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REVIEW

Modules, networks and systems medicine for
understanding disease and aiding diagnosis
Mika Gustafsson1†, Colm E Nestor1†, Huan Zhang1†, Albert-László Barabási2, Sergio Baranzini3, Sören Brunak4,5,
Kian Fan Chung6, Howard J Federoff7, Anne-Claude Gavin8, Richard R Meehan9, Paola Picotti10, Miguel Àngel Pujana11,
Nikolaus Rajewsky12, Kenneth GC Smith13,14, Peter J Sterk15, Pablo Villoslada16 and Mikael Benson1*

Abstract

Many common diseases, such as asthma, diabetes or
obesity, involve altered interactions between thousands
of genes. High-throughput techniques (omics) allow
identification of such genes and their products, but
functional understanding is a formidable challenge.
Network-based analyses of omics data have identified
modules of disease-associated genes that have been
used to obtain both a systems level and a molecular
understanding of disease mechanisms. For example,
in allergy a module was used to find a novel candidate
gene that was validated by functional and clinical
studies. Such analyses play important roles in systems
medicine. This is an emerging discipline that aims to
gain a translational understanding of the complex
mechanisms underlying common diseases. In this
review, we will explain and provide examples of how
network-based analyses of omics data, in combination
with functional and clinical studies, are aiding our
understanding of disease, as well as helping to prioritize
diagnostic markers or therapeutic candidate genes. Such
analyses involve significant problems and limitations,
which will be discussed. We also highlight the steps
needed for clinical implementation.

The complexity of common disease
Despite impressive advances during the past century,

modern health care is faced with enormous challenges.

One problem is that currently available drugs show

highly variable clinical efficacy, which results not only in

suffering, but also contributes to increasing costs. The

annual cost of ineffective drugs in the US alone is
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estimated at US$350 billion [1]. Variable efficacy also

adds to the huge costs associated with drug discovery,

development and clinical trials (on average US$1 billion

per drug), which further impacts the financing of health

care. These problems reflect the complexity of common

diseases, which can involve altered interactions between

thousands of genes. Because of the large number of

genes and their interconnection, it is very difficult to

gain functional understanding of disease mechanisms by

detailed studies of individual genes.

This problem of complexity is compounded by disease

heterogeneity: patients with similar clinical manifestations

may have different underlying disease mechanisms. Asthma

is an example of such a disease; it can be caused by in-

fection, allergens or other environmental factors, which

give rise to different inflammatory responses (Figure 1).

Variations in response may underlie the observation

that between 10 and 20% of patients do not respond to

one of the most common asthma drugs, corticosteroids

[2]. This variation, however, can potentially be exploited

to find novel drugs for nonresponders in asthma, allergy

and other diseases, as well as to identify patients that re-

quire such drugs [3].

Despite the success of single diagnostic markers, there

is a pressing need for multiple markers. Single markers

are already being used in the clinic to predict disease

or personalize treatment and examples include BRCA

genotyping in breast cancer, CCR5 mutation status in

HIV infection and newborn screening for metabolic de-

fects [4]. Recently, optimization of the anticoagulant

therapy warfarin based on genotyping of two genes was

described [5]. However, the diagnostic accuracy of indi-

vidual or pairs of biomarkers is likely to be limited as

only a fraction of disease-associated genes is predicted

to have a large effect on any specific disease; most

disease-associated genes have small effects [6]. Yet, the
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combined effect of these small-effect genes may be large.

Thus, the accuracy of a biomarker based on a large-

effect gene may vary depending not only on variations in

that gene, but also on variations in the many genes with

small effects.

Systems medicine is an emerging discipline that aims

to address the problem that a disease is rarely caused by

malfunction of one individual gene product, but instead

depends on multiple gene products that interact in a

complex network [7]. Here, we explain how and why

systems medicine, and specifically network approaches,

can be used to assist clinical decision making and to

identify underlying disease mechanisms. We focus on the

use of disease modules to uncover pathogenic mecha-

nisms and describe how these can be extended into multi-

layer networks. We finish by discussing the current

problems and limitations of network and systems ap-

proaches and suggest possible solutions. We also highlight

the necessary steps for clinical implementation. We focus

on systems medicine as a network-based approach to ana-

lysis of high-throughput and routine clinical data to pre-

dict disease mechanisms to diagnoses and treatments.

Systems and network medicine to support clinical
decision-making
Similar to many evolving medical disciplines, there is no

generally accepted definition of systems medicine, al-

though different proposals are available [8,9]. Some view

it as an interdisciplinary approach that integrates re-

search data and clinical practice and others view it as

fusion of systems biology and bioinformatics with a

focus on disease and the clinic. Recent articles have de-

scribed systems medicine as a high-precision, mathemat-

ical model of variables from different genomic layers

that relate to clinical outcomes such as treatment re-

sponse [10,11]. Rather than trying to distinguish between

systems medicine and other disciplines, our review is

based on the premise that systems medicine is a natural

extension of, or is complementary to, current models for

clinical decision-making.

In general, clinical decisions are based on a diagnostic

model consisting of multilayered pattern recognition of

multiple data inputs linked to scientific reasoning about

causality. This diagnostic model can be exemplified by

pneumonia. On a phenotypic level, pneumonia is often

characterized by fever and symptoms or signs of changes

in the respiratory tract. This layer of information can be

linked to data (such as radiographic imaging, laboratory

tests for inflammatory signs of infection and microbial

tests) that suggest the cause of the disease. The phys-

ician may need to take into account other layers, includ-

ing socioeconomic and environmental factors. For

example, if the patient is homeless and a smoker, this is

likely to affect diagnosis, treatment and the innate im-

mune response of the patient to the infection. Thus, in

the case of pneumonia, accurate diagnostic decisions

can be made by pattern recognition and reasoning.

However, for many diseases, diagnosis is more difficult.

The external causes, disease mechanisms or the involve-

ment of cells, tissues or organs may be highly complex

or only partially known. In such cases, the physician

would be helped by a formal diagnostic model that gave

decisional support by presenting the variables so that

contributory disease mechanisms can be elucidated and

diagnostic predictions computed. One approach is to

use a template in which omics clinical variables are orga-

nized into a network to understand disease mechanisms

and make diagnostic predictions. Such a template would

naturally build on the current diagnostic model of pat-

tern recognition. Using this diagnostic model would

allow different clinical variables, such as symptoms and

laboratory variables, to be described in different network

layers. In this way, multilayer network models can be

constructed that include all known relevant variables,

ranging from genetic variants to environmental factors.

In summary, the potential advantage of a multilayer

network model is that it provides a framework in which

Multiple causes

Multiple, overlapping disease mechanisms

Single clinical phenotype

Asthma

Allergens Microbes Environment

Figure 1 A single disease phenotype can be caused by multiple

mechanisms. As an example, asthma can be triggered by allergens,
microbes and other environmental factors, each of which may
activate different disease mechanisms, which are depicted as shared
(black) and specific (red) networks.
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to organize and analyze all relevant disease data simul-

taneously, thereby informing and improving the deci-

sional pathway of medical professionals and patients

[12]. Before we look at how networks and modules can

be used to uncover disease mechanisms, we first provide

an overview of networks in biology.

A brief introduction to networks
Networks provide graphical representations of complex

systems. In the context of cellular networks, molecules

such as genes and proteins are represented as nodes,

and the interactions among them as links. In a landmark

article in 1999, it was shown that networks in techno-

logical, social and biological systems have common

designs that are governed by simple and quantifiable or-

ganizing principles [13]. Key findings were that a frac-

tion of the nodes serve as hubs with multiple links,

whereas the vast majority of nodes have few links. The

hubs often have large individual effects, in contrast to

the nodes with few links. The hubs contribute to the

small world property of networks: all nodes in a network

are generally connected by a limited number of links.

Another important characteristic is that functionally

related nodes tend to be highly interconnected and

co-localize in networks, thereby forming modules

[7,14] (Table 1).

In the context of disease, disease-associated genes

identified by omics studies can be computationally

mapped on to models of the human protein-protein

interaction (PPI) network. In other words, each disease-

associated gene is mapped on to its matching protein

product. The resulting maps have characteristics that are

similar to those found in other types of networks. One

of the most important characteristics is that functionally

related genes tend to co-localize and form disease

modules.

Disease modules for understanding pathogenic
mechanisms
Disease modules can help to organize and prioritize

disease-associated genes identified by high-throughput

analyses (Figure 2), as well as to provide an overview of

disease mechanisms by performing pathway analyses.

Disease modules can also help to identify novel disease

genes, biomarkers or therapeutic targets. Remarkably,

one landmark study for systems medicine was initiated

by researchers without a clinical background, who had

studied network design principles in model organisms

like yeast cells or worms [15]. In 2007, Pujana et al. [16]

described a module relevant to breast cancer, and identi-

fied a novel candidate gene, HMMR, that was validated

by functional and genetic studies. Several module-based

studies have been performed in other diseases, including

cancer [17-20], neurological [21-23], cardiovascular [24],

and inflammatory diseases [25-27]. One of the studies

showed how protein interaction modules could be used

to predict outcome in breast cancer [20]. In a study of

autoimmune diseases, mRNA modules were used to pre-

dict disease progression based on functional studies of

underlying mechanisms [28]. In 2014, a module-based

approach for drug discovery was described in rheuma-

toid arthritis based on a meta-analysis of genome-wide

association studies (GWASs) of 100,000 subjects [29].

Analysis of disease modules exploits the general prin-

ciples of networks, such as alteration of hub genes being

likely to have large effects, while alterations in the many

genes with few links will likely correspond to small-

effect genes. Thus, specific therapeutic targeting of a

hub gene is more likely to be effective than targeting a

gene with few interactions. Indeed, genes targeted by

drugs have more interactions than other genes [30],

which increases the risk that a drug targeting a specific

disease gene may have an off-target effect [31]. An im-

portant observation is that nodes that are highly inter-

connected in a network are likely to be functionally

related. Thus, novel candidate genes can be found

among the interactors of known disease genes [32].

One recent example of a successful module-based ap-

proach was based on the assumption that the genes in a

module would be co-regulated by the same set of tran-

scription factors (TFs) that regulate a known disease

gene, IL13 [33] (Figure 3). Twenty-five putative IL13-

regulating TFs were knocked down using short interfer-

ing RNA (siRNA), of which seven were found to affect

IL13. The knockdowns were repeated for these TFs,

followed by mRNA microarrays to detect their down-

stream targets. This led to the identification of a module

of highly interconnected genes. That module contained

several genes of known relevance to allergy, such as

IFNG, IL12, IL4, IL5, IL13 and their receptors. It also

contained novel candidate genes, including S100A4,

which was validated as a diagnostic and therapeutic

candidate by a combination of functional, mouse and

clinical studies. A mouse knock-out model showed that

S100A4 had extensive phenotypic, cellular and humoral

Table 1 Glossary of terms

Term Description

Network A graphical representation of a complex system. For
example, in a protein network, proteins are nodes, and
interacting proteins are linked by edges

Disease
module

When mapped onto the protein-protein interaction
network, disease-associated genes tend to co-localize and
form networks of functionally related genes. These networks
are referred to as disease modules

Multilayer
disease

A module whose nodes and edges are located across
different layers of disease-relevant information. Such layers
could include transcription factor networks,
genetic variants and even environmental factors
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effects on allergic inflammation. The therapeutic poten-

tial was demonstrated by treatment with a specific anti-

body, both in the mouse model and in cells from allergic

patients.

Multilayer disease modules
The success of single module approaches in identifying

candidate genes prompted researchers to extend it to

multiple modules to link genomic, phenotypic and envir-

onmental variables together. Rapid development of high-

throughput techniques has enabled global analyses of

different network layers ranging from DNA to proteins,

as well as metabolites and lipids [34,35]. Similar to

genes, the variables in each layer can be linked to each

other. Consider, for example, one disease module formed

by mRNAs and another from single nucleotide polymor-

phisms (SNPs). If an mRNA and a SNP in each module

map to the same protein, they can be linked. This

principle can be expanded to all proteins in the module

and the overlap tested statistically. Another example is

modules formed by genes and their regulators, such as

TFs or microRNAs. Genes can be linked if they are

regulated by the same microRNAs, and a double-layer

module can then be formed by linking microRNAs that

regulate the same gene. By combining different high-

throughput analyses it is therefore possible to form

multilayer disease modules (MLDMs).

Multidimensional models can be used to form rejectable

hypotheses of how genes, gene products and regulators

interact with each other. For example, does a disease-

associated SNP in a promoter region of a module gene

change the expression of that gene? Does a microRNA

regulate its predicted target genes in a module? The clinical

relevance of MLDMs lies in that they can provide a

framework to identify optimal combinations of diagnos-

tic markers from different layers, based on functional

understanding of the pathogenic roles of those markers.

For example, microRNAs and genetic variants have

been used to examine disease-associated variations in

mRNA expression in gliomas, and to predict disease

outcome [36,37]. In allergy, functional studies showed

that mRNA modules were co-regulated by microRNAs,

some of which had hub-like functions and potential

diagnostic relevance [38].

An important aspect of MLDMs is that they can be

linked to modules formed by other clinical data. For ex-

ample, a link can be placed between a disease and a gene

associated with that disease [39]. Next, diseases that are

associated with the same gene can be linked and form a

human disease network. The same principle can be ap-

plied to the disease genes forming a disease gene net-

work. Such networks are modular and can be linked, so

that diseases can be associated with the underlying dis-

ease mechanisms. It is also possible to construct and link

modules containing other relevant data, such as social

and environmental factors (Figure 4). It is of note that

the construction of MLDMs is complicated by several

technological limitations, which are discussed later in

this review.

MLDMs might also be useful for tracking disease over

multiple time points. Diseases are dynamic processes

rather than static entities, and the underlying processes

and time frames may range from hours in rapidly evolv-

ing cases, such as meningitis, to decades in cancer.

Disease progression is perhaps best understood in can-

cer. For example, at a molecular level, a study of chronic

S100A4

IL13

(a) (b)

Figure 2 A disease module. (a) Conceptual model of how disease-associated genes (blue nodes), identified by high-throughput analysis, tend to
co-localize in the human protein-protein interaction network (white nodes), forming a module (blue oval). The genes in the module are assumed to be
more important for the disease than extramodular genes. (b) An actual disease module from allergic patients, showing extracellular proteins that were
putatively co-regulated with IL13. Blue nodes are associated with cytokine activity, purple nodes are associated with hormone activity, and orange
nodes are associated with growth factor activity according to Gene Ontology Molecular Function. The diagram in (b) is reproduced, with permission,
from Bruhn et al. Science Translational Medicine 2014 [33].
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lymphocytic leukemia revealed the development of sub-

stantial genetic heterogeneity of tumor cells from the

same patients over time [40]. Such developments were

linked to disease deterioration and variable treatment

response. In breast cancer, module kinetics has been

directly linked to treatment response; in a subset of pa-

tients, treatment with one drug rewired the disease mod-

ule so that it became sensitive to another drug [41].

Thus, understanding of module kinetics can be exploited

for sequential treatment with different drugs. Ideally, this

principle should be expanded so that all diseases are

staged using MLDMs with omics and routine clinical

data integrated. In the future, it may be possible to infer

early MLDMs, before patients become symptomatic,

allowing preventative medicine.

It is possible that personal MLDMs could become a

cornerstone for health care, and could be used for the

early diagnosis of changes in module function, based on

functional understanding of why disease-causing nodes

in the MLDMs change (such as due to a genetic variant).

As the bioinformatics principles for analyzing different

forms of variables are largely the same, MLDMs could

also include other forms of clinical information, such as

routine laboratory tests and medical imaging. The versatil-

ity and resolution of medical imaging is steadily increasing

and is aiming to provide functional understanding of

GEM of allergen-

challenged T cells

Sequence-based

predictions Literature

25 IL13 regulating transcription factors (TFs) 

Diagnostic and therapeutic

studies in allergic patients
Functional and therapeutic

studies in mouse models 

Module

genes

Allergic

patients

S100A4

High-throughput RNAi screen of TFs in

human CD4+ T cells using IL13 as read-out

Knock-down of positively screened TFs and

known IL13 regulators with microarray analysis

and construction of a gene module

A significant part of the module genes

were differentially expressed in 

allergen-challenged T cells from patients

(a)

(b)

(c)

(d)

Figure 3 A module-based approach to identify disease-relevant

diagnostic and therapeutic candidate genes in allergy. (a)

Twenty-five putative IL13-regulating transcription factors (TFs) were
identified by combining data from mRNA microarrays, sequence-based
predictions and the literature. (b) IL13-regulating TFs were validated by
siRNA-mediated knockdown of the 25 TFs in human total CD4+ T cells
polarized toward TH2 using IL13 as a read-out. The target genes of the
TFs were identified by combined siRNA knockdown of the positively
screened TFs/known IL13-regulating TFs from literature and microarray
analyses. This resulted in a module of genes that was co-regulated
with IL13 in TH2-polarized cells and significantly overlapped with
differentially expressed genes from allergen-challenged T cells from
allergic patients. For further validation experiments, the study focused
on module genes that encoded secreted proteins and had not been
previously associated with allergy. (c) Functional, diagnostic and
therapeutic studies involving one of the module genes, S100A4, were
performed in patients with seasonal allergic rhinitis, allergic dermatitis
and a mouse model of allergy. (d) Model of S100A4-induced disease
mechanisms. Allergic inflammation requires the sensitization of the
immune system by allergens, resulting in the production of
antigen-specific T cells. The interaction of dendritic cells (DC) in
the draining lymph node with T cells is a critical step that is
dependent on S100A4. B-cell maturation as a result of T cell-B cell
crosstalk (for example, the release of TH2 cytokines by T cells)
leads to the production of IgE and IgG1 by plasma cells. Cytokines
and chemokines released by T cells stimulate the migration of
circulating granulocytes (for example, neutrophils and eosinophils) to
the inflammatory site (skin). Differentiation of naïve T cells into CD8+

cytotoxic T cells will exacerbate the skin damage. Blue arrows indicate
the flow of the allergic responses. Green arrows indicate the promotion
of these processes by S100A4. GEM, gene expression microarray.
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observed structural changes in the human body. This

would allow, for example, specific traits imaged in liver

cancer to be linked to prognostic gene expression changes

[42]. Similarly, obesity traits could be linked to molecular

changes [43].

In summary, MLDMs can potentially be used as tem-

plates to integrate and analyze multiple layers of disease-

relevant information. Similar to the current diagnostic

model discussed above, analyses can be based on func-

tional understanding, but with higher resolution and the

option for computational predictions. When the under-

lying mechanisms are revealed, our view of various com-

mon diseases might alter, prompting reclassification of

multiple diseases.

Networks to reclassify diseases based on
pathogenic mechanisms
The current diagnostic classification is based on obser-

vations of symptoms and signs, associations with exter-

nal factors (for example, pollen and allergy), and use of

diagnostic aids like radiology, and variable molecular

knowledge of disease mechanisms. A fundamental

problem with this classification system is that the same

phenotype may result from multiple disease mecha-

nisms. Thus, if a drug is only effective against one of

those mechanisms, its use in patients with different

underlying mechanisms will not be therapeutically

successful.

Ideally, diagnoses should be based on accurately linking

phenotypes with all possible underlying mechanisms. Tak-

ing this idea to its extreme would require simultaneously

analyzing all possible external causes and mechanisms.

Since there is considerable comorbidity, all diseases should

also be simultaneously analyzed. Actually, the first steps in

this direction have been already taken, using network-

based analyses of public databases and high-throughput

data. In a landmark study, Goh et al. [44] mapped human

disease genes onto the interactome, and found that genes

associated with phenotypically similar diseases tended to

co-localize. Similar observations were made for networks

derived from expression profiling [45]. This led Barrenas

et al. [39] to construct a module-based map of human

diseases. Similar to a geographical map, different disease

categories should co-localize in different parts of the in-

teractome (Figure 5a). Ideally, such a map could be used

as a reference to improve diagnostic accuracy and clas-

sification, and better identify diagnostic and therapeutic

candidates. However, despite the diseases being very

diverse (including metabolic, inflammatory and onco-

logical diseases), they partially overlapped. Thus, instead

of being dispersed in the interactome, the disease mod-

ules formed a flower-like structure (Figure 5b). The

PPI network

Symptoms and signs network

Environmental network

from different layers

mRNA

Protein

SNPs

Mutations

Epigenetics

(a) Network construction (b) Disease MLDM (c) Predictive markers (d) Personalized treatment

nc-RNA

Spirometry,
skin prick test,

etc.

Social factors

Pollen,
microbes,

etc.

Figure 4 An idealized systems medical approach to personalized treatment. (a) All factors that influence a disease can potentially be
described by networks. For example, symptoms and signs that tend to co-occur can be linked and form a module that corresponds to a disease
(pink oval). That module may be linked to underlying modular protein changes (blue oval). Similarly, the disease module may be linked to co-occurring
environmental factors (green oval). (b) Each of the modules in (a) can be further divided to represent different sublayers, from which (c) predictive
markers from the different sublayers can be identified, and used for (d) personalized treatment. MLDM, multilayer disease module; nc-RNA, noncoding
RNA; PPI, protein-protein interaction; SNPs, single-nucleotide polymorphisms.
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overlapping disease modules formed a new, shared

module with remarkable characteristics. It was enriched

for inflammatory, metabolic and proliferative pathways.

Since these pathways have key roles in survival, this led

to the hypothesis that altered function in one of the

pathways may spill over to the others and cause one or

more diseases. Indeed, meta-analysis of GWASs repre-

senting more than 100 diseases and hundreds of thou-

sands of patients showed that the shared module was

highly enriched for SNPs from these diseases [39].

These findings contrast with the dogma that diseases

are mainly caused by disease-specific genes, and that

nonspecific genes are secondary or irrelevant. Further

studies showed that the shared module was more

enriched for GWAS genes than disease-specific genes.

Moreover, it was highly enriched for known biomarkers

and therapeutic targets. Clinical studies showed that

the expression profile of the shared module had the

potential to stratify allergic patients for treatment with

corticosteroids. Because the shared module was highly

enriched for GWAS genes it is likely that it has an im-

portant causal role, which has diagnostic implications

for predictive and preventative medicine [3,39].

Other approaches to disease reclassification have in-

volved mining of electronic health records to search for

comorbidity patterns and underlying genetic variants

[46-51]. For example, by combining electronic health re-

cords and GWASs, Denny et al. [46] showed novel asso-

ciations. For example, the presence of polymorphisms in

IRF4 was linked to skin cancer and actinic keratosis [46].

There are also enormous resources of biomedical rele-

vance available in the public domain that can be analyzed

with network-based principles. For example, Medline con-

tains some 20 million abstracts, the Gene Expression

Omnibus one million expression experiments, and the

Encyclopedia of DNA Elements (ENCODE) more than

2,500 high-throughput experiments. In one study, new

indications for known drugs were predicted based on inte-

gration of public expression data of more than 100 dis-

eases and expression data from the drugs. For example, an

antiulcer drug, cimetidine, was shown to be a therapeutic

candidate in lung cancer [52]. In another study, a hypoth-

esis about T-cell differentiation was tested completely in

silico, by mining and modeling data in the public domain.

All abstracts in MedLine were mined to construct a mod-

ule relevant for T-cell differentiation. This module was

tested by simulated activation and knockdown of individ-

ual module genes. The simulation yielded unexpected

results, which were validated by analyses of correlation

patterns in public mRNA microarray data from different

T-cell-associated diseases [53]. It is likely that network-

based analysis of highly diverse data sets with increasingly

powerful computational tools will contribute to a new dis-

ease taxonomy. Already, there are examples of this, such

as in severe asthma [54].

Problems, limitations and opportunities
Every step of a systems medicine study, including

the use of network and module approaches, involves

problems and limitations. One problem is that high-

throughput analyses often require large sample sizes to

obtain statistically significant results, and sufficient

samples may be difficult to obtain. In some diseases, it

is difficult or impossible to obtain relevant clinical

samples, such as neurodegenerative diseases. One solu-

tion to this problem, at this stage, may be to focus on

particularly tractable diseases. As an example, in sea-

sonal allergic rhinitis, the key external trigger (pollen)

and the key cell type (lymphocytes) are both known

and readily accessible. The disease occurs at a known

time point each year. Thus, it is possible to mimic the

disease process by in vitro challenge of T cells from

(a) Dispersed disease modules (b) Overlapping disease modules

Figure 5 Relationship between different disease modules on the protein-protein interaction network. (a) A hypothetical model of
three different diseases mapped on the human protein-protein interaction network. The modules are dispersed in the network. (b) Instead,
meta-analysis of mRNA microarray and genome-wide association study data show that disease modules partially overlap and form a shared
module (grey) [39]. The shared module has important pathogenic, diagnostic and therapeutic implications.
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patients outside of the pollen season. It is also possible

to perform functional studies of candidate genes in

activated T cells, or in a well-defined mouse model of

allergy. The disease process and diagnostic markers

can be analyzed locally in the affected organ [33].

Another issue is that many different cell types are

often involved in one disease, and more than one may

be important. The involvement of multiple cell types in

the development of a disease introduces an additional

challenge to the generation of meaningful MLDMs

from omics data relying on cell mixtures. This may be

addressed in the near future by the application of

single-cell analysis technologies. Recent developments

in sequencing allow determination of single-cell ge-

nomes and transcriptomes [55,56], while mass cytome-

try enables the targeted quantification of proteins and

their modifications in different cells from a heteroge-

neous population [57].

Other challenges arise from technical problems, which

include variation in the accuracy and sensitivity of high-

throughput techniques. This is particularly so for global

protein profiling, which is complex and difficult to per-

form in a clinical setting. The occurrence in a proteome

of various post-translational modifications, SNPs and

alternative splicing of proteins further complicates such

analyses. However, recent technological advances indi-

cate that targeted proteomics may partly address these

limitations and render the analysis of predetermined

sets of proteins over large numbers of samples [58,59].

Targeted protein assays may also enable the quantifica-

tion of highly homologous protein sequences, such as

splice variants, protein isoforms and mutated versions of

a protein [60], in a clinical laboratory setting. Another

emerging targeted proteomic application is the gener-

ation of perpetually reusable digitalized maps of the

proteomic signals of a sample [61]. The thus generated

maps can then be mined using targeted data extraction

strategies to quantify disease-related proteins of interest

over large cohorts of patient samples. Literature know-

ledge and MLDM layers that are more easily measured

than proteins, such as mRNA or genomic information,

could help to identify proteins for such targeted ana-

lyses [62]. Similarly, recent technical advances may

help to include targeted metabolites and lipids in the

MLDMs [63,64].

The bioinformatics analyses involve several problems

of their own. For example, important limitations of PPI

networks are that they are generally not cell specific, and

are constructed based on heterogeneous sources such as

literature and databases, experimental data, inferences

from high-throughput studies, or computational predic-

tions [65].

A key remaining problem is how to validate results from

analyses involving thousands of genes or gene products.

Systems medicine is based on combining genome-scale

validation strategies with detailed studies of individual fac-

tors. Therefore, it is mandatory to follow recommenda-

tions for multiscale analysis [66], thereby strictly limiting

false discovery [67]. Recently, these analyses have been an-

chored to MLDMs, by providing stepwise criteria for the

use of omics-based predictors in clinical trials [68].

On a genomic scale, an important validation principle

is to test for genomic concordance. In other words, to

test if there is concordance between different layers in

an MLDM. For example, it is possible to validate by

examining if disease modules that are derived from

mRNA microarray analyses are enriched for SNPs iden-

tified by independent GWASs of the same diseases.

Another form of genome-scale validation is to examine

if siRNA-mediated knockdowns of predicted upstream

genes in a module result in altered expression of down-

stream module genes. If these two genome-scale ana-

lyses support the findings, then detailed functional and

clinical studies can be performed, including mouse dis-

ease models [33].

Clinical implementation of systems and network
medicine
There are already examples of gene testing being used in

the clinic. Diagnostic products to stratify breast cancer

based on gene expression profiling are commercially

available, such as the MammaPrint [69]. MLDMs could

also be used to stratify patients for individualized medi-

cine based on functional understanding of why patients

do or do not respond to a particular drug. This could, in

turn, lead to development of novel drugs for nonre-

sponders, directed against mechanisms not targeted by

existing drugs. MLDMs could also be used for reposi-

tioning of drugs that have not reached the market be-

cause of low efficacy or side effects.

The clinical implementation of systems medicine

would require extensive clinical, administrative and edu-

cational adaptations. One current problem is that very

few clinicians are involved in systems medical research,

education or implementation. Yet, systems medicine is

beginning to become a part of the curricula of many

medical schools (for example, http://gumc.georgetown.

edu/spi/systemsmedicine).

The European Commission has launched a project aim-

ing to draw up a road map for the clinical implementation

of systems medicine (https://www.casym.eu). This road

map is based on integrating the views from different rele-

vant stakeholders, including clinicians, basic researchers,

representatives of the pharmaceutical industry, funding

bodies and government health agencies. Educational pro-

grams for the training of health professionals at different

stages of their careers, starting from medical school, have

already started in the USA and some European countries.
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It is important to recognize that systems medical prin-

ciples are in line with clinical reasoning, and perhaps

can be seen as a natural extension that permits formal-

ized reasoning about pathogenic mechanisms, as well as

diagnostic predictions.

Conclusions and future directions
Many of the main challenges facing modern health care

arise from the complex and heterogeneous characteris-

tics of common diseases. The same phenotype may re-

sult from different mechanisms, and each mechanism

will require a different treatment. Ideally as many pheno-

types, genes and other disease-associated variables as

possible should be studied together in order to reclassify

diseases based on functional understanding of underlying

mechanisms. However, this involves multiple, large-scale

methodological, economical and ethical challenges, which

are only partially resolved.

The rapid development of systems medicine is illus-

trated by a prospective study of 100 healthy subjects,

known as the Hundred Person Wellness Project, which

was started in March 2014. Blood, urine and stool sam-

ples will be regularly analyzed for multiple biomarkers

or microbes, and participants will wear digital devices

that monitor physical activity, sleep patterns and blood

pressure. The aim is to predict and prevent disease. If

successful, the study will expand to include 100,000 sub-

jects [70].

The study suggests that the predictive and personal-

ized medicine based on MLDMs will become a reality.

From an idealized perspective, a global description of

MLDMs for all diseases and relevant cell types would

lead to increased understanding of the relationships be-

tween pathogenic mechanisms and disease phenotypes.

This would include understanding of comorbidity and

subgroups. An important clinical use would be diagnos-

tic reclassification of diseases, which in turn could con-

tribute to more effective diagnosis, drug development

and treatment. The next natural aim would be to include

a time axis in the reclassified diagnostic disease map. In

such a map, diseases should be staged by defining

MLDMs at different time points. Ideally, such staging

should extend to early and even presymptomatic stages.

If so, this could help to identify markers that aid in the pre-

diction and perhaps prevention of disease before it becomes

symptomatic. The identification of early and presymptom-

atic MLDMs based on clinical data would be a very large

undertaking that would require population-based studies

where the subjects are followed for several years. Alterna-

tively, it could be possible to infer early MLDMs based on

analyses of animal models of diseases or in human cells

exposed to known external disease triggers, such as T cells

exposed to allergen. The clinical advantages of predictive

and preventative medicine can be exemplified by early

treatment of rheumatoid arthritis and multiple sclerosis,

which reduces the risk of debilitating disease [71]. If these

examples can be generalized, medicine would be likely to

change from reactive to proactive.

Clinical research is rapidly entering the era of low-cost

personalized omics, and we believe that systems medi-

cine is ideally placed to make sense of this sea of com-

plex data, resulting in tangible improvements in patient

care and treatment.
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