γ ∈ LX. Let r : E−1,∗

2 → E−1,∗
∞ be the composition

of the projections pr : E−1,∗
r → E−1,∗

r+1 and let q : F−1H∗(LX;Fp) → E−1,∗
∞

denote the projection defined by using the filtration {F−iH∗(LX;Fp)} of
H∗(LX;Fp). The following theorem enables us to realize the module deriva-
tion D : H∗(X;Fp) → HH(H∗(X;Fp),H∗(X;Fp)), which is defined al-
gebraically in Section 2, by means of a continuous map via the spectral
sequence {Er, dr}.

Theorem 3.2 ([12, Propositions 3.3 and 3.4]). Let ev : S1 × LX → X
be the evaluation map and

�
S1 : H∗(S1 × LX;Fp)→ H∗−1(LX;Fp) be inte-

gration along S1.

(i) The composition DX =
�
S1 ◦ ev∗ is a module derivation with values

in F−1H∗(LX;Fp).
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(ii) The composition r ◦ D : H∗(X;Fp) → HH−1,∗(A,A) ∼= E−1,∗
2 →

E−1,∗
∞ coincides with q ◦DX : H∗(X;Fp)→ F−1H∗−1(LX;Fp)→ E−1,∗

∞ .

We also need the following lemma to prove Theorem 3.1.

Lemma 3.3. Let sX be a section of the projection π : LX → X. Then
s∗X ◦DX = 0.

Proof. For any y ∈ H l(X;Z/p), we can choose a map X → K =
K(Z/p; l) which represents y. It is immediate that s∗KDK = 0 in H l(K;Fp)
for dimensional reasons. From the naturality of the module derivation DX ,
we have the result.

Proof of Theorem 3.1. Let s : M → P×adG be a section of the projection
P ×ad G → M . We can choose yi ∈ H∗(P ×ad G;Fp) (i = 1, . . . , l) so
that s∗(yi) = 0 and yi ∈ F−1H∗. We define a module derivation D′f :
H∗(BG;Fp)→ F−1H∗ by D′f (yi) = yi. Apply the Eilenberg–Moore spectral
sequence to the diagram (3.5). Then the naturality of the spectral sequences
implies that f̃∗D′id = D′f . Here we identify the space EG ×ad G with the
free loop space LBG.

To complete the proof, it suffices to show that D′id is compatible with the
action of the Steenrod operations. Thanks to Theorem 3.2, D′id = qDBG as
a map from H∗(BG;Fp) to E−1,∗

∞ . Thus it is readily seen that, for any y ∈
H∗(BG;Fp), there exists Q ∈ H∗−1(BG;Fp) such that D′idy = DBGy+π∗Q.
By Lemma 3.3, we have 0 = 0 + s∗BGπ

∗Q and hence Q = 0. It is immediate
that the map DBG is compatible with the action of the Steenrod operations.
This completes the proof.

Remark 3.4. Under the notation in the proof of Theorem 3.1, we have
y2
j = Sqdeg yj−1 yj = D′f Sqdeg yi−1 yj in H∗(P ×ad G;F2). This equality en-

ables us to solve extension problems in the E∞-term. In consequence we
have

H∗(P ×ad G;F2)
∼= H∗(M ;F2)⊗ F2[y1, . . . , yl]/(y

2
i + D′f Sqdeg yi−1 yi; i = 1, . . . , l)

as an H∗(M ;F2)-algebra, where deg yi = deg yi − 1.

Remark 3.5. Let X be a simply connected space whose mod p coho-
mology is a polynomial algebra. Consider the Eilenberg–Moore spectral se-
quence {Ẽr, d̃r} for the homotopy fibre square (3.7). Then the same ar-
gument as in the proof of Theorem 1.2 yields the algebra structure of
H∗(LX;Fp). Moreover, by applying Theorem 3.2, we can construct a mod-
ule derivation D : H∗(X;Fp) → H∗(LX;Fp) which is compatible with the
Steenrod operations, as in Theorem 3.1. In consequence the A(p)-algebra
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structure of H∗(LX;Fp) can be determined from that of H∗(X;Fp) via the
module derivation D (see Example 3.6 below).

In the case p = 2, Bökstedt and Ottosen [1] have also detrermined such
an algebra structure over A(2). We also mention that, by applying Theorem
3.1, one can recover the result of [3, Theorem 5.1], in which the mod 2
cohomology algebra over A(2) of BLG2 is determined explicitly, with a
more systematic manner. Here G2 is the compact simply connected simple
exceptional Lie group of rank 2.

Example 3.6. Let ci be the mod 3 reduction of the ith Chern class
ci ∈ H2i(BU(2);Z). Since ℘1c2 = c2

1c2 + c2
2 in H(BU(2);F3), we see that, as

an algebra over the Steenrod algebra A(3),

H∗(BLU(2);F3) ∼= F3[c1, c2]⊗ Λ(c1, c2),

where deg ci = 2i− 1 and ℘1c2 = 2c1c2c1 + c2
1c2 + 2c2c2.

We now prepare a lemma which is needed in proving Theorems 1.5
and 1.6.

Lemma 3.7. Let p be an odd prime. Under the notation used in the proof
of Theorem 1.2, for any ỹi ∈ H∗(G;Fp), ℘sỹi = 0 if ℘syi is decomposable in
H∗(BG;Fp).

Proof. Let {Êr, d̂r} be the Eilenberg–Moore spectral sequence, which is
mentioned in the proof of Theorem 1.2, converging to H∗(G;Fp). We regard
the E2-term Ê2 as the torsion product TorA⊗A(Fp, A) which is obtained from
the bar complex (Fp ⊗A⊗A B•(A⊗A,A), d), where A denotes H∗(BG;Fp).
As in the proof of Theorem 1.2, we have ℘sỹi = ℘s[yi ⊗ 1 − 1 ⊗ yi] =
[℘syi ⊗ 1 − 1 ⊗ ℘syi] in Total Ê∗,∗0 = H∗(G;Fp). If z is decomposable in A,
then [z ⊗ 1 − 1 ⊗ z] = 0 in Ê∗,∗2 . In order to verify this, it suffices to show
that [xy ⊗ 1− 1⊗ xy] = 0 in Ê∗,∗2 for any x, y in A. We choose an element

u = [y ⊗ 1|x⊗ 1− 1⊗ x]− (−1)(i+1)(j+1)[1⊗ x|y ⊗ 1− 1⊗ y]

from Fp ⊗A⊗A B2(A ⊗ A,A) = Fp ⊗ A⊗2 ⊗ A⊗2 ⊗ A, where deg x = i and
deg y = j. Then we see that

d(u) = (−1)j+1[yx⊗ 1− y ⊗ x]

− (−1)(i+1)(j+1) {(−1)i+1[(−1)ijy ⊗ x− 1⊗ xy]
}

= (−1)j+1+ij[xy ⊗ 1] + (−1)j(i+1)[1⊗ xy]

= −(−1)j(i+1)[xy ⊗ 1− 1⊗ xy].

Thus the result follows from the fact that Ê∗,∗2
∼= Ê∗,∗∞ ∼= Ê∗,∗0 as A(p)-

modules and Ê0,∗
0 = 0.
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Remark 3.8. Suppose that H∗(BG;F2) is a polynomial algebra. Then
the above argument tells us that the A(2)-module structure on Ê∗,∗∞ = Ê∗,∗0
is determined exactly by the formula Sqi ỹj = [Sqi yj ⊗ 1− 1⊗ Sqi yj ]. More
precisely, in H∗(G;F2), we see that Sqi ỹj = ỹl if Sqi yj = yl + decom and
Sqi ỹj = 0 if Sqi yj is decomposable.

4. Proofs of Theorems 1.3, 1.5, 1.6 and Proposition 1.4

Proof of Theorem 1.3. It is immediate to show that (iii) implies (ii).
Suppose that condition (ii) holds. It follows from the definition of the module
derivation D′f that the map qD′f coincides with the composition map

(f∗ ⊗ 1)D : F2[y1, . . . , yl]
D−→ F2[y1, . . . , yl]⊗ Λ(y1, . . . , yl)

f∗⊗1−→ H∗(M ;F2)⊗ Λ(y1, . . . , yl)

= HH∗(H∗(BG;F2),H∗(M ;F2)) ∼= E∗,∗2
∼= E∗,∗∞ .

Observe that the restriction of the map (f ∗ ⊗ 1)D to the set
{Sqdeg yi−1yi}yi∈S ∩ (H∗ · H∗) is the composition map in the condition
C(D, f).

For any yj ∈ S\(Im Sq∗ ∩S), we define an integer hj to be the height of
the element yj ; that is, (Sq∗)hjyj = 0 and (Sq∗)hj−1yj 6= 0 modulo decom-
posable elements. From Remark 3.8 and Definition 2.3(2), we see that

H∗(G;F2) ∼=
⊗

yi∈S\(Im Sq∗ ∩S)

F2[ỹi]/(ỹ2hi
i ) =: A2

as an algebra. Since the map (Im D′f ) ⊂ F−1H∗
q→ E−1,∗

0 is a monomor-
phism, it follows from the condition C(D, f) that y2

i + D′f Sqdeg yi−1 yi = yi
2

if Sqdeg yi−1 yi is decomposable. Thus we have an isomorphism of H∗(M ;F2)-
algebras φ : H∗(P×adG;F2)→ A2⊗H∗(M ;F2) defined by φ(yi⊗1) = ỹi⊗1.
Moreover, by considering the morphism of spectral sequences induced by
maps in the left face of the diagram (3.6), we get a commutative diagram

H∗(P ×ad G;F2) A2 ⊗H∗(M ;F2)

H∗(G;F2) A2

φ
∼=

//

j∗

��
α

��∼= //

where α(ỹi ⊗ 1) = ỹi and α(ỹi ⊗ m) = 0 if degm > 0. This allows us to
conclude that (ii) implies (i).

We now prove that (i) implies (iii). Suppose that there exists a nor-
malized system S of generators such that the condition C(D, f) does not
hold. Then there is an element yi in S with the lowest degree such that
Sqdeg yi−1 yi ∈ H ·H and D′f Sqdeg yi−1 yi 6= 0. We can write D′f Sqdeg yi−1 yi =
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∑
j αjyj 6= 0, where αj ∈ H∗(M ;F2). It follows from the definition of the

cohomological splitting that there exists an isomorphism

φ : H∗(P ×ad G;F2)→ H∗(G;F2)⊗H∗(M ;F2) ∼= A2 ⊗H∗(M ;F2)

such that φ(yi) = ỹi + βi, where βi is an appropriate element of the ideal in
H∗(G;F2)⊗H∗(M ;F2) generated byH∗(M;F2)≥1, sayβi=

∑
uikỹ

s1ik
1 . . . ỹslikl ,

where uik ∈ H∗(M ;F2)≥1. From the algebra structure of H∗(P ×ad G;F2)
(see Remark 3.4), we have the equality y2

i +
∑

j αjyj = 0. Therefore, in
A2 ⊗H∗(M ;F2),

0 = φ
(
y2
i +

∑

j

αjyj

)
= ỹ2

i + β2
i +

∑

j

αj(ỹj + βj)

=
∑

j

αj ỹj +
(∑

uikỹ
s1ik
1 . . . ỹslikl

)2
+
∑

j

αj

(∑
ujkỹ

s1jk
1 . . . ỹ

sljk
l

)
.

Observe that ỹ2
i = 0 in A2 as Sqdeg yi−1 yi is decomposable (Remark 3.8).

Let αs be of the lowest degree among the non-zero elements α1, . . . , αl.
Looking at the element αsỹs, we see that the above equality contradicts the
set {ỹs11 . . . ỹsll : si ≤ 2hi} being an H∗(M ;F2)-basis of A2 ⊗H∗(M ;F2).

In order to prove Proposition 1.4, we prepare a lemma, which also plays
an important role in the proof of Theorem 1.6.

Lemma 4.1. Let G(α,m) denote the special orthogonal group SO(m),
the special unitary group SU(m) or the symplectic group Sp(m) according
as α = 1, 2 or 4. Let y(1)

i , y(2)
i and y

(4)
i be the ith Stiefel–Whitney class,

Chern class and symplectic Pontryagin class, respectively. Then

Sqα(i−1)(y(α)
i + decom) ≡ Sqα(i−1) y

(α)
i

modulo the ideal (H∗ ·H∗ ·H∗) of H∗(BG(α,m);F2), where

H∗ =
⊕

i≥1

H i(BG(α,m);F2).

Proof. We prove that

Sqi−1
(
wi +

∑

1≤k≤(i−1)/2

akwi−kwk +W
)
≡ Sqi−1wi

modulo the ideal I = (H∗ ·H∗ ·H∗), where W is some element in I and wi
denotes the ith Stiefel–Whitney class. To this end, it suffices to show that
Sqi−1(wi−kwk) ∈ I. This follows from the Cartan formula:

Sqi−1(wi−kwk) =
∑

l+m=i−1

Sql wi−k Sqmwk

= Sqi−k wi−k Sqk−1wk + Sqi−k−1wi−k Sqk wk ∈ I.
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The same argument works for α = 2 and 4. The details are left to the
reader.

Proof of Proposition 1.4. We choose a classifying map f of a given
SO(n)-bundle. Theorem 1.3 implies that the adjoint bundle splits on mod 2
cohomology if f∗ is trivial.

We prove the “only if” part. It follows from the Wu formula that Sqi−1wi
= w2i−1 + decom, where wi is the ith Stiefel–Whitney class, 2i− 1 ≤ n and
decom denotes an appropriate decomposable element in H∗(BSO(n);F2).
This implies that the set {y(i,s)}(i,s)∈B defined by

y(i,−1) = wi, y(i,s) = Sq2s(i−1) . . .Sq2(i−1) Sq(i−1)wi (s ≥ 0),

B = {(i, s) | i is even, s ≥ −1, 2s+1(i− 1) + 1 ≤ n},
is a normalized system of generators of H∗(BSO(n);F2). Observe that
y(i,s) = w2s+1(i−1)+1 + decom. We shall write ε(2s+1(i− 1) + 1) for the pair
(i, s) corresponding to the integer 2s+1(i− 1) + 1.

Assume that f∗ is not trivial. If n is odd, let j be the integer such that
2j − 1 = n+ 2. From the Wu formula and Lemma 4.1, we conclude that

Sqj−1 yε(j) = Sqj−1wj + β

= wnw2 + wn−1w3 + . . .+ wjwj−1 + β

= yε(n)yε(2) + yε(n−1)yε(3) + . . .+ yε(j)yε(j−1) + β′,

where β and β′ are in the ideal (H∗ · H∗ · H∗). Since there exists yε(l)
such that f∗(yε(l)) 6= 0 and f∗(yε(j)) = 0 for any j < l, it follows that
f∗ ⊗ 1(yε(l) ⊗ yε(2j−1−l)) 6= 0 in Λ(y(i,s); (i, s) ∈ B)2j−1−l−1 ⊗ H l(M ;F2)
and hence f∗⊗1◦D(Sqj−1 yε(j)) 6= 0 in HH∗(H∗(BSO(n);F2),H∗(M ;F2)).
Theorem 1.3 implies that the associated bundle does not split on mod 2
cohomology.

If n is even, let j and k be the integers such that 2j − 1 = n + 1 and
2k − 1 = n+ 3. Using the Wu formula, we obtain the equalities

Sqj−1wj = wn−1w2 + wn−2w3 + . . .+ wiwi−1,

Sqk−1wk = wnw3 + wn−1w4 + . . .+ wkwk−1.

The same argument as above shows that f ∗ ⊗ 1 ◦D(Sql−1 yε(l)) 6= 0 (l = j
or k) in HH∗(H∗(BSO(n);F2),H∗(M ;F2)). This completes the proof.

Combining Proposition 1.4 with Theorem 3.1 and Remark 3.4, we can
easily establish the following proposition.

Proposition 4.2. The adjoint bundle P ×ad SO(n) → M splits on
mod 2 cohomology if and only if the bundle admits an A(2)-cohomological
splitting.
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We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. It is not hard to prove the “if” part by applying
Theorem 3.1 because the Steenrod operations act trivially on the generators
of H∗(BG;Fp) except for ℘1.

Assume that the bundle G
j→BLG→BG admits an A(p)-cohomological

splitting and that H∗(G;Fp) is not isomorphic to the mod p cohomology of
any torus. From [2, Theorem 1] and [9, Theorem 1.1], we see that H∗(G;Fp)
is not cocommutative if H∗(G;Z) has p-torsion. Consider the cobar type
Eilenberg–Moore spectral sequence {Er, dr} converging to H∗(BLG;Fp)
with

E∗,∗2
∼= CotorH∗(G;Fp)(Fp,H∗(G;Fp)),

where the H∗(G;Fp)-comodule structure of H∗(G;Fp) is induced by the ad-
joint action on G. Then the fact that H∗(G;Fp) is not cocommutative im-
plies that the edge homomorphism of the spectral sequence, which coincides
with j∗, is not surjective (for details of this argument, see [12, Remark 1.6]).
It follows thatH∗(G;Z) actually has no p-torsion. Thus the rational cohomo-
logical data enables us to deduce that H∗(G;Fp) ∼= Λ(x2m1−1, . . . , x2ml−1)
and H∗(BG;Fp) ∼= Fp[y2m1, . . . , y2ml

] as algebras.
By assumption, there is the least integer ms of m1, . . . ,ml such that

(ms, p) = 1; that is, 1 = m1 = . . . = ms−1 < ms ≤ . . . ≤ ml. From the Adem
relation (m + 1)℘m+1 = ℘1℘m, we see that ℘1℘ms−1y2ms = ms℘

msy2ms =
msy

p
2ms
6= 0 and hence ℘ms−1y2ms 6= 0. Suppose that ℘ms−1y2ms is inde-

composable. Let y2mj be an indecomposable factor of the summation repre-
senting ℘ms−1y2ms . Then the integer mj = p(ms−1)+1 is prime to p. Thus
we can find an integer mk (≥ ms) prime to p such that ℘mk−1y2mk

is a non-
zero decomposable element. Without loss of generality, we can assume that
℘ms−1y2ms = y2mj1

, ℘mj1−1y2mj1
= y2mj2

, . . . , and ℘mjt−1y2mjt
= y2mk

.
Observe that

y2mk
= ℘p

l−1(ms−1) . . . ℘p(ms−1)℘ms−1y2ms

for some l and mk = (ms − 1)pl + 1. Since ℘1℘mk−1y2mk
= mk℘

mky2mk
=

mky
p
2mk

, it follows that, in a term of ℘mk−1y2mk
, there exists a factor y2ma

whose power is prime to p such that ℘1y2ma = αyj2mk
for some j and non-zero

integer α. Thus we can write

℘mk−1y2mk
= P1y

u1
2ma

+ P2y
u2
2ma

+ . . .+ Pqy
uq
2ma

+ Pq+1,

where Pj denotes an appropriate non-zero polynomial which does not con-
tain y2ma as a factor and (uj , p) = 1 for some j and u1 > . . . > uq. We
assume that ub is the largest integer of u1, . . . , uq which is prime to p. Let

φ : H∗(BLG;Fp)
∼=−→ H∗(BG;Fp) ⊗ H∗(G;Fp) be the isomorphism which

gives an A(p)-cohomological splitting. Under the same notation as in the
proof of Theorem 1.2, we have a commutative diagram of A(p)-algebras:
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H∗(BLG;Fp) ∼= Fp[y2m1, . . . , y2ml
]⊗ Λ(y2m1

, . . . , y2ml
)

Λ(ỹ2m1 , . . . , ỹ2ml
)

H∗(BG×G;Fp) ∼= Fp[y2m1, . . . , y2ml
]⊗ Λ(ỹ2m1 , . . . , ỹ2ml

)

φ

��

j∗

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� ,,

in∗2
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� 22

For dimensional reasons, we have φ(y2mi
) = ỹ2mi for 1 ≤ i ≤ s − 1. Since

deg φ(y2ms
) is odd, it follows that φ(y2ms

) = ỹ2ms + P , where P is a poly-
nomial containing at least one element ỹi as a factor in each term. Thus we
see that

φ(y2m1
. . . y2ms−1

y2ms
) = ỹ2m1 . . . ỹ2ms−1 ỹ2ms .

Apply the Steenrod operation ℘mk−1 . . . ℘ms−1 to the right hand side. Then
it follows from Lemma 3.7 that

℘mk−1 . . . ℘ms−1ỹ2m1 . . . ỹ2ms−1 ỹ2ms = 0.

Observe that ℘nỹ2mi = 0 for 1 ≤ i ≤ s − 1 if n 6= 0. On the other hand,
from Theorem 3.1, we have

℘p
l−1(ms−1) . . . ℘p(ms−1)℘ms−1y2m1

. . . y2ms−1
y2ms

= ℘mk−1 . . . ℘ms−1y2m1
. . . y2ms−1

y2ms
= y2m1

. . . y2ms−1
℘mk−1y2mk

= y2m1
. . . y2ms−1

D′
( q+1∑

j=1

Pjy
uj
2ma

)
= y2m1

. . . y2ms−1

( q+1∑

j=1

(D′Pj)y
uj
2ma

)

+ y2m1
. . . y2ms−1

Pb · ub · yub−1
2ma

y2ma
+ . . .

+ y2m1
. . . y2ms−1

Pq · uq · yuq−1
2ma

y2ma
.

Looking at the term y2m1
. . . y2ms−1

Pb · ub · yub−1
2ma

y2ma
, we see that

℘mk−1 . . . ℘ms−1y2m1
. . . y2ms−1

y2ms
6= 0

in H∗(BLG;Fp), which is a contradiction. This completes the proof.

Proof of Theorem 1.6. If p = 2 and G is a fake Lie group of type S3,
then an explicit calculation applying Theorem 3.1 enables us to deduce that
the bundle BLG→ BG admits an A(2)-cohomological splitting.

We proceed to the proof of the “only if” part. Since H is simply con-
nected, Theorem 1.5 implies that p = 2. Assume that BLG → BG admits
an A(2)-cohomological splitting and G is a fake Lie group of type H which
is not S3. From [8] or [12, Proposition 4.1], it follows that H∗(G;Z) has no
2-torsion and hence G is of type SU(m) (m > 2) or Sp(n) (n > 1). We
choose an integer k so that 2k + 2 ≤ m < 2k+1 + 2. Lemma 4.1 and the Wu
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formula yield

Sq2k−1
. . .Sq2 c2 = c2k−1+1 + decom,

Sq2k Sq2k−1
. . .Sq2 c2 = Sq2k c2k−1+1 + β

=
2k−1∑

i=2

c2k+1−ici + β,

in H∗(BSU(m);F2), where β ∈ (H∗ ·H∗ ·H∗). Since

Sq2k . . .Sq2 y2 = D′(Sq2k . . .Sq2 y2) = D′
( 2k−1∑

i=2

c2k+1−ici + β
)
6= 0

in H∗(BLSU(m);F2), as in the proof of Theorem 1.5, it follows that
BLSU(m) → BSU(m) does not admit an A(2)-cohomological splitting,
which is a contradiction. The same argument works in the case G = Sp(m),
where we use an integer s with 2s + s + 2 ≤ m < 4(2s+1 + s + 3) and the
element Sq4(2s−1+1) . . .Sq4·2 Sq4 q2 instead of the integer k and the element
Sq2k−1

. . .Sq2 c2.

Proof of Corollary 1.7. Choose a prime number p so that H∗(G;Z) has
no p-torsion. By the same argument as in the proof of Theorem 1.5, we see
that H∗(BLG;Fp) is not isomorphic to H∗(BG×G;Fp) as an A(p)-module.
Observe that it is not necessary to apply the factor y2m1

. . . y2ms−1
in the

proof because H1(G;Fp) = 0. Thus we have the result.

5. Homotopy types of SU(n)-adjoint bundles. Let F → E → M
and F → E′ → M be fibrations with the same base and fibre. They are
said to be rationally homotopically equivalent if there exists a homotopy
equivalence EQ

'→ E′Q which covers the identity map of MQ. If we classify
G-adjoint bundles over a connected space under rational homotopy equiv-
alence of fibrations, then the set of equivalence classes consists of just one
element which has the trivial bundle as a representative element. This fol-
lows from Theorem 1.2 and [6, Theorem II]. In contrast with the rational
case, Theorem 1.8 asserts that, in some cases, the homotopical classification
of bundles is equivalent to the rigid topological classification.

Proof of Theorem 1.8. Let M be a connected 4- or 5-dimensional CW
complex such that H4(M ;Z) ∼= Z/p. Since π5(BSU(n)) = π4(SU(n)) = 0, it
follows that there is a bijection [M,BSU ]→ [M,K(Z, 4)]. Thus the principal
SU(n)-bundles over M are classified by elements f ∗(c2) in H4(M ;Z) which
are characterized by the homotopy classes of classifying maps and the second
Chern class.
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Let Pm → M be an SU(n)-bundle representing the class f ∗(c2) = mι,
where ι is a generator of H4(M ;Z). For any odd prime p, the mod p Wu
formula for Steenrod operations on H∗(BU ;Fp) (see [14]) tells us that

℘1(c2) = −1
2c2cp−1 + %

on H∗(BSU(n);Fp), where % denotes a linear combination of elements which
are different from αc2cp−1 (α ∈ Fp). Observe that % is decomposable; that
is, % does not have the element γcp+1 (γ ∈ Fp) as a term because n = p− 1

or p. Suppose that the SU(n)-adjoint bundles SU(n)
j→ Pl×ad SU(n)→M

and SU(n)
j′→ Pm ×ad SU(n) → M are homotopy equivalent in the sense

mentioned in Section 1. Then there exists a map φ : Pm ×ad SU(n) →
Pl ×ad SU(n) such that the induced map φ∗ : H∗(Pl ×ad SU(n);Fp) →
H∗(Pm ×ad SU(n);Fp) is an isomorphism of H∗(M ;Fp)-algebras with j′∗φ∗

= j∗. Since H∗(BSU(n);Fp) is a polynomial algebra generated by finitely
many Chern classes, the same argument as in the proof of Theorem 1.2
works to prove that

H∗(Pl ×ad SU(n);Fp) ∼= H∗(Pm ×ad SU(n);Fp)
∼= H∗(M ;Fp)⊗ Λ(c2, c3, . . . , cn)

as H∗(M ;Fp)-algebras. Thus we can write φ∗(c2) = c2 + η for some η ∈
H3(M ;Fp). Since f∗(cj) = 0 if j 6= 2 for the classifying maps f of the
principal bundles Pl →M and Pm →M , we see that D′f% = 0. Theorem 3.1
enables us to deduce that ℘1(c2) = −1

2 lιcp−1 in H∗(Pl ×ad SU(n);Fp) and
℘1(c2) = −1

2mιcp−1 inH∗(Pm ×ad SU(n);Fp) if p 6= 3. The element φ∗(cp+1)
can be expressed as cp−1 +Q, where Q ∈∑4

i=1H
i(M ;Fp) ·Λ(c2, . . . , cq, . . .).

Therefore we have

φ∗℘1(c2) = − 1
2 lι(cp−1 +Q) = −1

2 lιcp−1,

℘1φ∗(c2) = ℘1(c2 + η) = ℘1(c2) = −1
2mιcp−1.

Hence m ≡ l mod p.
For p = 3, we have ℘1(c2) = 2mιcp−1 in H∗(Pm ×ad SU(n);F3) and

℘1(c2) = 2lιcp−1 in H∗(Pl ×ad SU(n);F3). Applying the same argument as
above, we can deduce that m ≡ l mod 3. This completes the proof.

6. Conclusion. In our consideration of the cohomology algebra
H∗(P ×ad G;Fp) over A(p), the condition that H∗(BG;Fp) is a polynomial
algebra has been needed as input data of the Eilenberg–Moore spectral se-
quence. However, we expect that knowledge of H∗(BG;Fp) for degrees less
than some integer brings us partial information aboutH∗(P ×ad G;Fp). This
information may be useful in classifying the adjoint bundles homotopically
even if H∗(BG;Fp) is not a polynomial algebra.
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The module derivation we have defined in Section 2 still works on the
Eilenberg–Moore spectral sequence for the homotopy fibre square with the
diagonal map ∆ : X → X×X in the corner. Therefore when the Eilenberg–
Moore spectral sequence is applied to the homotopy fibre square

EG2 ×H G BG

BH BG×BG

//

��
∆
��

//

(see Section 3), we also expect our module derivation to be of use in study-
ing the action of the Steenrod operations on the cohomology algebras of
homogeneous spaces, biquotient spaces, which have been studied in [5], [15],
and of spaces of the form EG ×K G/H, where K and H are subgroups of
a finite loop space G. We hope to present such considerations using module
derivations in a forthcoming paper.
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