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Abstract

Modularity is one of the most prominent properties of real-world complex networks. Here, we address

the issue of module identification in two important classes of networks: bipartite networks and

directed unipartite networks. Nodes in bipartite networks are divided into two nonoverlapping sets,

and the links must have one end node from each set. Directed unipartite networks only have one type

of node, but links have an origin and an end. We show that directed unipartite networks can be

conveniently represented as bipartite networks for module identification purposes. We report on an

approach especially suited for module detection in bipartite networks, and we define a set of random

networks that enable us to validate the approach.

I. INTRODUCTION

Units in physical, chemical, biological, technological, and social systems interact with each

other defining complex networks that are neither fully regular nor fully random [1-3]. Among

the most prominent and ubiquitous properties of these networks is their modular structure [2,

4], that is, the existence of distinct groups of nodes with an excess of connections to each other

and fewer connections to other nodes in the network.

The existence of modular structure is important in several regards. First, modules critically

affect the dynamic behavior of the system. The modular structure of the air transportation

system [5], for example, is likely to slow down the spread of viruses at an international scale

[6] and thus somewhat minimize the effects of high-connectivity nodes that may otherwise

function as “super-spreaders” [7,8]. Second, different modules in a complex modular network

can have different structural properties [9]. Therefore, characterizing the network using only

global average properties may result in the misrepresentation of the structure of many, if not

all, of the modules. Finally, the modular structure of networks is likely responsible for at least

some of the correlations (e.g., degree-degree correlations [10-14]), that have attracted the

interest of researchers in recent years [9].

For the above reasons, considerable attention has been given to the development of algorithms

and theoretical frameworks to identify and quantify the modular structure of networks (see

[15], and references therein). However, current research activity has paid little attention, except

for a few studies in sociology [16,17], to the problem of identifying modules in a special and

important class of networks known as bipartite networks (or graphs). Nodes in bipartite

networks are divided into two nonoverlapping sets, and the links must have one end node from

each set. Examples of systems that are more suitably represented as bipartite networks include

the following:

(i) Protein-protein interaction networks [12,18-20] obtained from yeast two hybrid

screening, one set of nodes represents the bait proteins and the other set represents the

prey or library proteins. Two proteins, a bait and a library protein, are connected if the

library protein binds to the bait.
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(ii) Plant-animal mutualistic networks [21,22], one set represents animal species and the

other set represents plant species. Links indicate mutualistic relationships between animals

and plants (for example, a certain bird species feeding on a plant species and dispersing

its seeds).

(iii) Scientific publication networks [23-25], one set represents scientists and the other set

represents publications. A link between a scientist and a publication indicates that the

scientist is one of the authors of the publication.

(iv) Artistic collaboration networks [25-27], one set represents artists and the other teams.

A link indicates the participation of an artist in a team.

Another important class of networks for which no sound module identification methods are

available are unipartite directed networks. Examples of directed unipartite networks include

the following:

(i) Food webs [28,29], nodes represent species and links indicate trophic interactions in

an ecosystem.

(ii) Gene regulatory networks [30], nodes are genes and links indicate regulatory

interactions.

The usual approach to identify modules in directed networks is to disregard the directionality

of the connections, which will fail when different modules are defined based on incoming and

outgoing links.

Here, we address the issue of module identification in complex bipartite networks. We start by

reviewing the approaches that are currently used heuristically and aprioristically to solve this

problem. We then suggest an approach especially suited for module detection in bipartite

networks, and define a set of random networks that permit the evaluation of the accuracy of

the different approaches. We then discuss how it is possible to use the same formalism to

identify modules in directed unipartite networks. Our method enables one to independently

identify groups of nodes with similar outgoing connections and groups of nodes with similar

incoming connections.

II. BACKGROUND

For simplicity, from now on we denote the two sets of nodes in the bipartite network as the set

of actors and the set of teams, respectively. Given a bipartite network, we are interested in

identifying groups (modules) of actors that are closely connected to each other through

coparticipation in many teams. Of course, one is free to select which set of nodes in a given

network is the “actor set” and which one is the “team set,” so one can identify modules in either

or both sets of nodes.

We require any module-identification algorithm to fulfill two quite general conditions: (i) the

algorithm needs to be network independent; and (ii) given the list of links in the network, the

algorithm must determine not only a good partition of the nodes into modules, but also the

number of modules and their sizes.

The first condition is somewhat trivial. We just make it explicit to exclude algorithms that are

designed to work with a particular network or family of networks, but that will otherwise fail

with broad families of networks (for example, large networks or sparse/dense networks).

The second condition is much more substantial, as it makes clear the difference between the

module-identification problem and the graph partitioning problem in computer science, in

which both the number of groups and the sizes of the groups are fixed. To use a unipartite

network analogy, given a set of 120 people attending a wedding and information about who
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knows whom, the graph partitioning problem is analogous to optimally setting 12 tables with

10 people in each table. In contrast, the module-identification problem is analogous to

identifying “natural” groups of people, for example, the different families or distinct groups

of friends.

The second condition also excludes algorithms (based, for example, on hierarchical clustering

or principal component analysis [31]) that project network data into some low-dimensional

space without specifying the location of the boundaries separating the groups. For example,

given a dendogram generated using hierarchical clustering, one still needs to decide where to

“cut it” in order to obtain the relevant modules. To be sure, one can propose a combination of

algorithms that first project the data into some low-dimensional space and then set the

boundaries, and assess the accuracy of the method. In general, however, one cannot evaluate

the performance of hierarchical clustering, given that hierarchical clustering does not provide

a single solution to module-identification problem. Neither can one test the infinite

combinations of dimensionality reduction algorithms with techniques for the actual selection

of modules.

Freeman [32] has recently compiled a collection of 21 algorithms that have been used in the

social networks literature to identify modules in bipartite networks. To the best of our

understanding none of the algorithms described there satisfies the two conditions above.

Among the statistical physics community, on the other hand, the common practice is to project

the bipartite network onto a unipartite actors' network, and then identify modules in the

projection. In the scientists' projection of a scientific publication network, for example, two

scientists are connected if they have coauthored one or more papers. The caveat of this approach

is that, even if the projection is weighted (by, for example, the number of papers coauthored

by a pair of scientists), some information of the original bipartite network, like the sizes of the

teams, is lost in the projection. Here, we suggest an alternative to existing approaches to identify

modules in complex bipartite networks.

III. MODULARITY FOR BIPARTITE NETWORKS

A widely used and quite successful method for the identification of modules in unipartite

networks is the maximization of a modularity function. Although this method has limitations

[33-35], it yields the most accurate results reported in the literature for a wide family of random

networks with prescribed modular structure [15,36,37].

In the same spirit, here we define a modularity function that, upon optimization, yields a

partition of the actors in a bipartite network into modules. By doing this, the module

identification problem becomes a combinatorial optimization problem that is analogous to the

identification of the ground state of a disordered magnetic system [38,39].

A ubiquitous modularity function for unipartite networks is the Newman-Girvan modularity

[40]. The rationale behind this modularity is that, in a modular network, links are not

homogeneously distributed. Thus, a partition with high modularity is such that the density of

links inside modules is significantly higher than the random expectation for such density.

Specifically, the modularity ℳ( ) of a partition  of a network into modules is

(1)

where NM is the number of modules, L is the number of links in the network, ls is the number

of links between nodes in module s, and ds is the sum of the degrees of the nodes in module

s. Then ls/L is the fraction of links inside module s, and (ds/2L)2 is an approximation (assuming
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that self-links and multiple links between nodes are allowed) to the fraction of links one would

expect to have inside the module from chance alone.

We define a modularity ℳℬ( ) that can be applied to identify modules in bipartite networks.

We start by considering the expected number of times that actor i belongs to a team comprised

of ma actors,

(2)

where ti is the total number of teams to which actor i belongs. Similarly, the expected number

of times that two actors i and j belong to team a is

(3)

Therefore, the average number of teams in which i and j are expected to be together is

(4)

where we have used the identity Σama=Σktk. Note that Σama(ma−1) and (Σama)2 are global

network properties, which do not depend on the pair of actors considered.

Equation (4) enables us to define the bipartite modularity as the cumulative deviation from the

random expectation

(5)

where cij is the actual number of teams in which i and j are together. For convenience, we

exclude the irrelevant diagonal term i=j from the sums [48], and normalize the modularity so

that ℳB→ 1 when (i) all actors in each team belong to a single module

[ΣsΣi≠j∈scij=Σama(ma−1)], and (ii) the random expectation for pairs of nodes being in the same

team is small [ΣsΣi≠j∈stitj ≪ (Σama)2].

As in the derivation of Eq. (1), the null model implicit in Eqs. (2) and (3) is such that one could,

in principle, have multiple connections between an actor and a team. In most cases this situation

would not make sense, so the null model is only appropriate when ma and ti are much smaller

than Σama, for all a and all i.

IV. MODEL BIPARTITE NETWORKS WITH MODULAR STRUCTURE

Ensembles of random networks with prescribed modular structure [4] enable one to assess

algorithm's performance quantitatively, and thus to compare the performance of different

algorithms. Here, we introduce an ensemble of random bipartite networks with prescribed

modular structure (Fig. 1).
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We start by dividing the actors into NM of modules; each module s comprises Ss nodes. For

clarity, we use different “colors” for different modules. The network is then created assuming

that actors that belong to the same module have a higher probability of being together in a team

than actors that belong to different modules [49]. Specifically, we proceed by creating NT teams

as follows:

(i) Create team a.

(ii) Select the number ma of actors in the team.

(iii) Select the color ca of the team, that is, the module that will contribute, in principle,

the most actors to the team.

(iv) For each spot in the team: (i) with probability p, select the actor from the pool of actors

that have the same color as the team; (ii) otherwise, select an actor at random with equal

probability. The parameter p, which we call team homogeneity, thus quantifies how

homogeneous a team is. In the limiting cases, for p=1 all the actors in the team belong to

the same module and modules are perfectly segregated, whereas for p=0 the color of the

teams is irrelevant, actors are perfectly mixed and the network does not have a modular

structure.

V. RESULTS

We next investigate the performance of different module identification algorithms in both

model networks with pre-defined modular structure, and in a simple real network that shows

some interesting features.

We consider three approaches for the identification of modules in bipartite networks. First, we

consider the un-weighted projection (UWP) approach. Within this approach, we start by

building the projection of the bipartite network into the actors space. Then we consider the

projection as a regular unipartite network and use the modularity given in Eq. (1).

Next, we consider the weighted projection (WP) approach. Within this approach, we start by

building the weighted projection of the bipartite network. In the weighted projection, actors

are connected if they are together in one or more teams, and the weight wij of the link indicates

the number of teams in which the two actors are together (thus, wij=cij). We then use the

simplest generalization to weighted networks of the modularity in Eq. (1)

(6)

where W = Σi≥jwij,  is the sum of the weights of the links within module s, and

.

Finally, we consider the bipartite (B) approach. Within this approach, we consider the whole

bipartite network and use the modularity introduced in Eq. (5).

In all cases, we maximize the modularity using simulated annealing [41]. Several alternatives

have been suggested to maximize the modularity including greedy search [42], extremal

optimization [43], and spectral methods [44,45]. In general, there is a trade-off between

accuracy and execution time, with simulated annealing being the most accurate method [15],

but at present too slow to deal properly with networks comprising hundreds of thousands or

millions of nodes.
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A. Model bipartite networks

We consider the performance of the different module identification approaches when applied

to the model bipartite networks described above. We assess the performance of an algorithm

by comparing the partitions it returns to the predefined group structure. Specifically, we use

the mutual information IAB [15] between partitions A and B to quantify the performance of the

algorithms

(7)

Here, S is the total number of nodes in the network,  is the number of modules in partition

A,  is the number of nodes in module i of partition A, and  is the number of nodes that

are in module i of partition A and in module j of partition B. The mutual information between

partitions A and B is 1 if both partitions are identical, and 0 if they are uncorrelated.

In the simplest version of the model all modules have the same number of nodes, all teams

have the same size, and the color of each team is set assuming equal probability for each color.

Unless otherwise stated, we build networks with NM=4 modules, each of them comprising 32

actors, and NT=128 teams of size m=14.

1. Team homogeneity—We first investigate how team homogeneity p affects algorithm

performance. For p=1, all the actors in a team belong to the same module, and any reasonable

algorithm must perfectly identify the modular structure of the network; thus I=1. Conversely,

for p=0, actors are perfectly mixed in teams, and all algorithms will return random partitions

due to small fluctuations [38]; thus I=0. Any p>0 will provide a signal that an algorithm can,

in principle, extract.

As shown in Fig. 2(a), the UWP approach performs systematically and significantly worse than

the weighted projection and the bipartite algorithms for all values of p. For the choice of

parameters described above, the last two algorithms start to be able to identify the modular

structure of the network for p≈0.35. For p≥0.5, one already finds I>0.9. The WP and the B

approaches yield indistinguishable results.

2. Number of teams and average team size—Team homogeneity is not the only

parameter affecting algorithm performance. For example, the number of teams NT in the

network critically affects the amount of information available to an algorithm. Interestingly,

the number of teams affects in different ways the UWP approach on the one hand, and the WP

and B approaches on the other; Fig. 2(b). For the WP and B algorithms, the larger NT, the larger

the amount of information and, therefore, the easier the problem becomes. Indeed, even for

very small values of p, the signal-to-noise ratio can become significantly greater than 1 if NT

is large enough. On the contrary, as the number of teams increases the UWP becomes denser

and denser and eventually becomes a fully connected graph, from which the algorithm cannot

extract any useful information. Once more, the performance of the WP and the B approaches

are indistinguishable.

3. Module size heterogeneity—In real networks, modules will have (sometimes

dramatically) different sizes [46]. Given the sizes of the modules in a network, and assuming
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that they are ordered so that S1≥S2≥…≥SNM
, we define h as the ratio of sizes between

consecutive modules (with integer rounding)

(8)

Additionally, we select the color of the teams with probabilities proportional to the size of the

corresponding module, so that all actors participate, on average, in the same number of teams.

As we show in Fig. 2(c), we again observe that the WP and the B approach perform similarly,

and clearly outperform the UWP approach for all values of h.

4. Team size distribution—All the results so far suggest that the WP approach and the B

approach yield results that are indistinguishable from each other. We know, however, that

differences do exist between both. The distribution of team sizes, in particular, is taken into

account in the B approach but disregarded in the WP approach, and “teams” with m=1 are

totally disregarded in projection-based approaches, but not in the B approach.

We thus investigate what is the effect of the team size distribution on the performance of the

algorithms. Instead of considering that all teams have the same size m, we now consider a

distribution p(m) of team sizes. In particular, we consider a (displaced) geometric distribution

(9)

which is the discrete counterpart of the exponential distribution. The distribution has mean

〈m〉=μ.

As we show in Fig. 2(d), some small differences seem to appear between the WP approach and

the B approach, although it is difficult to establish conclusively if these differences are

significant or not.

In light of this, we investigate in more depth the relationship between the bipartite modularity

in Eq. (5) and the weighted extension of the unipartite modularity in Eq. (1). As we show in

the Appendix, the bipartite modularity actually reduces to the weighted unipartite modularity

(up to an irrelevant additive constant) when all teams in the bipartite network have the same

size.

This observation explains why the WP and the B approach differ when teams have unequal

sizes [50]. Although our results suggest that each approach outperforms the other in certain

cases, we believe that Eq. (5) is, in general, preferable because it explicitly takes into account

the distribution of team sizes, while the weighted projection does not.

B. Southern women dataset

During the 1930s, ethnographers Davis, Stubbs Davis, St. Clair Drake, Gardner, and Gardner

collected data on social stratification in the town of Natchez, Mississippi [32,47]. Part of their

field work consisted in collecting data on women's attendance to social events in the town. The

researchers later analyzed the resulting women-event bipartite network in light of other social

and ethnographic variables. Since then, the dataset has become a de facto standard for

discussing bipartite networks in the social sciences [32].

Here we analyze the modules of both women and events. We start by considering the

unweighted projection of the network in the women's space (two women are connected if they
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co-attended at least one event), and in the events' space (two events are connected if at least

one woman was in both events). As we show in Fig. 3(a), the unweighted projection does not

capture the true modular structure of the network. The failure of this approach is due to the

fact that the projections are very dense. For example, some central events were attended by

most women and thus most pairs of women are connected in the projection.

As we show in Fig. 3(b), the weighted projection approach and the bipartite approach yield the

exact same results, which do capture the two-module structure of the network. Except for one

woman, the partition coincides with the original subjective partition proposed by the

ethnographers who collected the data, and is in perfect agreement with some of the

supervised algorithms reviewed in Ref. [32].

VI. MODULES IN DIRECTED NETWORKS

Another important class of networks for which no satisfactory module identification algorithm

has so far been proposed is directed unipartite networks. In order to tackle this class of networks,

we note that directed networks can be conveniently represented as bipartite networks where

each node i is represented by two nodes Ai and Bi. A directed link from i to j would be

represented in the bipartite network as an edge connecting Ai to Bj.

Consider, for example, a network in which nodes are companies and links represent

investments of one company into another. By considering each company as two different

objects, one that makes investments and one that receives investments, the directed network

can be represented as an undirected bipartite network. Modules in the set of objects that make

investments correspond to groups of companies that invest in the same set of companies, that

is, groups of companies with a similar investing strategy.

The most widely used approach to identify communities in directed networks is to simply

disregard the directionality of the links and identify modules using a method suitable for

undirected unipartite networks. This method might work in some situations, but will fail when

different modules are defined based on incoming and outgoing links.

Consider, for instance, the simple model network depicted in Figs. 4(a) and 4(b). According

to the outgoing links of the nodes this network has two modules: nodes 1–12 and nodes 13–

24. According to the incoming links of the nodes the network has also two modules, but they

are different: nodes 1–6 and 13–18 on the one hand, and nodes 7–12 and 19–24 on the other.

As we show in Fig. 4(c), a layout of the corresponding bipartite network already makes clear

the modular structure of the network, and any of the approaches described above (UWP, WP,

and B) is able to identify the in-modules and out-modules correctly; Fig. 4(d). Disregarding

the direction of the links, however, results in modules that fail to capture the modular structure

of the network; Fig. 4(e).

VII. DISCUSSION

In this work, we have focused on approaches that aim at identifying modules in each of the

two sets of nodes in the bipartite network independently. There are two main reasons for this

choice. First, methodologically our choice enables comparison with projection-based

algorithms, which, by definition, cannot identify modules of actors and teams simultaneously.

Second, in most situations it is reasonable to assume that two actors belong to the same module

if they coparticipate in many teams, regardless of whether the teams themselves belong to the

same module or not. An alternative approach, however, would be to group nodes in both sets

at the same time.
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Another interesting observation relates to the optimization algorithm used to maximize the

modularity. Although we have chosen to use simulated annealing to obtain the best possible

accuracy [15,36,37], one can trivially use the modularity introduced in Eq. (5) with faster

algorithms such as greedy search [42] or extremal optimization [43].

Interestingly, one can also use the spectral methods introduced in [44,45]. Indeed, just as the

unipartite modularity ℳ( ), the bipartite modularity ℳℬ( ) can be rewritten in matrix form

as

(10)

where gis=1 if node i belongs to module s and 0 otherwise, and the elements of the modularity

matrix B are defined as

(11)

Even more importantly, by sampling all local maxima of the modularity in Eq. (5) one can

study, not only the most modular partition of the network, but the hierarchical structure of

nested modules and submodules [34] within each set of nodes in the bipartite network. This is

particularly relevant taking into account that the most modular partition of a network may, in

some cases, not represent the most “relevant” division of its nodes [33,34].

Finally, a few words are necessary on the comparison between the different approaches. First,

we have shown that the (so far “default”) unweighted projection approach is not reliable and

can lead, in most situations, to incorrect results. Therefore, we believe that this approach should

not be used. As for the weighted projection approach and the bipartite approach, we have shown

that their performance is very similar, and that they are actually equivalent when all teams in

the bipartite network have the same size. We have also pointed out, however, that they can and

do give noticeably different results when team sizes are not uniform. Given this, we believe

that the bipartite approach has a more straight-forward interpretation and would be preferable

in cases in which the modular structure of the network is unknown.
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APPENDIX: WEIGHTED UNIPARTITE MODULARITY AND BIPARTITE

MODULARITY FOR BIPARTITE NETWORKS WITH UNIFORM TEAMS

Next, we demonstrate that, when all teams in a bipartite network have the same size m, the

bipartite modularity is equivalent to the modularity of the weighted projection.

We consider the usual weighted projection, in which each pair of nodes i ≠ j is connected by

a link whose weight wij equals the number of times that i and j are together in a team; using

our previous notation wij=cij. No self-links are included in the projection.

In this projection, and when all teams have the same number of actors ma≡m, the constant team-

size factors in Eq. (5) become
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(A1)

(A2)

where, as before, W=Σi≥j wij.

Each time an actor is in a team, the total weight of the links in the projected network increases

by (m−1). Using this and the identities above, we obtain

(A3)

(A4)

Once the summation over modules is carried out, the last term is simply a constant independent

of the partition, and is therefore irrelevant. Thus, up to an irrelevant constant, when all teams

in a bipartite network have the same size, the bipartite modularity in Eq. (5) is equivalent to

the weighted modularity in Eq. (6).

References

1. Albert R, Barabási A-L. Rev. Mod. Phys 2002;74:47.

2. Newman MEJ. SIAM Rev 2003;45:167.

3. Amaral LAN, Ottino J. Eur. Phys. J. B 2004;38:147.

4. Girvan M, Newman MEJ. Proc. Natl. Acad. Sci. U.S.A 2002;99:7821. [PubMed: 12060727]

5. Guimerà R, Mossa S, Turtschi A, Amaral LAN. Proc. Natl. Acad. Sci. U.S.A 2005;102:7794. [PubMed:

15911778]

6. Colizza V, Barrat A, Barthélemy M, Vespignani A. Proc. Natl. Acad. Sci. U.S.A 2006;103:2015.

[PubMed: 16461461]

7. Pastor-Satorras R, Vespignani A. Phys. Rev. Lett 2001;86:3200. [PubMed: 11290142]

8. Liljeros F, Edling CR, Amaral LAN. Microbes Infect 2003;5:189. [PubMed: 12650777]

9. Guimerà R, Sales-Pardo M, Amaral LAN. Nat. Phys 2007;3:63.

10. Newman MEJ. Phys. Rev. Lett 2002;89:208701. [PubMed: 12443515]

11. Pastor-Satorras R, Vázquez A, Vespignani A. Phys. Rev. Lett 2001;87:258701. [PubMed: 11736611]

12. Maslov S, Sneppen K. Science 2002;296:910. [PubMed: 11988575]

13. Maslov S, Sneppen K, Zaliznyak A. Physica A 2004;333:529.

14. Colizza V, Flammini A, Serrano MA, Vespignani A. Nat. Phys 2006;2:110.

15. Danon L, Dì-az-Guilera A, Duch J, Arenas A. J. Stat. Mech.: Theory Exp 2005:09008.

16. Borgatti SP, Everett MG. Soc. Networks 1997;19:243.

17. Doreian P, Batagelj V, Ferligoj A. Soc. Networks 2004;26:29.

18. Uetz P, et al. Nature (London) 2000;403:623. [PubMed: 10688190]

19. Jeong H, Mason SP, Barabàsi A-L, Oltvai ZN. Nature (London) 2001;411:41. [PubMed: 11333967]

Guimerà et al. Page 10

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2008 March 5.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



20. Li S, et al. Science 2004;303:540. [PubMed: 14704431]

21. Jordano P. Am. Nat 1987;129:657.

22. Bascompte J, Jordano P, Melin CJ, Olesen JM. Proc. Natl. Acad. Sci. U.S.A 2003;100:9383. [PubMed:

12881488]

23. Newman MEJ. Proc. Natl. Acad. Sci. U.S.A 2001;98:404. [PubMed: 11149952]

24. Börner K, Maru JT, Goldstone RL. Proc. Natl. Acad. Sci. U.S.A 2004;101:5266. [PubMed: 14976254]

25. Guimerà R, Uzzi B, Spiro J, Amaral LAN. Science 2005;308:697. [PubMed: 15860629]

26. Gleiser PM, Danon L. Adv. Complex Syst 2003;6:565.

27. Uzzi B, Spiro J. Am. J. Sociol 2005;111:447.

28. Stouffer DB, Camacho J, Guimerà R, Ng CA, Amaral LAN. Ecology 2005;86:1301.

29. Williams RJ, Martinez ND. Nature (London) 2000;404:180. [PubMed: 10724169]

30. Barabási A-L, Oltvai ZN. Nat. Rev. Genet 2004;5:101. [PubMed: 14735121]

31. Everitt, BS.; Landau, S.; Leese, M. Cluster Analysis. Arnold; New York: 2001.

32. Freeman, LC. Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers.

Breiger, R.; Carley, C.; Pattison, P., editors. The National Academies Press; Washington, DC: 2003.

p. 39-97.

33. Fortunato S, Barthèlemy M. Proc. Natl. Acad. Sci. U.S.A 2007;104:36. [PubMed: 17190818]

34. Sales-Pardo M, Guimerà R, Moreira AA, Amaral LAN. Proc. Natl. Acad. Sci. U.S.A. e-print arXiv:

0705.1679to be published

35. Fortunato, S. e-print arXiv:0705.4445

36. Guimerà R, Amaral LAN. Nature (London) 2005;433:895. [PubMed: 15729348]

37. Guimerà R, Amaral LAN. J. Stat. Mech.: Theory Exp 2005:02001.

38. Guimerà R, Sales-Pardo M, Amaral LAN. Phys. Rev.E 2004;70:025101(R).

39. Reichardt J, Bornholdt S. Phys. Rev. E 2006;74:016110.

40. Newman MEJ, Girvan M. Phys. Rev. E 2004;69:026113.

41. Kirkpatrick S, Gelatt CD, Vecchi MP. Science 1983;220:671. [PubMed: 17813860]

42. Newman MEJ. Phys. Rev. E 2004;69:066133.

43. Duch J, Arenas A. Phys. Rev. E 2005;72:027104.

44. Newman MEJ. Proc. Natl. Acad. Sci. U.S.A 2006;103:8577. [PubMed: 16723398]

45. Newman MEJ. Phys. Rev. E 2006;74:036104.

46. Danon L, Dì-az-Guilera A, Arenas A. J. Stat. Mech.: Theory Exp 2006:11010.

47. Davis, A.; Gardner, BB.; Gardner, MR. Deep South. University of Chicago Press; Chicago: 1941.

48. Including the diagonal term would only shift the modularity by a constant, and is therefore irrelevant

49. This is, to some extent, an implicit definition of what modularity means in bipartite networks, in the

same way that “higher linkage probability inside modules” is a definition of what modularity means

in unipartite networks

50. Even in cases in which all teams have the same size, small systematic discrepancies can occur between

the WP and the B approach, given that the simulated annealing used in each case is different in some

implementation details

Guimerà et al. Page 11

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2008 March 5.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



FIG. 1.

(Color online) Model random bipartite networks with modular structure. (a) Nodes are divided

into two sets, actors (circles) and teams (rectangles). Each color represents a different module

in the actors' set, and teams of a given color are more likely to contain actors of their color (see

text). (b) Two sample networks with NM=4 modules, with 16 actors (circles) each, and NT=64

teams (diamonds), with m=7 actors each. The network on the left-hand side has a strong

modular structure, p=0.9, while the modular structure is less well defined on the right-hand

side, p=0.5 (see text for the definition of p).
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FIG. 2.

(Color online) Algorithm performance as a function of (a) team homogeneity p (simulation

parameters, NM =4, Ss=32 for all modules); (b) number of teams NT (simulation parameters,

NM =4, Ss=32 for all modules); (c) module size homogeneity h (simulation parameters NM =6,

132 nodes); and (d) mean team size μ (simulation parameters, NM =4, Ss=32 for all modules).

Error bars indicate the standard error.
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FIG. 3.

(Color online) Modular structure of the Southern women dataset [32,47]. Circles represent

women and diamonds represent social events. A woman and an event are connected if the

woman attended the event. (a) Modular structure as obtained from the unweighted projection

(UWP) approach. (b) Modular structure as obtained from the weighted projection (WP)

approach and the bipartite (B) approach. The UWP approach fails to capture the real modular

structure of the network.
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FIG. 4.

(Color online) Application of the bipartite approach to the identification of modules in directed

networks. (a), (b) A directed model network. A link from node i to node j is established

according to the probabilities in the matrix in (a). For example, there is a probability pi that

there is a link from node 1 to node 13. In particular, we use pi=0.45>po=0.05 to generate the

directed network in (b). (c) Bipartite representation of the network in (b). Each node i in (b) is

represented by two nodes here, a circle Ai and a square Bi. All links in the bipartite network

run between circles and diamonds, and a link between Ai and Bj corresponds to a link from i

to j in the directed network. (d) Modules identified in the bipartite network. (e) Modules

identified from the directed network disregarding link direction. Here, we use the same color

for Ai and Bi, since this approach does not make distinctions between incoming and outgoing

links.
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