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ABSTRACT

This thesis studies modules over commutative integral domains
with the property that every closed submodule is a direct summand (we
dénote this property by (Cl?). “It is shown that any non-torsion module
with property (Cl) is a direct sum of an injective gubmodule and a finite .

direct sum of uniform tézsioh free reduced submodules. This reduces the
study of the problem to finite direct sums of uniform torsion free

reduced modules and to torsion medules. Then we characterize finite

direct sums of uﬁiform torsion ¥ree reduced modules over commutative
(Prufer, Noetherlan of “Krull dimension one, Dedekind) domains which have

\ Property (Ci). We aléo character{;e finite direct sums of uniform torsio;\

modules with focal endomorphism rings over Noetherian domains which hav;
property (Cl). Finally: ;e classify all modul§é with property (Cl).ovgr

. Dedekind domains.
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INTRODUCTION

1. A submodule ,N of a module ﬁ has no broper essential
extension in M, 1if and only 1If there is‘giother submodule bN’ such’
that N 1is maximalﬁith respect to N N N' = 0. 1In the literature, -
such submodules F ;fe calied closed, or complements. |

A module 1s\said to have property (C,), if every closed
submodule is a direct summand. The property (Cl) holds in particular if
the module is (quasi) injective, or more g%égrally.(quasi) continuous.

2. J, Von Neumann  [19] showed that his coﬁtinuous geometries

can be coordinatized by.continuous regula?;;ings. Y. Utumi [18] studiei .
regular ringg, and he proved that a %egular ring is c;ntinuous if and
only 1f it has proper;y (Cl) for right and for Yeft ideals.

Later A.W. Ehatters and:i:R. Hajarnavis [21] inve;tigated rings with
chain conditions in which every cqﬁplement right ideal is a direct summand. .

L. Fuchs, A. Kertesz and T. Szele [22] discussed abelian groups
in which evéry pure subgroup is a direct dummand. ‘In‘the case of torsion '
free abélian groups puxe subgroups are the same as closed subgrouﬁs, but
in the torsion cage pure subgroups need not Le closed.

S. Mop;med, ﬁ.J; Mueller and S. Singh 51983) characterized
arbitrary abelian groups with property (Cl). - ‘

M. Harada and K. Oghiro [23] considered modules éith extendi?gc.
properties, which aré closely related to thé property (Cl). M. Harada [24]

.

described modules with (Cl) over Dedekind domains} an unfortunate
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migapplication of {[23], theorem 10) kept him from obtaininéléhe full

characterization, which we give here. !

3. .Tbe‘present thesis studies arbitréry modules witﬁ (Cl),
over r.;bmmut'ative integral do.mains.

The first chapter reéuces the study of the propefty (Cl)_to the
cases of torsion modules and of torsion free reduced modules, by showing
that any non-torsion module with (Cl) 13 a direct sum of an injective
submodule and a torsion free reduced submodule (th: (i.lS)H (1.16)).

The second chapter investigafes torsion free reduced modules
with (Ci). we prove th;t torsion free reguced modules with (Cl) are
finite-direct'sums of uniform submodules (th. (2.16}).

We alsc give a'necesséry and sufficient condition for the direct
sum of a pairrof uniform torsion.;ree reduced*modules to have (Cl)

(th. (2.26)). We conjecture that a finite direct sum of uniform torsion
free reduced modules has (Cl) if and only if the direct sum of each pair
has (Ci)' We prove this conjecturé inlthg following ‘cases: 1) general
commutative domains and the uniform summands have local endomorphism
rings; 1i) Prufer domains; i111) Noetherian domains and the uniform
summands are finitely generated; 1iv) one dimensional Noetherian domains.

Finally we give a complete description of torsion free reduced
_ modules with (Cl) over Dedekind domains, and over one dimensional .
Noetherian domains.- The description in tﬁe first case is much simpler
than in the second cne.

. “The third chapter considers torsion modules over Noetherianm

domaing., It was proved, by K. Oshiro in a letter to §. Rizvi, that a

module with (Ci) over a Noetherian ring is a direct sum of uniform



submodules. We have only obtained results in the case that all these

— - .
uniform summands have local endomorphism rings.

-

We provide a necessary and: sufficient condition for the direct

sum of a pair of uniform torsion modules to have (Cl), provided that
they have distinct associated primes and arbitrary endomorphism rings,
or the same associlated prime and l&cal endomorphism ;ings.

We also prove that a' finite direct sum of uniform torsion modules
with local endomqrphism rings Hhsl(Cl) 1f and only if Fhe direct sum of
each pair has (Cl). 1

We end this chapter by giving‘; full characterization of arbitrary
torsion modules with (Cl) over Dedekind domains.

4. Our analysis of the property (Cl) in the.torgsion free case
was- easier and led to more complete results than in the torsion case.
One'reason may be that a torsion free injective module 1is always the
direct sum of copies of the.quotient field, while there 1s no good \
structure ﬁheorem for torsion injectivgs except ovef/£2étherian rings.
This may also explain why we had to confine ourselves, in the torsien
case, to modules over Noetherilan domains.ri

Another interesting point is that we use a characterization of
’(Cl) for torsion free modules (2.32) in-the study ;f (Cl) for torsion
modules (3.18). The torsion free result is applied to certain factor

‘ .
modules which turn out- to be torsion free over an appropriate factor

‘ring. | ' ;

[ (4



CHAPTER I

MODULES WITH PROPERTY (Cl) : REDUCTIQNS

-

We recall that R is always a commutative integral domain, and

that a module héa propeftyq(cl) 1f every closed submodule is a direct

v

summand . ' X - ‘ \\\

In this chapter we reduce the study of proﬁerty (Cl) to the

cases of torsion modules and of torsion free reduced modules.

1

§1. PRELIMINARIES.

In this section we list some well known facts for later use.
Some of them are valid for modules over arbitrary rings, while others
require our standing assumption that R 1s a commutative integral

domain. . 7 .

Definition 1l.1: A submodule McE is saild to be essential *in’

E (denoted by Mc<'E), 1f for every submodule N of E, MN N'= 0

implies N-= 0. A module E is called uniform if it is non-zero and

ev$ry non—-zero submodule of E 1s essential in E. A submodule M is

called closed in E 1f it has no proper essential extension in E. By

Zorn's lemma any submodule A of E has a maximalfessential extension

in E.

Definition 1.2: A module E 1s said to be injective, if for

4



every monomorphism f:A-+B and every homomorphism ¢ : A—E, there
exists a homomorphism &.: B~E such that af = (.

This concept was introduced by Baer [4] and Nakayama [13]. It
was shown by Eckmann and Schopf [7] that every module can be embedded
in an injective module. In fact they showed that, for any module M,
there is an injective overmodule E of M which is éssential over M.
This overmodule is unique up to isomorphism over M, and 1s called the
injective hull of M and denoted by E(M).

The concept of injectivity was generalized to that of relative

injectivity by Azumaya [2], and Azumaya, Mbuntum and Varadarajan [3].

Definition 1.3: A module M 1s saild to be N-injective, 1f for

~

every submodule L of N, every homomorphism £ :L+M can be extended

~

L]
to * £ : N+M,

Definition 1.4: Let M be an R~-module. The set t{M) =

{xeM '.( xr = 0 for some O=reR} is é submodule, called the t;orsion
submodule of M. If t(M) = M, then M 1is called torsiom; if E(M)‘ﬂl 0,
then M  is called torsion free.

Note that t(M) is a closed submodule of M.

By Baer's well-known criterion fo;: injectivity omne ca;; show that
an R-module is injectivr;'; if and only 1f it is/—-inje;:tive for scme

torsion free R-medule ¥ .

Definition 1.5: A module M 1is said tc have property (Cl),

if every closed submodule of M is a direct summand. A module M is °

/
\



said to have property (l-Cl), 1f every uniform closed submodule is a
direct summand.
If N 1s a submodule of M, then N & M will signify that X

is a direct summand of M.

Lemma 1.6: If an R-module M has property (Cl)’ then each

direct summand N has again. property (Cl).
4

Proof: Let M = N®T, and let A be a closed submedule of N.

We show that A 1s closed in M. Let A<'X < M. Then
'"A=mA cm XN, where m: M*+*N 4s the projection onte N. We claim
that Ac'® X. Let O=zae mX _hence o = mx, x€X. By essentiality
of X over A, there exists reR such that O=xreA. If follows
that oar = (mx)r = 7w(xr) = xr e A. Therefore AC'TX.

Since A is closed in N and A<'TXcN, we have A = 7X.

Now let xiex be an anitbrary.\Then TxEA, 1l.e. ﬂﬁc = 3,
acA. Hence MTx = a = Ta. Thus 7(x-a) = 0 , i.e. x~acker w = T,
Since ANT = 0 and Al'X, we have XNT = 0. Then x-a€TNX = 0.
It follows that x = acA. Ther A has no proper essential e.xte.nsion
in M, hence A 1s closed in M. .

By (Cl) M= A®B for ';ome submodule B of M. By Fhe

"y .
modular law N = A€BNN, {.e. A< N. Therefore N has (C1)° a

Note that the game proof shows that_(l—Cl) is inherited by

direct summands. -



Lemma 1.7: (i) A direct summand of a closed submodule of &
module M 18 a closed submodule of M. If N 18 closed in M, then
N 1s closed in any submodule of M containing N.

(11) Let M = X9Y be a medule and ¢: X-+Y be an arbiltrary
homomorphism. Then X* = : {x +'@(x) : x¢ X} 1is a submodule of M

isomorphic to X wvia x+x + o@(x), xcX; and M= X*eY, []

Definition 1.8: An R-module M 1s divisible, 1if for every

element xe€M and for every O0=r€eR there exists an element yEM
such that x =.yr. This definition means that every element of M is
divisible by every non-zerc element r r:)f R t:?r, alternmatively, rM=M,
A module which has no nen-trivial divisible submodule is ca}léd reduced.
‘Every injective module is divisible.
i
. ) ~
Lemna 1.9: Every divisible, torsion free module is_injective. 0O
It 18 clear that any direct sum of divisible modules is divisible.

y
Definition 1.10: Let M be a torsion free R-module. Let D(M)

= { xeM : for all O=reR, there exists yeM such that x = yr }.
According_to; [17.], Dkﬂ?ie the largest divisible submodule of M and
H/D(M) does not conta;in any non-zero d:‘li.\;isible submodule. We shall
call M/D(M) the re&;.u:.t of M.

*

‘Remarks 1.11: (i) If A is a submodule of & torsion free

R~module M, then the maximal essential extension of A in M is

uniquely determined; this submodule of M consists of all thc;se



“

elements x of /M for which xre A holds with a suitable non-zero

element re£R.
1

(11) Evefy essential extension of a uniform module is uniform.

~

Lemma 1.12: Every non-zero torsion free R-module F which

has property (Cl) contains a uniform direct summand Fl.

/
Proof: Let 0=zxeF. Since the commutative integral domain R/
is uniform as module over itself, xR=R is a uniform submodule of F,

Let Fl be the maximal essential extension of xR 1in F, then Fl is a

closed submodule of F, and'by (Cl)' F1 is a direct summand. Since

uniformity 1s preserved by essential extensions, Fl is a uniform direct

summand of F. []
c .
Note that the lattice of submodules of every module M
satisfies the modular law, i.e. if A,B and C are submodules of M
such that BcA, then AN(B+C) = B+ ANC holds. [

-

.52, NOK-TORSION,MODULES

Lemma 1.13: In every R-module with property (Ci) the torsion

submodule is a direct summand.
Proof: Obvious gince t(M) 1is closed, c.f. (1.4). [

The next theorem gives the necessary and sufficient “condition for

non-torsion module to have (Cl).



First we give the following lemma, which will be used in the

proof of the theorem.

Lemma 1.14: Let M =T ®F , where F |is non-zero
torsion free and T i1s torsion. Let F' be a non-zero torsion free
submodule of M such that M = F'@X. Then TcX. If F 1s uniform,

then X = T.

Proof: Let te T; then t = f' + x, where f'e¢ F' and =xeX.
Since T 1s torsion, there-exists a non-zero element r in R such
that 0 = tr = f'r + xr. Since the sum is direct, it follows that
f'r = xr = 0. But F' is torsion free, hence f' = 0, and teX.
Therefore TcX. B.y the modular law X = T ® (an_), hence
M=F © T ® (FNX). It follows that FXM/T X F' ® (FNX).

Now if F is uniform, then FNX = 0 (since P' is non-zero),

and we get X = T,

Theorem 1.15: Let M be an R-wodule which 1s not torsionm.
- - ,
Then M has (Cl) if and only if-»t%M) is injective and the torsion

free factor module M/t(M) has (Cl)} : .

f“\ )
Proof: Let M have (cl). By lemma (1-13) we

‘.

have M = t(M) ® F, where F is a non-zero torsion free submodule of M.

s
Since (Cl) is inherited by direct summands:’*F has (Cl). By

(1.12), there exists a non-zero uniform direct summand F. of ¥, i.e.

1
F=F'e Fl'and M=F'® I-‘l o t(M). “

S
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Now M' =: F. @ t(M) again has (Cl). To show that t(M) is
injective, by Baer's criterion for injectivity, it 1s enough to show- that

—

t(M) 1s F ~injective. '

1
" :Now let ¢: X+t(M) be a homomorphism froma submedule X of F

1
:Ln’to t(M). Consider X' = :{x -@(x) : x€X}. By (Cl) for M',
there exists a submodule X* of M' such that X' <' X* c M'., Since
X 1is torsion free and X2X' <'X* and essential extensions of torsion
free modules are tqraion free, X* 1is a uniform torsion free direct
sumnand of M'. By lemma (1.14) we get M' = X* & t(M).

Let M' -T:‘t(M) be the projection of M' onto t(M).. Since
X - p(x)E X'cX*, we have 0= 7(x-@x)) = m(x) -1P(x) = ﬂ(x) - tD(:t-:)
for all xeX, i.e. mw(x) = @(x}) for all x€cX.

Therefore 'rr]F : Fl+t(M) ext-:;nds @, which shows tha‘t t(M) is

1
Fl-inj ective. .

Conversly let t(M) be injective and M/t(M) have (Cl)' Then
t(M)' gr{,‘e_md we can_p:%te M= t(M) ¢F where M/t(M) ZF is non-zero-
tor."s-ioq free and has (Ci). v

Now let A b,e'/:a closed submodule of M and t(A) be'its
torsion submodule. We claim that t(A) is closed submodule of t(M).
Let t(A) ='Yct(M). We show that Ac<' 4 + Y. To this end consider
any 0 #y+aeY + A, where yeY and acA. If agt(A), then ¥y + ac€¥,
and by essentiality of Y over t(A) we'can find r gR such that .
0¥ (ir + a)r et(a) cA. "If a#t(A), since Y is torsion, there exists ;‘.

0+ 5}_\5 ‘such that ys=0, and we have (y+a)s = as¥( (EA).

-
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Since A 1s élosed in M, we conclude A = Y + A, and hence

. Y = t{A), which shows that t(A) has no proper essential extension in

t(M) and is thus closed. Now the injectivity of t(M) dimplies that
t(A) is injective, and hence A can be written as A = t(A) @ 3, where
B is a torsion free submodule of A.

Let T T, be the projectitons of M onto t{M) and F

- .
respectively. Since B 1s torsion free, B_z_iB...F 15 a monomorphism.

Since t{(M) is injective, there exists a homomorphism y: F—+ t:(M)- such

that Q)Trle =T * i.e. wwz(b) = 'nl(b) for all beB.

Now let F* = : {f +¢(f) : £ € F}. Then F*=F has-(cl).
Consider any element beB. }f can be written as b = ‘rrz(b) +ﬁl(b) j- ‘
m,(b) + W(m(b))EF, 1.e. BSF%, By (1) in (1.7), B is'a clgs.
submodule of F*. By (C;), F* = BeB'. Since t(A) is an injective
submodule of t(M), then t(M) = t(A) ® C for some submodule C of t(M).
By (i1) in (1.7), M=Fke t(M) = Bo® B'® t(A)® C-= A ®B'® C,
i.e.) AgM. Hence M has (Cl). D.

-

§3. NON-REDUCED TORSION FREE MODULES 4 P

From (1.9), a torsion free R-module is divisible if and only if

it is injecfivg. . . >

Recall the definition of the reduct of a torsion free module given
in (1.10) : Let M be a torsion free R-module, and let E 'be the maximal

injective submodule of M. The facter module M/E is called the reduct

of M; it dobks not contain any injective submodule except zero.

~
v
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The following theorem reduces the problem of studing property
(Cl) from torsion free modules to torsion free reduced modules.

Theorem 1.16: A torsion free R-module has (Cl) if and only if

-~

its reduct has (Cl). LT
\ .
Proof: Let M has (Cl), and let E, be its largest injective

submodule. Then M = E®(C, where ( 1is

reduced submodule of M.

Since (Cl) is inherited by direct s nds, the.reduct M/ESC has (Cl).

H

Converseiy-lét C=M/E, the reduct of M, have ‘(Cl). Let A
be a closed submodule of M. We claim'that D({A), the largest injective
submodule of A, is exactly ANE. It is clear that D(A)CENA. Now
letj.‘ x£ENA. Since E 1is divisible, for any o#r &R there exists
an element e€E such that er=x€A. Since A 1is closed submodule
c;f ¥, then ecA by (1) 4n (1.11). It follows that ENA 4is a
divisible hen::e injective slubmodule of A,.and therefore EN A<D(A).
Then D(A) = ENA. | . -/

Now A can be written as A = ENA®B, where B is.reduced.
From (1) 4in (1.7), B is a closed submodule of M.

Let H-T-LC and MT—T:-*E be the projections of M onto C and E
respectively. Since ENB =0 (xcENB implies xEANENB = 0),
BTﬂ-Bv-C is a monomorphism.. From the injectivity of E, there exists a

homomorphism @: C-+E such that wn|B=n i1.e. PTW(b) = w'(b)

||B ,
for all beB.

e



13

-,
Let C* =:{w(c) + ¢ : c €Cl; then C*=C has (Cl).] Now let
beB; then b = W'(b) + m(b) = @m(b) + w(b) € C* (A(b)£C). From (i)
of (1.7), B 1s a closed submodule of C*.)By (Cl), Ck = BoY for

some submodule Y of C*. By {(ii) of (1.7 M=C*@®E=B@aY®E.

Since AnE‘ is an injective submedule of E, we vhave
M=BeY®ANE®Z = A9Y®Z, where Z 1is a submodule of E(‘/T—h;?é”fgré

® .
AcM; i.e. M hag (C 0

l)'

Y
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CHAPTER 11

TORSION FREE REDUCED MODULES WITH PROPERTY (Cl). ! ‘

In this chapter we characterize torsion free reduced modules
with property (Cl). First we show that such modules are finite direct
suss of uniform submedules. Then we give, in general, a necessary -and
sufficient condition for the direct sum of a pair of uniform torsion
free reduced modules to have (Cl). Finally we prove, in certain cases,
that a finitedirect sum of unfform torsion free reduced hodules has (Cl)
if and only if the direct sum of each palr has (Cl).

All modules in this chapter are torsion free reduced.

We1recall again that R 1is always a co?mutétive integral domain;
we denote its quotient field by K, and we call‘any ring between R and

K an overring of R.

§1. PRELIMINARIES

Definition 2.1.: A valuation ring is a commutative integral

domain wiEh the property that any'two ideals are comparable.

It is clear tﬁat V is a valuation 1if and onlygif V éontainé
x or x”l for every non-zero element x of the quotient field of V.
Consequently, each overring ;}\a valuation ring is a valuation ring.
By a discrete valuation ring we mean a valuation ring with discrete
value group. .

A commutative integral domain is a discrete rank one valuation

~
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ring, if and only if it is a Noetherian valuation ring, 1f and only if

it is a local principal‘ideal domain.

.

Definition 2.2: A fractional ideal I 18 a non-zero R-submodule
™~

of K, such that x I<R holds for some 0 ¥ xeR. By (R:I) we mean the

]

]
set of all xe€K with x I«R ; (R:I) ' 1is again a fractional ideal.

We say that 1 18 invertible 1f I(R:I) = R.

It is easy to see that any invertible ideal in a local domain is

. \ i

principal. Ty
N ~

Definition 2.3: A Prufer domain is a commutative integral

doméin in which every non-zero finitely generated ideal is invertible.

Lemma 3.4 ([11], Theorem 64). The following statements are

equivalent for a commutative integral domain Rb\_,__\\\\

(1) R is Prufer ;

(2) For every prime ideal P, Rp is a valuation ring ; . .
T -

—

(3) For every maxigal ideal M, RH is a valuation ring.
_/
Lemma 2.5 ([11], Theorem 65). Let R be Priifer domain, gna let

K ' !
V be a valuation over ring of R. Then V = Rp for some prime’ ideal

.

P in R.

Each over ring of a Prﬁfe{\sfmain is a Epﬂ%er domain.
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Definition 2.6 ([11], Theorem 96) A commutative domain R

satlsfying any (hence all) of the following equivalent conditions is
called a Dedekind domain;

(1) Every non-zero ideal of R 1s invertible ;

(2) R 1is Noetherian, integrally closed, and of dimension one ;

(3) R 1is Noetherian, and for each maximal ideal M, RM is a discrete’

valuation ring.

In a Dedekind domain any non-zero ideal is uniquely a product
of prime ideals.

Any overring of a Dedekind domain is a Dedekind domain, and is a
localization of R at a set of prime ideals (this follows readily from

corollary (6.2) in [12] and theorem (3.4) in.[16]).

Definition 2.7: Let T be an overring of R. The conductor D

\
of R in T 1is the get of all elements x€&R such that x TcR. The
conductor D d4is an ideal of jR and also an -ideal of T; more precisely
D 1is the largest ideal of R which is also an ideal of T. If R 1s ~

Noetherian and D ¥ 0, then T is a finitely generated R-module.

Lezma 2.8 ([11], Theorem 17) Let T be a commutative algebra
over R. The following statements are equivalent: (1) T 1s finitely

generated R-module, (2) T is finitely generated ring over R and is

integral over R.

Let M be an R-submodule of K. Then M = l]l%, where P runs
P

- . a

y | L C



over all maximal ideal of R (see [5]}).

" Definmition 2.9: A non-zero R-module M 1s simple if the only

R-submodules of M are 0 and M. A module M 1s semisimple if it is

a (direct) sum of simple modules.

Lemma 2.10: Let X be an R-module such that Xp 1is simple as
Rp-module, for one maximal ideal P of R, and XQ = (¢ for all other

maximal ldeals Q. Thern X 1s a simple R-module.

Proof: From propogition (3.2) in [12], XSEEX B RS, as
R
RS—module, for any miltiplicatively closed set $§ in R.'\Also/sg—rr

theorem (3.3), RS is flat. Then for any short exact sequence

0+Y+X+2+0, 0+YP+}%+ZP+0 and” 0+Y +X +Z +0 are exact

Q "q q

sequences. Since XP 1s simple and XQ = fgr all Q ¢ P, we have )
Yp=0 or 2z, =0, and Y, =0 and Z) =0 forall Q#P. Then
Y=0 or Z=20, Bence X i1s simple. 0

Definition 2.11: A chain of prime ideals has length n if it

\
it

contains n+1 distinct members: The dimension of a ring R 1s the-

supremum of the lengths of all chains of prime ideals.

| Note that our dimension for rings (which usually called Krull
dimension} is different from our dimension for modules (which is usuallyr
called Goldie dimension).

.

Lemma i.lZ: ([11], Theorem 93). Let R be a one dimensional
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Noetherian domain, and T be an overring of R. Then T 1is again

Noetherian and its dimension is at most 1.

]

Lemma 2.13: A ring R is Artwan if and only 1f R 1is

Noetherian and O-dimensional.

Lemmna 2.14: Let M= @ Mi » where the Mi are uniform
: iel :
R-submodules of ?. Then A 18 closed in M “if and only if

~r

A= o a, KNM, for some K-linearly independent subset f{a " of
jer 3 y indep : i'jed
¢ K. '
~1el

Proof: Let A be a closed submodule 6f M. Since any direct

sum of divisible modules is divisible, we have E(M) = 12 IK . Since

’#each injective R-module is K-vector space, E(A) 1is a subspace of the

vector space ig j K. Then E(A) = ? ajK, for some linearly

D
independent subset {aj }j ] of /9,

e AcC'E(A)NM. Since A is closed; then A = E(A)NM = ? aanM.

- Conversely let B= . @ _ a KnM, {a,} a linearly e
- NE DO B jj c 3 {
independent subset of ® K. Let Bc'B'=M. Then for-any xe€B',
I
there exists 0 # rER such that =xreB , f.e. xr= § aikj £ M,
jeJd

k
where k. g K. Hence x = I a (—-1-) ¢ ®a,KNM = B. Therefore B = B'.
b jEJJ r I ]

.. Then B has no proper essential extension in M; i.e. B is closed in

M. O

K. Since Ac'E(A), we have

Corollary 2.15: Let M =

@
191 Mi, where the Mi are qu:fom
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R-submodules of K. Then A 1ig cldsed uniform in M 1f and only 1if
A = {(qix)iel P xEK, q JfEMi for all 1} for an element

0 # (qi) E @ K. i
HMel I

ng aJKﬂM. Since A 1is uniform,

we have that E(A) is uniform. Then [J] =1; t.e. A=a KNM,.

Proof:  From (2-14) , A =

0 # ace e XK. Let as=(

‘ )15.1 » 4 €K, Hence A = {(qix)iel-:xEK,

iy

.4y x€M, for all i}. . .

The converse 1§ trivial. [J

a:

§2. REDUCTION TO FINITE GOLDIE DIMENSION

The following theorem shows that any torsion free reduced module

with property (Cl) 1s a finite diréct sum of uniform submodules.

Theorem 2.16: Let M be a torsion f;ee reduced R-module. If
* n . ) ' -
M has (Cl), ther / M = £ 2, M, where the M, are uniform submodules of
M.
‘ []
K Proof: Let M # o have (C;). By (1.12) M contains a uniform.

direct summand M . Then M = Mo ® U, where U has (Cl). Again by .

(1.12), 1if U, £ o, Uo containsg a uniform direct summand M_l and hence

M-MOGM e U.

1 1
n
Continuing in this manner we obtain M = ‘13'0 Hi GUn as long as
the U i- are non-zero. .

If M is finite dimensional, then Un -_6 for some n, and

N
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n
hence M= @& M , as claimed. ‘
ispo'l

If M is infinite dimensicnal, we sha]:l derive a contradiction.

In this case, U, is iﬁfinite dimensional hence non-zero for all n,

o
and hence M?> ®°M

i=0 1’ .
@ ’ o0
We show first that ® M, 1s closed.in M. Let @ M, c'M*c M.
i=0'1 i=o01
. - n ' -
Since M = 120“1 ® U, for all n2o, by the modular law
. n .
M= ® M, ® U aM*, Sincd M <U for all 41i>n, we have
i=o0 1 n i n
-} [--]

* : &
ign+lMiCUnnM . We claim that. Unn M: is essential over ign-i-l-Mi'

3

0 : .
let 0 # x € U n M*, Since e M &'M*, there exists O # reR such'

i=o i
. o) . . o nk. )
that xreigoﬂi. Hence Xr ='i£°xiand i.)_'.'oxi = -i£n+lxif XT €
n . ’ ' . - @, [+ ) M.
12 My (Unnu*) = 0. It..‘ foilows that xr = iE € ign'+l i

1 n+1%i

" :
o 'U_n M¥,
Therefore i=n+1Mi < Un M

Now since any direct sum of d'ivisib_le» modules is divisible,
~ .

=) A ]
120E(Mi) is divisible hence injective. \It follows that E(M*) =

‘m [- -
E(i goMi.) =.. ieoE(Mi)'

. e oo ‘ '
. Let 205'1(}11)'_.1.'. E(Mi)_ be the projection onto J(Mi): For

. 1
§

We show that 'n'n(Unn M*) = o, Let zE€ Unn Mx., By essentiality over
-] | o’
ign-i-lui’ there exists o % seR such that zse i2n+ lMi' Hencj_'e .

. - . n . . '
e f * - * = s | M*).,
each nz.to we have ' 7_(M ) L (10_ oMi) + T (Unn M )' Mn + (I.ln M*x)

i
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/l

o=T"T (z8) =T {z)s. It follows that T (z) = o for ail zelU n M*,
n . n . n n

oo o]
T (M%) = zo.. * = ®° .e. @
Then n(M ) Mn for all nz2o.. Hence M i=oMi’ l.e i=oMi

Lo
has no proper essential extension in M. Thus igoMi 1s closed in M.
o0 @
By (Cl) B M <

12 M; therefore by (1.6)

00
[:3]
12 oMi also has (Cl) .

Since K 1is divisible hence'injective, we have E(Mi)if K. Also.
\

MID yiR &R, for any O#yiEMi. Thus without loss of generality, we

oo

[++]
may assume that RCMiCK for all 1, and therefore igoRcigoMici

ne 8

o]

Now let o# rns R (n2zo0) be an arbitrary sequence of elements

of R, but with r =1. Let a =e -er {(n2l), where e_ =
o T o nn : n

[+

@ R «© 3
((Sr}i)inoe 130K' It 1s easy to show that {an}n=l A a linedrly

[+=] [+ oo
@ . = : @ @
independent subset of iﬂoK' By (2.14) A - lanKn(i-oMi.) is

co

K.

@ ' .
a closed submodule of ® Mi' By (Cl) Ac, @ Mi’ i.e. EOM = XOB

i=o0 i=c 1 1

. o =]
for some submodule B of igoMi' Define f:igomi + K by
O R T L T P UL UL

i

Claim: ker £ = A '

N =] [--] .
If acA, them a= L. .ak =e L.k - L.ekr . Hence
. n n=lnnn
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bad ]
= Ll = C
£(a) ng lkn .“E lkn oY Thus A c kfar f.
=] : ki
If xe€ ker f, then x = I e k, such that f - = o.
. i=o014 i=o ry
‘Then k g Let k' 4 (121). Then x=-e I k' +
en = - — . Let =: . en x=-e
o i=1 1 ‘ 1 17 ol=1"1
= — @2 Ve o = x L =) -
LR L P FHORER T1EiRg3g € 528 Knge o = Al

Thus ker f cA. Therefore A = ker f.

«@

It follows that BE(j_é?oMi)/A & f(igoMi) cK. It is easy to show

that e § A. Hence B 1is a uniform closed submodule of M. By (2.15)

; ‘ T

(o]
= n = L]
B bKNM for some o # b (bi)i=oei=ok'
[=-] o] [>-] .
[::) C @ ;3] .
Since ixoR i=oMi’ we have emei=oMi y for all m. Then
we have the Eollowing': — : re
- ! . '
% a + bk h kK, k K" and ¥.a k A
€n /-ln m * YOere Koo m € an =lan am & &
I -m Y \G:'{L @ i ¢
bkmEB’ 1.e.. emmeonglknm-nglen nm “n igoei bi km
\
for all m=o. '
We deduce
N : .
= = H 1=°E°k + b k where cfk bk ¢ M. .
1) i=m=o: nslmo oo nelne’ “oo o S
. 2) m=o, i 2}: o= - F‘iori + biko where kio L biko £ Mi.

3 4=o0,m2l: o= Lk +b k where T.k , Bk EN.
- ™ ~ a=1lmm’ om o
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.

14Ty Py e M

5) m=iz1l: 1=‘kiiri+b1.i where k T

biko \
Now we obtain from 2Z) kio =7 (L 2l).

i
‘ n o ® bn
From 1) we get 1 =nzl T + b’:’ko = ko néo r—n ; hence
. . bn
ko=v1/D where D =: néor—#o. .
n '
. bk
. From 4) we have k, = B (i#m=x1), and from 5)
im ry
biki-l bt bnkl:n 1
k"7 (1 21). Finally 3) ylelds o= &, — -t bokm {m=21),
- i . n m
w bk b k ) ’
hence 2. op BB yp k= T 2B.xbD and therefore k -
»r  mn=1 r "om n=o I ) - m r D
a n m-
—~ .
for all mz2o. A
o bi
. : 2
) Si‘m.:t? bikme Mjr , we have rmD E Mi for all imzo. It
bi 0 - bi-
. follows that — E n r M, for all 1izo. Let x,=: —=. Then
R D m=om i i D
b Dx x x
D= _% e U - § L , hence T L. 1, where all but
i=or i=o r,, i=or i=o0or
: i i i i
. B .‘ )
a finite number of -~ are zero (since b = (b )% e ® K). It
Ty i"4=0 i=o
o
\xi“" ® In
follows that 1 = § — € — M,.
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Since o 4 r;®R were chosen arbitrarily, we may take

. [}
g
r, = ril for an arbitrary element o ¥ TER. Then 1€ f ‘: rm_iM
i l=om=o i
.
< r

. .
1L, Mi y 1.e. 1/r € 'iéo Mi for all o # rer. 1t follows that

iéo M1 1s a divisible R—modul:.e . i‘.e. igo Mi = K.
N ® ¥ °° T
ow define 8, e Mi-i=0Mi=K by‘g(mi)i‘= T ib, My
\

[« o0 .
where (mi)io € 120 Mi' It ia clear that & 1is an epimorphism.

[
We claim thatr ker g 1s closed in a

o«
' ]
l-oMi' Let ker g c'Yc

\ . i1=¢ Mi'
Consider o#y : (yif:h-o € Y. By the essentiality. of 1; over ker g,
. o
there exists o#reR such that Yr €ker g, f.e. i§0y1?= o. It
follows that izoyi =0, 1.e. yE ker g. ﬁence ker g=Y. Therefore
ker g has no proper essential extension in i§o Mi. .
N By (Cl)_ i§o Mi =kerg® X for some submodule -X of N,
B : ) ! (=]
Since g 1s epimorphism, we have Xgifo Mi/lscerg = K. This contradicts
the fact that M dis reduced. [J :
The following Proposition shows that, for finite dimensional
torsion free reduced modules, (Cl) is equivalent to (1-—C1).
1
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*

Recall that a module 1s sald to have property (l—Cl), if every

uniform closed submodule is a direct summand.

Proposition 2.17: Let M be a finite dimensional R-module. Then

M has {C,) 1if and only if M has (l—Cl).

1
- Proof: Obviously (Cl? :Lmi)}ies (l—Cl). We show the converse by
induction over the dimension. Y

For dimension.s 2 the claim is clear. Now assume that it holds
true for dimension <n, and let ¥ be a module with (l—Cl) of dimension
fx. Using the note after (1.6), we can show, in the same way as in the

n
beginning of the proof of (2.16), that M can be written as M = 121M1
’ >

Let A be a closed submodule

where the M, are uniform submodules, ”

-

of M with 1<dim (A) <n.

Now if An: :;_ i o, then A .—nl—%M is a monomorphism,
where T is -the projection of M onto Mn. It follows that A 1s
n~-1
uniform, which éontradicts the assumption. Hence AN 101 N ¢ o. .

n-1 n-1
We claim that AnN 18 1Mi is closed in . M

RIRE Let N be a

-1
submodule of 0 M, such that 'AN

n-1
' €
1814 igluic N. Letlx N be arbitrary.

) =1
By essentiality there exista o # YeR such-that xrT s_Aﬂ 121 Mi. Since
J

A 1is closed, we obtain xeA. Hence XEAN Gi Mi. It follows that

M, = N. Then An§

4 1 M, has no proper egsential extension in

1 n
1 i

1 ‘
1
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n=1l
181N

B Aty et w4 noloy n—l M. ® X,
. ¥ induction A 191 1 c 121 L’ e, 121 i i 1
here dim (X) € n-2. Then M 2ol M oM =an"6. M ®XOM. B
vhere ) 5 m-2. Then 121 M My man 1 -

- 1 !
the modular law A = (An:i@l Mi) ® An [XG?H ]. By the same argu ment as

in the claim we can show that An[X 0Mn] ig a closed submodule of X @ Mn.

N\
Since.(l-Cl) is inherited by direct summands, X®© Mn ‘has (l—Cl) with

\]

dim (XGMn) £ n-1. By induction X @ Mn has (Cl). Then ANI[X ‘BMn]

® M n-1 -
c XeM , i.e. X®M = An(XeM )}®Y. Therefore M= (An ,®_ M) ®XeM
n n n . i=1 41 n

- (An )eAn(xen)ey-AOY Hencer{as(cl).D

=1 :L

~ -~

In the proof of (2.16) we have observed that &ach uniform torsion

.
-

free R-module can be embedded into K in such a, way that its image contains
R. ' '
From now on we consic_l_ei: each torsion free uniform R-module as an

V‘R-’-‘s’ubmodl:nle of K containing R. '

Definition 2.18: Let M, (1=1,2,...,0) be R-submodules of K.

TTBy (M) we "mesn the set of all xeK guch that xM, <M. oM, )

an overring of R isomorphic co end (M J. By A wemean the set of all

i)

xec K such that xni'c Hj. Aij ig R-submodule -0of K isomorphic to -

is
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hom(Mi.Mj) ; we sometime dengte it by (MJ :M_i). It 13 clear that A
R 1

‘ = G)(Mi).

i1

The next proposition gives a necessary and sufficient condition

for a finite direct sum of uniform modulesﬂto have (Cl) .

n .
Proposition 2.19: Let M = 1°¥ 1 Mi be an R-module with all the

M, wuniform. Then the foilowing statements are equivalent:

-

1) has_(Cl). - . -
2) For al} q3» qZ""’q'n € K (not all zero), there exist Oll,'ay...,ﬂnEK
such that igl ay = 1 and Gi qj Mi C’qiMj. for all 1, j.
N
Proof: 1) = 2). Let, M have (C ). Let Qq» 9p9---9 be

arbitrary elements of K, not all zero. By (2.15) A = {(q1 )n : XEK

and 9 X t-:Mi for all 1} is a cleogsed uniform submodule of M. By (Cl)

A COM, i.e. };I -.-A ©®B where. B if an (n -1) - dimensional submodule.
Since (Cl) is inherited by direct summands, B has (Cl). Then B can be

written as B = ?E]i I."-1 s where the Bj' are uniform. Again by (2.15) .

{(t :j, i =1 ; ij:K> and. tijxj EMir i=1, 2,...,n} for some”

t; €K not all'éero,,i-l, 2y...,0.

- - - _ t .
Now A ®B =M’ implies that for all mj(-: Mj the following systenm :
- , {
of equations has a unique solution with tijxj € Mi and qix € M for
each 1: z
v %
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+ + -
tp ¥t e Xt -1 Fpm1 T 9 % Tt 61 T
+ + ... =t
L1 ¥ T Ca2 % *ton-1 %1 T 9 %y S0 ™
l.'nl ot e 2 J‘:2'+ ¢ tnn-l n-1 G *5 ~ 6:I.n P
' - 1 cM,. si 8 RcM, we
Take m o=, %= €R nce 21 y we

L

a .
have that each member ey of the natural basis of 1_31.K is a linear

a el

combination of the (tlj' t2j""'tn5)’ j = l,2,...,n—l.;'(ql,qz,...,qn).
: ]
. ) , . 1 -
Then {(tlj,...;thj),'(ql,ng..i,qn)}J_l is gemerating and hence a

]

. n
llinearly independent subset of 184 K. It follows that

A= t | t

-

Now take arbitrar§ m € Mj' Call the unique solution of thé ,ith
equations X410 xiZ"";xin' (Then, by Cramer’'s Rule,. Xin " n

8400

[_
where Ain is the minor obtain by deleting the ith row and the nth

-~ A

v
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A
in

column of‘ A. Since qj xin E Mj’ we have qj A my £ Mj’ hence .

@ . q, M < q M for all 1i,j, whete "o = ! in. Then

17371 i e i 4

n n q; 4

E.oa, = g -1 dn _ A = 1.

i=1 i i=1 & it :

t

2) = 1). Let condition 2) be satisfied for arbitrary Q32450009 EK

where not ‘all .of q; are zero. The proof will be by induction on n.

The case n = 1 is trivial.

m 3

.Now assume iEFM:L has (Cl) for every proper subset F of
{1,2,...,n}. To show that M. has (Cl), by (2.17), 1t 1is enough to show
that each closed uniform gsubmodule of M ig a direct summand .

Let A be a closed uniform submodule of M. By (2.15)

. . ]

A = {(qix)i=l : x eK and q X€ Mi for all 1} , where q,€ K and not
all of them Are zero. By assumption condition ' 2) 1is satisfied for

ql,qz,.. .,qn.

Case 1:- At least one of the 9 is zero. Note that since not all 4y

are zero, it follow that whenever q =o, then ui=o {due to

o:quM:L c qlnj = o). Therefore conditiqn 2) hbld{ for the proper

’ | - ®
subset F = {1. : qi#o}. Since A,CIEFIMi’ by induction A < 12p My

Case Z:. All qi are not zero. By condition 2), there exist

n N ':1 ' - .
= £ 1
al,az,...,une K such that i§1 c.i‘ l .and ai qy Mic qj Mj or.al

1,3.
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®
L

n n
_l ’ .
;= : z A = I . a =1,
Let Ail l)‘.:Lq1 ; then i-lqi 1 1 51%y 1 It is clear

that not all & are zero. Without loss of generality assume A& _ # o.

il 11
. P \ .
\t . ) 11
Let B: {( l‘:“213’2 (L3 ,Tl;’i- By1Ygr¥gs oo 'y} iy € K and
A o A .y €M, and M }
- 4,9, 1=3A11 Y4E Ml, 1176 M, and y EM, (123)} . We have
4, -0, - i _ Bz
1 21 All All
A
. q2 11 O covevennns o
~ n
. ‘ z A
-43  ° Lo ° 1=1 9 4 T
L]
QO reeeerecieaenen o 1

Then, for each 1, the following system of equations has a unique

N

) solution for all mj £ Mj : . , . "
“ .A‘
| A . nl
q, X - Vo = creanves - — = § _m
\). 1 2172 8,7 ‘a™
q,x +Ally2+of +o-5:'_2 m, .y ﬁ’)
d by
9% + o +y3 + 0, M ) 613m3 ;
1
------------- Fooreeravs Tr e s s s s I TR AR ERSRERS
? qx * o R P +yn=61n N :




. _l -
. ' = A =
of equations. Since, by Cramer's Rule, Xy 1™y q oymy € qjlmj,
wea h.ave q, ¥, € M for a1l 1,j. It follows that ~A_. .y, - 2‘ Aily M
it j \ ? 2172 i=35111 1’

A EM and yj € Mj for all j 2 3. Therefore A® B =M ;

1172 &M

®
i.e.” A< M. Hence M has (Cl). O
' Condition 2) in (2.19) is difficult to verify directly in concrete
examples. But we shall use it in §.3-6 in the proof that, in certain cases,
) . : b .

a finite direct sum of uniform modules has (Cl) 1f and only if the direct

sum of each pair has (Cl). -

Corollary 2.20: Let M = M @M, where the M are uniform. Then- -

M thas _(Cl) if and only if for every o ¥ qeK there exist 2

Az &y € 1] (Ml) n® (MZ) suqh that q

P

1‘+a2=1 and C!l quCMZ, 0‘.2 MZCqMI.

Proof: Let M have (Cl). By (2.19), with ql-l and 9" q

\ ’ .
there exist Gps Oy € K such. that et oy = 1 and. .ai qj Mi z quj

-

for all 1i,j. Then 0-1 qM. cM a, M. M, and o M

1My oMy ey My =My, XMy M

1 272 2t
Therefore, al,azem(Ml)nm(Mz) with @, qM; cM, and o,M, cqM,.

N

Conversely, let" 9359, € K be given such that 9y # 0 or

quo. If a = o, then take Oli-o and Ctj-l (1#3). If

4y $ o0 (i=1,2), then let - q=q11q2. Therefore condition 2) in (2.19) is
satisfied for all 99, € K with q, or 4q, # o. Hence by {2.19) M has

). 0
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Corollary 2.21: Let M = MliB M2 where the Mi are uniform.

\Let: O(Ml) or OJ(MZ) be local. Then M has (Cl) if and only 1if for

L] . t
every o # q € K, qu and MZ are comparable, \

o

Proof: Let M have (Cl). Let (D(Mz) be local. By (2.20),
] 4 .
for every. o # q € K, there exist @), a, E(D(Ml)n O(Mz) such tl"lat

. £ .
a + o, =1 and oy quC MZ’ @, MZ c qlﬁ. Since a5, a, _pE’)"‘D (M?_)
i . . .
with Dtl + CIZ = 1 and 0)(M2) is local, we get 'that al or az is
g ! .
-1
unit in O(HZ). if ,Q]_ 1s unit in O(MZ), then al Mz MZ' It

follows that qu 'CMZ' Similarly if @, is unit in Q(le), tt.len

a, MZ = sz hence szqu. Therefore qu .and M2 4re comparable for

every o # qgK. .

v : ) .

The converse is obvious. [J -

. . n .
Corollary 2.22: Let M = iglui where the Mi are uniform.

i

Then M. has (Cl) if-and only if for all 93:99»--->9,€ K not all zero,"

-~

-1 o fge o
we have 1 ¢ !_;F jEr:]E' 19y Aij’ where F {1: qia‘o} .

Proof: Let M have (Cl). Letr.qiel(‘(i=l,2,...,u) be given
o . _ -
-guch that not all of them are zero. Left F =: {{ : qi?!o} ;3 this is a

mon-empty subset of {1,2,...,n} . By (2.19) there exist a,e K

[ Iyre]

(1=1,2,...,0) such that

5 1ai=l and ’aiquicqiMj for all ‘i,‘j_.

\

-~

1 4
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We have observed in (2.19) that Otj =0 1f j ¢ F. #t follows that

. 1 _
b = j o € 3
1Ep Y 1 and uquqi Mi c Mj for all i, j € F. Hence iqjqi A

for all 41, j € F ; i.e. «

_lA

Conversely,- let . qy ek (1

I n -1 ‘ .
LEF jEFqiqj Aij’ where F \{i

1
Aij for all 1

“1€5eF Ny Yy
1, JeF. If we take_aj=o for all

satisfied for the q (1=1,2...,n).

1
1

TlA for all 1 € F. Therefore

€ n
1 ger Y495 Ay

z a [ r n q.9q9:: .
ieF 1 i€F JEF i;] ij

=1,2,...,n), net all zero. If 1 ¢

:qi#o}, then 1 = iEF oy for
€ F. Hence ‘uiqui < qiMj * for ail
3 B F, then condition 2) in (2.19) ié

Therefore M has (C.).

1

An immediare comsequénce of (2.20) and (2.22) is the following:

Corollary 2.23: Let M =
) ~

Then M has (Cl) if and only if f&

r

where § = (D(Ml) n CD(MZ). g
. \

Corollary 2.24: If M = M, ® M, has (C) with.M

then M, can be embedded in 'Mj (1

Proof: Let M. v,have (Cl

exist 01, az £ K s:..u:h that d.l +

Ml ® MZ where the Mi are uniform. -

evéry'r'o#qel(, q_lA nsS+q4,, ns =5,

12 21

{ uniform,

$1).

). By (2.21), for each o # q € K there
2=1 and Ulq LMlCMza azuch i°

—
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If Ml can not be embedded in HZ’ then ay = 0, oy = 1 for each

r

for each gq ¢ K. Hence M, 1is

o# q gK. It follows that qu c M 1

1
Mz-iqjective. Since M2 is torsion free, by Baer's criterion for
injectivity, we have that Ml is injective, which contradicts the fact

that M 1s reduced. Therefore Ml can be embedded in MZ’

.

Corcllary 2.25: If M = Ml ) M2 has (Cl) with Mi uniform,

then AlZ A21 ) A12 and Al2 21 A21 have (Cl)'

\

Proof: Let M have (Cl). By (2.23) q_lA ns + qA21n §=5

12

12)

for each o # g € K. Since A12 (A 12" A12A21) . 2 < (Al2 21 ¢
-1 .
and § CfI)(Al2 21) n@(Alz) = ('J(Alz), we have q (A12 12 21) n (D(A )
+ q (A12A21 :Alz) n O(Alz) = Q(Alz), for every o # q € K. Hence,‘
- .
by (2.23), A12A21 ® A12 has (Cl). :
-
] Similarly we can show A12A21_ ® A21 has (Cl).

¢

§3. GOLDIE DIMENSION TWC

In this section we characterize all torsion free reduced modules

of dimension two which have prdperty (Cl). Such modules are direct sums

of two uniform submodules.,

N

Let Ml and le be uniform modules. According éo (2.18) let

12 21 2

A=A _= (?2 : Pl) .?nd B=a4A , = (M1 : M_.). Denote O(Ml) n O(Mz) by

S. Then we have the following theorem.

\
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. Theorem 2.26: Let M be a torsion free reduced R-module of

dimension two. Thenthe following' statements are’ equivalenft: -

A

(1) M has (Cl) H

{(Z2) M= Ml 1 MZ’ where the M, are uniform submodules of M. For each

1
_l -
Y:el(, q AnS + qBnS=¢5; .
3y M L@ MZ’ where the Mi are uniform and for each maximal ideal

P of 8S. (D(AP) coincides with (IJ(BP), and is a valuation ring

N m

with maximal ideal #l ¢ A B,. If vA =gil=B_, then @©(aA.) = (fJ(B'-)
ApBp Ap P Ap P

is disecrece.

Proof: (We note, for later use, that the proof of the equivalence
of 2) and.3) works equally well when we replace S. by O(Ml).)

1) = 2) Let M have (Cl). As observed earlier, M = M, ® M, where the

Mi are uniform submodules. By (2.24), A and B are fractional ideals

¥

of S« B)-r (2.23) q-lAnS +gBNnsS =5, for each o ¥ qEK,

2) = 1): Is clear, by (2.23).

2) = 3): Let q—lA'ﬂ S+ qBns = S. It is easy toseethat A and B are

-

fractional ideals of S, and AB<S c®(A). Since B<(S:A) and Ac (S:B),

we have, by (2.23), that A ® S and B ® S have (Cl). It follows that

AP @ SP and BP ® SP have (Cl), for each maximal ideal P of S.

Case 1: P FAB. Then APBP =SP, i.e. BP,.A are invertible

P
fractional ideals of Sp and hence principal. Since Bp @ Sp° has (Cl)\

and B, Sp» 1t follows :hgu: - sP'e SP has (cl). By (2.21), q5; c 5,
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-

or S, c qS; for every o # qe K. Then Sp 'is a valuation ring. Since

A o B =~ § we have that @(AP) = O(EP) = SP 1s a valuation ring, with

maximal ideal fl = P, 8§, = ApBy. If Ay BBy, cthen & = B, is principal,

P

and hence O(Ap) = O(BP§ 1s discrete. Therefore we have (3).
Case 2: P.D AB. Then. APBP c PP

Claim 1: A_ < {S_ :B ) if and only 1f B, 1is principal as an

P = P P P
SPTmodule.

, (s -1
lLet A, g ‘SP :By) and xe (s, .BP), x ¢4AP' Since,. x "AnS

-1
+ 1= no. + n = -
xBnsS S, we have x _AP SP X BP SP SP It follows that

x B nSP = SP (if xdlA NS =8, them S_c x-lA

’ i.e. xe£A_ which

P “p P P P} P

is a contradiction). Then SP.C X BPC SP. (due to xE(SP : BP)).

Therefore By = x_lSP is principal.

Now let Bp be principal. Then Bp is invertible; i.e.

Bp(Sp : Bp) = Sp. Hemce Ap S (Sp:Bp) (otherwise ApBp = (Sp :By) Bp = Sy, -
which contradicts the fact that APBPC PP).

. Similtarly we can show that BP'g (SP :AP) iff AP 1s principal.

be ﬁrincipal

Subcase 2a: 'BP or AP 1s principal. Let BP

hence invertible. The same argument as in case (1) sh%ws that Q)(BP)ﬂSP
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:B_ ). Now let

is a valuation ring. By claim (1) A < (SP P

-1
: . n + =
y E (SP BP)\AP be arbitrary. Since ¥y AP SP yBP ﬂSP SP’ it

foll hat B =8§. H ' B = yS5 . Th S B .
ollows that y P P ence (SP P) S, en ( p P)/AP is a
simple SP—mod’ule. Since SP is a valuation ring, we have that PP (SP :BP)

is t i - : . - -
8 the unique maximal SP submodule of (SP B»P) Therefore AP PP(SP BP)

o

i.e. PP = APBP. It is clear that if APEPPEBP’ then (D(AP) =. O)(BP) is

discrete. : . .

To ve‘gify (2) it remasins tc show that O(AP) = (O(BP). 1f AP is

principal, then O(AP) = SP = CD(BP). 1f Aﬁ 18 not principal, then by
. N ~
claim (1), BP = (SP :Ap). Let x'e O(AP) be arbitrary. Then xAPC AP.

~
It follows that beAPCbPAPc fo'r all b E B,. Hence

“

| xbps(SP:AP) = BP for all bpé ps 1.e. xE@(BP). Therefore

OAp) cO(B,) = S, c0(A,). Hence (A,) =0@).

-
.

Similarly 1f Ap d1s prineipal, then condition (3) is satisfied.
. . Ap 3

Subcase 2b: AE and BP are not priﬁ'cipal. From claim (1)
A‘P - (SP : BP) and. BP = (SP :AP). Since AP ° SP and BPG SP have (Cl),
by (2.21), we have AP ©q$, or -4Sp €A;, and BpS qSp or qSp° Bp, for

all o # q€K. It follows that Ap and Bp are comparable with all

SP—éubmodules of K. Hence Q(A?) ‘and @(BP) are valuation rings.
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By the same argument as In subcase 2a, we can show that

CD(AP) = (‘J(BP) =:0,

Now let #l be the maximal ideal of ©. Let x€ #l be arbitrary.

Then x—l ¢ 0; i.e. x—lBPsﬁBp. Then B, gx_lBP. Hence there exists

-1 - . . -1
bP £ BP such that x bP ¢ BP (SP : A.P) , 1.e. x bP A.P-sf SP' Then
-1 - - -
SPc x bpAp, 1.e. bePAPc APBP. It follows that fl cAPBP On the

\
other hand, APBP S 0, is an ideal of ¥, and hence APBP c fl. Then

a =_A'PBP' N e ‘

If Aﬁgﬂlg BP’ t.hen 'yAP = fl for some o#y€E K. Since # = APBPCSP

we have v ¢ (SB, : Ag) = Bp; f.en ¥ 0 c BP On -the other hand AP = y—-]'&'(

=}y-lAPBP, hence (y—lBP) A; c AP ;s 1.e. y-lBPc ®. It follows that °

¥

vy = B ; i.e. BP is principal as O-module. Hence EIEBP is principal,

i.e. . 0 is discrete.

..
o

3) = 2) : Let M= Ml @ M2 with (3). He want to show that for every

o# qeK, qlANS + qB0S =S,

-

Now let o # qEK be arbitrary. Let P be éln arbitrary maximal

tdeal of S. Lf PP AB, then AjB, = S,, i:e. B, 1is invertible henmce

principal,.and Ay = (Sp:Bp). By (2) O(Ap) = O(Bp) ™S, isa

valuation ring. Hence all SP;&\ubgngdules of K are comparable. WNow 1f
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1)
-..l .
q A, 2 SP’ then q ¢ % (SP : BP), hence qBP # SP. Thus SP S qBP.
It foll h -1 s, + S, = §
t follows that ¢ AP n p qllp nSp p*

If P> AB, then APBPCPP.

Case (a): AP or BP is principal. I:et BP“'be a principal
(hence invertible) fractional ideal of SP' By (2), S, ='*('J(BP1 = (D(AP)
is a valuation ring and A By = Pp. Then Pp (SP :BP) = AP, the unique
maximal Sp-submodule of (SE :By). Note that A < (SP :BP), since
ot;-ilerwise APBP = SP which is a contradiction. Hence (SP :BP)/AP is
a simple SP-moc}ule.

Consider 3ny q¢ A . If '9€(S§, :B), then (§ :B) /A, =qs, ,

\

hence (SP : BP) = qSE + AP Since q ¢ AP and "".qSP, AP are comparable, ™.
we- get (SP : BP) = qQE. Then SP.'= BP(SP :BP) = qB,.

On the other hand if q ;\wL(SP : BP) » then ‘qBP ¢ SP’ hence SP < qBP.
_ Y
It follows that Sp chP holds. for all gq ¢ AP Therefore .

-1 - '
9 ApNSp +aBynS, = 5.

Case (b): Ap and Bp are,not principal. By (2) O(4p) = o(Bp) =:0 -
is a valuation ring with maximal ideal & = ApBp. "
We claim that each of Ap 8nd Bp is cqmparable with all’

Sp-submodules of K. Let x ¢ Ap. Since O i1s a valuation ring, we get

~ /7
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.o=1
A cx® : di.e. x A 0. Then x A c=ABcS ; i.e.
z R P P P P

[
3
/;1 < x SP. < It follows that AP is comparable with all SP—submodules

of K. Similarly we see that BP is comparable with all Sp-submodules of K.

Claim (2): .If AP < (SP : BP)' then AP; Bpgﬂ‘and ® is \g@)t

discrete. Let x f:‘.(SP :BP)\ AP Then JFBP < S5p c® (due to B, being

not principal). It follows that xBP < #l, On the other hand Ap cx SP

(due to Ap being comparable with xSp and x¢Ap). T?}en ApBp © x By,

]
Therefore ﬁl-APBPt-:xBPCEI; l.e. # = xBP_@. BP

Now x_l £ (-SP :AP)-\BP, i.e. BP < (SP :A.P). By the same arguement

we can show that # AP

Now if @ 1is discrete, then #, and hence B are principal.

PI
[
Then xBP g = %BP implies xegx @ = AP, which contradicts the choice

“
of x. Therefore @ is not discrete.

.

By claim (2) and condition (3} we obtain now AP = (SP :BP).

Therefore if q ¢ Ap, then SchBP. Hence'q-lAPnSP + qBPnSP-SP.

These two cases together show tiunt q-lAp nSp + qB,nS, = S g

holds for every maximal ideal P of S. Then q_lAnS + gBnS =358. 0O

<z o

Corollary 2.27: Let M = Ml ® Mz have (Cl), where the Mi are

» | Ny W -
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-

__--»—/
uniform. Then O(A) coincides with 0(B), and is integrally closed. .

-

-
-

Proof: Let M have (Cl). Then by (2.26), (D(Ap) = O(Bp) is a

valuation ring for every maximal ideal P oi% 5. Since any Valuation
ring is integrally closed, and the intersection of integrally closed
domain# is integrally closed, we get that gm(Ap) =lg®(Bp) is integrally
closed. 7

We know that @©(A)c 8 (D(Ap), where P ranges over all maximal

’
i

ideals of S. Now let xeg 8(1) (Ap). Then xe O (Ap) for every P,

i.e. xA cA . Since AcA , xAcA for every P. Hence xA © NA = 4A;
P P P P . pp

i.e. x€ ®(A). Therefore O (A) = 0 UCRE
Similarly we can show that -\G) (8) = g@)(Bp)." '

Hence @(A) = ©(B) 1s integrally closed.

As a first application we analyze now the condition (Cl) in two!
. ¢ ”

very special cases. _
v - g

Corollary 2.28: - Let P be a maximal ideal of R. Then the
A

»

following statements are equival&nt: - -

.

(1¥ Pe R has (Cl)' /

(2) O(P) 1is a Priifer domain and P is a maxit_na'i ideal of 0(P). 'RQ is a

valuation ring for all maximal ideals Q of R different from P.

Proof: 1) = 2): Let P ® R- have (Cl). Since PQ = RQ for

>

all maximal ideals Q different from P, by (2.26), RQ =__(D(PQ) is a
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valuation ring.
To show that O(P) 1s a Prifer domain and P 1is a maximal ideal
of ©(P), we shall congider two cases. Since P < (R:P)P c R, we have

(R:P)P=P or (R:P)P = R.

Case 1: (R:P)P = R. Then O(P) = R and %, 1s invertible
hence principal. By (2.25) RP = G(PP) is a valuation ring. It follows

that RM is a valuation ring for all maximal ideals M of R. Thus
o

O(P) = R is a Priifer domain.
Case 2: (R:P)P = P. Then O(P) =-(R:P). By (2.24) (R:P)P® P =

P®P has (Cl)' By (2.26) (D(P)M is a valuation ring, for évery maximal

.

ideal M of @O(P). Hence, by (2.4), @(P) 1s a Prifer domain.
- [}

Since P ® R has (Cl), O(P)P = (R:P)P = m((R:P)P) is a
valuation ring with maximal ideal (R:P)_PPP = PP’ by (2.26). It follows

that QJ(E’)P/PP = (O(P)(p)P is a simple Rp-q_lodule, and ((D(P)/p)Q = g

for every maximal ideal Q different from P. Then, by (2.10), @(P)/P
1s a simple R-module, i.e. P 1is a maximal ideal O(P).

(2) = (1) 4is obvious. [

We don't know a similar description of (C;) for I @R, for an
arbitrary non-zero ideal of R, except 1f R 1is local or Noetherian

(cf (2.32) and (2.62)).
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K
4

Corollary 2.29: Let N he anon—ze'ro uniform R-module. Then

N oN has (C)) if and only if O(N) 1is a Prufer domain.

Proof: Obvious since A =B = (N) = S, [

. The following example shows, in contrast to (2.29), that if
M, # M,, then neither @ (MZ) nor ~ @ (Ml) N (D(Mz) need to be a Priufer

domain. v
s

A, ' !
Example 2:30: Let @ be a valuation ring with maximal ideal P,

Let F be a subfield of the field ®©/P ; and let S be the full inverse image
of F under._the natural homomorphism : @ + @/P, i.e. Sc ® and S/P = F,
Then S is a local domairg with maximalN{deal P. (Indeed, let x E S\P.

Then x is a unit in O, i.e. x ~€ O\P

Since o # x€& S/p = F, there

exists y € F such that ;y = 1. It foll wsothat x_l = yeF, hence

-1

X "€S5. Then x %3 a unit in S.) clear that @(P) = @©. By

-

(2.28), P® S has (Cl).

Now we choose @ = K[[t]], tie ring of formal power series in ¢

over a field K. Let k be a/proper subfield of K. Then we obtain .
S=k+tK [[t]], the full 1 ‘erse image of k under the natural
homomorphism : 'K[[t]] -+ K[[tQ]/tK[[t]]. From the previous discussion
Ml @ Mz := P ® S has (Cl)’ where P = tK[{t]]. It is clear that

S m O(Mz) = O(Ml) n O(Mz) 13 local but not a valuation ring,":hence

not a Prifer domain. [

Our second example shows that the statement "if Apg'm SBP, then
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O(A)P - (D(B)P is discrédte" 1in Theorem (2.'26) 1s not avoildable, in.other
wgrds, does not follow from the rest of (2).

Example 2.31: Let @ be a valuation ring which is not discrete,
with maximal ideal 4. Let ©/8 = Q be the field of rational numbers.
Let S be the full inverse image of the ring of integers Z under the

natural homomorphism : ® - &/l = Q, i.e! S/ = Z . Choose additive
v
groups .Mi and M2 , B < Ml, M2 <0 such that Ml/ﬁi , szﬂl can not

be embedded in each other , and (D(Ml) n O(Mz) = 5.

[
Since HMICMQ) =" f CMZ’ we have fl c A = (MZ:M)' Now let

1
X € A be arbitrary. Then x # € @#. Since ﬂz = fl, 1t follows that

x ficl, l.e. xcOM) =0. If x ¢ fl, then x 1is a unit in ©. Then
x @ =@ and hence Mllﬂl = le/xEI = le/EK I leﬂ , which contradicts the
]
fact that leﬂ can not.be embedded in leﬂl . Thus x.e @, hence
A= 8,
.
Similarly we can show that B = _(Ml :MZ) = @, -

Now let P be any maximal ideal of S. If P 2 AB = iﬂz = f{

then SP = APBP - ﬂlp. It followg that EP = OP = SP = OJ(AP) = CD(BP)

On the other hand if P D AB = 4

is a valuation ring with PP c APBP.
then QJP = ) hence AP = A =, BP =B = #l, It follows that ﬂ(A.P)

- OJ(BP) - Q@) = ® 1is a valuation ring with maximal ideal & = A‘PBP'

Therefore condition (2) of (2.26), e.xcei:t for "if APEH =1 BP,

then O(AP) (= @(BP)) is discrete", is satisfied. In particular Ml ® MZ
J"—;‘/ 4

dogs nqt have (Cl).

T

‘\AI .
P Note r&at since # < Micw ar% addivdve group, we have'. that

-



45

Mi/m c @/ = Q are rank one torsicn free abelian groups, of certain

types T (see [6]). It 1is easy to see that @(Mi)IEIE (D(Mi/i}{)?

/A

1) c Q@ where Z

) = z{p 1T1(P) fw}’ and that o(Mi) is the

inverse image of O(Mi)/ﬂ . It follows that O(Ml) n O(Mz} is the full

inverse image of ﬂ*i) n 2(2). Therefore @(Ml)rwm(ﬁz) = § 1f and
Z,., N =Z. '

only if Zy) " Zy)

To construct Ml, M2 as required in the example, choose ‘Ml’ M2
such that Mllﬂ;‘ Hzfﬁ are of incomparable types Ty Ty and such

that Tl(p), Tz(p) are not both =, for any prime number p. [

;

§4. CONDITIONS ON THE ENDOMORPHISM RINGS

In this section we characterize all finite direct sums of torsion
free uniform reduced modules with local, or comparable, endomorphism rings
which have property (Cl).

‘Let A= A12 = (M2 :Ml) and B = A21 = (Ml :Mz). We have the
following:

Proposition 2.32: Let M = Ml ] Mz be an R-module, where the

Hi are uniform. Let O(Ml) or m(nz) be local. Then the following

statements are equivalent:

1) M has (Cl);‘ . .

2) ©(A) coincides with ©(B), and is a valuation ring with maximal

v

fdeal @cAB. If Ao xB, then O(A)(= ©(3)) is discrete.
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Proof: Let ﬁ)(Ml) be a local domain with maximal ideal P.

We show that M has (Cl) if and only if q_lA n (D(Ml) + qB n(l)(Ml) = Q)(Hl),

y

for each o # qe K. From (2.23), it is clear that 1f M has (Cl), then

q_lA n (D(Ml) + 9B n fD(Ml) = O(Ml) for each o # qe K. Now let

q—lA n C'J(Ml)' + gB n Q)(Ml) = (D(Ml) for every o # qeK. Since

O)(Ml) is local, we have q—lA n @(Ml) = (D(Ml) or qB n (D(Ml) m @(Ml).

It follows that q€£A or q—laﬂ and hence qM., and M2 are comparable,

1

for each o ¢ qeK. Then M has (C by (2.21).

D
By using the note in the beginning of the proof of Theorem (2.26),

‘and by notirng that Ap = A, Bp = B, we have that 1) is equivalent to

2). 0 i

n

Proposition 2.33: Let .M = igllMi be an R-module, where the

Mi are uniferm. Let all O(Mi) but possibly two be lpcal. Then M has

-
i

L}

(Cl)l;:f'and only if M, @ Mj has (Cl) for all i+#]j.

Proof! Let MiB Ijj have (Cl) for all i#3j. Without loss of

/

generality assume that Q)(Mi) is local for all i 2 3. Let ql,qz,...,qneK

(not all zero) be given arbitrarily. Let F = {1 : qia‘o}. By (2.20)

qlll‘l1 and q-j-]‘ﬂj are.comparable for all 1,je F\ {1} . Hence

{qllﬂi} . forms a chain of R-submodules of K. Let q;l Hi be
ie F <] e
\{1} 0
the smallest member. Now if 9, =0 , then qui cq Mj for all i=1,2,.
- ’ . o o

I



Therefore condition 2) 'in (2.19) i1s satisfied for the .,qneK

qll'

with . @, =9 forall j#1 and o, =1. If q, # o then, by -
- 3 o] i, . 1

i aio E Q)(ljil) n "D(ll‘iio) such that o + aio =1

(2.'20), there exist o

-1 - .
and ay 4 M cqil}{io and qi 1 CqILMl‘ It follows that

o

1ql 1qu i q:l i quLMj for all j g F. Hence

b =
alquL_L_-C qlmj and aioqui c inMj s ] 1,2, ...,n. Therefore

o
condition 2) of (2.19) is satisfied for the ql,...,qnel( with aj =

for all j € F. Then M has (Cl).

An immediate consequence of (2.32) and (2.33) is the fellowing:

.
»

.. .
- n '
-34: = ® - y
Theorem 2.34 Let M :b-lMi be an R module,‘where the Mi -
: >
are uniform: torsion free reduced with local endomorphism rings. Then ‘

the following statements are equivalerﬁ:.

-

1) M has (Cl).

2} For all i;j , "O(Aij) coincides with OC(A,,) , and is a valuation

i ,
+ ’ f-‘
ring with maximal ideal ﬂij c AijAJi'- If Aijg Et_u_Aji, then .
- A : .-
Q_)(Aij)( 0( di)) is discrete B .
:y x‘," L]
In the following proposition we show that M = 91 4 has (Cl)
. s,
if and only if Hia Hj has (Cl) for all i#>wj1ere the Mi are

~

L
. \
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uniform and (')(lﬂi) » for some 1, 1is contained in all ('J(Mj) with

,one possible exception.
L]
n

Proposition 2.35: Let M = 121M1 be an R-module with all Mi

uniform. Let, for some i, O(Mi) S CD(MJ) for all § but possibly cne.

Then M has (Cl) if and only 1f Mi & Mj has (Cl) for all 1473,

Proof: Let: Mi 4] Mj have-(Cl) for all 1#3. The proof will be

v
by induction on n. *
For n's 2 the claim is clear. Now assume that igF.Mi has (Cj)
for any Proper subset F of {1,2,...,11} » and let M = 1§1M1'

Without loss of generality assume that O(Ml) c OM

j)' j=1,2,...,n-1.

Then s = B o®) = 004) o 00 ).

Let ql,qz,.;.,qneK (not all zefo) be given arbitrarily, and

let F = {i: qi#o}. We show that 1 ¢ lAij’ i.e.

I_ 0 -
- 1EF jer19y

-1
$Cil-2-:F jSFqiqj Aij (since all 4 are S—modulgs), If Fg{1,2,...n},

]

_1A

@ - . . c I .
then by induction iEFMi has (Cl) By (2.25) s 1€ jQFqiqj 19

Now let all qq Mot be zero. Since Ml eMn has (Cl) ?

' 4 -1
and S = Q)(Ml) n O(Mn), by (2.2'3), we have qlqn AlnnS + 9 annlﬂS S.

Hence for.each maximal ideal P of 5, glq;l(Aln)P nSP + qzlqn(Anl)'P n sP =g

P
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: : -1 _ -1
Since SP 1 local, we ha\;re 9,9, {Aln)Pn SP = SP or ql. qn(Anl)Pn SP = SP 3

-1 -1
i.e. .
e SP_ c ;9 (_Aln)P or SP c 9 qn(!\_nl)P

v

-1 -1
Cage 1: Sp © a9, (Aln)P-’ Then a9, E(Aln)P. Since

-1
(Ail)P(Aln)P < (Ain)P for all i, we have 9.9, (Ail)P c (Ain)P' It

. _ . -1 _ .
follows that qiqll(Ail)P < qlqn(Ain)P for all " 1. Hence

n -1 n-1 . -1 .
- n

jglqiqj {Aij)P \ j-lqiqj (Aij)P . It fOllOWS th&t

n. 2 -1 ngl n—l‘ -1 ar n-1 -1 ,

= + .
151 321%0%y Bagde T g G A ¥ 0 (),
n-1 ' n-1 n-1 1

By induction i’flMi has (Cl). Hence, by (2.22), 1 ¢ :LEl jglqiquij'
. n n -1 -
Thus Sp € g I 40199y Ay

' -1, . -1
Cage 2: SP < q9 (Anl)P. Then 9,9 € (Anl) By the same

P
argument as in case (1), we can show that -q_l(A ), € q th(A ) for’
& ‘ ’ 4% “ynle 1% Yy1lp
. hoa.q 0. a5k, ) It foll hat -
all 1. Hence nglqiqj (Aij)P j=2qiqj( 139" t follows tha
n n a n n
-1 T -1 T n -1 \(
n = n + .
1d1 30199, (A $=293% By p 1a2 §=2949 (Ay)p- Again
a ) n 1
® . . L q .
by induction 12 ZM:L has.(Cl) By (2.22), le 182 n Zqiquij
n ) n .
Then S_ < L n_.q q-l(A ) )
P {=]1 J=1717%

i3’p’
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n n -
c T :
These two cases together show that SP 1L jglqiqj (Aij)P

no_
n .
1 321990y

by

) ) .-on
holds for every maximal ideal P of S. Then § ¢ iZ=

We have shown that § ¢ lA for all ql,qz,..f&:?? K

T n -
1eF jerldy 8y

(not all zero) where F = {{: q #o }. Therefore, by (2.22) M has (Cl).

Ay
v . The converse is obvicus. [}

.-

An immediate consequence of (2.29) and (2.35) is the following:

n
Corollary 2.36: Let N be a uniform R-module. Then :L?nlN e

has (Cl}. for any integer n22, if and only 1f O(N) is Priifer.

o
-~

The followlng theorem is an immediate consequence of (2.26)} and

{2.35). '

Theorem 2.37: Let M = % M, be an R-module,.where the M

i=1"4 i

are uniform torsion free reduced and for séme 1, (O(Mi)c OM.) for all j

b

but possibly one. Then the following ‘statements are equivalent:

- e

1) M has (¢

n
2) For each maximal ideal P of § = ir-Tl ®(Mi), @((Aij)P) coincides

with m((Aji)P)’ and is a valuation ring with meximal ideal

iy (A0, forall 143, If (A

1172 ¢)p )PEE o> (A )P’ then

b £ B B

O«Aij)l’) ('0((Aji)P)) is discrete.‘ O

w ok L.
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§5. PRUFER,DOMATNS

In th‘is“ section we characterize all torslon free reduced modules

over Prufer domains, which have preperty (Cl).
v .

The following proposition is an immediate consequence of (2.26).

Proposition (2.38): Let M = Ml ) Mz be an R-module, where the

Mi are uniform. Let S =: (D(Ml) n O(Mz) be.a Prufer domezin. Then the

following statements are equivalent:

1) M has (Cl)'

2) For each maximal ideal P of S, OtA.P) coincides with OJ(BP),

- N

and its maximal ideal # is contained in A‘PBP' If Apmm ::BP,

. then Q)(AP) - QJ(BF) is a d?screte valuation ring. [

3

Proposition 2.39: Let R be a Prufer domain and let P be a

maximal {deal of R. Then P ® R has (C). .
’ Proof: We show that O(P) = R. Since R, 1s a valuation ring
with maximal ideal PP, we have that G(PP) = RP It is clear that
OJ(PQ) - RQ for each maximal ideal Q different from P. It follows
that wﬂ)(PM) = RM for every maximal ideal M of R, hence
- 0 = IR =
oP) % @(PM) . RM R.

By (2.28), we get that P @ R has (Cl)' 0
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. ; . A
The following proposition 1s an immediate consequence of (2.36):

Propesition 2.40: let N be a uniform module over a Prufer
n

domain R. Thén_ iSlN has (Cl), for any positive integer n. [

. n .
Proposition 2.41: Let M = 191"1 be an R-module, where the Mi

n -
are uniform. Let § =: iglm(}{i) be a Prufer domain. Then M has (Cl)

if andﬁonly if -Mie 'Mj hasg (Cl) for all 1, j.

: K . '
Proofi Let Mi Mj have (Cl) for all 1, j Let LIRLYY . ,qne K

{not all zero) be arbitrary. Let F = { {: q ¥ o }. Denote Q)(Mi) n OM,)

3
by Sij' L

We show that § c Since M, @ M. " ‘hasa (Cl)'

-1
7
1€F 38F%49y Agye 1 &M

-1
by (2.23), we hawe qiqJ ij j + qjinjin .E‘>1J =rSiJ for all 1, j¢F.

-

It follows that q,q (Aij)Pn(Sij)P + qjai' gy 0 (5, - (sij)P for each

maximal ideal P of S. Since S is Priifer, we have that S5p  is a

valuation ring. Hence all SP—submodules of K are comparable. It

follows that q;{;qgl(Aij)P n(sij)P - (Sij)P' or q qi (Aij)P (s 11 P-- (SiJ)P' Hence

\

c g q;]'(A ), for all i, je F. Now for each

Sp ‘:qiq (Aij)P °or Sp < 41’P

J1EeF, {qiq.1 (A, )} . forms a chain of Sp-submodules of K; let

11'PYeF

-1
qiqa(i) (Aiu(i))l’ be the smallest memher. Then
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1 1

3 £F%g9y Alp = 49 5 Alags)lps and hence 1 iy _je':'Fqiqj (Ayp

b -1 _
= 1er%9 acr) Piaqqy)p,

Note that the o introduced above defines a function from F ints

itself. Then we can form powers of «q.

Assume that

( c P for all ieF. Then

-1
49 a 1) Piac)’e P

. -1 .
SP c qa(i)qi '(Aa(i)i)P' for all 1€¥F. Since F 1ig a finite set, there

exists aninteger k22 and\an element 1 €eF such that ak(i) = 4. Since

Sp a9 gy, (A

- 2 -1 )p for all £ < k, we obtain that
a (1) o () "ot (1)a (L)

).’ Since

q _ q £ (A _ .
oy &t oFiy F L)’ E -
(A oy A )
ak(i)ak l(1) ¥ uk(i)ak 21y’ P “@ a3(i) az(i))P (Aaz(i) a(i))f’

. -1
c (A }p- It follows that q q,” (A ' ). < (A y .,
P 2 i i P
ia(di) a? (1) i az(i) 0‘(1)? a ()
cq 'il-rl\ (a }_. It follows that
i 1ao(l)’pP

hence a5 q-l (A
a (1)

2 )
a“(1) a(d) aS(i) a(i) P
: -1 ' -1 -
Speq q (4, ) <= g (A )p © P,, which isa
Cl-zci) Cl(il o (i)a(i) P O.(i) i C!(i)

gdntradiction. Therefore SPC qiq 7&(1) (A:L a(i))P for some 1. Hence

-1
L 4 P f s.
Sp < 1eF jeF YUY (Aij)P for every maximal ideal o
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-1 8l
z .
Then SCiEFjQF qiqj Aij

By (2.22) M has (C)).

The converse is obvious. []

Let Sij = m(Mi) n O)(Hj) for all 1, j. " Then we have the following:

/

Theorem 2.42: Let M be a torsicon free reduced module over a

Priifgr domain R. Then the following statements are equivalent:

1) M has (Cl);

o

2) M= :LE M, with all Mi uniform.

M For every maximal ideal P of

i3

Sij’ 0)((A1j)P;Lj) colncides with CD((Aj.i)Pi;), and its maximal ideal

mij is contained in (Aij)P (Aji)Pi » for all 4,4.

13 ]

If (A ) o fl (A ) » then O((A ) ) = O ) ) is a
. ij°PpP 13 ji Pji 1j Pij ji Pij

discrete valuation ring.

| 3
Proof: 1) = 2):

Let M have (Cl). By (2.16) we have M = d Hi s
where the M:L are uniform submodules of M, Since any overring of R dis

a Prufer domain, we have that the Sij are Prufer domains for all {1, j.

Since (Cl) is inherited by direct summands, and Mi L] Mi has (Cl) for all

i by (2.40), we have Mi ® Mj has (Cl) for all 1, j. By (2.38) we get 2).

2) = 1): Let 2) be given. Since the Sij ~are Prufer, by (2.38),
/
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: - n
Mi @ Mj has (Cl) for all {1, j. Since S=: ,12 1 O(Mi) is an overring

of R, we have that S 1s a Prufer domain.

L]

By (2.41), M has R

56. DEDEKIND DOMAINSRM/

In this segtion we characterize all torsion free reduced modules

over Dedekind domains/rﬁldﬁ.have property (Cl).

We first mention some properties of Dedekind domains. Let R be a -

Dedekind demain with quotient field K. The factor module K/R 1is a torsion
divisible R-module, analogously to the case of torsion abelian groups,

it can be written as a direct sum of P-primary submodules; i.e. K/R

= QTP where TP = {x¢ K/R:an = o for some n} , and P ranges over
P

the maximal ideals of R (TP i1s the natural generalization of the

divisible torsion abel¥an group C(P™). Define T; 'by Tg -

={xeT,, :P'x = o} if n<w, T; - Tp. {Tg} forms a chain of
: e .
\ n<m n
submodules of T, such that Tp= U Tg. If @®>nzm, tRem P I, = Tg-
P Q<

! -
If X and Y are submodules of K/R with ‘X¢:Y, then X and Y can be

"p

\ m ‘
written as X = gTP, Y= gTP- where Dp S mp £ for all P.

Let A = (H2 :Ml), d = {Ml :MZ) and S = m(Ml) n m(HZ). Then

we have the following:

Lemma 2.43: Let Ml and Mz be R-submodules of K such that

leM <M, and M, can be embedded in M. Let S be Dedekind an?

.
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r ' .
w np mp ) .“. mp—np
Ml/S = T MZ/S = §T," + Then B = PP , Where .P ranges over

P

the maximal ideals of 8§,

Proof: Since S5 is Dedekind and B 1is a non-zero ideal of S,

we have B = ngp. where bp 2 0. Since ngpMZ = B MZ CMl, it follows
pPE e 5 P _ pp g "p
) that PP M, < Hl where M, = M1/S. Then %TP = pf P %Tp < ?’TP s
and henée m - bp s np’ i.e. bp 2 mp —np.
m-n m n m_-n
Now since gP ? P %Tpp = %TPP’ we have gP P pMZ = _
m -n i m -n .
gP PP (Mz-bS) c Ml + S = Ml (since S < Ml}, and hence %P P Pc pa-
® b

HP»P. Therefore m_-n 2b 2m -n, and it follows that b =m - n
P P p p P P P P

4].[111-“[1
and B = PPP P,

]

Lemma 2.44: Let Ml and M2 be modules over a Dedeklnd domain
R, where the Mi are uniform and can be embedded in each other. Then

O(Ml) - m(MZ)',

Proof: Since Hi can be embedded in Mj' we have that (Mi)P

can be embedded in (Mj)P’ for Egz_gifyhal ideal F' of R . Since

<
R 13 Dedekind, we have that RP 1s a rank one discrete valuation ring.

Sincey 0((Hi)P) is an overring of Ry, it fcllows that 0((H1)P) - RP

or  ®((M,);) = K. Since M) n be embedded in (Mj)P, we have

C((HI)P) - K if and only 1f @ ((MZ)P) =~ K,
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Now by the same argument as in (2.27), we can show that (D(Mi)

= ;(O((“i)p)' 1=1,2. Then O) = gﬁ)((Ml)P) - n R, =
O((M)),)#K )
= N R = ”m((uz)P) -oMmy. O
(M) ) K P

Propoéition 2.45: Let M = Ml L M2 be an R-module, where the

Mi are uniform. Let S be Dedekind. Then the follewing statements fare

equivalent:
1} M has (Cl) .
2) M; can be embedded in Mj (1,1=1,2).

3) There exists a fractional ideal I of S such that M, = IM

2 1°
F
Proof: .1) = 2) This is clear by-. (2.24).
2) = 3): Without loss of generality assume that SCMlC Hz. Since §
is Dedekind, we have, b)/(z-loh), O(Ml) - OJ(MZ) = S, Since S CM1C M2 < K,

.
\ Ml/S and MZ-IS as S-submodule of K/S can be written as M1/S

n .
- @ '1'.'1,p and M2/S - QT? , where P ranges over the maximgl ideals
P P
i m -1 ’
of S and o <n sm. By (2.43), B= PP P, Nowlet o# be B.
P P P
\
We have sz < Ml, and it follows that S ¢ Mz c b_lMlc K. Hence we
1 .

obtain that b Hlls = e'r::?'* P where 1p z o. It is easy to see

P : .

m+ pmy
that (HZ :b_lﬂl) = bA, and hence, by (2.43), bA = 1P ' . e P,
' P P



On the other hand since be Bc §; i.e. le c M
+2 -n
ScM cblM < K. 1t follows that IIPmP LA M :bLM) = b®O(M,) = bS.
1 1 P 1 1 1
-m_=-% L L
s=MP® B P perefore A=blnp? apls np ¥
P P P

1’ we have

Hence b-l

n -m -2 1P .
-=ppFP P p///%g,*_= . It follows that AB = 5.
P Co

P
Now M2 = ABM2 < AMl c MZ' and we obtaln that MZ = Aﬂl.
3) =»1) : Let M, = IM . Since S 1is Dedekind and I-"is a fractional

2 1
i
ideal of S, we have that I 1s invertible and its inverse is (S:I). It
follows that O(Ml) = O(Mz) =S and A=1I, B = (S:I). Then
O(A) = O(I) =@(S:1I) = G(B) is Dedekind. Hence for every maximal

. 1deal P of 8, ‘O(AP) = G(BP) - SP 1s a rank cme discrete valuation

ring with maximal ideal P < SP = APBP. .Therefore, by (2.26), M has

(cl). a
Theorem 2.46: Let M = Ml ] Mz be a module over a Dedekind -
domain R, where the Mi are uniform torsion free reduced. Then‘the

following statements are equivalent:'

1) M has (Cl);
2) Hi can be embedded in Mj (1,1=1,2);
3) There exists a fractional ideal I of R such that M, = IM

Proof: 1) = 2): Is trivial.

2) = 3): By (2.44), we have O(Ml) = O(Mz) = 5. Since any overring of

- .
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R 1is a Dédekind domain and is a locaf&gation of R at a set of prime
ideals of R, "we have § {ig Dedekind and § = R,y a localization of
R at a set of prime ideals of R. By (2.45), we have M2 =.JM1 where

J 1is a fractional ideal of S. Hence J = I, for some fractional

ideal I of R. Now JM1= I*Ml = IR*M1= ISbH_= IMl. It follows .
{

that M2 IMl.

3) = 1): Let Mz = IMl where I 1is a fractional ideal of R. Then

HZ = ISMl where 1S 1s a fractional ideal of S and hence by (2.45)

we have condition 1). ‘[ M

4

Corollary 2.47: If R 1is a principal ideal domain and Ml, MZ
are torsion free reduced R-modules, then Mlﬁi HZ has (Cl) if and only

if "My 1s isomorphic to Mz.

Proof: Since any fractional ideal of R 1s principal. a

The following proposition is an immediate consequence of {2.41).

- -

Proposition 2.48: Let M = g M, be an R-module, where the Mi

1=1 ! .
are uniform. “Let § -:.iﬁj_m(Mij be Dedekind. Then M has (€)) 1if and
only 1if M e Mj has (Cl) for all 1,j.0

Theorem 2,49: let M be a torsion free”reduced module over a
Dedekind domain R. Then the.folloging statements are equivalent:
1) M has (Cl)

2) M E.Lgl;iﬂ’ where N 1is a proper R-submodule of K and the Ii



&0

are fractional ideals of R.

Proof: 1) = 2): Let M have (Cl). By (2.i6) we have M 31%;1141'

where the Mi are uniform submodules of M. Since (Cl) is inherited by
direct summands, we ha;.re that Ml o Mi has (Cl) for all 1. By (2.46)

we have Hi = IiMl where the Ii are fractional ideal of R with Il-R.

n
= @ .
Then M - 111}11

-

. n : ‘
2) = 1): Let. MELElIiN with N % K and the Ii fractional ideals

| § - <
of R. Let Mi .Iil.i. It follows that IiLM:L = N = IjJTIj, and hence

Mj = IinlMi.‘ Then by (2.46), Mie Mj has (Cl) for all 41i,j. By (2.4?),'

M has mﬂ.”D :
N -

§7. NOETHERIA®R DOMAINS OF KRULL DIMENSION ONE.

-

In this section we characterize all torsion £free reduced modules

over one dimensional Noetherian domains which have -property (Cl)’ .
Let A = (MZ:Ml) , B = (MleZ) and S = CD(Ml) nQ)(MZ). Then

-

we have the following:

\ . Proposition 2.50: Let M = Ml @ Hz be an R-module, where the Hi

are uniform. Llet S be Noetherién. Then the following statements are
{ .

equivalent:

1) M has (Cl); [
2) ©(A) coincides with ©(B), and is a Dedekind domain ©. AB is a
. product of distinct maximal ideals of . There is a one-to-one

correspondence between the maximal ideals of © and the maximal

-
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ideals of §, wvia contraccion. , w

.

Proof: 1) = 2): Let M have (Cl). By (2.27) ©O(A) = O(B) ~: 0

<
is integrally closed. By (2.24), AB 4is a tion-zero ideal of S which
®

is also an ideal of ®. Then AB 1s contained in the conductor D of
5 1n '(!)7 éi ce S5 s Noetheriar‘l and D ¥ o, by (2.7), we have {h\at
0 is fi-nitel'y generated S—ﬁadulé. It follows that 0 is N;Jetherian
and integral over S, and hence ® 1s thé integral closure of 5.

Since A and B are finitely generated fractional ideals of §,

+
P

i1t follows that ‘D(AP)-(D(A)P = 'OJ(B)P - O(BP), for every maximal fdeal
P of S. By (2.26) and since O is Noetherian, we have thq‘t Q)P -_Q)(BP)

= O)(A.P) is a rank one discrete valuation ring. Since 'Q)P -ig integral

over SP’ it follows that SP is a bne.dimensionai Noetherian domain for

LR

every maximal 1ideal P~of S. Then S 1is a ene dimensional Noetherian -

domain. Since ® is the integral closure of S, it follows that O 1is
a Dedekifid domain.

We show that for each maximal ideal P of S there exists .a
unique ‘maximal ideal ¥ of 0‘such tat P = PnS. Let P be a maximal
ideal of S. Since O)P is a rank one disc-;;:e valuatiort ring we have,
by (2.5), OJP = Q)Il for some maximal ideal ¥ of O w%th Il-nS - P. Now

let ﬁl be any maximal ideal of ® such that P = illnS. Then

an'-. Q)P c:mnl. It follows that ]Iln c FU' hence illc ¥ and hence }Jl' i.
; ' 1 .

L
Therefore there is a oné-to-one correspondence between the max¥mal ideals

of ©® and the maximal ideals of S, via contraction. ~

.We show that AB 1s a produgt of disti;lct maximal ideals of O.

We have Q)p = op _for every maximal ideal\Z2_§ j where: %13 the
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A

P

maximal ideal of @ with P = Snl .

Then (AR)

P
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= ABO, = ARGy = (AB), .

By (2.27) we have that for every maximal ideal I of ® containing AB,

(Ag)n - APBP i3 the maximal ideal

of O)P"

(Dn,

1l.e. (AB)ZJ = Uu On

the other hand, since O 1s a Dedekind domajin we have AB = Hﬂnm). It

follows thae (Aﬁ)ﬂ = 7 n(ﬂ). By comparison we conclude that n(¥) = 1,

D
hence AB = IIJ.

4

2) = 1): Let conditi‘c\g 2) be satisfied. The one-to-one correspondence
. « .

means that, for every maximal ideal

/maximal ideal ¥ of © such that

S 1s Noetherian, we have‘ thatv Q)(AP) = (D(BP) =®P = 031 is.a rank one

digcrete valuation rinf with maximal ideal ﬂu «

where the P, are maximal ideals of © with: ——ﬂi‘n S =P

& n
1, «(aB), = ( X u)
- Py i=1

[§

P of S, there exists a unique

PnsS =P, Since O is Dedekind-and

n

n

=
P - Now let AB i-lni’

o Then for all

. .
1Py 121(111)?1 -‘ wi‘Pi = 3:liili ; and for every

n

P#P (1-1,2,...,1:;),. we have S = (AB), = (, M, @), ~ I, @), -

P

HOP T oo, Iherefore cdnaitioi‘f 2) of (2.26) 1is satisfied. Hence

W (cl). O . .

The following theorem is useful, in concrete examples, for

congtructing a direct sum of two uniform modules with property (Cl).

.
.

Theorem 2.51: Let M = M_ @& M

1

-

2

be an R-module, where the M

i

are uniform torgion free reduced. Let § =: Q)(Ml) n 0(?12) be

Noetherian. Then the following statements are equivalent:



1) M has (C);

2) The integral closure S' of S 1is Dedekind and is a {maximal)}
equivalent order. There 1s a one-to-omne correspondence, via
contraction (and extension), between the maximal ideals of § and
of S'. The conductor D of S in S' 4s a product ofl
distinct maximal ideals of S' (or S). A and B are S'-modules

and AB = D,

Proof: 1) = 2): Let M have (Cl). In the beginning of the

Proot- of (2.43) we have shown that O(A) = O(B) =:0 1s a Dedekind

domain and is the integral closure of S. It follows that ©® is a
maximal equivalent order.

- Now let D be the conductor of § 4in . Since AB is

a non-zero ideal of 5 which is also an ideal of ®, we héve that
ABc D. We show that AB = D. Since A and B are non-zero, 1t
followe_; that MlO and HZOJ can be '\embed»ded in each other. Since @

is Dedekind, we have, by (2.46), that Hlo ®© MZ‘D has (C,) as

O -module, and MIO = MZI, whgre I 'is a fractional ideal of .

. \
Since ABcDcSc @ , we have MiDCMi (1=1,2). It follows that

-1
MZDI HlD ch, and hence DIc<B. Similarly MlDI . - MZDCMZ, hence
DI-ch. ‘ Then DZCAB:D. By (2.43) AB = | Ili s where the Hi are
n
maximal ideals of ©®. Since ABcD, we have D = Hni L ;

nis 1.

2n .
2
But D" = Hyi i c AB = 1'[3]1, hence n, 2 1. It follows that n =1

1 i

for all 1, 4{i.e. AB = D.

By (2.50), there is a one-to-one correépondenge, via contraction,
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between the maximal ideals of S and of ®. Now we show that for any
maximal ideal P of S, RO =3 vwhere § 1is the unique maximal ideal
of @ 1lying over P, {i.e. the inverse of the one-to-one correspondence
via contraction is given by extension. If P $ D, then P % D. Since O
ts Dedekind, we have P = p", =n 2 1. It follows that PD <P N'S

= PcP® = F". Then n=1 (otherwigse DC polc ¥, which is a

contradiction), i.e, PO = P . On the other hand i{f P> p = ne |

i.
then P =: P, =¥,NS for a unique 111. Since ©® is Dedekind, we have

' - p M 0 = n ' -
P, O B, n oz 1. Since HnicPi Ui i ’ it follows trhat n, =1,

and hence PO = PilD = IJi.
Now D=DNS = (H]Ii)ns = (9311305' Q(uin S) = ? P o= IinL

(since the Pi are distinct maximal ideals of S).

2) = 1): Since A and B are §'-modules, we have S'c ©0(a), O(B).

Since D = AB 4{s a non-zero ideal of U(A) and of ®O(B) which 1ig also

~an ideal of , s', ;1e have that ®(A) and O(B) are finitely generated

S'-modulésZ\a&i hence integral 'over S'. Since §' is integrally closed,

we hav.e that @(A) = ©O(B) = S' is a Dedekind domain. Hence, by (2.50),

M has (CL)' a )

The following is an example of two uniform torsion free reduced

.wodules M, and 4, for which M e M, has (Cl). It shows that if

Mle H2 has (Cl), then OJ(Ml) and 0(}12) need not be comparable.

©

Example 2,52: Let @ = F[t] b the polynomial ring in t . ovér
a field F. Let k be a proper subfield of F such th'al: F is a finite

4

e



dimensional vector space over k. Let Ml and M2 be the full inverse

images 'of k under the natural homomorphisms @ -+ O/ t® 2F, gand

O -+ 0/(e-1)0= F respectively, 1i.e. Ml =k + t® and MZ =k + (¢-1)0O.

and it is easy to see that
.

$5=:0, 0 0, ~k+kt+t(t-1)O . Now O is the integral closure of

Ly

.
S, and hence a maximal equivalent order. The conductor D of § in ©

It is clear that Q)i ;= O(Mi) =M,

is equal to t(t-1)® . Since S/D= k + kt = klel/e(e-Dik[t] , it
follows that the only maximal ideals of § which contain D are
P1 t= kt + t{t-1)0® and P2 te k(t-1) + t{t-1)® . Hence tO NS = Py

Ve

and (t-l)mnS-Pz, le- tg + t(t-1)p = t@ and sz = (¢~-1)0 +

t(t-1)0 = (t-1)® . We have shown, in the proof of (2.51), that there is
4 one-to-one correspondence, via contraction (and extenlsion), between the
maximal ideals of ® and of S, which are not containing the conductor D.
It is clear that, A = (t-1)® and B = td are ’ @®-moduleas and AB = D.

Therefore condition 2) of (2.51) is satisfied. - Hence M, @ M2 has (Cl).

1

Note that 031 and 02 are not comparable. U

.

The second example shows that if the integ.ral closure @ of S is
a Dedekind domain, and is a maximal equivalent oz:d;zr; and there is a one-'
to-one correspondence, via contraction and extension, between the maximal
ideals of @ and of &5, I;hen the conductor of S in @ need not be a

. product of distinct maximal ideals of @ (nor of S).

Example 2.53: Let O = F{t] be the polynomial ring in t. over
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a fleld F. Let k be a proper subfleld of F such that F is a
finite dimensional vector space over k. Let S = k + kt + tzﬂ). Then the
conductor D of S 1in @© is t2 0, and hence ® 1is a (maximal)
equivalent order, Since S/tz(') 2 kit]l/tk[t], we have that P:= kt + tZ'D
is the only maximal ideal of 5 containing D. It ia easy to show that
PO = t@ and t0® NS =P. As in the previous example, this suffices
to establish a one-to-one correspondence, via cqntraction and extension,
between all the maximal ideals of ® and of S. ButD = tzm is not a
product of distinct maxim.ai ideals of @ (nor of S) . []‘
S B

The next example shows that the statement "A and B are
S'-modules" deeslnotl follow from the rest of condition 2) of (2.51).

Example 2.54: Let O = F{t] be the polynomial ring in t over

a field F. Llet k be a proper subfield of F such that dimF< «.
' k

Let S be the full inverse image of k under the natural homomorphism

0 +Q/t0 =F , {.e. S=k+ t® . It is clear that there is a one-
to-one correspondence, via contraction (and extension) between the

maximal ideals of ® and of S, that the conductor D of § in @ {3 rg,
and that S' = . Now let V be' a proper k-subspace of F such that

dinV 2 2, and let Ml": vt + t20 and Hz = 5.
k

Then B =M and A= (S:B), Since BO = (Ve + t20)0 =~ tOcs,
we have O< A. Now let ac€j, i.e. aBC S; it fcllows that a t20 < s
and hence at:zt-: D=t® . Then ate 0, and hence ar= x + yt where

xcP and ye 0. On the other hand a2tV = (x + ye)VE §; 1t follows
/-
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that xVck. Since d&mvz 2, it follows that x=o0 and at = yteg t®,
i.e. ac ®. Hence A= @ and AB = t® = D, Therefore condition
2) of (2.51) is satisfied except that B 18 not an ®-wmodule, and hence

M10 MZ (iloes not have (Cl). 0

The last example shows that AB = D does not follow from the rest
\

of cendition 2) of (2.51).

Example 2.55: Let ©® and S be as in example (2.54). Let L

1
be subflelds of F sguch that k< LiC F and the Li are not comparable,
i=1,2. Let Hi be the full inverse image of 'Li under the natural
homomorphism: @+ O/t® =F, 1{.e. Hi - L1+ t@®. Since the L:L are

not comparable, we have A = B = t@. It is clear that A and B 'are
O-modules, and that AB = tzoJ i t® = D. Therefore condition 2) of (2.51)
holds except that AB = D. []

Remark 2.56: We have shown in (2.50) that if M, oM,

has (Cl)
vhere § 1is Noetherfan, thdm S is a one dimensicual domain. If S is
not Noetherian, then S need not be one dimensional. . For example, let R .
be a Prufer domain, which is not one dimensional, and let P be a maximal
ideal of R. By (2.39), we have that P ® R has (Cl), while S = R i3

not one dimensional. [J -

We observe now that, Jdn the special case where the domain R 1is

Noetherian and th‘e Hi are finitely generated R-modules, (Cl) for H.l ® Hz

.
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forces R(and S) to have Krull dimension one.

Proposition 2.57: Let R ba a Necetherian domain. Let M M

1* 2

be finitely generated uniform R-modules. If Ml ] MZ hag (Cl), then R

has Krull dimension one.

n
n n
Proof: De‘fine g:R = Hl by g():':L 1_1-1.2_11'15:1 , where
xlﬂxz....,x; are the generators of Ml. This induces an embedding
REs S OM,) = hom (M,,M )+ hom (R",M ) M. Since M, 1is finitely
1 R 1'1 R 1 _ 1
generated and R 1s Noetherian, we have that lHl 13 Noetherian, and
. ) -
hence H? is Noetherian. It follows that S 1s a Noetherian R-module.
{

Thus S 18 aj Noetherian ring and integral over R, and hence Krull
dim(S) = Krull dim(R).

) Now 1f M) e M, has (C,), then, by (2.50), S 1s one dimensional,
and therefore so is R. [J

.

« Remark 2.58: Note that if M_g Mz‘ has (Cl) where the M, are

1 i
infinitely generated uniform modules over a Noetherian domain R, then
R need not be one dimensional. For example, let R be Noetherian but
not one dimensional. There exists a valuation overring V of R (cf,
Theorem 56, [11]). Hence by (2.21), Ve V has (Cl) as an R-module.
\ . n -

Proposition 2.59:. Let M -:lélyi be an R-module, where the M

i
n

are uniform. Let § =: ig:ﬂb(ui) be Noetherian. Then M hag (Cl) if
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and only if Mi @ Nj has (Cl) for all 1+43.

Proof: Let Miw M, have (Cl) for all 1#3j. Denote QJ(Hi) by

3
Oi and O(Mi) n O(Mj) by Sij' It is easy to see that I= A12A23"'Anl is
b
a non-zero ideal of S, which 1s also an ideal of Sij' Hence the

-,

conductor Dij of S 4n Sij contains I, for all 1{¥j, Since $§

is Neetherian and Dij ¥ o, it follows that the §
\

are Noetherilan and integral over S, and hence

13 are finitely generated

S-modules. Then the sij

Krull dim(S) = Krull dim(S1 ):

1
Since M:L o Mj has (Cl) for all 1i¢3j, we have, by (2.50), that

. O ) = O(A,,) 1s Dedekind, and is the integral closure of S,s3 there

b 3

is a one~-to-one correspondence, via contraction, between the maximal ideals

of O(Aij) and Sij' Since the sij are integral over S for all 1i,j,
14

we have that U(Aij) i1s the integral c¢losure of S, and hence the OJ(Aij) all =
coincide; we dencte this ring by @.
Now .01/1 € O/1 are o-dimensional and have the same number m
of maximal ideals (since there is a cne-to—one correspondence between
the maximal ideals, containing I, of ® and of 01). By (2.13) 01/1
and Q/I are artinian., Thus there exists a compleﬁe set of orthogonal
idempotents e.l,ez,...,em € 0/1. PFrom the one-to—one correspondence, it
follows tha Ej £ 01/1 for all 1, a&nd hence ej €0
j=1,2,...,m\_Then the number of maximal ideals of S, which contain I,

0111 = §/I;

is m. Therefore there is a one-tc-one horrespondence. via contractiom,

"\
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between the maximal iQeala, containing I, of.® and of 8. “

To show that M has (Cl), let ql,qz....,an K (not all zero)

be arbitrary. Let F = {4i: a9y $o0}. Since M10 Mj has (Cl) for all

1#4, it follows that, by (2:23), qiqglAijﬂﬂ) + qqulAjinm -0

for all i%] € F. Then for every maximal ideal P of §, -

-1 K

949 (A

)Pﬂ(D l(A)ﬂQ)-O

19 a t 449 By P P

o

Now 1f P O 1I, then there exia‘a-\a unique maximal ideal J of
A -

® such that P = pNsS. It follows that @ is local hence a rank one

P
discrete valuation ring (since @ 1s Dedekind). On the other hand 1f

P$1, then I_ = SP and hence SP = % is a rank one discrete

P -
valuation ring. Then S_c q q-l(A ) ~ or S <« g q—l(A ). holds for
p= Y495 Vyy'p p© Y391 YWyi'p
=1
each 1¥], and {qiqj (A:Lj)P }-1 ¢p forms a chain of submodu-les of K

for each 1 € F. By the same argument as in (2.41), we can show that

1 x

sc igF jEr:]l-‘ 9,4, Aij', Therefore M has (Cl).

The converse is obviocus. [

Theorem 2.60: Let M = 151“1 be an R-module, where the Mi

are uniform torsion free reduced. Let S be Noetherian. Then the
following statements are equivalent:

1) M has (C));

2) The integral closure S' of S 1s a Dedekind domain, and- is a

(maximal) equivalent order. There is a one-to-one correspondence,

e
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via contraction (and extension), between the maximal ideals of S'
and of S. Theconductor D of S in S' is a preduct of distinct

.maximal ideals of 3' (or S). For all 1i¥], the Aij. are

S'-modules, and A, A, oD. : v
1j ji? 5
o '
Proof: 1) = 2): Let M have (Cl). Since (Cl) is inherited by
direct summands, we havg M, ® M has (Cl) for all 1#j. From the

i ]
proof of (2.59), we have that all m(Ai

v

J) coincide, and that this ring

is a Dedekind domain ®; there is a one-to-one correspondence, via
contraction, between the maximal ideals of © and of S. Let D be the

conductor of S in ©, and Dij be the conductor of '51_'! in 0.

has (C,), we have, by (2.50), D, = A A Ba'nd hence

Since Hiﬂ M 13 137917,

3
DDy = Ay by
’

:D)D = D,.. Since ( :D)D 18 an ideal of

S
b 1] ij
which 1is aWso an ideal of @, we have (S1

We show that (Si

S :D)D <D, ,. Now let

] 13
j be arbitrary. For any y€ (®:D), we have yD < 0, and hence

i3’
X € Di

¢

It follows that xy € (Sij :D), hence x(@ :D)c (Sij

:D)D, i.e.. Dijc(sij :D).D. * Therefore

xyDe xﬂJcS;l : D).

j°
Then xex O = x@®:D)D < (S

5,4 % DID. “

From (Cl) for Hie Mj, we have that (sij :D)D = Dij is a

product of distinct maximal ideal of ¢; and there is a cne-to-cne

i1

D:Lj-(

correspondence between the maximal ideal of ® and of 5 It i3 easy

S

1]

13°
to show that Q (D) = OJ(S1j :D) = ©.  Therefore, by (2.50), D e S

has (Cl) .
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We show that D ® S has (Cl). Since S 1s Noetherian, by (2.26),

it is enough to show that DP ® SP has (Cl), for every maximal ideal P

-

of 8,

Case 1: P 2D, Singe D e Sij has (Cl) for all i#3, we have

that DP ® (Sij)P has (Cl). Since OJ(DP) = ([)(D)P = O)P is local,

hence a rank one discrete valuation ring, we have, by (2.21), that

DP and q(sij)P are comparable for'every o # qeK. If q(sij)PCDP

for some 1,j, then qu < ci(sij) c DP. On the other hand, if

D Cq(S“)P for all 1i#3j, then D <

P q5. It follows

R, qs,, =
P 1a=1 %4y - @
(1#3)
that DP' qSP are comparable for every o ¥ qt£K, and hence DP ® SP e

has (Cl) .

v

Cage 2: P$ D. Then DP = S? =®_  1is a rank one valuation ring',

P
and hence, by (2.21), DP ® SP has (Cl)'
These two cases together show that DP ® SP hi;a (Cl) for every
maximal ideal g of S, and hence D @ S has (Cl). By (2.51), the
inverse of the one-to-one correspondence, (via contraction) is given by
extension, between the maximal ideh'ls of ® and of S; and D 1is a

product of distinct maximal ideals of O (or of S).

2) = 1): Since Aij are S'-médules, we have S'CO(Aij). Since

AijAji is a non-zero ideal of O(Aij) which is also an ideal of S§S',.
we have that the conductor of S$' in G(A“) igs non~zero. Then U(Aij)
is a finitely generated 5'-module, and hence integral over S'. Sit;ce

. . \
S' 1is integrally closed, we Fet O)(Aij) = S' for all 14j. ’ e

B . R . ) . ’
h
—_ »
» ) '
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.

-~

To show that M has (Cl)' it is enough, by (2.60), to show that

@
M Mj has (Cl) for all 1+ 3. Since AiJAJiDD, and D is a product
of distinct maximal ideals of S', 1t follows that AijAji is a product
of distinct maximal ideals of S'. It is clear that there 1s a one-to-one

cofrespondence, via contraction, betwegn the maximal ideals of $' and

of Sij' Therefore condition 2% of (2.50) 1is satisfied for the direct sum
HiG Mj, for all 1i# j. Hence Mi :] Mj has (Cl) for all i+#j. O
.1
Corollary 2.61l: Let M = iElMi be an R-module, where the Hi N

are uniform torsidn free reduced. Let S _be Noetherian. The folleowing
statements are equivalent:

1) M has (Cl);
n n¢ -

91“1 < .9 .F, under the natural

i=1"1
!

2) S8 1is the full inverse image of i

n
. - ®
homomorphism : @ D/E v, C et
A1

Fi - Q]/ﬁi , and © 1is Dedekind; ancl’l]i are maximal ideals of @.

F where the k are gubfields of

i’ i

A

n

. n .
For all 1#j, the Aij are @O-modules and AijAji > i_lili N

Proof: 1) = 2): Let M have (Cl). By (2.60), we have that the

—_— ‘ \ _
integral closure S' of S 1s a Dedekind domain, and that there is a
one-to-one correspondence, via contraction, between the maximal ideals

of S' and of S. We also have that the conductor D of § i1a S§' |is

a product of distinct maximal ideals of S'.

1

N n

' iy ) = I - ] - .
_ No't:' let D i_lni iglvi, and let niﬂ S P:L’ it follows
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that D = irrilpi’ and hence
D k = ® s/p, = S/,ﬂ P =5/ 2 }, nSes 2 o= 3 s:/p = . % F
1=114 1=1"""1 i=14 1=1"1 1=1%1 1=1 1 i=11"
[
Towm
where k, = S/P = s/ﬂirws = (s+ Py ¥ =8y, = F.
. - n
We have also,by (2.60), that the A—ij are S'-modules and AijAji :> iﬂlvi

for all 1#j .

2) = 1). Let cc:ndition- 2) be given. Let I=: iﬁlni' Since 1 1is a
non-zero ideal of § which is also an ideal ©®, it follows that the
conductor D of 8" in @ is non~zero. Since § is\N}e\ngFian and

D ¥ o, we have that @ is integral over 5, and hence Krull dim(lS) = 1.
Since A Ay, O T, we ha;re: that A
ideals of @.

ijAji is a product~of distinct maximal

N

n n .
Since S/l = islkic ile = (U/I, it follows that S/I < O/1

i

are o-dimensional and have the same number of maximal ideals. Hence

. there is a one-to-one correspondence, via contraction between the maximal @

ideals of ©® and of S containing I. I‘c\is clear that Sp = fDP is a
ragk one discrete valuation ring for any maximal ideal P not coRtaining

I. Therefore there is a one-to-one correspondence, via contraction,

K X

between all maximal ideals of ® and of S. Since the Ay are
O-modules, it follows that O(Aij) = fo‘x_\ill i# j. Since
Sij = m(}{i) n QJ(Mj) = S, .we have that condition 2) of (2:5/0),15

gsatisfied for all 1i¥j, and hence Hi ® Mj has (Cl) for all, 1#].

Therefore M has (c,), by (2.59). O

. “ =

In the special case where M; = R, and R is Noetherian; (Cl)
AN



\ .
implies that M, Ls-isomorphic to ‘an 1deal of R, in this sltuation we
. - -

have the following: sy .

B h
- .l

y o bl LA

Corollary {2.62): Let.R be a Neetherian domain and I be an
: o, T
ideal of R. Then the fol#owing statements are eguivalent:

1) Re I has (Cl):

n n
k
2) R 1s the full jnverse image of 194k < 1‘-‘-’1F1 under the natural
‘ﬁ' ee n .
homomorphism : @ -+ ®/i=lni' =3 iElFi’ where the ki are subfields
of Ei'=: OII!i , and O is a Dedekind domain; and ﬂi are
\iaximal ideal of ®., I 4is an - module, \ ’
, IR G

‘Proof: 1) = 2): Tk clear. o
2) = 1): Since I is an -®-module, it follows that (R:I) is an

®-module. By the same argﬁment as in (2.60) we can show Ehat I(R:1)

’ \ n
is-the conductor of R in ©® hence contains 1E1n Therefore,

i
by (2.61), R ® I has (Cl). ]

LY
) Since overrings of a one dimensional Noetherialh--domain are

- LY
s Noetherian, and by (2.16), (2.60) we have the following: | 3 1

Corollary 2.63: -Let M be a torsion free reduced module over a =

[

Noetherian. domain of Krull dimension one. Then the following statemepts

ax:e equi{valent: ' . T

1) M has (C)); . . v i

2) M~ 1§1M1L' whéfe the M, are uniform.” The integral closure S' of
N , o -
. _ _ ] -
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&

n
S = :i.ﬁl O(Mi) is a (maximal) equivalent order. There is a one-to-

one correspoendence, via contraction ‘(and extension), between thaimaximal
ideals of S' and of S. The conductor D of 8§ 1In S' is a product

of distinct maximal ideals of S' (or S). For all 1 ¥j, the A1j

'-—
are S'-modules, and AijAji >Dbp.

§8. OPEN QUESTIONS

We list somd open questions, related fﬁffﬂls chapter, for which

st

we could find neither proofs nor counter examp .

1)

Let M =M @M, be an R-module, where the M, are uniform torsion
’ . 1
free reduced. . If M has (Cl)' is  ©(A) (= ©O(B)) a Prifer
domain; and is it the integral closure of S? : ' j}

n . .
Let M = G}yi- be a module over an arbitrary commutative integral

N -

domain, where the M, are uniform torsion free reduced. Does M

i
have (Ci) if Hi ® Mj has (Cl) for all 1#3?
Are there uniform tqrqion free reduced modules Ml and M2 sucﬁ
<. »
that M) @ M, has (C)) for which S =: O(M )N O (M) 1is (one-

dimensional) Noetherian but not Dedekind, and such that Mi are B -

infinitely generated as S-module?

- 7 ‘

- n.~ A
- " ‘.\\"\\.'l ) ‘



CHAPTER ITT

TORSION MODULES WITH PROPERTY (Cl)

In this chapter we study finite direct sums of uniform torsion

modules with local endomorphism rings over Noetheriaﬁ domains. First we
give a necessary and sufficient condition for the direct sum of a pair
of uniform torasion modules with local endomorphism rings to have (Cl).
Thén we prove that-a finite direct sum of uniform torsion modules with
local endomorphism rings has (Cl) if ;ndAonly if thg diréct sum of each

pair has (Cl). Finally, we characterize arbitrary torsion modules over

Dedekind domains which have (Cl).

~

In this chapter R 1is always a commutative Noetherian domain,

and all modules over R are torsion. ! .
A -
§1. PRELIMINARIES. (

We recall the definition of relative injectivity given in (1.3):
‘A module M 1is-gaid to be N-injective, 1f for every sub-module I of N,

every homomorphism f:L + M can be extended to f:N -+ M.

~ The next useful characterization of relative injectivity was

given-b;zkzumaya [2), and geneéalizes the result by Johnson and Wang [10]

for quasi-injective modufés. '

i

% Lemma 3.1.: A module M is N-injective if and only if, for
— o ] .
every homomorphism f : &% E(M), £(N)cM holds. (-

- 77

~

¢
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Lemma 3.2: Let w:E(Ml) - E(Mz} be an arbitrarylhomomorpﬁism,

LLemma 3.z . : ;
and let X = {x ¢ Mi : w(x)s:Mz} . Let w:Ml -+ Mz be a hdmgkorphism
such that Y(x) = p(x} for all x e X. Then w(Ml) - w(Ml), i.e.

X = Ml.

—

Proof: If {(p - w)(Ml) # o, then by essentiality of Mz' in

E(Mz), we have ‘16 - W)(Ml) n Mz ¥ 0. Hence there exists o # m2 € MZ

such that m, = {(p - w)(ml) for some mll:Ml. It follows that w@ml)
= =, + w(ml) £ MZ' and hence ml.EX' Therefore \éw - w)(ml)
= w(mlj - wﬁnl) = 0, which 13 a contradiction. Thus w(Ml) - w(Ml),

and X = Ml. 0

L. feremy [9] defined quasi-continuous modules, as follows:

Definition 3.3: A module -M . 1s called quasi-continuous if it

satisfies the following:
e

(Cl) ¢ Every closed submodule of M 1g a direct summand.
(C3) : If Ml and MZ are direct summands of M such that Ml 1] MZ = o,
then .Ml ©® M, 1s-a direct summand of M. '
' It "is clear that any uniform module is quasi—co;tiduoua.
Jeremy [9], also obgerved that a module M 1ga quasi-continuous,
i1f and only i? M ig invariant under all iﬁempotenta of the endomorphism
ring 6f "its injective hull. -

—

Miller and Rizvi [14] proved the following; \

G
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i i

Lemza 3.4: If M= @ A_, with ® E(A,) injective, then M
1el iel '

is quasi-continuoud if -ahd only, 1f the Ai are quaai—continuous and
N .

Aj—inject:ive for all § # 1. O

~

The extra assumption in (3.4),\1::1!: @ E(Ai) is 1nject.:ive;
iel '

is automatically satisfied if the index set 1 1s finite, or 1f the ring

R 1is Noetherian. . _'

Lemma 3.5: ([8],P.22). For a module M = @& Mi’ with all
11

end(Mi) local,. the following statements are equivalent:
-~
1) the decompositon complements direct gummands ;.-

2) any local direct summand of M 1s a direct summand;’

3) the decomposition is locally semi-T-nilpotent 40

»
.3

These conditions are automatically satisfied if the index sget

1 1is finite.
It is a well known fact (due to Matlis [13]) that,if R 1s a

commutative Noetherian ring, then the indecomposable injective modules
E correspond to the prime ideals P of R in a one-to-one fashion,
such that E = E(R/P).

Lesma 3.6: ({13}, Th.3.7). Let R bé s _commutative Noetherian
ring, anlq. E & E(R'IP)‘ be an indecomposable injective R-module. The;n E

igs an RP- as well as an ftp-module, where ﬁ.P is the completién of RP

> . ol

A



Furthermore, if H = Hom(E,E), then H 1is isomorphic to RP; more
R B

precisely, every R-homorphism of E into 1itself can be realized by

multiplication by a unique element of RP.

Definition 3.7: Let M be a non—-zero R-module, and P be a

prime ideal of R. We say that M has an assoclated prime P 1if and
[ ]
only 1f P = ann(N) for some non-zero submodule N of M such that

P = ann{T) for all non-zero submodules T of N (the submodule N
of M may then equally well be chosen to be eyclic). If R is
Noetherian and M 1s a uniform R-module, then M has a unique

assoclated 1:;rime P; in this case we shall denote it by ass(M) = P.

n
Lemma 3.8: Let M= @ M, be an R-module with all M

1 uniform.
1=1

i
Then a submodule A of M 1s uniform and closed in M i1f and only if

n . ’ .
- . . ' .
A {:L z lwi(x) : K EBCS'M,_ for some M, and some submodule B of M.k}, where

9, ¢ B-M, are homomorphisms such that lpk(b) = b for all beB; and @

i i

are not simultaneously extendable (i.e. if ¢, :B, +M  extends o,

n
-1
BCBicuk, for each i, then B n B, .)

1=30t
{

Proof: Let A be a closed and uniform submodule of M. Let

"y be the projection of M omnto M i=1,2,...,0. Since A 1is uniform,

i'
we have ANnker M = © for some k. It follows that wklA:A-v-M.k is a |,

monomorphism. For each 1, ni(ﬂk,A)-l: Trk(A) +Hi is a homomorphism,
{

9

.
¢ . \ <
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we denote it by 9, Observe that tpk(x) = x for all x¢€ Trk(A).' Now

n n
let a € A be arbitrary, as an element of M, a = . Zlﬂi(a) iEl“'i"
- ‘L- ’ -

r

- . = d

i)

) n . n [} .
| ; L ¢ a), where 7w (a)en, (A)<'M . Hence Ac { I ©,(x) :xen, (A)='M ).
I A K k e ot k e

-

n . .
On the other hand 1f b = & Lpi(x), where x¢ 'nk(A), then there exists
1=1

n -
a unique a'e A such that x = ﬂk(a'), and hence b =.1L -TTi kl(nk(a'))

i=1
n n
= T wi(a') = a'c A. Therefore A ={ I o,(x):xc Bc'M_k}, where
. i S
1=1 . 1=1
B:= 'ﬂk(A).

'
-

-, . . M '
v Now let lbi : Bi + Mi extend @y for each 1, where Bc Bicﬂk.

. a )
It follows that A <'{ [ wi(y) tye tr: B,}. Since A 1is closed, we

i
e i=1 i=]

n n n
obtain that A = { I wi(y) I¥YE n Bi'} » and hence B = n B:L'
’ i=1 L 1i=1 ”

Conversely, let X = { g f,(b) :bsBc'M.k}, where the f, :B+M
(I NS i i

are not simultaneously extendable homomorphisms, and fk(b) = b for all

n .
beB. It i1s clear that X X B, via b-;E)%(F", and henct;L X is a
. \ 1.
" \ .

uniform submodule pf M. i

.. ;
We show that X 15 closed. Let Xc' X*cM. It i3 easy to see

’ - ! . ‘ -0-.
that X Nker 1Tk o, where Trk. M - M.k 18 the projection

of M onto M . Since X% is essentfal over X, we have X* Nker T ACE

b1S
*
and hente X* i[l{.}ik is a monomorphism. Since B =T A QT X* and

k k
. i
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0 :
-1
T (B =Ty (ifl ) €b)). 1t follows that

1 -+ *
mh - T * . T d k
" H ] X Hk extends f[ Thus B = 1 X N .and hence X = X

Therefore X has no proper essential extension in M.~

' n
Lemma 3,9: Let M « T Mi be an R-module, where the Mi are
i=1

y

uniform. Then a atibmodule A ‘of- M 18 cloged of dimension ‘n—l if and

only 1f A= {b+@(®): beBc' & M _}, where ¢: B+ M 1is a non-
S .

extendable homomorphism, for some k.

Proof: Let A be a closed submodule of M of dimension n-1.

Then AnHk-o for some k, and hence f=: I 7, :A+ ® M 1ig a
1kl gl .

monomorphism, where 111 -1s the projection of M onto Mi' Since
~.
-

£(A) 2 A, we have f(A )" o Hi' By the same argument as in (3.§) we
i1dk

can show that A = {b + ¢ (b) :bef(A) ' e M.}, where ¢: = ﬂkf_l.
. i}‘ki

"Now ¢ 18 not extendable (otherwise Af"{x+ W(x) :xexc' :kui} . '
i

,

. i
where y: X + H'k is the proper ext‘;sgaion of ¢, which contradicts the °*
* N

assumption that A 1is closed).
By the same arugmetit,_ as in (3.9) we can show that any submodule

of M, of the form {(b+ Y (b) :b ¢ ?C'i:kﬂi} ‘where -y : B+H.k is
Fa

\
\ *
a non-extendable homomorphism, is closed and of dimension) a-1. 0O



any R-module will be torsion.
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Lemma 3.10: Let M = X @ Y be an R-module with hog(X,Y) = o,

Then Y has a unique complementary direct sugmand, namely X.

]

m
Proof: Let M =Y ® Z, and let M-~ Y be the projection of M

onto Y. Since ho%(X,Y) = 0, we obtain that w|X = o, 1.e. 7(x) = o

far all xeX, and hence X< ker W = Z. Therefore X = Z. 0

52. GOLDIE DIMENSION TWO'

In this section we characterize torsion modules of Goldie
q;mension two over Noetherian domains, which have property (Cl). First
we show that (Cl), for direct sums of two uniform torsion modules with
distinct associated primes is equivalent to quasi—contiguity. * Then we '
give a necessary and sufficient condition for a direct sum of two uniform
torsion modules with the same associated prime, and with local endomorphism

rings, to have (Cl)‘

‘./
Recall that R will be a commutative Noetherian domain, and

F

Proposition 3.11: Let M = M, @M, be an R-module, where the

ﬂi are uniform. Let the associated prime of Ml be different from the

agsociated prime of Mi. Then M has (Cl) if and only if Mi is

Hj-injective. 1#].

Proof: Let M have (Cl). Since M, are uniform, we have that

i
E(Hi) are indecomposable injective. Since ass(Hl) ] ass(Hz), it follows

" that E(Hl)ﬂE(RlPl)- and E(HZ)EE(RIPZ), where Pl and P2 aré non-zero

a4

~

a8
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distinct prime ideals of R. Without loss of generality assume that

M, SE(R/P)) and M

1

2c:E(R/PZ); and that PzdzPl.

Let ¢ hmfli (E(MZ), E(Hl)), and e be an arbitrary element of

E(Mz). "Then for some n >o,- ei’f.)_l =0, and hence (‘p(e)Ptz1 = 0. It

follows that @(§) = o {(otherwise P; Cann{y (e)) < ass(E(Ml)) --Pl,

i.e, PZCPl which~gontradicts our assumption that P2¢ Pl). Therefore

hOm(E(Mz), E{Ml)) = 0, "hence, by (3.1), Ml is Mz—injective. Similarly
R . . .

if P1¢P2, then MZ is Ml-injective.

and let ¢ : X +M_ be an arbitrary homomorphism

Now let P.cCP 2

12

~

from a submodule X of M, into M,. Let X=:{x-¢y(x):xeX}, and

let X* be a maximal essential extensign of X' in M. Since 'X* g

closed in M, by (Cl), we have M = X* @ Y. Since X2 X' C'X*, vwe g_v\t

E(X*) & E(R/Pl). Since end(E(M;)) are local, and E(Y)CB'E('R/P.I) OE(R/PZ), it
’

follows that E(Y) G\E(R/Pl) = E(M). Since hotRn(CE(Rll;'z). E(R/Pl)) =0, by (3.10),

E(Y) = E(R/Pz). Since Y 18 closed in M, we have Y = E(R/Pz)ﬂ M= M,,
[~ Y
and hence M = X* @ Mz.

Now let T:,X* @ Hz"‘ Mz be the projection onto Then

S HZ. FY
o= Tx- ¥aH = Tx) - TY(X) = Mx - Y, and hence M) = ¥ (x)

for ‘ x EX., Therefore T |H1 extends V. Hence Mz is Ml-injective.

u 1]
Conversely, let M, be Mj—injective, i¥j. Then, by (3.4), M
, - . ' 4
is quasi-continuous. Hence M has (Cl). g -
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The following is an example of two uniform torsion modules M

1
c
and Mz with aas(Ml) 4‘ass(l*‘f‘z), foxj which Mls M2 has (Cl).
Example 3.12: Let R be a Noetherian domain, let Pl‘iP2
be prime ideals of R. Let M1=: R/Pl and MZ = HMl, where
H=: hom(E (R/P ).E(R/Pz)). It 18 easy to see that HM, = ann‘ (). It
R 1 1 E(R/P)L

is clear that Hi is Mj-injective. i#j, and hLence Ml ® MZ has (Cl) v

[

Note that M, 1s R/Pl;injective but need not be R-injective.

2
For example let R=k([x)}y] be the polynomial i:ing‘ in x,y over a fileld "

k, and Pl- <x>‘§<x,y>‘- P

1= Bl 1]

_ L -l
,+ Then ES(Rlpz)R/PI) E(kk{y]) kly 7]

- E((R/PZ)RI.

-1 -1
Gkix,y

Corollal3.l3:6, Let M= @ Mi be an R-module, whére the M
P

iel
be distinct. Then M

i

are uniform. Let the assoclated primes of all H:L

has (Cl) if and only if M is quasi-continyous.

Proof: Let M Have (Cl)' Since (Cl) is inherited by direct summands, we

have that M, ® Mj’ has (Cl) for all 1‘#'1 eI. By (3.11), Hi is Mj-injective
£

for all i$J€I. Since R is Noetherian and the M, are uniform, we

i
have, by (3.4), that M 1s quasi-continuous.

The converse is-obvious. [
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Lemma 3.14: Let M = Hl o MZ be an R-module, where the M1 are

uniform with local endomorphism rihgs. If M has (C;) and M, can not

be embedded in Mj for some 1% j, then M, is Mj—injective.

1 not be embeddable in Mz.

Let ®: X -+ Ml be an arbitrary homomorphism from a subm8dule X of MZ

/ !
into Ml'» Let X':= {x - @{x) :x€ X}, and X* be a maximal essential

Proof: Let M have (Cl), and let M

extension of X' 1in M. It is easy to see that X' ﬂMl = o, and hence,)

: ™
by essentiality of X* over X', X*an-o. It follows that X#* ——bMZ

ig a monomorphism, where Tr2 is the projectitl}n of M onto Mz.

e

By (Cl)’ we have X¥* c°M. Since the end(Mi) are local, we have

Ui
. 2| x*
M-X*GMI or M-X*OHZ. If M-X*OMZ, then Ml‘:—"x*——l—sz

is. an.\embedding,'which contradicts the assumption that Ml can not be

embedded in Hz. Hence M 2 X* @ Ml.
1 . -

Now let w: X* ® M, + M, be the projection onto M,. Since

s

x - w(x)ex‘c\}(*, we have o= T(x - @ (x))=Tx - TQ(x) = mx = ©(x)

for all, x € X; i.e. x = (x) for all. ::E X. Therefore ‘IT]H extends
. 2

¢, and hence M, 1is M, -injective. 0

Lemma 3.15; Let M = Hl [ 1-12 be an R-module, where the Mi are

s
whiform with local endomorphism rings. ﬁ?the Mi have the same
assoclated prime. Ifl. M has (Cy), ‘r.hen M, can be embedded in Mi for «
some 1¥7. ‘ ’ . .
E . ¢ //
« ) -~
~ °
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1 2
is Mz—injective; and hence, by (3.1),

Proof: ) Let M have (Cl), and let M not be embeddable In M_.

By (3.13), we have that Ml

_tp(Mz)ch for every q}Ehoar(E(Mz), E‘Ml))' Since the Mi are uniform

with the same associated prime P we have .E(Ml) ] E(R/P}EE(MZ). Now

let ¢y :E(M,)+E(M,) be an isomorphism, it follkows that |, & : M_+ M
2 1 MZ 2 1

embedding; i.e. M, can be embedded in M,,/ [

2

On the basis of lemma (3.14) we can assume, without loss of

generality, that MlCM in this situation we have two cases, either

2!
Hz can be embedded in Ml or. Mz can not be embedded in Ml. The

gecond case will be studied in (3.16), and the first case will be studied
5
in (3.1F). . A O‘

Proposition 3.16: Let M = M, @M, be an R-module, where the

Mi are uniform with local endomorphism rings. Let M

1 CMZ <E(R/P),

;- Let M, not be-embeddable 1w
Ml. Then M has (Cl) if and only if PR'PMZC.-M],CKEMICH

where P 18 the assoclatedsprime of M

2 holds.

- N

Proof: Let M have (Cl)' SMnce M.

; can no't be embedded in M:

1?

is an

it .follows, by (3.13), that M, - is ‘Ml-injective. By (3.6), we #have that

2
-end(E(R/P))“ﬁP, where ﬁp is the completion of RP We identify

end(E(R/P)) by R,. Since M, 1is M -injective, we have that
~ . :

‘_KPMI-RPH1CM2 holds. . ’ ot

Now let @ePR;; i.e. ¢ is mot unit in Ry Let

. . ]
A= {mzeﬂz. (p(mz)EMl}. Since A C'M

-

, S'ER/P), it follows that

v LY

w|A:A+H1 is not a monomorphism. Now if Y:B+M is a homomorphism

1



. gar K
4
+

such that ACBCM2 an y(a) = a f_olr all aeA, then, by (3.2),-.

A= 38; 1.e. thA is a non-extendable homomorphism. -By (3.8),
" A% = {a+ w(a) :a€ A} is a closed and uniform submodule of M.
. o

Since the end(Mi) are local and A* an # o, by (Cl), we have
-
M = A% GMl. Let 7 : a*x® Ml'* Ml be the projection onto Ml. It
A
follows that o = 7(a + ®(a)) = Ta + TP(a) =M + w(a), 1i.e.
-Ta = @(a) for all a€A. Thus —TTIM extends (DIA, and hence
. - 2
= ' = c
A Mz. Therefore tDMZCMl _for all (DEPR.P. Then PRPMZ ‘ PRPM?1 Ml,

o~

and it follows that F’R.F}'l2 CMlc R.PMIC M holds.

2
Conversely, Tet A be a uniform closed submod®le of M. By (3.8),
we have A= {x+ o : xexXx C'Mi 1, \rhere w X+Mj is a non-

extendable homomorphism for some 1#7. e

Case 1: A = { x + P (x) :xEXC'Ml} » where ¢: X'*HZ is non-

and hence: A © M_=M,

= [ =
extendable. Since Rle RPMl MZ' we have X Ml’ 2

Case 2: A = {x+ o) :xExC'MZ} , wherd w:f{*Ml is a
aQ
non~extendable homomorphism. It ¢ 13 not a monomarphism, then the}'_g

exists &M—:Pﬁp such that @|X = @. Since PRM, = PRM,CM , it

follows that X = M and hence = A ® Ml. On the other hand 1f ¥ 1is

A ~

Y 1s a unit in RP. Since

2’
a monomorphism, them @ ER_\PR_, 1.
, RP/_..EP

- 1

7 |
» We have '

A~ ’\"l ~

Rpulc: Hz ‘and (0]

= ('bhl(Ml),_ we have

1 ' ~l
( )CM2. Since X 10} (Hl)an

*

tp(x)’: Ml, and _hence M = A @ “2 (for all

EM, m = p(x) + where x€X, i.e. m

@ . .
1€ M 1 e,A. Hz) .




These two cases together show that any uniform closed submodule
s '
of M 1is a direct Summandw" Therefore M has (C,). [
<~ : 1
[ Y

-

. Proposition 3.17: Let M = Ml 9 M2 be an R-medule, where the

» Mi are uniform with local endomorphism rings. Let, MICMZCE(R/P)’

wherer P 1is the asso'c;iated prime of Mi, and let MZ be embeddable in

Ml. Then the following statements are-equivalent:

1) M has (cl);

2) thg_g\e exists a valuation overring ® of R/P,‘ and an @ -submodule

-

X of the quotient field K of R/P such that XVICV quVlCV,

qeK\X

2

where Vi = Mi/PN, V = N/PN, and N =

3

B M,

N Proof: 1) = 2): [Let M have (C\). Since M CM2 .can be

1
embedded in Ml' it follows that RPMl = RPMZ, we denote thig R.P-module

by N. , '
& -
o
By the same argument as in the proof of (3.15), we can show that

¢ )
'PRPHi:Mj (1#j = 1,2). Hence PNCMi. Let Vi = Mi/PN and V = N/PN.

Now let x ¢ RP/PRP; i.e. x 13 a unit in

~

Ry. Let B-:x-lMZOMl.

If B=M then xM. cM,. Let BGM

1’ 1772 1

Since x:B + H2 is a non;extendable homomorphism, and B* ig isomorphic

and let B* = :{b+xb:beB]}.

[N
to B, we havg, by (3.8), that B* 4ig a uniform closed submodlile of M.
By (Cl) and sihce the end(Mi) are local, we have M = B* @ Ml

(if M = B* GMZ, then for all m eM,, ml=x+xb+m

) M) 20 and hence mIEB.



-

-~

Therefore B = Ml which contradicts the assumption that B £ Ml). Iﬁ

follows that for every mZE M2 there exists bBEB such that m2 = xb,

< c . v c <
and hence M2 xB le The_refore x.Ml M?_ or M2 x.Ml for all

x€ R\ PR,. : o
- It is eagy to see that K = RP/PR.P RP/PR‘P and V are toréion

-

free R/P-modules.
Let X=:{xEK:xViCV2}, 0K = {yeK:yXcXx}, and

0 = {zEK:zViC vi}, and §= O(V,) 0 ©(V,). Since XM, and M,

are comparable for all x€XK, it follows that xV, and V, are

comparable for all xeK.
We show that X 1s comparable with all S-submodules of K.
Let yEfK such that y¢X. Since yVl and -V2 aAre comparable, and y¢X,
t:e.have V,SyV.; t.e. y-]'v C\; . It follows that’ y_lXV Ey-lv eV, and -
2 1 2 1 1 2 1
y—l}{Vz‘:XVlC VZ’ and hence y—lx c® (Vl) no (‘Vz) = 5. Therefore XcyS§.
We show that O(X) is a valuation ring. Let qeK and gqd@O(X).
. Then qX%¢X, and hence qx¢ X for some x€X. Since qxS and X are

. ¢omparable, we have X<qxS§, i.e. q-lXCxSCx, and hence q—ls 0(X).

.

. Therefore ®(X) is a valuation ring.

Since V = N/PN ig RP/PRP-module and qu and.VZ are

comparable for all q£K, we have that XV.cV, cn qv

1 2 cV holds.
qEK\X

1

2) » 1) Let @ be a valuation overring of the domain R/P, and X. be

.

an O-submodule of the quotient field K of R/P such that
I

XV, €¥,< NqV¥; holds, where V, =M,/PN:and N = RPMi. ‘Let A bea
qeK\X

uniform closed submodulé of M. Without loss of generality assume that
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A = fy + wly)ey ' M}, .where P: Y+M 1s a non-extendable
: 1 2

homomorphism. If Y = Ml, then A o MZ = M. Now let YEMI and let,

P e ol = 5 . . PR -
RP ?u‘:h that IX P ( (p‘ is not unique) ' Since PRPMl PN cMz, .
it foilows; that (B EﬁP \PRP {otherwise Y =,Mi which 1s a contradiction).

Then o #@EﬁP/PﬁPEK, and hence G)Vl ﬁﬁ v, are comparable. But if

©V,<V,, then @MICMz, and hence Y = M, which contradicts the

assumption that YEMl; Therefore Vzct?)Vl; ‘it follows that MZC @Ml,

i.e. &']‘Mzc_:ul. Thus Y = QS'J(MZ)an = 6-]{}12), l.e. HE) = @) -M,.

.

Therefore A @ M= N (for. all m, € M, there exists yeY such that

o, = Py) +y - y EA® Ml and since ¢ is an isomorphism, we have
. o N -

Aan-o). Then M has (Cl). o . '

\'\‘\
We observe now that, in the special case where N is a lecal

' RP‘module (for example if RP 1s a rank one, discrete valuation ring),

1)'

, ]
Ml @ M2 has (Cl) 1f gnd only if Vl V2 has (C

-

Corollary 3.18: Let M = Ml ® M2 be an R-module, where the Mi

4 be embeddable in Mj’
and let N:= RPH1 = RPMZ be a lpcal Rp-module, ‘where P = ass(Ml) = ass(MZ) .

are uniform with local endomorphism Tings. Let M

Then the following statements are equivalent:
1) H‘"has‘(cl); -

2) Vl e V2  has (Cl) as R/P-module where Vi = Mi/PN.

3) o) coincides with O(B), and is a valuation ring with maximal
ideal ScAB. If ASME, then O(A)(=0(E) is discrete; ‘

whgre A = hom(Vl,Vz), B = hcm(V?_,Vl), O (A) = hom(A,A), and
R/P R/P * R/P
® (B) = hom(B,B). ) - :
R/P 3 ' - -
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Let M have (C ) Since N {is q local

‘RP-module, it follows that its unique maximal RP—submodule is PN,-and
hence N/PN=:vy ig4 a siniple RP—module l.e! V 45 a one-dimensional T

N RP/PRP—space. Since V <V as R/P—modules with RPV ,' and since
. : 4

p)

RP/PRP RP/PRP = K is the quotient field of R/P, it follows that the

Vi are uniform torsion free R/b—modules. By (3.16), we have that' qVi

- . and V%' dre comparable for all o ¥ qEK. By (2.20), we have that

4

: . “ i Coes “ . \
Vl ® Vz. has (Cl)'f' , . . .

~

2) »;%) Let Vl ) V2 have‘(Cl). It is éasy to:seesthgt G(Vl) =end(Ml)/P§;
« }3 . is-locél.' Since Vi are uniform torsion free R/P—modules,_we have, by

(2.21); that qu and V2 are comparable for all o # qeEK, By the.same

argument as in (3. 16) we can show that M = Ml ® M, has (Cl).

< 2
2) o 3): 1Is clear, by (2.32). : o

Corollarz 3.19: ‘Let M = M1 ® Mz be an R-module, wherg the Mi

are uniform with local'endomorphism rings. Let Ml be isomorphic to Mz. .

Then M hasg (Cl) if and an} if 'w(vl) =’ @(Vz) is a valuation\ring,

-

ES = . = g . L
where Vi ?/PN and N RPMi’ and P' ass(Mi) . )
’ Y

) ggggff Let M have ‘(Cl). Without losg'of generality assume that
1 = M2 Since X = O(V }, "we have @(X) = U(Vi), .and hence, By (3.17),
(0] (V Y is a valuation ring. -
Conversely, let w(Vi) be a valuation ring, and let X = m(vi).

It follows that XVl = Vl =¥,<n qu (K 1is the quotient of R/P), and
P ' q € K\X
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hence, by (3.17), M has (Cl)' ]

The following example shows that 1f M = Ml o M2

*R-module, given as in (3.17), then (Cl) for M does not imply that

is an

-

‘Vl @ Vz has (Cl) as R/P—module..

Example (3.20): Let R be a Noetherian domain, and let P be a

prime idéal of R such that R, 1s not a rank one discrete valuation
ring: Let N be an R.P—submm%ule of E(R/_P)”—' _suc.h that N/PN is a two
dim.em;iohal v.ector gpace over R.P/PR.P =:K, Ll.e. N/PN =K o K. Let ©
be a-.valuation overring of R/P with maximal ideal #l, and let F=: 0O/&
Now let A be an indecomposable two dimensional L-gubmodule of
F@F suchthat end(A) NF =L, where LCF 1is a local domain. Let

Vl be the full inverse image of A under the homomorphism

e

e~ 0/de0O/dd - F oF.

Let~ Ml and M2 be the full inverse :Lmages of Vl

(reapectively) under the natural homomorphism R N_/PN.

and V, := oJe'q,

Let X:= @. It is easy to see that O Vl = 0®®, and hence

XV, =V,. If qeK\X, thén q © € #l. It follows that q L(0® O)c @ea vy,
Therefore V. c XV, =V_cNgqV,. ' '

and hence V qul. ‘ 1 1 2 1

z . qE K\X

LN -t N

o We show that end(Ml) is local.  Let X; %, be non—ur;ir. elements

in end(Ml), and let :'Ei € RP = end(E(R/P)) be an extension of xi(i-l,z).

If ;Ei is8 a unit in RP, then xi Ml 3 M On the other hand if

EPRP the\::iMlCP‘RPM = PNCMl Then 2 {V1 VY, vhere x £ R'P/PRP = K,

(otherwise xivl 1', i.e. x M, + PN =M. Since X M. and PN are

i1 1 . 11 . v
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xiMl = Ml or PN’ Ml, which is a

contradiction). ' It follows that §i®VlC®V1,' i.e. §i(0 e Mch oo,

comparable, it follows that

and hence X £ 0. Since =,V and # © fl are comparable, and since

i 11
—_ = . —_ <
A c [ = =
xivl 2V 1t follows that iiA S 'A, where Aﬂi € O/ = F. Therefore
€ end(A) NF = L, and hence x, are nof unit in L. Since L 1is

.1 1

local, we have that ﬁl + 5':2 is not unit in L, and hence-

(xl + %) A S A. We choose X. + x. to be an extension of - x, + x, 1in

2 X 1 2 1 2

iy . ~ - 2 A ~ st .

eud(E(Ml)) -RP-, i.e. x *x, x + Xye Simce Xy + x, A S A, 1t
y ; c vy ' = < M.
follws tha:\: X +..‘3(2 Vl 5 Vl, and hence (xl + xZ)Hl (x:L + xz)Ml + Ml

Therefore xI.+ x, is not unit in end(M-l). Then end(Ml) is local.-

We show that end(Hz) ig local. Let Y10 Y2 be non~unit

elements in end(Mz). By the same argumen# as above we can show that

-

] §iv2 ‘i Vz, ?ahere ér‘i € RP is an extension o:f yi(i-I,Z), and ylERE/PRP = K.

~ ) - bry ~
Hence y, (0 @ ©) $0@0. It follows that y, € M, and hence y, t¥,€ fl.

< + .
Therefore (],vl + y2) V2 =I=\.72, whereﬁ ¥yt Y, is an extension of Yy + ¥,
- ~ = ;
It follows that (y1+y2) M, = (y1 + yz) Hz < }(2, i.e. Y1 + Yy is a
pon-unit in _end(Hz). Hence end(Mz) “1s local.

By (3.17) Mle H2 "has (Cl)' Since V., is indecomposable, we

1
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have that Vl ] '\I2 does not have (Cl) as R/P-module, by (2.16).

N

Now we give two concrete examples where all the above made

assumptions are satisfied.

P
Example 1} : Let R = k[[x,y,z,u,v]] be the power series ring
in ¥®,y,z,u,v over a field k, and let P = <u,v > . It follows
that R/P & k[[x, y,z ]], and 1its quotient field‘ K = R/PRP = k{(x,y,2)).

N -1 -
Hence E(R/P) = E(R,/Pp) = E(K) = k((x,3,2)) [u L,v" ], Let N:= ann(p),
. ‘ E

hence PN = ann(P). It follows that N/PN is a-two dimensional K—;i)ace,
E

~i.e. N/PN E‘/é(-\f K. Let O = k((x“,y-))[[z]] bé the valuation overring of/—

R/P with the maximal ideal @ := <z>, and let F:= k((x,y)) = o/ .

Let L = k[[x,y]]; ‘hence L 1s a local unique Factorization domain (see

[20]). .
/ F TN
Now let A = <(Ln >, 0}, {o, -Ln), (l, :l.\)?‘:n'e N> be an
3y p, 1A% -

L-submodule of F ® F, where Pl. P2 and q¢ are distinct prime elements of

. o ) " N
L. Let El =: U { = o)L, and E2 = 3 v (o, -—n) L. Hence
n=o P n=o P .

1 1
A. 510E2+(q.q)!--

Claim 1: A is an indecomposable L-module.

’
\

First we show that Ei ia the largest Pi-divisible submodule

of A, 1 =1,2, .

Let x = (Ln + £ R -1: + %) be an element of A such that
- LA 4 ' _

SN
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—1{]‘ x EA for all N>o. It follows that (-in+§,-b—n+3).
Pr - P1 Py 3
- ]
=\p¥ ( i+g—,-—g—;+l), where a, B and v € L. 'Hence
P1 Py
. V=1 v - N N+ -
a pp q +cp; @ pq *YP | (1)
b VR LY - g R (2)
* { .
Since L 1s a unique factorization domain, from (1), it follows
v N v-n N " y-n v “
that P, | (o.pl apy Y 1.e. a Pp ~ap; = O P, where

"ale L. The ¢ = alq-i- ypgan <q> +<p1;>. Since <gq> s

N

closed ideal in the pl—adic topology on-L, it follows that .,

-

n<e + <p§> = <g> | and hence c € <q> ; l.e. ec=gqc',

N ' - x s

where c¢' € L. It follows that x -7—8-5 + c', 'Ln +c') = (el ,ez),
P p
1 2

where e, = 2. +¢' and e, = — + ¢'. From (2), it follows that

v

b : B+Y P ..
ey = —— + c' = Py ( " ) € Py T for all N, wher-e ‘

pz . pz -

" ° . | .
T= U --L. It is clear that T is Noetherian, hence e, ENp; T =o.
t=1 P, P ' N
Therefore x = (el,o)~€ El'
Similarly we can show that E2 is the largest pz-d_ivisible . .
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submodule of A.
To show that A 1is indecompos;able, suppose A = B ® C. Since

Ei is the largest pi—divisible submodule of A, it follows that

0 [R

' 11
_Ei (EinB) @(Ein C). Assume that E1CB and Ech. Let (q ,q) b+c¢,
r_r
where b €E B, ¢ € C. Hence (1,0) + (0,1) = qb + qc. Since (1,0) EE1C B
"and’ (o0,1) € E?_ =C, 1t follows that (l,0) = gb; 1.e. (1,0) 1is “,
. . \
s . £ L R A L
divisible by q. Then (1;9) = q (—I]i + -a-g , 3 + ——2) » Where
— - R . Py
E:i e L ‘ o .
».
n ' ‘noe
- al . 9
Hence P; = a¥ -+ 2Py (L) |
o =aql + !sz; . @)
‘ . , - .
n
= € - ql
From (1), we get 21 P, 2:1, where £ 1 L, and hence 1 =gq 1 * 12.
- t ' ] 1
From ,(2), we get -.52 = q%%Z’ :arhere L, € L., Therefore 1 = qll. + qﬂ-z EqL,
which is a contradiction. Then El,Ezf-" B or El,liz‘:c, and hence
. 1 '™
B=o or C'= o,
W/
Claim 2:. end(A) N F = L I
S - : ‘ . a a
Let o € F such that G ACA. It follows that (_q"E) €K, *
. . . - i R ] -
and hence (E,%) -(-—%+-‘3- —%-4—.%) for some a,b, ¢ € L. Then N
. L T 2% o g
-L+h-—£+£, and thus —— = = , Since L 1is a unique
o q n q pn pn

W
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i

P
factorization domain, it follows that a = a'p;\, and ¢ c'pg, where

'S

a',c'eL. Therefore %= a' +% ; l.e. a =a'g+bel. Then

end(A) NFSL. It is obvious that L < end(A) NF, and therefore

end(4) N.F = L. - '

Let Ml ar{d M2 be R—modules\'cohstructed as before. Then, by

the same argument as before, we can show that Ml ® M2

end(Mi) local (1=1,2), where Vl ® VZ does not have (Cl)' a

has_ (Cl) with

Example 2): R = Z[[x,y,z]] be the power series ring in x,y,z

over the ring of integers Z', and let P = <x,y> . It follows that

-~

- d .
R/P = 2Z[[z]], and its quotient field K:=. Q({z)). Hence -

Ei= EQR/P) = E(K) = QUDIx 0,y

Let N = :'ann(Pz),_ it follows that PN% ann(P), and hence
E . ) .

»

N/PN 18 a two dimensional K-space; i.e. N/PNSK® K. Let © := .
.

it follows that . O/& = Q (the field of rational’ numbers).

Now let q be a prime élement of Z . Since Zq is incomplete

" discrete valuation ring, Kaplansky, in "Infinite abelian group™ theorem

19, constructed a rank two indecomposable Eq -submodule A of Q% Q.

Since ch edd (A) NQ<Q, 1t follows that end(A) N Q = Zq is local

«

ring.

Let H.l and HZ be” R-modules constructed as before, it follows

- ~d

B
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‘that Hl @ M2 has (Cl) with end(Mi) logal (i=l‘,.2), where Vl ® Vz

does not have (Cl). O

§3. FINITE DIRECT SUMS OF UNIFORM TORSION MODULES -

Recall from Chapter II that a module 1s said to have (1 -C),

if every uniform closed submodule is a direct summand.

N n
Proposition 3.20: Let M = 191"1 *he an R-module, where the

M, are uniform with local endomorphigm rings. Then M hag (Cl) if and

only if M has (l-Cl).

Proof: Obviously (Cl) implies (l-Cl). We show the converse by
induction on n, ’ 'j\

The case n=2 is. trivial. Now assume thgt 1?1-‘“1 has (Cl) for

any proper subset F of {1,2,...,n}. Let A be a cloged submodule

Y

of M= i§ M of dimension n-1. By (3.9), we have

+

1t E

- + : . 1 : - .
A b+ o®):b¢ B‘.C iikMi}’ where g B-+M 15 a non-extendable
homormorphism, for some k.

Without loss of gener.'ality assume that A = {}p + ®(b) :B ! 1211-!1},
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) ~ n-1 )
where ¢ : B+Mn, is a2 non-extendable homomorphism. Let :iglE(Mi)-* E(Mn)

be an extension of @ to the injective hulls, 1.e. wlB = . Since o

) n- 1 ~
. 18 a non-extendable homomorphism, we have B = {xe 21“1 op(x) eMn} .

- _ i
L .
n-1 . n-1

Either B 191M1; then A tBMn =M or Bg 16_31111; then

fo.r each 1 # n. Let Bi=: {mi&‘.Mi : wi(mi)eMn} , where 9, = e,
n-1. :
and ni-: iflE(Mi) + E(Mi) is the projection onto E(Hi). It is clear.
a-1 c 7 ’ c

®

that 4 &,B; ©B. Since B :iflMi, we havc? Bj :ﬂHj for some J.

Since (Cl) is inherited by direct summands, we have that Mj @ Mn has

: * A
(C;). It follows, by (3.8), that By = : {bj + ¢ (b

1 i

) :bJSBj} is

a uniform closed submodule of Mj ® Mn: Since the end(Hj) are local,
A
‘ - ,
%
L) @ a ] L)
we have, by (Cl) for H;i Mn_’ that Mj Mn Bj Hj or Mj Mn /

* *

=B, @M. Nowif M ®M =B @M, then -m|_ +:M, + M extends
3 n 3 n i n - Mj j n

~ * . .

toj,, where T : BJ @ Mn -+ Mn is the projection omto- Mn' By (3.2), it

follows that aj(Mj) = - TT(Hj), and hence B; = M

5 which contradicts

the/assumption that B

’

. *
S M,. Therefore M, ®M =B o M » and hence
® | n 3 ‘

3 3 3

L}
* n-l * ' -
M= Bj 9 121141. Since Bj < A, by the modular law, we have

1

13'1“1 1s a direct summand of the

1

*oan( e.n an
® A (1-1 i). Since A

A-Bj
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: n-1
closed submodule A of M, it follows that A N 121Mi is a closed
“n-1 n-1 '

@ . t ®
subrodule of,. 1 @ lMi By i.nductio.n i=lMi has ~(C.1)’ and hence

-1 n-1 ' n-1
= (AN o M)} ®Y. Khen

4}
M
< 124 129"

an el "
12141

-1 ®
eM)eY = AOW i ACH.

M=50"8M =8 e (in
=By g3M =By el 1

n
i
Therefore any closed of dimension n-1 in M }}ad‘(rect summand of\

M. Now let X be a closed submodule of M of dimension less than

n-1. Tt is easy to see that there exists a closed submodule _X' of . ow

M of dimension n-1 containing X. It follows that X' is'a direct

summand of M. Since the end(Mi) are local hence the decomposition
nte
121M1 complements direct summands, it follows that X' is isomorphic

: ® : ' ' e n-
fo iEFMi for some subset F of .{1,2,...,n} with [F| n-1. By

. o ) .
induction iEZFHi has (Cl), and hence X' has (Cl). S:Lnf:e X 1is

-~

closed in M hence closed in X', it follows that, by (c,) for X',

® ®
X< X', and X< M. Therefore- M has (Cl). {1

L

-

I

n
. Proposition 3.21: Let M = 131M1 be an R-module, where the
M1 are uniform with local endomorphism rings. Then M has (Cl) if and oniy if
4 y .
M, © Hj has_(Cl) for all 1+4j.

i ' .
[ 8

Proof: Let M ® M, have’ (Cl) for all i#j. Let A be a

i b
uniform closed submodule of H: By (3.8), we ha'v'e... .

n
= H t
A {igl (pi(x) txeX < Mk for some H'k and some submodule X of M.k},

E
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where lDi : X"’Mi are homomorphisms such that mk(x) = x for all xeX;

and (Di are not simultaneously extendable. .

Without loss of generality assume that A = {x +1{)2(x)+...+ e, (x)

:xeX Ml} , where the tpi :X-+M_ are not simultaneously extendable,

i
p <
= . = ; = @ .
i=2, , Either X Ml, then M A & 2Mi or X S Ml
Let lDi : E(Ml) nd E(Mi) be an extension of (Di to -the injective hulls,
= = € . “ . --
i.e. %% ©,. Fet X, = {ml Mo q)i(ml) € Mi}, 1=2,3,...n.

n
Since ®y ‘are not simultaneously extendable, we have X = igzxi.

Let F'= {f: X, < HI} (F is non-empty due to X¢ Ml). It follows

* ~
that X, =: [xi oo () X, € Xi} 1s a uniform closed submodule. of

~

1 i I1f tpi is not an isomorphism, then by (Cl) and since the

s .
end(Mi) are local, Ki - Mi - MI ] Mi' By the same argument as in (3.20),

~

-3 = n
we have that Xi Ml. It follows that X iEin' and th-atl tpi is

an isomorphism for every 1 EF. Then E_(Ml) = E(Mi-) for all {epP.

x -
Since X, ® Ml = Ml L Mi for 1€F, it follows that lOi(Xi) =M

i i

/
A ] /
= [ e - v
am:l hence (Di (Mi) Xi Ml. Since Mi 3 Mj has (Cl) for a-ll idjeF,
by (3.16), (3.17), it follows that (B;l(Mi) and tpj (Mj) are comparable.
F forms a chain of submodules of Ml. Let xk be the

1 .
ent?e {Xilie

Py
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smallest element of that chain; it follows that X = Xk, and hence

~

wklx = wk :X-*Mk is an isomorphism. Then A ® = M.

@ M
14k 1
We have shown that any uniform closed submodule of M is a

direct summand, i.e. M has (1 —Cl). Therefore, by (3.20), M has (Cl).

The converse is obvious. ad

§4. DEDEKIND DOMAINS.

In this section we characterize all torsion modyles over Dedekind

domains which have property (Cl).

A

3

Lemma 3.22: Let M be a module over a Dedekind domain R such

n-1,

P'M =0, and P"!M %0 for some maximal idesl P of R and positive

integer n. Then M = 12i”1’ where the Mi are cyclic submodules, mo-re

precisely, Mi & R/Pm, m <,

LY RN h

‘ m: Since P™M = 0, it follows that M is R/P"-module.
Since R/P% is Noetherian, it follows that M possesses amimal 3
R/P"-injectivé submodule N (see [13], prop. (1.2); le. M=NeN,
Since. R/Pn is injective“ and since N is a maximal R/Pn—injective
submodule of M, it follo_ws that ,Pn_lNl = 0. Since every injective

.

R/P"-module has a decomposition as a direct sum of indecomposable

) n
= & =3
injective submodules,‘.}we have that N 18 Igi’ where the Mi R/P,
h = @ ®
and hence M ie];l:i Nl‘
n n, -1
Let n; s n-1 such that P 1Nl 20 and Pl Nl *# o. Consider

Nl as R/Pnl—module, by the same argument as above, we get that
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n
N, = N,'® N "= @ o ! ,
1 _Nl " where Nl iEIMil' Mi R/P for all 1i¢ I1 and |
n;-1
p! = g. H = o ® 9 .

N2 o ence M iEIoMi iEIIMi ® N2

Continuing in this manner we obtain M = where M, & Rr/p™

‘®
i€ IMi' i
for all ,1€I and for seme m S pn. 0O
Lemma 3.23 (’[5], (2.6) and (2.7)) : Let R be a Dedekind
domain, and M be a torsion R-module. Let M(P) = {xeM :P'x = o for
some neN},.where P 1s a maximal ideal of R. Then:

1) M= %M(P), where P ranges over all maximal ideals of R.

2) M(p) = MP, hence M(P) d1s an RP-module. The set of RP—subm;:dules
- of M equals to the set of R-submddules of M. [

Note that any uniform torsion R-module, where R 13 a Dedekind
domain, has local endomorphism ring.

Proposition 3.24: Let M =M @M, bea module over a Dedekind

domain R, where the Mi are uniferm and ‘a'iss(Ml) ¥ ass(Hz). Then M

1s quasi-continuous. )

3

Proof: 1Is clear since hom(E(Mi),E(Mj)) = o for ivf‘j (=1,2). O
—_— . A

Proposition 3.25: Let M = Ml ® Mz be a module over a Dedekind

domain R, where the Mi .are uniform and ass(Ml) =ass(M2) = P. Then

M has (Cl) if and only if either M =E(R/P) @ E(R/P) ‘or M £ r/P0 @ g/pM

with |n-m| €1, for some n, mE WI.

a
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Proof: Let M have (Cl). By (3.15), we have that Mi can be
’ .

embedded in Mj for some 1#j. Without loss of generality assume that

.tA

Ml c Mz.
Case 1: M2 can be embedded in Ml' It follows tha‘t Ml = IV[2
and hence either Ml =.M2 & E(R/P) or Ml = Mz = R/P" for some n EN.
' F
Cagse 2: M, can not be embedded in M., i.e. M S M,. By:’ (€.
—_— 2. 1’ 1 2 1
- \\--—__/
and since Mi are Rp—modules, it follows, by (3.16), that PH2 Lo Ml c Mz.

It is clear, in this case, that Mid’f E(R/P) (i=1,2). Since R 1is
Dedekind, we have that RP is a rank one discrete valuation ring; and

- c
hence HZIPMZ is a simple RP module. Since Ml S Mz, it_follows that

M, = M. _ : )

Now 1if Ml « R/P" .for some n e N, then HZ E-R/Pn‘ﬂ\‘. Therefore

Me p/et e pp" - o ‘ '
Conversely,. let M =R/P"  R/F® with |n-m| S1, n, m EN.
"
Case a: n=m, f.e. M E"R/Pn ® R/P®. It is clear that M 1is
R/Pn—injective. Then M has (Cl?) as R/Pn—module, and hence M has (Cl)

-

as R-module.

Case b: = = n+l, i.e. M= g/p" 9RIPn+1. By (3.16), we have

that M has (Cl). "0 ¢

’ -

Theorem 3.26: Let M be a torsion module over a Dedekirnd domain

R. 'l:hen M hasl (Cl) if and only if either M(P) is injective or
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. +
M(P) = 1?1Mi(P)‘ where the Mi(P) = /P or R/Pn 1 for all 1€ I.

Proof: Let M have (Cl); ar}d let- M(P) not be injective for
some maximal ideal P of R. Let o#xeM(P). Since R is Dedekind
hence Noetherian, it follows that xR is finite dimensional. Let

L(xR)* 'S5 xR be a maximal essential extension of xR in M(P).

N

By (Cl), (xR)* 1s a direct summand of M(P); 1.e. M(P) = (xR)}* @ N(P).
By essentiality of (x R)* over xR, we have that (xR)* {15 finite
dimensional.' Since (Cl) is inherited by direct summands, it follows that

m
(xR)* has (C.); and hence (xR)* = & _U , where the U, are uniform.
1 i=1"1

i

By (3.25), we have that U, = R/P" or R/Pn+l

. , 1i=1,2,...,m.) Then

7:"n+lU:l =0 for all i.

Now lét o # y € M(P) "be arbitrary. :Hence Y =3, * v, where

-
yl € (xR)*, y € B(P). By the same argument we can show that
2

: 8 ® m s
YR c<'"(yR)* = e V., < _N(P). It follows that .U, @ @ V  has

2 -2 =13 1=171 " 3=1"3
(Cy), and hence, by (3.25), v, = R/P® or R/P"™!. Then P y.0, and
therefore Pn+lu(p) =g. . —f:f\’ ]
By (3.22) and (3.25), we have that M(P) = _® M_(P), where the
; 1ET4
M, (P) 2 R/P" or R/P®Y forall i I. .

Converstly, let. A be a closed submodule of M. Then A = g AR/

where P runs over all maximal ideals of R, ' To show that M has
. ¥ o
(Cl)’ it is enough to show that A(P) is a direct summand of M(P) for
' .
every P.
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!
Since A(P) 1is a direct summand of the closed submodule A, we

have A(P) is a closed submodule of M{P). Either M(P) is injective; T~

®
hence A(P)< M(& or M(P) = igIMi(P)' where the Mi(P)E‘-Ran or

A

n+l

R/P ; hence Pn-’-l M(P) = 0. It follows that Pn+} A(P)= 0, and hence,

by (3.22), A(®) =- ngAj(P) where AJ(P) are _cyclic R-modules.

Let F be an arbitrary finite subset of J, we have that

ngAj {(P) < 1gFll{i(P) where Fl is a finite sn:xbset: of I. By (2.25),

we have that Mi(P) ® Mj (P) has (Cl) for all {,j EFl; and hence, by

»

. A .
(3.21), 13171“1(” has (Cl). Since (P) 1s closed in igF Ml(P), ve |

JEF 3

have, by '(Cl), that ngAj (P) ceigFIMi(P) CGM(P). ¢

We have just shown that every fir?ite subsum of 1 gJAj (P) is a
' - ® . ®
direct summand of M(P) 1¢ IMi(P) ; i.e. ; EJAJ (P) 1is a local direct

summand of M(P}.

_ W To show that A(P) = ngAj (P) 1is a direct summand of
g

———
0 L]

. : .
M(P) = igIMi(P)’ it remaing to show, for applying lemma (3.5), ¢hat
- E

the decomposition igI—Dﬂ(P) is locally semi-T-nilpotent; i.e. For every

sequerice f : M. (P) + M (P} (me K) of non-isomorphisme, with all
m i i

m m+l .

Bl [

. im distinct, and.every xeMi (P), there ei:l.sts = EN with
- [+]

3 ...flfo(x) - o,

my, .

Since the Mi(P) = R/‘Pn “or R/PTL for every 1€I, and since

non-monomorphisms reduce thbengths of all submodules of HI(P)’B’ it



follows that f...ff =0 for every
2n lo

.

3
of non isomorph;sms. Therefore i,?IMi

Which completes the proof. [J .
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gequence f : M, (P) -+ M
" im im+l

(P) 1s locally semi—T-nilpotent.

-The following theorem is an immediate consequence of (1.15), (1.16),

(2.49) and (3.26)."

-

Th;orem 3.27: Let M be a mo

Then M has (Cl) if ané.only 1f either

i) M 1s tqrsion and for every maximal
is injective or M(P) = ;_gIMi(P)
(neN) for all 1e€I; or |
i1y M is non-torsion and M = F @ E,.

and F 18 torsion freé reduced, F

R-submodule of the quotient field

ideals of R, [ . ’

dule over a Dedekind domain R,

ideal P of R, either MYy -

where M, (P) & R/P® or r/p"t1

where E is an injective submodule

n '
o @ -
== ] 1 [N where N is a Proper

K and the Ii are fraqtional

v
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