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Abstract

We prove that the ∞-category of MGL-modules over any scheme is equivalent to the ∞-category of motivic
spectra with finite syntomic transfers. Using the recognition principle for infinite P1-loop spaces, we deduce that
very effective MGL-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic
transfers.

Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank
in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In
particular, over a regular equicharacteristic base, we show that Ω∞

P1MGL is the A1-homotopy type of the moduli

stack of virtual finite flat local complete intersections, and that for = > 0, Ω∞
P1Σ

=
P1MGL is the A1-homotopy type

of the moduli stack of finite quasi-smooth derived schemes of virtual dimension −=.
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1. Introduction

This article contains two main results:

◦ a concrete description of the∞-category of modules over Voevodsky’s algebraic cobordism
spectrum MGL (and its variants such as MSL);

◦ a computation of the infinite P1-loop spaces of effective motivic Thom spectra in terms of finite
quasi-smooth derived schemes with tangential structure and cobordisms.

Both results have an incarnation over arbitrary base schemes and take a more concrete form over perfect
fields. We discuss them in more detail in § 1.1 and § 1.3.

1.1. Modules over algebraic cobordism

If S is a regular scheme over a field with resolutions of singularities, there are well-known equivalences
of∞-categories

ModHZ(SH(S)) ≃ DM(S),

ModHZ̃(SH(S)) ≃ D̃M(S),

expressing Voevodsky’s ∞-category of motives DM(S) and its Milnor–Witt refinement D̃M(S) as ∞-
categories of modules over the motivic E∞-ring spectra HZ and HZ̃, which represent motivic cohomol-
ogy and Milnor–Witt motivic cohomology (see [BF18, CD15, EK20, Rö08]). These equivalences mean
that a structure of HZ-module (resp., HZ̃-module) on a motivic spectrum is equivalent to a structure of
transfers in the sense of Voevodsky (resp., a structure of Milnor–Witt transfers in the sense of Calmès
and Fasel).

Our main result, Theorem 4.1.3, gives an analogous description of modules over Voevodsky’s
algebraic cobordism spectrum MGL: we construct an equivalence between MGL-modules and motivic
spectra with finite syntomic transfers:

ModMGL (SH(S)) ≃ SHfsyn (S). (1.1.1)

Notably, we do not need resolutions of singularities, and we are able to prove this over arbitrary schemes
S. Furthermore, we obtain similar results for other motivic Thom spectra; for example, MSL-modules are
equivalent to motivic spectra with transfers along finite syntomic morphisms with trivialised canonical
sheaf (Theorem 4.2.1). It is worth noting that even though both sides of (1.1.1) involve only classical
schemes, our construction of the equivalence uses derived algebraic geometry in an essential way.

Over a perfect field : , we prove a cancellation theorem for finite syntomic correspondences. This
allows us to refine (1.1.1) to an equivalence

ModMGL (SHveff (:)) ≃ Hfsyn (:)gp
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between very effective MGL-modules and grouplike motivic spaces with finite syntomic transfers (see
Theorem 4.1.4).

1.2. Framed correspondences and the motivic recognition principle

The starting point of the proof of (1.1.1) is a description of motivic Thom spectra in terms of framed
correspondences. The notion of framed correspondence was introduced by Voevodsky [Voe01] and
later developed by Garkusha, Panin, Ananyevskiy and Neshitov [AGP18, GNP18, GP20a, GP20b].
Subsequently, a more flexible formalism of framed correspondences was developed by the present
authors in [EHK+19]. There we constructed a symmetric monoidal ∞-category Corrfr (SmS) whose
objects are smooth S-schemes and whose morphisms are spans

Z

X Y

5 6 (1.2.1)

with 5 finite syntomic, together with an equivalenceL 5 ≃ 0 in K(Z), whereL 5 is the cotangent complex
of 5 and K(Z) is the algebraic K-theory space of Z. Starting with the∞-category Corrfr (SmS), we can
define the symmetric monoidal ∞-categories Hfr (S) of framed motivic spaces and SHfr (S) of framed
motivic spectra. The reconstruction theorem states that there is an equivalence

SH(S) ≃ SHfr (S) (1.2.2)

between motivic spectra and framed motivic spectra over any scheme S [Hoy20, Theorem 18]. This
equivalence can be regarded as the ‘sphere spectrum version’ of the equivalences discussed in § 1.1.
Although the right-hand side of (1.2.2) is obviously more complicated than the left-hand side, the point
of the reconstruction theorem is that many motivic spectra of interest admit simpler descriptions as
framed motivic spectra. For example, the motivic cohomology spectrum HZS turns out to be the framed
suspension spectrum of the constant sheaf Z [Hoy20, Theorem 21].

Over a perfect field : , the motivic recognition principle states that the framed suspension functor

Σ
∞
T,fr : Hfr (:) → SHfr (:) ≃ SH(:)

is fully faithful when restricted to grouplike objects, and that its essential image is the subcategory
of very effective motivic spectra [EHK+19, Theorem 3.5.14]. In particular, the functor Ω∞

T,frΣ
∞
T,fr is

computed as group completion on framed motivic spaces. Thus, if a motivic spectrum E over : is shown
to be the framed suspension spectrum of a framed motivic space X, then its infinite P1-loop space Ω∞

T
E

is the group completion Xgp. This will be our strategy to compute the infinite P1-loop spaces of motivic
Thom spectra.

1.3. Geometric models of motivic Thom spectra

The general notion of motivic Thom spectrum was introduced in [BH20, Section 16]. In particular,
there is a motivic Thom spectrum MV associated with any natural transformation V : B→ K, where K
is the presheaf of K-theory spaces on smooth schemes. For example, if V is the inclusion of the rank =

summand of K-theory, then MV ≃ Σ=
T
MGL. The motivic spectrum MV is very effective when V lands

in the rank > 0 summand K>0 ⊂ K.
In this paper, we show that the motivic Thom spectrum MV of any morphism V : B → K>0 is the

framed suspension spectrum of an explicit framed motivic space. Before stating the general result more
precisely, we mention some important special cases:
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1. If Y is smooth over S and b ∈ K(Y) is a K-theory element of rank > 0, the Thom spectrum
ThY/S (b) ∈ SH(S) is the framed suspension spectrum of the presheaf on Corrfr (SmS) sending X
to the∞-groupoid of spans (1.2.1), where Z is a derived scheme and 5 is finite and quasi-smooth,
together with an equivalence L 5 ≃ −6

∗(b) in K(Z).
2. The algebraic cobordism spectrum MGLS is the framed suspension spectrum of the moduli stack

FSynS of finite syntomic S-schemes. More generally, for = > 0, Σ=
T
MGLS is the framed suspension

spectrum of the moduli stack FQSm=
S of finite quasi-smooth derived S-schemes of relative virtual

dimension −=.
3. The special linear algebraic cobordism spectrum MSLS is the framed suspension spectrum of the

moduli stack FSynor
S of finite syntomic S-schemes with trivialised canonical sheaf. More generally,

for = > 0, Σ=
T
MSLS is the framed suspension spectrum of the moduli stack FQSmor,=

S of finite
quasi-smooth derived S-schemes of relative virtual dimension −= with trivialised canonical sheaf.

We now explain the general paradigm. Given a natural transformation V : B → K of presheaves on
smooth S-schemes, we define a V-structure on a morphism 5 : Z → X between smooth S-schemes to
be a lift of its shifted cotangent complex to B(Z):

B

Z K.

V

−L 5

More generally, if 5 : Z → X is a morphism between quasi-smooth derived S-schemes, we define a
V-structure on 5 to be a lift of −L 5 to B̃(Z), where B̃ is the left Kan extension of B to quasi-smooth
derived S-schemes (although left Kan extension is a rather abstract procedure, it turns out that B̃ admits
a concrete description for every B of interest). Then, for any V : B → K>0, we show that the motivic
Thom spectrum MV ∈ SH(S) is the framed suspension spectrum of the moduli stack FQSmV

S of finite
quasi-smooth derived S-schemes with V-structure (Theorem 3.3.10).

Over a perfect field : , this result becomes much more concrete. Indeed, using the motivic recognition
principle, we deduce that Ω∞

T
MV is the motivic homotopy type of the group completion of the moduli

stack FQSmV
:

(Corollary 3.3.12). Even better, the group completion is redundant if V lands in the
positive-rank summand of K-theory.

The case of the algebraic cobordism spectrum MGL: deserves more elaboration. For its infinite
P1-loop space, we obtain an equivalence

Ω
∞
T MGL: ≃ LzarLA1FSyngp

:

of E∞-ring spaces with framed transfers. For = > 0, we obtain equivalences of FSyn: -modules

Ω
∞
T Σ

=
TMGL: ≃ LnisLA1FQSm=

:

(see Corollary 3.4.2). Finally, using an algebraic version of Whitney’s embedding theorem for finite
schemes, we can replace the moduli stack FSyn: by the Hilbert scheme Hilbflci(A∞: ) of finite local
complete intersections in A∞: , which is a smooth ind-scheme and a commutative monoid up to A1-
homotopy (see Theorem 3.5.2):

Ω
∞
T MGL ≃ Lzar (LA1Hilbflci(A∞: ))

gp.

1.4. Analogies with topology

A cobordism between two compact smooth manifolds M and N is a smooth manifold W with a proper
morphism W → R whose fibres over 0 and 1 are identified with M and N (see, for example, [Qui71,
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Section 1]. In other words, cobordisms are paths in the moduli stack of compact smooth manifolds
(though one needs the notion of a quasi-smooth derived manifold to solve the transversality issues in the
definition of this moduli stack). The direct algebro-geometric analog of a cobordism is thus an A1-path
in the moduli stack of proper quasi-smooth schemes. As in topology, one can also consider moduli stacks
of schemes with some stable tangential structure (see § 1.3). The A1-localisation of such a moduli stack
is then analogous to a cobordism space of structured manifolds (a space in which points are manifolds,
paths are cobordisms, homotopies between paths are cobordisms between cobordisms, etc.).

From this perspective, our computation of Ω∞
T

MV for V of rank 0 is similar to the following com-
putation of Galatius, Madsen, Tillmann and Weiss in topology [GMTW09]: given a morphism of
spaces V : B→ BO, the infinite loop space of the Thom spectrum MV is the cobordism space of zero-
dimensional compact smooth manifolds with V-structured stable normal bundle. The only essential
difference is that in topology these cobordism spaces are already grouplike, due to the existence of non-
trivial cobordisms to the empty manifold. In FSynV

:
, however, the empty scheme is not A1-homotopic

to any nonempty scheme, so group completion is necessary.
To our knowledge, when V is of positive rank, the topological analog of our computation is not

recorded in the literature. One expects, for example, an identification, for M a smooth manifold and
= > 0, of the mapping space Maps(M,Ω∞Σ=MU) with the cobordism space of complex-oriented
submanifolds of M of codimension =. In the other direction, it is an interesting problem to extend our
computation of Ω∞

T
MV to V of negative rank, where the topological story suggests a relationship with a

moduli stack of proper quasi-smooth schemes of positive dimension.
Finally, we note that our description of MGL-modules can be understood as a more coherent version

of Quillen’s geometric universal property of MU [Qui71, Proposition 1.10].

1.5. Related work

Similar computations of motivic Thom spectra in terms of framed correspondences were obtained
independently by Garkusha and Neshitov [GN18]. Our approach differs in that we work with tangentially
framed correspondences as defined in [EHK+19] rather than framed correspondences in the sense of
Voevodsky (which are called equationally framed correspondences in [EHK+19]). Because tangentially
framed correspondences are the morphisms in a symmetric monoidal∞-category, we are able to make
much more structured computations, which are crucial for describing ∞-categories of modules over
motivic Thom spectra. Our notion of a motivic Thom spectrum is also strictly more general than the
one in [GN18].

The fact that MGL-cohomology groups admit finite syntomic transfers is well known (see [Pan09]
for the case of finite transfers between smooth schemes and [Dég18] for the general case). They are
also an essential feature in the algebraic cobordism theory of Levine and Morel [LM07]. Such transfers
were further constructed by Navarro [Nav16] on E-cohomology groups for any MGL-module E, and
Déglise, Jin and Khan [DJK20] showed that these transfers exist at the level of spaces. Our main result
implies that E-cohomology spaces admit coherent finite syntomic transfers, and that this structure even
characterises MGL-modules.

In [LS16], Lowrey and Schürg gave a presentation of the algebraic cobordism groups Ω= (X) ≃
MGL2=,= (X) with projective quasi-smooth derived X-schemes as generators (for X smooth over a field
of characteristic zero). Our results give a comparable presentation for = > 0 of the whole ∞-groupoid
(Ω∞

T
Σ=

T
MGL) (X), which holds also in positive characteristic but is only Zariski-local. We hope that

there is a common generalisation of both results, namely, a global description of the sheavesΩ∞
T
Σ=

T
MGL,

for all = ∈ Z and in arbitrary characteristic, in terms of quasi-smooth derived schemes.

1.6. Conventions and notation

This paper is a continuation of [EHK+19], and we use the same notation as in that paper. In particular,
PSh(C) denotes the ∞-category of presheaves on an ∞-category C, PShΣ (C) ⊂ PSh(C) is the full
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subcategory of presheaves that transform finite sums into finite products (called Σ-presheaves for short)
and LΣ is the associated localisation functor. We denote by Lzar and Lnis the Zariski and Nisnevich
sheafification functors, by LA1 the (naive) A1-localisation functor and by Lmot the motivic localisation
functor.

In addition, we use derived algebraic geometry throughout this paper, following [Lur04], [Lur18,
Chapter 25] and [TV08, Chapter 2.2]. By a derived commutative ring we mean an object of CAlgΔ =

PShΣ (Poly), where Poly is the category of polynomial rings Z[G1, . . . , G=] for = > 0; these are often
called simplicial commutative rings in the literature, for historical reasons that will not be relevant
here. Given a derived commutative ring R, we denote by CAlgΔR the ∞-category (CAlgΔ )R/ and by
CAlgsm

R ⊂ CAlgΔR the full subcategory of smooth R-algebras. If R is discrete, we further denote by
CAlg♥R ⊂ CAlgΔR the full subcategory of discrete R-algebras, which is a 1-category containing CAlgsm

R .
We write dAff for the∞-category of derived affine schemes and dSch for that of derived schemes. If

X is a derived scheme, we denote by Xcl its underlying classical scheme. Every morphism 5 : Y → X
in dSch admits a cotangent complex L 5 ∈ QCoh(Y) [Lur18, §25.3]. We say that 5 is quasi-smooth if
it is locally of finite presentation and L 5 is perfect of Tor-amplitude 6 1; the rank of L 5 is called the
relative virtual dimension of 5 .

Throughout this paper, S denotes a fixed base scheme, arbitrary unless otherwise specified.

2. Twisted framed correspondences

Recall that a framed correspondence from X to Y is a span

Z

X Y

5 6

where 5 is finite syntomic, together with an equivalence L 5 ≃ 0 in K(Z) [EHK+19, Definition 2.3.4].
Given b ∈ K(Y) of rank 0, one can consider a ‘twisted’ version of this definition by instead requiring
an equivalence L 5 + 6∗(b) ≃ 0 in K(Z). In this section, we study this notion of twisted framed
correspondence, which we define more generally for b ∈ K(Y) of rank > 0 using derived algebraic
geometry. The connection with Thom spectra in motivic homotopy theory will be made in Section 3.

We begin in § 2.1 with some recollections about the relationship between stable vector bundles and K-
theory. In § 2.2, we introduce the presheaves hfr

S (Y, b), hnfr
S (Y, b) and hefr

S (Y, b) of b-twisted tangentially
framed, normally framed and equationally framed correspondences, and in § 2.3 we prove some of
their basic properties. In § 2.4 we show that when Y is smooth, the presheaves hfr

S (Y, b), hnfr
S (Y, b) and

hefr
S (Y, b) are motivically equivalent. Most proofs in § 2.3 and § 2.4 are almost identical to the proofs of

the analogous results for untwisted framed correspondences in [EHK+19, Section 2]. Finally, in § 2.5,
we prove that the restriction of the presheaf hfr

S (Y, b) to smooth S-schemes is compatible, up to motivic
equivalence, with any base change S′ → S; this is a key technical result that will allow us to establish
our main results over arbitrary base schemes (rather than just over fields).

2.1. Stable vector bundles and K-theory

For a derived scheme X, we denote by Vect(X) the ∞-groupoid of finite locally free sheaves on X
[Lur18, § 2.9.3]. We define the∞-groupoid sVect(X) as the colimit of the sequence

Vect(X)
⊕OX
−−−−→ Vect(X)

⊕OX
−−−−→ Vect(X) → · · · .

Thus, an object of sVect(X) is a pair (E, <) where E ∈ Vect(X) and < > 0, which we can think of as
the formal difference E − O<

X ; the rank of such a pair is rk(E) − <. Two pairs (E, <) and (E′, <′) are
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equivalent if they have the same rank and there exists = > 0 such that E ⊕ O<′ ⊕ O= ≃ E′ ⊕ O< ⊕ O=.
Note that sVect(X) is a (Vect(X), ⊕)-module, and the canonical map

Vect(X) → K(X)

factors through sVect(X).
For a derived commutative ring R, sVect(R) is noncanonically a sum of copies of BGL(R). Indeed,

if b = (E, <) ∈ sVect(R), the space of automorphisms of b is

Ωb (sVect(R)) ≃ colim
=

AutR(E ⊕ R=).

If we choose an equivalence E ⊕ F ≃ RA , computing the colimit of the sequence

AutR (E) → AutR(E ⊕ F) → AutR(E ⊕ F ⊕ E) → · · ·

in two ways yields an equivalence colim= AutR(E ⊕ R=) ≃ colim= AutR (R=) = GL(R).
Recall that a morphism of spaces is acyclic if its fibres have no reduced homology. We refer to [Rap19]

for a review of the main properties of acyclic morphisms. In particular, by [Rap19, Theorem 3.3], the class
of acyclic morphisms is closed under colimits and base change, and if X is a space whose fundamental
groups have no nontrivial perfect subgroups, then every acyclic morphism X→ Y is an equivalence.

Lemma 2.1.1. Let R be a derived commutative ring. Then the canonical map sVect(R) → K(R) is
a plus construction in the sense of Quillen – that is, it is the universal map that kills the commutator
subgroup of c1 (sVect(R), b) ≃ GL(c0R) for all b ∈ sVect(R). In particular, it is acyclic.

Proof. This is an instance of the McDuff–Segal group completion theorem. We refer to [Nik17, Theo-
rem 9] or [RW13, Theorem 1.1] for modern treatments. �

Remark 2.1.2. Similarly, if VectSL(R) denotes the monoidal groupoid of finite locally free R-modules
with trivialised determinant, and KSL(R) is its group completion, then sVectSL(R) → KSL (R) is a
plus construction. Here, the group completion theorem [RW13, Theorem 1.1] does not directly apply,
because VectSL (R) is not homotopy commutative. However, we can apply [BEH+20, Proposition 3.1] by
viewing VectSL (R) as a module over its subgroupoid of bundles of even rank, which is an E∞-monoid.

2.2. Presheaves of twisted framed correspondences

Let X and Y be derived S-schemes and let b ∈ K(Y) be of rank > 0. The ∞-groupoid of b-twisted
framed correspondences from X to Y over S is defined by

hfr
S (Y, b) (X) =




Z

X Y

5 6 +
5 finite quasi-smooth
L 5 ≃ −6

∗(b) in K(Z)




.

When b = 0 and X,Y ∈ SchS, this definition recovers the notion of tangentially framed correspondence
considered in [EHK+19, §2.1], by the following lemma:

Lemma 2.2.1. Let 5 : Z → X be a quasi-finite quasi-smooth morphism of derived schemes of relative
virtual dimension 0. Then 5 is flat. In particular, if X is classical, then Z is classical.

Proof. By [Lur17a, Theorem 7.2.2.15], 5 is flat if and only if Zcl ≃ Z ×X Xcl and 5cl is flat, so we
can assume X classical. The question being local on Z, we can assume that X is affine and that Z is
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a subscheme of A=
X. Since Z is quasi-smooth of relative virtual dimension 0 over X, it is cut out by

exactly = equations locally on A=
X [KR19, Proposition 2.3.8]. Thus, we may assume that Z is cut out

by = equations in (A=
X)0 for some 0 ∈ O(A=

X), and hence cut out by = + 1 equations in A=+1
X . Since 5

is quasi-finite, this implies that 5cl : Zcl → X is a relative global complete intersection in the sense of
[Stacks, Tag 00SP], hence syntomic [Stacks, Tag 00SW]. In particular, the defining equations of Z in
A=+1

X locally form a regular sequence, whence Zcl = Z [KR19, Example 2.3.2]. �

Note that hfr
S (Y, b) is a presheaf on dSchS. In fact, it is a Σ-presheaf on the∞-category Corrfr (dSchS)

of framed correspondences (see Appendix Appendix B). It is also covariantly functorial in the
pair (Y, b).

To relate b-twisted framed correspondences with motivic homotopy theory, we will also need to study
two auxiliary versions of twisted framed correspondences, namely an ‘equationally framed’ version and
a ‘normally framed’ version.

Let X,Y ∈ dSchS and let b = (E, <) ∈ sVect(Y) be of rank > 0. We define

hefr
S (Y, b) (X) = colim

=→∞




Z

X Y

5 6 +

5 finite
8 : Z→ A=

X closed immersion over X
i : (A=

X)
ℎ
Z → A=−< × V(E)

i−1(0 × Y) ≃ Z, i|Z ≃ 6




,

hnfr
S (Y, b) (X) = colim

=→∞




Z

X Y

5 6 +

5 finite quasi-smooth
8 : Z→ A=

X closed immersion over X
N8 ≃ O=−<

Z ⊕ 6∗(E)




.

More precisely, for each <, the right-hand sides are functors Vect(Y)>< → PSh(dSchS) in the variable
E. As < varies, these functors fit together in a cone over the sequence

Vect(Y)
⊕OY
−−−−→ Vect>1(Y)

⊕OY
−−−−→ Vect>2 (Y) → · · · ,

which induces sVect>0(Y) → PSh(dSchS). Here, the notation Xℎ
Z for X a derived scheme and Z ⊂ X

a closed subset refers to the pro-object of étale neighbourhoods of Z in X (see [EHK+19, A.1.1], and
V(E) = Spec(Sym(E)) is the vector bundle over Y associated with E.

For b = 0 and X,Y ∈ SchS, these definitions recover the notions of equationally framed and normally
framed correspondences from [EHK+19, Section 2] (using Lemma 2.2.1 for the latter). Unlike in that
paper, we will not discuss the ‘level =’ versions of hefr and hnfr, for simplicity. However, it is clear that
many of our results in this paper hold at finite level (a notable exception is Proposition 2.3.6).

There are evident forgetful maps

hefr
S (Y, b) −→ hnfr

S (Y, b) −→ hfr
S (Y, b)

in PShΣ (dSchS), similar to the case b = 0 considered in [EHK+19, Section 2] (see also the discussion
before Proposition 2.4.7 for more details on the second morphism). Note that hefr

S (Y, b) (X) is discrete
(that is, a set) when X and Y are classical, since i determines 6 as well as the derived closed subscheme
Z. On the other hand, hnfr

S (Y, b) (X) is usually not discrete when rk b > 1.

Remark 2.2.2. Let X,Y ∈ dSchS and b = (E, <) ∈ sVect>0 (Y). Then there is a natural equivalence

hefr
S (Y, b) (X) ≃ colim

=→∞
Maps

(
X+ ∧ (P

1)∧=,Lnis

(
V(O=−<

Y ⊕ E)

V(O=−<
Y ⊕ E) − 0

))
.
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If X and Y are classical, this is a special case of Voevodsky’s lemma [EHK+19, Corollary A.1.5], which
is easily generalised to derived schemes. Indeed, as in the proof of [EHK+19, Proposition A.1.4], it
suffices to show the following: if Y is a derived scheme and Z ⊂ Y is a closed subset, then Y′ ↦→ (Y′)ℎZ
is an étale cosheaf on étale Y-schemes; by the topological invariance of the étale ∞-topos [Lur18,
Remark B.6.2.7], this follows from the underived statement proved in [EHK+19, Proposition A.1.4].

2.3. Descent and additivity

We say that a presheaf F : dSchop
S → Spc satisfies closed gluing if F(∅) ≃ ∗ and if for any diagram of

closed immersions X←↪ Z ↩→ Y in dSchS, the canonical map

F(X ⊔Z Y) → F(X) ×F (Z) F(Y)

is an equivalence.
We say that a presheaf F : dSchop

S → Spc is finitary if, for every cofiltered diagram (XU) of quasi-
compact quasi-separated derived schemes with affine transition maps, the canonical map

colim
U

F(XU) → F(lim
U

XU)

is an equivalence.

Proposition 2.3.1. Let Y ∈ dSchS and let b ∈ K(Y) be of rank > 0.

(i) hfr
S (Y, b) is a Nisnevich sheaf on quasi-compact quasi-separated derived schemes.

(ii) If Y is locally finitely presented over S, then hfr
S (Y, b) is finitary.

(iii) Let R ↩→ Y be a Nisnevich (resp., étale) covering sieve generated by a single map. Then hfr
S (R, b) →

hfr
S (Y, b) is a Nisnevich (resp., étale) equivalence.

Proof. (i) and (ii) follow from the corresponding properties of algebraic K-theory (see, for example,
[CMNN20, Proposition A.15] and [Lur17a, Lemma 7.3.5.13], respectively). Let us prove (iii). Since
hfr

S (R, b) → hfr
S (Y, b) is a monomorphism, it suffices to show that it is a Nisnevich (resp., étale) effective

epimorphism [Lur17b, Example 5.2.8.16]. Refining the sieve R if necessary, we can assume that it is
generated by a single étale map Y′ → Y. Given a span X ← Z → Y in hfr

S (Y, b) (X), we must show
that the sieve on X consisting of all maps X′ → X such that X′ ×X Z → Z → Y factors through Y′ is
covering in the Nisnevich (resp., étale) topology. In other words, we must show that if Xcl is local and
Henselian (resp., strictly Henselian), then the étale map Z ×Y Y′→ Z has a section. By the topological
invariance of the étale ∞-topos [Lur18, Remark B.6.2.7], it is equivalent to show that the étale map
Zcl ×Y Y′ → Zcl has a section. Since Z is finite over X, Zcl is a sum of Henselian (resp., strictly
Henselian) local schemes [Gro67, Proposition 18.5.10], whence the result. �

Proposition 2.3.2. Let Y1, . . . ,Y: ∈ dSchS, let b ∈ K(Y1 ⊔ · · · ⊔ Y: ) have rank > 0 and let b8 be the
restriction of b to Y8 . Then the canonical map

hfr
S (Y1 ⊔ · · · ⊔ Y: , b) → hfr

S (Y1, b1) × · · · × hfr
S (Y: , b: )

is an equivalence.

Proof. This is clear. �

Proposition 2.3.3. Let Y ∈ dSchS and b ∈ sVect>0 (Y).

(i) hefr
S (Y, b) is a sheaf for the quasi-compact étale topology.

https://doi.org/10.1017/fmp.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.13


10 Elden Elmanto et al.

(ii) hefr
S (Y, b) satisfies closed gluing.

(iii) If Y is locally finitely presented over S, then hefr
S (Y, b) is finitary.

(iv) Let R ↩→ Y be a Nisnevich (resp., étale) covering sieve generated by a single map. Then
hefr

S (R, b) → hefr
S (Y, b) is a Nisnevich (resp., étale) equivalence.

Proof. The proof of each point is exactly the same as for the corresponding point of [EHK+19, Propo-
sition 2.1.5(i)]. �

Lemma 2.3.4. The presheaf

dSchop
S → Spc, X ↦→ {quasi-smooth derived X-schemes},

satisfies closed gluing.

Proof. The assertion without the quasi-smoothness condition follows from [Lur18, Theorem 16.2.0.1]
(as in the proof of [Lur18, Theorem 16.3.0.1], which is the spectral analog). It remains to prove the
following: if Y is a derived scheme and 5 : Y → X0 ⊔X01 X1 is a morphism whose base change
5∗ : Y∗ → X∗ is quasi-smooth for each ∗ ∈ {0, 1, 01}, then 5 is quasi-smooth. We have that 5 is locally
finitely presented by [Lur18, Proposition 16.3.2.1(3)]. It remains to show that the cotangent complex
L 5 is perfect and has Tor-amplitude 6 1. Since the cotangent complex is stable under base change, the
pullback of L 5 to X∗ is L 5∗ . The claim now follows from [Lur18, Proposition 16.2.3.1(3,7)]. �

Proposition 2.3.5. Let Y ∈ dSchS and b ∈ sVect>0 (Y).

(i) hnfr
S (Y, b) satisfies Nisnevich excision.

(ii) hnfr
S (Y, b) satisfies closed gluing.

(iii) If Y is locally finitely presented over S, then hnfr
S (Y, b) is finitary.

(iv) Let R ↩→ Y be a Nisnevich (resp., étale) covering sieve generated by a single map. Then
hnfr

S (R, b) → hnfr
S (Y, b) is a Nisnevich (resp., étale) equivalence.

Proof.

(i) By definition, the presheaf hnfr
S (Y, b) is a filtered colimit over = of its level = versions, which are

clearly sheaves for the fpqc topology. We conclude the point because the property of Nisnevich
excision is preserved by filtered colimits.

(ii) This follows from the closed gluing property for connective quasi-coherent sheaves
[Lur18, Theorem 16.2.0.1] and Lemma 2.3.4.

(iii) This is clear.
(iv) The proof is identical to that of Proposition 2.3.1(iii). �

Proposition 2.3.6. Let Y1, . . . ,Y: ∈ dSchS, let b ∈ sVect(Y1 ⊔ · · · ⊔ Y: ) be of rank > 0 and let b8 be
the restriction of b to Y8 . Then the canonical maps

hefr
S (Y1 ⊔ · · · ⊔ Y: , b) → hefr

S (Y1, b1) × · · · × hefr
S (Y: , b: )

hnfr
S (Y1 ⊔ · · · ⊔ Y: , b) → hnfr

S (Y1, b1) × · · · × hnfr
S (Y: , b: )

are A1-equivalences.

Proof. This is the same as the proof of [EHK+19, Proposition 2.2.11]. �

It follows from Proposition 2.3.6 that the presheaves

LA1hefr
S (Y, b) and LA1hnfr

S (Y, b)

have canonical structures of E∞-objects (compare [EHK+19, 2.2.9]).
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2.4. Comparison theorems

If 5 : A→ B is a morphism of derived commutative rings, there is a canonical B-linear map

n 5 : cofib( 5 ) ⊗A B→ L 5 ,

called the Hurewicz map associated with 5 [Lur18, §25.3.6]. If 5 is connective (that is, if Spec( 5 ) is a
closed immersion), then n 5 is 2-connective [Lur18, Proposition 25.3.6.1]. In particular, if 8 : Z→ X is
a closed immersion between derived affine schemes and I is the fibre of 8∗ : O(X) → O(Z), we have a
1-connective map

I ⊗O(X) O(Z) → L8 [−1] = N8 .

Lemma 2.4.1. Let

Z0 X0

Z X

80

8

be a Cartesian square of derived affine schemes, where all arrows are closed immersions. Let I and I0

be the fibres of the maps 8∗ : O(X) → O(Z) and 8∗0 : O(X0) → O(Z0). Then the canonical map

I→ I0 ×N80
N8

is connective.

Proof. We factor this map as follows:

I
U
−→ I0 ×I0⊗O(X0 )

O(Z0) (I ⊗O(X) O(Z))
V
−→ I0 ×N80

N8 .

By [Lur18, Proposition 25.3.6.1], the canonical maps I ⊗O(X) O(Z) → N8 and I0 ⊗O(X0) O(Z0) → N80

are 1-connective. Being a base change of the latter, the projection (I0 ⊗O(X0) O(Z0)) ×N80
N8 → N8 is

1-connective. It follows that the map

I ⊗O(X) O(Z) → (I0 ⊗O(X0) O(Z0)) ×N80
N8

is connective, hence that its base change V is connective. It remains to show that U is connective. Let T
be the closed subscheme of X obtained by gluing Z and X0 along Z0. We can factor U as

I→ I ⊗O(X) O(T) → I0 ×I0⊗O(X0 )
O(Z0) (I ⊗O(X) O(Z)).

The first map is clearly connective. Since I0 ≃ I ⊗O(X) O(X0), the second map is an equivalence by
Milnor patching [Lur18, Theorem 16.2.0.1]. Thus, U is connective. �

Proposition 2.4.2. Let X,Y ∈ dSchS, let b ∈ sVect(Y) be of rank > 0 and let X0 ⊂ X be a closed
subscheme. Suppose that X is affine and that Y admits an étale map to an affine bundle over S. Then
the map

hefr
S (Y, b) (X) → hefr

S (Y, b) (X0) ×hnfr
S (Y, b ) (X0)

hnfr
S (Y, b) (X)

is an effective epimorphism (that is, surjective on c0).

Proof. Write b = (E, <). An element in the right-hand side consists of:
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◦ a span X
5
←− Z

6
−→ Y with 5 finite quasi-smooth;

◦ a closed immersion 8 : Z→ A=
X over X with an equivalence g : N8 ≃ O=−<

Z ⊕ 6∗(E);

◦ an equational b-framing of the induced span X0
50
←− Z0

60
−−→ Y:

Z0
80
−→ A=

X0
← U0

i0
−−→ V(O=−<

Y ⊕ E), U0 : Z0 ≃ i−1
0 (Y),

where 80 is the pullback of 8, U0 → A=
X0

is an affine étale neighbourhood of Z0 and i0 extends 60;
◦ an identification of the equivalence N80 ≃ O=−<

Z0
⊕ 6∗0(E) induced by g with that induced by U0.

The goal is to construct an equational b-framing (i, U) of X
5
←− Z

6
−→ Y that simultaneously induces

the normal framing g and the equational b-framing (i0, U0). Using [EHK+19, Lemma A.2.3], we can
lift the étale neighbourhood U0 of Z0 in A=

X0
to an étale neighbourhood U of Z in A=

X. Refining U0 if
necessary, we can assume that U is affine (by [EHK+19, Lemma A.1.2(ii)]).

Let ℎ0 : U0 → Y be the composition of i0 : U0 → V(O=−<
Y ⊕E) and the projection V(O=−<

Y ⊕E) →

Y. We first construct a simultaneous extension ℎ : U→ Y of ℎ0 : U0 → Y and 6 : Z→ Y. Suppose first
that Y is an affine bundle over S. Since U is affine, U ×S Y → U is a vector bundle over U. It follows
that the restriction map

MapsS (U,Y) → MapsS (U0,Y) ×MapsS (Z0 ,Y) MapsS(Z,Y) ≃ MapsS (U0 ⊔Z0 Z,Y)

is surjective, so the desired extension exists. In general, let ? : Y → A be an étale map where A is an
affine bundle over S. By the previous case, there exists an S-morphism U → A extending ? ◦ ℎ0 and
? ◦ 6. Then the étale map U×A Y→ U has a section over U0 ⊔Z0 Z, so there exists an affine open subset
U′ ⊂ U ×A Y that is an étale neighbourhood of U0 ⊔Z0 Z in U. We can therefore replace U by U′, and
the projection U′→ Y gives the desired extension.

It remains to construct a Y-morphism i : U → V(O=−<
Y ⊕ E) extending i0 and an equivalence

U : Z ≃ i−1 (Y) liftingU0 such that the induced trivialisationN8 ≃ O=−<
Z ⊕6∗(E) is equivalent to g. Recall

that Y-morphisms U→ V(O=−<
Y ⊕ E) correspond to morphisms of OU-modules O=−<

U ⊕ ℎ∗(E) → OU.
Let I and I0 be the fibres of the restrictions map O(U) → O(Z) and O(U0) → O(Z0). By Lemma 2.4.1,
the morphism of O(U)-modules

I→ I0 ×N80
N8

is connective. Since O(U)=−< ⊕ ℎ∗ (E) is a projective object in connective O(U)-modules [Lur17a,
Proposition 7.2.2.7], the morphism O(U)=−< ⊕ ℎ∗(E) → I0 ×N80

N8 induced by U0 and g lifts to a
morphism

O(U)=−< ⊕ ℎ∗(E) → I.

This defines a Y-morphism i : U→ V(O=−<
Y ⊕E) extending i0 together with a factorisation of Z→ U

through i−1(Y) – that is, a U-morphism U : Z → i−1 (Y). By construction, U lifts U0 and induces
the equivalence g on conormal sheaves; since both Z and i−1(Y) are regularly embedded in U, U is
an étale closed immersion. Thus, there exists a function 0 on U such that U induces an equivalence
Z ≃ i−1(Y) ∩ U0. Replacing U by U0 concludes the proof. �

Corollary 2.4.3. Suppose that Y ∈ SmS is a finite sum of schemes admitting étale maps to affine bundles
over S and let b ∈ sVect>0 (Y). Then the map

LA1hefr
S (Y, b) → LA1hnfr

S (Y, b)

is an equivalence on derived affine schemes. In particular, it induces an equivalence

LzarLA1hefr
S (Y, b) ≃ LzarLA1hnfr

S (Y, b).
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Proof. By Proposition 2.3.6, we can assume that Y admits an étale map to an affine bundle over S. By
Proposition 2.4.2, for every = > 0, the map

hefr
S (Y, b)A

=

→ hefr
S (Y, b)mA=

×hnfr
S (Y, b )mA= hnfr

S (Y, b)A
=

is surjective on affines. By Propositions 2.3.3(ii) and 2.3.5(ii), both hefr
S (Y, b) and hnfr

S (Y, b) satisfy
closed gluing. It follows that the map

hefr
S (Y, b)A

•

→ hnfr
S (Y, b)A

•

is a trivial Kan fibration of simplicial spaces when evaluated on any affine scheme, and we conclude
using [Lur18, Theorem A.5.3.1]. �

Corollary 2.4.4. Let Y be a smooth S-scheme and b ∈ sVect(Y) of rank > 0. Then the map

hefr
S (Y, b) → hnfr

S (Y, b)

in PShΣ (dSchS) is a motivic equivalence.

Proof. The scheme Y is the filtered union of its quasi-compact open subschemes, and on quasi-compact
derived schemes the presheaves hefr

S (Y, b) and hnfr
S (Y, b) are the filtered colimits of the corresponding

subpresheaves, so we can assume Y quasi-compact. Let {U1, . . . ,U: } be an open cover of Y by S-
schemes admitting étale maps to affine bundles over S [Stacks, Tag 054L]. The map U1 ⊔ · · · ⊔U: → Y
is a Zariski covering map; by Propositions 2.3.3(iv) and 2.3.5(iv), Lnishefr

S (−, b) and Lnishnfr
S (−, b)

preserve the colimit of its Čech nerve. Thus, we can assume that Y is a finite sum of schemes admitting
étale maps to affine bundles over S. Then the claim follows from Corollary 2.4.3. �

For Z → X a finite morphism of derived schemes, we denote by EmbX(Z,A=
X) the space of closed

immersions Z→ A=
X over X (note that this is not a discrete space in general, because closed immersions

of derived schemes are not monomorphisms). We let

EmbX(Z,A
∞
X ) = colim

=→∞
EmbX(Z,A

=
X).

Proposition 2.4.5. Let X be a derived affine scheme, Z → X a finite morphism, X0 → X a closed
immersion and Z0 = Z ×X X0. Suppose that (X0)cl → Xcl is finitely presented. Then the pullback map

EmbX(Z,A
∞
X ) → EmbX0 (Z0,A

∞
X0
)

is an effective epimorphism (that is, surjective on c0).

Proof. Let 80 : Z0 → A=
X0

be a closed immersion over X0, given by = functions 61, . . . , 6= on Z0. Let
6′1, . . . , 6′= be lifts of these functions to Z. Note that

fib(O(Z) → O(Z0)) ≃ fib(O(X) → O(X0)) ⊗O(X) O(Z).

Since Z→ X is finite and (X0)cl → Xcl is finitely presented, the O(X)-module c0fib(O(Z) → O(Z0))

is finitely generated; let ℎ1, . . . , ℎ< ∈ O(Z) be the images of a finite set of generators. Then the = + <

functions 6′1, . . . , 6′=, ℎ1, . . . , ℎ< define a closed immersion 8 : Z → A=+<
X over X whose pullback to

X0 is equivalent to 80 in EmbX(Z,A∞X ). �
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Corollary 2.4.6. Let X be a derived affine scheme and Z→ X a finite morphism. Then the presheaf

dAffop
X → Spc, X′ ↦→ EmbX′ (Z ×X X′,A∞X′),

is A1-contractible.

Proof. This follows from Proposition 2.4.5 as in [EHK+19, Lemma 2.3.22]. �

Let Z→ X be a finite quasi-smooth morphism of derived schemes of relative virtual codimension 2.
Any closed immersion 8 : Z→ A=

X over X is then quasi-smooth, hence has a finite locally free conormal
sheaf N8 = L8 [−1]. Thus, we have a morphism

EmbX(Z,A
=
X) → Vect=+2 (Z), 8 ↦→ N8 .

Taking the colimit over =, we get a morphism

EmbX(Z,A
∞
X ) → sVect2 (Z) ⊂ sVect(Z).

We denote by Embb
X (Z,A

∞
X ) its fibre over b ∈ sVect(Z). Note that there is a commutative square

EmbX(Z,A∞X ) sVect(Z)

∗ K(Z)
−L 5

inducing a canonical map

Embb
X (Z,A

∞
X ) → MapsK(Z) (b,−L 5 )

on the horizontal fibres over b.

Proposition 2.4.7. Let 5 : Z→ X be a finite quasi-smooth morphism of derived affine schemes and let
b ∈ sVect(Z). Then the morphism of simplicial spaces

Embb
X×A•
(Z × A•,A∞X×A• ) → MapsK(Z×A•) (b,−L 5 )

induces an equivalence on geometric realisations.

Proof. Let us write X• = X×A• and Z• = Z×A• for simplicity. Recall that the given morphism comes
from a natural transformation of Cartesian squares

Embb
X• (Z

•,A∞X• ) EmbX• (Z•,A∞X• )

∗ sVect(Z•)
b

−→

MapsK(Z•) (b,−L 5 ) ∗

∗ K(Z•).

−L 5

b

We consider two cases. If [b] ≠ [−L 5 ] in c0K(Z), then MapsK(Z) (b,−L 5 ) is empty and the result holds
trivially. Suppose that [b] = [−L 5 ] in c0K(Z). Then−L 5 lives in the connected component K(Z)〈b〉 ⊂
K(Z) containing b. Since Z is affine and [L 5 ] = [O

=
Z] − [N8] for any closed immersion 8 : Z→ A=

X over
X, the conormal sheaf N8 is stably isomorphic to b. It follows that the map EmbX(Z,A∞X ) → sVect(Z)
lands in the component sVect(Z)〈b〉 ⊂ sVect(Z) containing b. We may therefore rewrite the previous
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Cartesian squares as follows:

Embb
X• (Z

•,A∞X• ) EmbX• (Z•,A∞X• )

∗ sVect(Z•)〈b〉
b

−→

MapsK(Z•) (b,−L 5 ) ∗

∗ K(Z•)〈b〉.

−L 5

b

Recall from § 2.1 that sVect(Z•)〈b〉 is equivalent to BGL(Z•). The map

sVect(Z•)〈b〉 → K(Z•)〈b〉

between the lower right corners is acyclic in each degree by Lemma 2.1.1. Its geometric realisation
is an acyclic map whose domain has abelian fundamental groups (since the commutator subgroup
of GL(Z) is generated by elementary matrices, which are A1-homotopic to the identity), hence it is
an equivalence. The map between the upper right corners also induces an equivalence on geometric
realisations, by Corollary 2.4.6. Since the lower right corners are degreewise connected, it follows from
[Lur17a, Lemma 5.5.6.17] that geometric realisation preserves these Cartesian squares, and we obtain
the desired equivalence on the upper left corners. �

Corollary 2.4.8. Let Y ∈ dSchS and let b ∈ sVect>0 (Y). Then the map

LA1hnfr
S (Y, b) → LA1hfr

S (Y, b)

is an equivalence on derived affine schemes. In particular, it induces an equivalence

LzarLA1hnfr
S (Y, b) ≃ LzarLA1hfr

S (Y, b).

Proof. This follows from Proposition 2.4.7 using [EHK+19, Lemma 2.3.12] (where one can harmlessly
replace finite syntomic morphisms by finite quasi-smooth morphisms). �

Combining Corollaries 2.4.4 and 2.4.8, we obtain the following:

Theorem 2.4.9. Let Y be a smooth S-scheme and b ∈ sVect(Y) of rank > 0. Then the maps

hefr
S (Y, b) → hnfr

S (Y, b) → hfr
S (Y, b)

in PShΣ (dSchS) are motivic equivalences.

2.5. Base change

Let X be a derived affine scheme and Z ⊂ X a closed subscheme. We say that the pair (X,Z) is Henselian
if the underlying classical pair (Xcl,Zcl) is Henselian [Stacks, Tag 09XD]. By the topological invariance
of the étale site [Lur17a, Theorem 7.5.0.6], (X,Z) is Henselian if and only if, for every étale affine
X-scheme Y, the restriction map

MapsX(X,Y) → MapsX(Z,Y)

is an effective epimorphism.

Lemma 2.5.1. Let (X,Z) be a Henselian pair of derived affine schemes. Then the induced morphism of
∞-groupoids Vect(X) → Vect(Z) is 1-connective.
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Proof. The morphism Vect(Xcl) → Vect(Zcl) is 0-connective by [Gru72, Corollaire I.7]. If P,Q ∈
Vect= (Xcl), then isomorphisms P ≃ Q are sections of a GL=-torsor over Xcl, which is in particular a
smooth affine Xcl-scheme. Using [Gru72, Théorème I.8], this implies that Vect(Xcl) → Vect(Zcl) is
1-connective. It remains to observe that Vect(X) → Vect(Xcl) is 2-connective, because

c0 HomR(P,Q) ≃ Homc0 (R) (c0 (P), c0 (Q))

when P is a finite locally free R-module. �

Lemma 2.5.2. Let X be a derived affine scheme, X0 → X a closed immersion and Z0 an affine quasi-
smooth X0-scheme. Then there exists an affine quasi-smooth X-scheme Z such that Z ×X X0 ≃ Z0.

Proof. Choose a smooth affine X-scheme V and a closed immersion Z0 → V0 = V ×X X0 over X0 (for
example, V = A=

X). The conormal sheaf N of the immersion Z0 → V0 is finite locally free. By [Gru72,
Corollaire I.7] and the topological invariance of the étale site, replacing V by an étale neighbourhood
of Z0 if necessary, there exists a finite locally free sheaf on Vcl lifting N| (Z0)cl. Hence, by Lemma 2.5.1
applied to the pairs (Z0, (Z0)cl) and (V,Vcl), there exists a finite locally free sheaf E on V lifting N.
Let E0 be the pullback of E to V0 and let I be the fibre of OV0 → OZ0 . Recall that there is a canonical
surjection n : I → N in QCohcn (V0) (see § 2.4). Since E and E0 are projective in their respective ∞-
categories of connective quasi-coherent sheaves [Lur17a, Proposition 7.2.2.7], we can find successive
lifts

E OV

E0

N I OV0 .

i

i0

n ]

By Nakayama’s lemma, the morphism i0 : E0 → I is surjective in a neighbourhood of Z0 in V0; hence,
the quasi-smooth closed subscheme of V0 defined by ] ◦ i0 (that is, the zero locus of the corresponding
section of the vector bundle V(E0) → V0) has the form Z0 ⊔ K. Replacing V by an affine open
neighbourhood of Z0 if necessary, we can assume K = ∅. Let Z ⊂ V be the quasi-smooth closed
subscheme defined by i. By construction, Z×X X0 is the quasi-smooth closed subscheme of V0 defined
by ] ◦ i0, which is Z0. �

Lemma 2.5.3. Let S = Spec R be an affine scheme and Y a smooth S-scheme with an étale map to a
vector bundle over S, and let b ∈ sVect>0 (Y). Then the functor hnfr

S (Y, b) : CAlgΔR → Spc is left Kan
extended from CAlgsm

R .

Proof. We check conditions (1)–(3) of Proposition A.0.1. Condition (1) holds by Proposition 2.3.5(iii),
and condition (3) is a special case of closed gluing (Proposition 2.3.5(ii)). Let (X,X0) be a Henselian
pair of derived affine R-schemes, 50 : Z0 → X0 a finite quasi-smooth morphism, 80 : Z0 → A=

X0
a

closed immersion over X0, 60 : Z0 → Y an S-morphism and g0 an equivalence N80 ≃ O=−<
Z0
⊕ 6∗0 (E),

where b = (E, <). We have to construct a lift of this data from X0 to X. Since hnfr
S (Y, b) is finitary

(Proposition 2.3.5(iii)) and (X,X1) is Henselian for any X1 containing X0 [Stacks, Tag 0DYD], we can
assume that X0 → X is finitely presented. By Lemma 2.5.2, there exists an affine quasi-smooth lift
5 : Z→ X of 50. Replacing Z by an open neighbourhood of Z0, we can assume 5 quasi-finite. Moreover,
by [Lur18, Corollary B.3.3.6], we have Z = Z′ ⊔ Z′′, where Z′ → X is finite and Z′′ → X does not hit
X0; thus we can assume 5 finite. By Proposition 2.4.5, increasing = if necessary, we can also lift 80 to a
closed immersion 8 : Z→ A=

X over X. By assumption, there exists an étale map ℎ : Y→ V where V is
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a vector bundle over S. Then the restriction map

MapsS(Z,V) → MapsS(Z0,V)

is an effective epimorphism (since Z is affine), so the composite ℎ ◦ 60 lifts to a map Z → V. The
projection Y×VZ→ Z has a section over Z0, hence over Z, since ℎ is affine étale and (Z,Z0) is Henselian
[Gro67, Proposition 18.5.6(i)]. If 6 is the composite Z→ Y×V Z→ Y, then 6 extends 60. Finally, since
(Z,Z0) is Henselian, we can lift g0 to an equivalence N8 ≃ O=−<

Z ⊕ 6∗(E) by Lemma 2.5.1. �

Theorem 2.5.4. Let 5 : S′→ S be a morphism of schemes, Y a smooth S-scheme and b ∈ K(Y) of rank
> 0. Then the canonical map

5 ∗(hfr
S (Y, b) |SmS) → hfr

S′ (YS′ , bS′) |SmS′

is a motivic equivalence.

Proof. This is obvious if 5 is smooth, so we may assume S and S′ affine. Note that if we do not
restrict these presheaves to smooth schemes, this map is obviously an equivalence. It therefore suffices
to show that Lmothfr

S (Y, b), viewed as a presheaf on affine S-schemes, is the motivic localisation of
a colimit of presheaves represented by smooth affine S-schemes. If Y is the filtered colimit of quasi-
compact open subschemes, then hfr

S (Y, b) is the filtered colimit of the corresponding subpresheaves,
so we can assume Y quasi-compact. Then there exists a finite open cover {U1, . . . ,U: } of Y by S-
schemes admitting étale maps to vector bundles over S. The map U1 ⊔ · · · ⊔ U: → Y is a Zariski
covering map; by Proposition 2.3.1(iii), Lnishfr

S (−, b) preserves the colimit of its Čech nerve. Together
with Proposition 2.3.2, we can assume that Y admits an étale map to a vector bundle over S. In this case,
we know from Lemma 2.5.3 that hnfr

S (Y, b) is left Kan extended from smooth affine S-schemes. Since
we have a motivic equivalence hnfr

S (Y, b) → hfr
S (Y, b) by Theorem 2.4.9, we are done. �

3. Geometric models of motivic Thom spectra

The main result of this section, Theorem 3.3.10, identifies the motivic Thom spectrum MV of any
V : B → K>0 with the framed suspension spectrum of a concrete framed motivic space, namely the
moduli stack of finite quasi-smooth schemes with V-structure. We obtain this result in several steps:

◦ In § 3.1, we prove the theorem for Thom spectra of vector bundles over smooth S-schemes. This is
essentially a generalisation to arbitrary base schemes of a theorem of Garkusha, Neshitov and Panin
over infinite fields (which is used also in the proof of the motivic recognition principle). However, it
is necessary to reformulate their result using tangentially framed correspondences to obtain an
identification that is both natural and multiplicative in the vector bundle.

◦ In § 3.2, we extend the theorem to Thom spectra of the form ThY/S (b), where Y is a smooth
S-scheme and b ∈ K(Y) has rank > 0.

◦ Finally, in § 3.3 we introduce the notion of V-structure, recall the formalism of motivic Thom
spectra and deduce the general theorem.

At each step we also obtain a computation of the infinite P1-loop spaces of these Thom spectra over
perfect fields, using the motivic recognition principle. In § 3.4, we specialise the main theorem to the
motivic Thom spectra MGL and MSL. Finally, in § 3.5 we rephrase our computations in terms of Hilbert
schemes.
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3.1. Thom spectra of vector bundles

Let (SmS)/Vect → SmS denote the Cartesian fibration classified by Vect : Smop
S → Spc (as the nota-

tion suggests, (SmS)/Vect is also a full subcategory of the overcategory PSh(SmS)/Vect). An object of
(SmS)/Vect is thus a pair (Y,E), where Y is a smooth S-scheme and E is a finite locally free sheaf
on Y, and a morphism (Y,E) → (Y′,E) is a pair ( 5 , i), where 5 : Y → Y′ is an S-morphism and
i : E ≃ 5 ∗(E′) is an isomorphism in Vect(Y). Similarly, we denote by (SmS)/K>0 the ∞-category of
pairs (Y, b), where Y is a smooth S-scheme and b ∈ K(Y) is of rank > 0.

Since Vect and K>0 are presheaves of E∞-spaces (under direct sum), the ∞-categories (SmS)/Vect

and (SmS)/K>0 acquire symmetric monoidal structures with

(Y1, b1) ⊗ (Y2, b2) = (Y1 ×S Y2, c
∗
1 (b1) ⊕ c∗2 (b2))

(see [Lur17a, §2.2.2]). The assignment (Y, b) ↦→ hfr
S (Y, b) is a right-lax symmetric monoidal functor

(SmS)/K>0 → PShΣ (Corrfr (SmS)) (see Appendix Appendix B).

Construction 3.1.1. Let (Y,E) ∈ (SmS)/Vect and let V×(E) ⊂ V(E) denote the complement of the zero
section of the vector bundle V(E). We define a morphism

ΘY/S,E : hfr
S (V(E)/V

× (E)) → hfr
S (Y,E)

in PShΣ (Corrfr (SmS)) as follows. Let I : Y ↩→ V(E) be the zero section. Then I is a regular closed
immersion with a canonical equivalence LI ≃ E[1], whence an equivalence g : LI ≃ −E in K(Y). The
span

Y

V(E) Y

I id

together with the equivalence g defines a canonical element of hfr
S (Y,E) (V(E)). Moreover, its image in

hfr
S (Y,E) (V×(E)) is the empty correspondence, which is the zero element. This defines the desired map
ΘY/S,E. The morphismΘY/S,E is clearly natural and symmetric monoidal in the pair (Y, E) ∈ (SmS)/Vect.

We now consider the diagram of symmetric monoidal∞-categories

(SmS)/Vect PShΣ (SmS)∗ H(S)∗ SH(S)

(SmS)/K>0 PShΣ (Corrfr (SmS)) Hfr (S) SHfr (S),

Th

W∗

Lmot

Θ
W∗

Σ∞
T

≃W∗

hfr Lmot Σ∞
T,fr

(3.1.2)

where

◦ Th sends (Y,E) to the quotient V(E)/V×(E),
◦ hfr sends (Y, b) to the the presheaf hfr

S (Y, b) and
◦ Θ is the natural transformation with components ΘY/S,E.

Note that Th and hfr are only right-lax symmetric monoidal, but all the other functors in this diagram
are strictly symmetric monoidal (and Th becomes strictly monoidal after Zariski sheafification). The
fact that W∗ : SH(S) → SHfr (S) is an equivalence was proved in [Hoy20, Theorem 18].

Our goal in this subsection is to prove the following theorem:

Theorem 3.1.3. Let S be a scheme, Y a smooth S-scheme and E a finite locally free sheaf on Y. Then
Σ∞

T,frΘY/S,E is an equivalence. In other words, the boundary of map (3.1.2) is strictly commutative.
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One of the main inputs is the following theorem of Garkusha, Neshitov and Panin:

Theorem 3.1.4 (Garkusha–Neshitov–Panin). Let : be an infinite field, Y a smooth separated :-scheme
of finite type and = > 0. Then the canonical map

hefr
: (A

=
Y/(A

=
Y − 0)) → hefr

: (Y,O=)

of presheaves on Sm: is a motivic equivalence.

Here the left-hand side uses the formal extension of hefr
:

to PShΣ (Sm: )∗ (see [EHK+19, 2.1.10]).
The ‘canonical map’ sends an equationally framed correspondence (Z,U, i, 6) from X to A=

Y, where
6 = (60, 61) : U→ A= × Y, to the correspondence (Z ∩ 6−1

0 (0),U, (i, 60), 61).

Proof of Theorem 3.1.4. Modulo the notation, this follows from the level 0 part of [GNP18, Theo-
rem 1.1], which assumes that : is an infinite perfect field. The result was generalised by Druzhinin
in [Dru20], where it is made clear that it holds as stated here over any infinite field (the perfectness
assumption only being needed to ensure that Lmot = LnisLA1 when = > 0). �

Lemma 3.1.5. Let : be a field and let F ∈ PShΣ,A1 (Corrfr (Sm: )). Suppose that Lnis(FK) is a grouplike
presheaf ofE∞-spaces on SmK for some separable algebraic field extension K/: . Then LnisF is grouplike.

Proof. Let X be the Henselisation of a point in a smooth :-scheme and let U ∈ c0 (F(X)). Note that XK

is a finite sum of Henselian local schemes. By the assumption and a continuity argument, there exists
a finite separable extension : ′/: such that the image of U in c0 (F(X:′)) has an additive inverse V. By
[EHK+19, Proposition B.1.4], there exists a morphism i from Spec : to Spec : ′ in Corrfr (Sm: ) such
that i∗(U:′) = 3n U, where 3 = [: ′ : :]. Hence, 3n U + i

∗(V) = 0. Since 1 is a summand of 3n , this
implies that U has an additive inverse. �

Lemma 3.1.6. Let : be a field, Y a smooth :-scheme, E a finite locally free sheaf on Y of rank > 1 and
b ∈ K(Y) of rank > 1. Then the Nisnevich sheaves

LnisLA1hfr
: (V(E)/V

× (E)) and LnisLA1hfr
: (Y, b)

on Sm: are grouplike. If : is infinite, they are connected.

In fact, these sheaves are connected even if : is finite (see Remark 3.2.3).

Proof. By Lemma 3.1.5, it suffices to prove the last statement. We must show that any section of
hfr
: (V(E)/V

× (E)) or hfr
: (Y, b) over a Henselian local scheme X is A1-homotopic to 0. We can assume

that the finite X-scheme in such a section is connected and hence has a unique closed point. Thus,
we can shrink Y so that it admits an étale map to an affine space and so that E and b are trivial. By
Corollaries 2.4.3 and 2.4.8, it then suffices to show that the sheaves

LnisLA1hefr
: (A

=
Y/(A

=
Y − 0)) and LnisLA1hefr

: (Y,O=)

are connected when = > 1. This is precisely [GNP18, Lemma A.1]. �

Proposition 3.1.7. Let : be a field, Y a smooth :-scheme and E a finite locally free sheaf on Y. Then
the map LmotΘY/:,E is an equivalence in Hfr (:).

Proof. As in the proof of Theorem 2.5.4, we can assume Y separated of finite type and E trivial. We
can also assume E of rank > 1, since the statement is tautological when E = 0. If : is infinite, the result
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follows by combining Theorems 2.4.9 and 3.1.4, noting that the square

hefr
:
(A=

Y/(A
=
Y − 0)) hefr

:
(Y,O=)

hfr
: (A

=
Y/(A

=
Y − 0)) hfr

: (Y,O=)
Θ

is commutative. In light of Lemma 3.1.6, the result for : finite follows immediately from [EHK+19,
Corollary B.2.5(2)]. �

Proof of Theorem 3.1.3. The source and target of Σ∞
T,frLmotΘY/S,E are both stable under base change:

this is obvious for the source, and for the target it follows from Theorem 2.5.4. The question is in
particular local on S, so we can assume S quasi-compact and quasi-separated. We can also assume Y
quasi-compact and quasi-separated, as in the proof of Theorem 2.5.4. By Noetherian approximation, we
can then assume S of finite type over Spec Z. In this case, equivalences in SH(S) are detected pointwise
on S [BH20, Proposition B.3], so we can assume that S is the spectrum of a field. Now the claim follows
from Proposition 3.1.7. �

3.2. Thom spectra of nonnegative virtual vector bundles

Theorem 3.2.1. Let Y be a smooth S-scheme and b ∈ K(Y) of rank > 0. Then there is an equivalence

ThY/S (b) ≃ Σ
∞
T,frh

fr
S (Y, b)

in SH(S) ≃ SHfr (S) that is natural and symmetric monoidal in (Y, b).

Proof. We consider the following restriction of diagram (3.1.2):

Vect(S) PShΣ (SmS)∗ H(S)∗ SH(S)

K>0 (S) PShΣ (Corrfr (SmS)) Hfr (S) SHfr (S).

Th

W∗

Lmot

Θ W∗

Σ∞
T

≃W∗

hfr Lmot Σ∞
T,fr

This is a diagram of symmetric monoidal ∞-categories and right-lax symmetric monoidal functors,
which is natural in S. By Theorem 3.1.3, the boundary of this diagram is strictly commutative. The
composite of the top row is strictly symmetric monoidal and lands in Pic(SH(S)), hence it extends
uniquely to a symmetric monoidal functor Vect(S)gp → SH(S). We claim that the composite of the
bottom row is also strictly symmetric monoidal – that is, that for b, [ ∈ K>0 (S), the structural map

Σ
∞
T,frh

fr
S (S, b) ⊗ Σ

∞
T,frh

fr
S (S, [) → Σ

∞
T,frh

fr
S (S, b + [)

is an equivalence. Indeed, this assertion is local on S, so we can assume that b and [ are finite locally
free sheaves on S, in which case the claim follows from the commutativity of the diagram. Similarly, the
composite of the bottom row lands in Pic(SHfr (S)), as can be checked locally on S. Thus, the bottom
row extends uniquely to a symmetric monoidal functor K>0 (S)gp ≃ K(S) → SHfr (S), and we have an
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induced commutative diagram

Vect(S)gp SH(S)

K(S) SHfr (S),

Th

≃W∗

hfr

still natural in S. Since the canonical map Vect(−)gp → K(−) is a Zariski equivalence and SH(−) is
a Zariski sheaf, the top horizontal map factors uniquely through K(−), giving rise to the motivic J-
homomorphism ThS/S (−) : K(S) → SH(S) [BH20, §16.2]. Hence, we obtain a symmetric monoidal
equivalence

ThS/S (−) ≃ Σ
∞
T,frh

fr
S (S,−) : K>0 (S) → SH(S),

natural in S. Unstraightening over SmS and composing with the symmetric monoidal functor

(SmS)/SH≃ → SH(S), ( 5 : Y→ S,E ∈ SH(Y)) ↦→ 5♯E,

constructed in [BH20, §16.3], we obtain an equivalence

5♯ ThY/Y(b) ≃ 5♯Σ
∞
T,frh

fr
Y(Y, b)

which is natural and symmetric monoidal in ( 5 : Y → S, b) ∈ (SmS)/K>0 . We now define the desired
symmetric monoidal natural transformation ThY/S(b) → Σ∞

T,frh
fr
S (Y, b) by the commutative square

5♯ ThY/Y(b) ThY/S (b)

5♯Σ
∞
T,frh

fr
Y(Y, b) Σ∞

T,frh
fr
S (Y, b).

≃

≃

It remains to show that the lower horizontal map is an equivalence. The assertion is local on Y (by
Propositions 2.3.1(iii) and 2.3.2), so we can assume that b is a finite locally free sheaf. In this case, we
know that the right vertical map is an equivalence by Theorem 3.1.3, which concludes the proof. �

Corollary 3.2.2. Let : be a perfect field, Y a smooth :-scheme and b ∈ K(Y) of rank > 0. Then there
is an equivalence

Ω
∞
T,fr ThY/: (b) ≃ LzarLA1hfr

: (Y, b)gp

in Hfr (:) which is natural and symmetric monoidal in (Y, b). Moreover, if the rank of b is > 1, then
LnisLA1hfr

: (Y, b) is already grouplike.

Proof. The first statement follows from Theorem 3.2.1, the fact that the functor

Σ
∞
T,fr : Hfr (:)gp → SHfr (:)

is fully faithful [EHK+19, Theorem 3.5.13(i)] and the fact that the motivic localisation functor Lmot can
be computed as LzarLA1 on PShΣ (Corrfr (Sm: ))

gp [EHK+19, Theorem 3.4.11]. If b has rank > 1, then
LnisLA1hfr

: (Y, b) is grouplike by Lemma 3.1.6. �

Remark 3.2.3. In the setting of Corollary 3.2.2, if b has rank > =, then LnisLA1hfr
: (Y, b) is =-connective

(as a Nisnevich sheaf). This is obvious if = = 0. If = > 1, then it is grouplike and hence equivalent to
Ω∞

T
ThY/: (b), which is =-connective by Morel’s stable A1-connectivity theorem.
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Corollary 3.2.4. Let : be a perfect field, Y a smooth :-scheme and b ∈ sVect(Y) of rank > 0. Then
there are equivalences

Ω
∞
T ThY/: (b) ≃ Lzar (LA1hnfr

: (Y, b))gp ≃ Lzar (LA1hefr
: (Y, b))gp,

natural in (Y, b).

Proof. The first equivalence follows by combining Corollaries 2.4.8 and 3.2.2. To deduce the second
equivalence from Corollary 2.4.4, it is enough to show that

Lzar (LA1hefr
: (Y, b))gp ≃ (Lmoth

efr
: (Y, b))gp.

This follows from [EHK+19, Remark 3.4.12], since LA1hefr
:
(Y, b) is a presheaf on Correfr

∗ (Sm: ) and,
for any X ∈ Sm: , the endomorphism f∗X of (LA1hefr

:
(Y, b)) (X) is homotopic to the identity [Yak19,

Lemma 3.1.4]. �

Remark 3.2.5. One can give a more direct proof of a less-structured version of Corollary 3.2.2 if
b = (E, <) ∈ sVect>0 (Y). Voevodsky’s lemma (Remark 2.2.2) provides a map

Lmoth
efr
: (Y, b)gp → Ω

<
T Ω
∞
T Σ
∞
T (V(E)/V

× (E)).

To show that it is an equivalence, we can assume that b = O=
Y. In this case, it follows from [EHK+20,

Corollary 3.3.8] that this map is inverse to the equivalence of Theorem 3.1.4 (which is tautological if
rk b = 0). Note however that there is no hope of obtaining the monoidal equivalence of Corollary 3.2.2
in this way, because sVect(Y) has no monoidal structure.

Corollary 3.2.6. Let S be pro-smooth over a field. For every b ∈ K(S) of rank> 0, there is an equivalence

Ω
∞
T,frΣ

b1S ≃ LzarLA1hfr
S (S, b)

gp

in Hfr (S). Moreover, if b has rank > 1, we can replace the group completion on the right-hand side by
Nisnevich sheafification.

Proof. By Theorem 3.2.1, we have an equivalence

Σ
b1S ≃ Σ

∞
T,frh

fr
S (S, b)

for any scheme S. By adjunction, we get a map

LzarLA1hfr
S (S, b)

gp → Ω
∞
T,frΣ

b
T

1S.

To prove that it is an equivalence when S is pro-smooth over a field, we can assume b trivial, since
the question is local on S. We are then reduced to the case of a perfect field, which follows from
Corollary 3.2.2. �

3.3. General nonnegative Thom spectra

Definition 3.3.1. Let S be a scheme. A stable tangential structure over S is a morphism V : B → K
in PShΣ (dSchS). We say that V has rank = if V lands in the rank = summand of K-theory. Given a
quasi-smooth morphism 5 : Z→ X with Z ∈ dSchS, a V-structure on 5 is a lift of −L 5 to B(Z).
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Given a stable tangential structure V over S, we denote by FQSmV
S : dSchop

S → Spc the moduli stack
of V-structured finite quasi-smooth schemes over S:

FQSmV
S (X) = {V-structured finite quasi-smooth derived X-schemes}.

Example 3.3.2. Let ]= be the inclusion of the rank = summand of K. An ]=-structure on a quasi-smooth
morphism 5 is simply the property that 5 has relative virtual dimension −=. We will also write

FQSm=
S = FQSm ]=

S

for the moduli stack of finite quasi-smooth schemes of dimension −=. If = = 0, this is the moduli
stack FSynS of finite syntomic schemes (which is a smooth quasi-separated algebraic stack over S), by
Lemma 2.2.1.

Example 3.3.3. If V : ∗ → K is the zero section, then a V-structure on a quasi-smooth morphism
5 : Z → X is an equivalence L 5 ≃ 0 in K(Z) – that is, a (stable) 0-dimensional framing of 5 . The

presheaf FQSmV
S coincides with the presheaf FSynfr

S considered in [EHK+19, 3.5.17].

Example 3.3.4. If V is the fibre of det : K → Pic, then a V-structure on a quasi-smooth morphism
5 : Z→ X is an equivalence det(L 5 ) ≃ OZ. We call this structure an orientation of 5 , and we write

FQSmor
S = FQSmV

S

for the moduli stack of oriented finite quasi-smooth schemes. We note that det−1(O) coincides (on
quasi-compact quasi-separated derived schemes) with the presheaf KSL from Example A.0.6, defined
as the right Kan extension from derived affine schemes of the group completion of the monoidal
groupoid VectSL of locally free sheaves with trivialised determinant. Indeed, on derived affine schemes,
sVectSL → KSL is a plus construction (see Remark 2.1.2), and in particular it is acyclic. The map
sVectSL → det−1(O) is also acyclic, being a pullback of sVect→ K. It follows that KSL → det−1(O) is
an acyclic map, whence an equivalence, since the source has abelian fundamental groups.

Example 3.3.5. If V is the fibre of the motivic J-homomorphism K → Pic(SH), then a V-structure
on a quasi-smooth morphism 5 : Z → X is an equivalence ThZ(L 5 ) ≃ 1Z in SH(Z) ≃ SH(Zcl) (see
[Kha16] for the extension of SH(−) to derived schemes).

Example 3.3.6. Let Y ∈ dSchS and b ∈ K>0 (Y). If V : Y→ K classifies b, then FQSmV
S = hfr

S (Y, b) as
defined in § 2.2.

For V a stable tangential structure over S, we formally have

FQSmV
S ≃ colim

Y∈dSchS
1∈B(Y)

hfr
S (Y, V(1))

in PSh(dSchS), where the colimit is indexed by the source of the Cartesian fibration classified by
B: dSchop

S → Spc. Note that this ∞-category has finite sums (because B is a Σ-presheaf) and hence is

sifted, so that the formula is also valid in PShΣ (Corrfr (dSchS)).

Proposition 3.3.7. Let S be a scheme. The functor

PShΣ (dSchS)/K>0 → PShΣ (Corrfr (dSchS)), V ↦→ FQSmV
S ,

preserves Nisnevich equivalences and étale equivalences.
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Proof. Note that this functor preserves sifted colimits. By [Lur17b, Corollary 5.1.6.12], there is a
canonical equivalence

PShΣ (dSchS)/K>0 ≃ PShΣ ((dSchS)/K>0 ).

By [BH20, Lemma 2.10], it therefore suffices to prove the following: for any Y ∈ dSchS, any b ∈

K>0 (Y) and any Nisnevich (resp., étale) covering sieve R ↩→ Y, the induced map hfr
S (LΣR, b) →

hfr
S (Y, b) is a Nisnevich (resp., étale) equivalence. If R is a finitely generated sieve, this follows from

Proposition 2.3.1(iii), since LΣR is a sieve generated by a single map. If Y is quasi-compact, then R
admits a finitely generated refinement, so we are done in this case. In general, write Y as a filtered
colimit of quasi-compact open subschemes YU ⊂ Y and let RU = R ×Y YU. Then the canonical map
colimU hfr

S (YU, b) → hfr
S (Y, b) is an equivalence on quasi-compact derived schemes, and in particular it

is a Nisnevich equivalence. Similarly, colimU hfr
S (LΣRU, b) → hfr

S (LΣR, b) is a Nisnevich equivalence,
and we conclude by the two-out-of-three property. �

The following somewhat technical definition plays a crucial role in the sequel:

Definition 3.3.8. A stable tangential structure V : B → K over S is called smooth if the counit map
B̃→ B is a Nisnevich equivalence, where B̃ is the left Kan extension of B|SmS to dSchS.

Lemma 3.3.9. Let S be a scheme and V : B → K a stable tangential structure over S. Suppose that B
is left Kan extended along SmAffT ⊂ dAffT for every T in some affine Nisnevich cover of S. Then V is
smooth.

Proof. Consider the square of adjunctions

PShnis(SmS) PShnis(dSchS)

PShnis(SmAffT) PShnis(dAffT).

LKE

res res

res

LKE

RKE

res

RKE

It is easy to show that the square of right adjoints commutes, because the inclusions SmAffT ⊂ SmT and
dAffT ⊂ dSchT induce equivalences of Nisnevich∞-topoi. Hence, the square of left adjoints commutes
as well. This shows that the counit map B̃→ B is a Nisnevich equivalence when restricted to dAffT for
all T in the cover, hence it is a Nisnevich equivalence. �

In Appendix Appendix A, we provide many examples of stable tangential structures satisfying the
assumption of Lemma 3.3.9, which are therefore smooth. In particular, K-theory itself has this property.
More generally, if X is a smooth algebraic stack over S with quasi-affine diagonal and with a structure of
E1-monoid over Vect, and if I ⊂ Z is any subset, then the stable tangential structure Xgp ×LΣZ LΣI→ K
is smooth (by Proposition A.0.4 and Lemmas A.0.5 and A.0.7). For example, the stable tangential
structures in Examples 3.3.2, 3.3.3 and 3.3.4 are smooth, while the one in Example 3.3.6 is smooth if
and only if Y is smooth.

We briefly recall the formalism of motivic Thom spectra from [BH20, Section 16]. To a morphism
V : B→ Pic(SH) in PSh(SmS) one can associate a Thom spectrum MV ∈ SH(S). As in topology, it is
given by a formal colimit construction:

MV = colim
5 : Y→S smooth

1∈B(Y)

5♯V(1).

Moreover, it has good multiplicative properties: one has a symmetric monoidal functor

M: PSh(SmS)/Pic(SH) → SH(S).
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In particular, if V is an E=-morphism, then MV is an E=-ring spectrum.
Recall also that the motivic J-homomorphism is a morphism of E∞-spaces

K(S) → Pic(SH(S)), b ↦→ ThS/S (b),

natural in S. Restricting M along the J-homomorphism, we obtain a symmetric monoidal functor

M: PSh(SmS)/K → SH(S).

For = ∈ Z, the shifted algebraic cobordism spectrum Σ=
T
MGLS ∈ SH(S) is the Thom spectrum of the

restriction of the J-homomorphism to the rank = summand of K-theory [BH20, Theorem 16.13].

Theorem 3.3.10. Let S be a scheme and V : B→ K>0 a smooth stable tangential structure over S. Then
there is an equivalence

MV ≃ Σ
∞
T,frFQSmV

S

in SH(S) ≃ SHfr (S) which is natural and symmetric monoidal in V. In particular, if V is E= for some
0 6 = 6 ∞, then this is an equivalence of E=-ring spectra.

Remark 3.3.11. In the statement of Theorem 3.3.10, MV depends only on the restriction of V to SmS.
If we start with a morphism V0 : B0 → K>0 in PShΣ (SmS), we can always apply the theorem with
V : B→ K>0 the left Kan extension of V0 to obtain an equivalence MV0 ≃ Σ∞

T,frFQSmV
S . (Note that B is

a Σ-presheaf on dSchS, because for X1, . . . ,X: ∈ dSchS the sum functor
∏

8 (SmS)X8/ → (SmS)
∐

8 X8/

is left adjoint, hence coinitial.)

Proof. This is a formal consequence of Theorem 3.2.1. We have

MV = colim
Y∈SmS
1∈B(Y)

ThY/S (V(1)) ≃ colim
Y∈SmS
1∈B(Y)

Σ
∞
T,frh

fr
S (Y, V(1)).

We therefore want to show that when V is smooth, the map

colim
Y∈SmS
1∈B(Y)

Σ
∞
T,frh

fr
S (Y, V(1)) → colim

Y∈dSchS
1∈B(Y)

Σ
∞
T,frh

fr
S (Y, V(1))

induced by the inclusion (SmS)/B ⊂ (dSchS)/B is an equivalence. By Proposition 3.3.7, we may as
well assume that B is the left Kan extension of B|SmS. In that case, we claim that the inclusion
(SmS)/B ⊂ (dSchS)/B is right adjoint and hence cofinal. Indeed, we have

B(Y) = colim
Y′∈SmS
Y→Y′

B(Y′),

and hence (dSchS)/B ≃ C/B◦31 , where C ⊂ Fun(Δ1, dSchS) is the full subcategory of morphisms whose
codomain is smooth. Forgetting the domain is then left adjoint to the inclusion. �

Corollary 3.3.12. Let : be a perfect field and V : B→ K>0 a smooth stable tangential structure over : .
Then there is an equivalence

Ω
∞
T,frMV ≃ LzarLA1 (FQSmV

:
)gp

in Hfr (:) which is natural and symmetric monoidal in V. Moreover, if V has rank > 1, LnisLA1FQSmV
:

is already grouplike.
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Proof. The first statement follows from Theorem 3.3.10 as in the proof of Corollary 3.2.2. Let Ṽ : B̃→
K>0 be the left Kan extension of V |Sm: . Since V is smooth, the map

FQSmṼ
:
→ FQSmV

:

is a Nisnevich equivalence by Proposition 3.3.7. After application of LA1 , it remains an effective
epimorphism on Nisnevich stalks. To prove that LnisLA1FQSmV

:
is grouplike when V has rank > 1, we

may therefore replace V by Ṽ and assume that B is left Kan extended along Sm: ⊂ dSch: . In this case,
we have an equivalence

FQSmV
:
≃ colim

Y∈Sm:

1∈B(Y)

hfr
: (Y, V(1)).

Since LA1 preserves colimits as an endofunctor of PSh(Sm: ), we have

LnisLA1FQSmV
:
≃ Lnis colim

Y∈Sm:

1∈B(Y)

LA1hfr
: (Y, V(1)) ≃ Lnis colim

Y∈Sm:

1∈B(Y)

LnisLA1hfr
: (Y, V(1)).

Since this colimit is sifted, it can be computed in PShΣ (Corrfr (Sm: )). By Corollary 3.2.2, each sheaf
LnisLA1hfr

: (Y, V(1)) is grouplike, so we conclude using the fact that grouplike objects are stable under
colimits. �

Corollary 3.3.13. Let : be a perfect field and V : B→ K>0 a smooth stable tangential structure over : .
For any = > 1, there is an equivalence

Ω
=
TLmotFQSmV+=

:
≃ Lmot (FQSmV

:
)gp

in PShΣ (Sm: ).

Proof. This follows immediately from Corollary 3.3.12, since M(V + =) ≃ Σ=
T
MV. �

Remark 3.3.14. The equivalence of Theorem 3.3.10 admits a conditional description in terms of virtual
fundamental classes as follows. For V : B→ K a smooth stable tangential structure over S, let PQSmV

S
denote the moduli stack of proper quasi-smooth S-schemes with V-structure. There should exist a
canonical morphism

fcV : PQSmV
S → Ω

∞
T,frMV

in PShΣ (Corrfr (SmS)) sending 5 : Z→ X to the image by the Gysin transfer 5! : MV(Z,L 5 ) → MV(X)
of the Thom class CV (−L 5 ) ∈ MV(Z,L 5 ) determined by the lift of−L 5 to B(Z). Assuming the existence
of fcV with evident naturality and multiplicativity properties, one can show that the equivalence of

Theorem 3.3.10 is adjoint to fcV |FQSmV
S . Indeed, it is enough to prove this when V is the class of a

finite locally free sheaf E on a smooth S-scheme Y. In this case, it is easy to check that the composite

hfr
S (V(E)/V

× (E))
ΘY/S,E
−−−−−→ hfr

S (Y,E)
fcE
−−→ Ω

∞
T,frΣ

∞
T (V(E)/V

× (E))

is adjoint to the identity.
This can partially be made precise for V of rank 0. Gysin transfers for regular closed im-

mersions between classical schemes are constructed in [DJK20]. Using the canonical factorisation
Z ↩→ V( 5∗OZ) → X of a finite syntomic morphism 5 : Z→ X, one can construct a morphism

fcV : FSynV
S → Ω

∞
T MV
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in CMon(PShΣ (SmS)) which is natural in V (compare [EHK+20, §3.1]). Unfortunately, this does not suf-
fice to carry out the argument. When V = 0 ∈ K(Y) for some smooth S-scheme Y, the assertion that fcV
is induced by the equivalence of Theorem 3.3.10 is nevertheless verified by [EHK+20, Theorem 3.3.10].

Remark 3.3.15. For V a smooth stable tangential structure of rank 0 over a perfect field : , one can
obtain more directly an equivalence

Ω
∞
T MV ≃ LzarLA1 (FSynV

:
)gp

using the morphism

fcV : FSynV
:
→ Ω

∞
T MV

from Remark 3.3.14. By [EHK+19, Corollary 3.5.16] and [EHK+20, Theorem 3.3.10], fcgp
V is a motivic

equivalence when V = 0 ∈ K(Y) for some smooth :-scheme Y. It follows that fcgp
V is a motivic

equivalence for any V ∈ K(Y) of rank 0, since the question is local on Y. Finally, since fcV is natural
in V and Ω∞

T
preserves sifted colimits [EHK+19, Corollary 3.5.15], we deduce that fcgp

V is a motivic
equivalence for any V of rank 0. However, this approach does not suffice to understand MGL-modules
over perfect fields (as in Theorem 4.1.4), because we do not yet know if the morphism fcV can be made
symmetric monoidal in V, nor if it can be promoted to a morphism of presheaves with framed transfers.

Question 3.3.16. Following the discussion in Remark 3.3.14, it is natural to ask the following questions:

1. For V a smooth stable tangential structure of rank > 0 over a perfect field : , is the inclusion
FQSmV

:
⊂ PQSmV

:
a motivic equivalence after group completion?

2. For V a smooth stable tangential structure of arbitrary rank over : , is there an equivalenceΩ∞
T

MV ≃

Lmot (PQSmV
:
)gp?

Regarding (1), Remark 3.3.14 implies that Lmot (FQSmV
:
)gp is a direct factor of Lmot (PQSmV

:
)gp. More-

over, for V = idK, one can show that the A1-localisation LA1PQSm: is already grouplike (the proof will
appear elsewhere). An affirmative answer to (1) would therefore imply that LmotPQSm0

:
is the group

completion of LmotFSyn: .

3.4. Algebraic cobordism spectra

Theorem 3.4.1. Let S be a scheme.

(i) There is an equivalence of E∞-ring spectra

MGLS ≃ Σ
∞
T,frFSynS

in SH(S) ≃ SHfr (S).
(ii) For every = > 1, there is an equivalence of MGLS-modules

Σ
=
TMGLS ≃ Σ

∞
T,frFQSm=

S

in SH(S) ≃ SHfr (S).
(iii) There is an equivalence of E∞-ring spectra

∨

=>0

Σ
=
TMGLS ≃ Σ

∞
T,frFQSmS

in SH(S) ≃ SHfr (S).
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Proof. These are instances of Theorem 3.3.10, where V is the inclusion of the rank = summand of K-
theory (for (i) and (ii)) or the identity map K>0 → K>0 (for (iii)). Indeed, these summands of K-theory
satisfy the assumption of Lemma 3.3.9 by Example A.0.8. �

Corollary 3.4.2. Let S be a pro-smooth scheme over a field.

(i) There is an equivalence of E∞-ring spaces

Ω
∞
T,frMGLS ≃ LzarLA1 (FSynS)

gp

in Hfr (S).
(ii) For every = > 1, there are equivalences of FSynS-modules

Ω
∞
T,frΣ

=
TMGLS ≃ LzarLA1 (FQSm=

S)
gp ≃ LnisLA1FQSm=

S

in Hfr (S).
(iii) There is an equivalence of E∞-ring spaces

Ω
∞
T,fr

(∨

=>0

Σ
=
TMGLS

)
≃ LzarLA1 (FQSmS)

gp

in Hfr (S).

Proof. When S is the spectrum of a perfect field, these statements are instances of Corollary 3.3.12.
In general, we can choose a pro-smooth morphism 5 : S → Spec : , where : is a perfect field, and the
results over : pull back to the results over S. �

Let us also spell out the specialisations of Theorem 3.3.10 and Corollary 3.3.12 to the smooth stable
tangential structure of Example 3.3.4.

Theorem 3.4.3. Let S be a scheme.

(i) There is an equivalence of E∞-ring spectra

MSLS ≃ Σ
∞
T,frFSynor

S

in SH(S) ≃ SHfr (S).
(ii) For every = > 1, there is an equivalence of MSLS-modules

Σ
=
TMSLS ≃ Σ

∞
T,frFQSmor,=

S

in SH(S) ≃ SHfr (S).
(iii) There is an equivalence of E1-ring spectra

∨

=>0

Σ
=
TMSLS ≃ Σ

∞
T,frFQSmor

S

restricting to an equivalence of E∞-ring spectra

∨

=>0

Σ
2=
T MSLS ≃ Σ

∞
T,frFQSmor,ev

S

in SH(S) ≃ SHfr (S).

https://doi.org/10.1017/fmp.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.13


Forum of Mathematics, Pi 29

Corollary 3.4.4. Let S be a pro-smooth scheme over a field.

(i) There is an equivalence of E∞-ring spaces

Ω
∞
T,frMSLS ≃ LzarLA1 (FSynor

S )
gp

in Hfr (S).
(ii) For every = > 1, there are equivalences of FSynor

S -modules

Ω
∞
T,frΣ

=
TMSLS ≃ LzarLA1 (FQSmor,=

S )gp ≃ LnisLA1FQSmor,=
S

in Hfr (S).
(iii) There is an equivalence of E1-ring spaces

Ω
∞
T,fr

(∨

=>0

Σ
=
TMSLS

)
≃ LzarLA1 (FQSmor

S )
gp

restricting to an equivalence of E∞-ring spaces

Ω
∞
T,fr

(∨

=>0

Σ
2=
T MSLS

)
≃ LzarLA1 (FQSmor,ev

S )gp

in Hfr (S).

3.5. Hilbert-scheme models

Using the A1-contractibility of the space of embeddings of a finite scheme into A∞ (Corollary 2.4.6),
we can recast our models for Ω∞

T
MGL and Ω∞

T
MSL (and others) in terms of Hilbert schemes, at the

cost of losing the identification of the framed transfers and the multiplicative structures.
Let X be an S-scheme. We define the functor Hilbfqs (X/S) : Schop

S → Spc by

Hilbfqs (X/S) (T) =

{
closed immersions Z → XT such that
Z→ T is finite and quasi-smooth

}
,

and we denote by Hilbfqs,= (X/S) the subfunctor where Z→ T has relative virtual dimension −= (which
is contractible unless = > 0). By Lemma 2.2.1, we have

Hilbfqs,0(X/S) = Hilbflci(X/S).

In particular, if X is smooth and quasi-projective over S, then Hilbfqs,0 (X/S) is representable by a
smooth S-scheme (see [EHK+19, Lemma 5.1.3]).

We also define

Hilbfqs (A∞S /S) = colim
=→∞

Hilbfqs (A=
S/S),

and similarly for Hilbfqs,= (A∞S /S).

Lemma 3.5.1. Let S be a scheme. Then the forgetful map

Hilbfqs(A∞S /S) → FQSmS

is a universal A1-equivalence on affine schemes (that is, any pullback of this map in PSh(SchS) is an
A1-equivalence on affine schemes).
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Proof. Let 5 : T→ S and let Z ∈ FQSmS (T). Form the Cartesian square

PZ T

Hilbfqs (A∞S /S) FQSmS.

Z

By universality of colimits, it suffices to show that PZ → T is an A1-equivalence on affine schemes. By
inspection, PZ is 5♯ of the presheaf T′ ↦→ EmbT′ (Z×T T′,A∞T′) on SchT, and the latter is A1-contractible
on affine schemes by Corollary 2.4.6. �

Theorem 3.5.2. Suppose S is pro-smooth over a field.

(i) There is an equivalence

Ω
∞
T MGLS ≃ Lzar (LA1Hilbflci(A∞S /S))

gp.

(ii) For every = > 1, there are equivalences

Ω
∞
T Σ

=
TMGLS ≃ Lzar (LA1Hilbfqs,= (A∞S /S))

gp ≃ LnisLA1Hilbfqs,= (A∞S /S).

Proof. This follows immediately from Corollary 3.4.2 and Lemma 3.5.1. �

Define the functor Hilbor,= (X/S) : Schop
S → Spc and the forgetful map

Hilbor,= (X/S) → Hilbfqs,= (X/S)

so that the fibre over Z ∈ Hilbfqs,= (X/S) (T) is the∞-groupoid of equivalences det(LZ/T) ≃ OZ. In other
words, Hilbor,= (X/S) is the Weil restriction of the G<-torsor Isom(det(LZ),OZ) over the universal
Z. In particular, if X is smooth and quasi-projective over S, then Hilbor,0 (X/S) is representable by a
smooth S-scheme.

Theorem 3.5.3. Suppose S is pro-smooth over a field.

(i) There is an equivalence

Ω
∞
T MSLS ≃ Lzar (LA1Hilbor,0(A∞S /S))

gp.

(ii) For every = > 1, there are equivalences

Ω
∞
T Σ

=
TMSLS ≃ Lzar (LA1Hilbor,= (A∞S /S))

gp ≃ LnisLA1Hilbor,= (A∞S /S).

Proof. This follows immediately from Corollary 3.4.4 and Lemma 3.5.1, noting that

Hilbor,= (A∞S /S) ≃ Hilbfqs (A∞S /S) ×FQSmS FQSmor,=
S . �

For any smooth stable tangential structure V : B → K>0, Lemma 3.5.1 gives a description of
Ω∞

T
MV in terms of the functor classifying derived subschemes Z of A∞ with some structure on the

image of the shifted cotangent complex LZ [−1] in K-theory. However, it is perhaps more natural to
classify derived subschemes Z of A∞ with some structure on the conormal sheaf NZ/A∞ ∈ sVect(Z). If
V : B→ sVect>0 is a morphism in PShΣ (dSchS), we define the functor HilbV (A∞S /S) : Schop

S → Spc by
the Cartesian squares

https://doi.org/10.1017/fmp.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.13


Forum of Mathematics, Pi 31

B(Z) ×sVect(Z) {NZ/A∞T
} T

HilbV (A∞S /S) (T) Hilbfqs (A∞S /S).

Z

Lemma 3.5.4. Let S be a scheme and V : B → sVect>0 a stable tangential structure over S. Then the
forgetful map

HilbV (A∞S /S) → FQSmV
S

is an A1-equivalence on affine schemes.

Proof. This map is the colimit of the maps

hnfr
S (Y, V(1)) → hfr

S (Y, V(1))

over Y ∈ dSchS and 1 ∈ B(Y), which are A1-equivalences on affine schemes by Corollary 2.4.8. �

Theorem 3.5.5. Let : be a perfect field and V : B→ sVect>0 a smooth stable tangential structure over
: . Then there is an equivalence

Ω
∞
T MV ≃ Lzar (LA1HilbV (A∞: /:))

gp.

Moreover, if V has rank > 1, LnisLA1HilbV (A∞: /:) is already grouplike.

Proof. This follows immediately from Lemma 3.5.4 and Corollary 3.3.12. �

One can recover Theorems 3.5.2 and 3.5.3 from Theorem 3.5.5 using the motivic equivalences
sVect→ K and sVectSL → KSL and the fact that the functor M: PSh(SmS)/K → SH(S) inverts motivic
equivalences [BH20, Remark 16.11].

4. Modules over algebraic cobordism

In this section, we show that modules over motivic Thom ring spectra can be described as motivic spectra
with certain transfers. We first treat the case of MGL in § 4.1, where we construct a symmetric monoidal
equivalence between MGL-modules and motivic spectra with finite syntomic transfers. We then treat the
case of MSL and explain the general case in § 4.2. Finally, in § 4.3 we describe the motivic cohomology
spectrum HZ, which is an MGL-module, as a motivic spectrum with finite syntomic transfers: it is the
suspension spectrum of the constant sheaf Z equipped with canonical finite syntomic transfers.

It is worth pointing out that although the theorems in this section do not involve any derived algebraic
geometry, their proofs use derived algebraic geometry in an essential way (via Section 3).

4.1. Modules over MGL

Let Corrfsyn(SmS) denote the symmetric monoidal (2, 1)-category whose objects are smooth S-schemes
and whose morphisms are spans

Z

X Y

5 6

where 5 is finite syntomic.
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Let Hfsyn (S) denote the full subcategory of PShΣ (Corrfsyn (SmS)) spanned by the A1-invariant
Nisnevich sheaves, and let SHfsyn (S) be the symmetric monoidal∞-category of T-spectra in Hfsyn (S).
We have the usual adjunction

Σ
∞
T,fsyn : Hfsyn (S) ⇄ SHfsyn (S) : Ω∞T,fsyn.

The symmetric monoidal forgetful functor

n : Corrfr (SmS) → Corrfsyn (SmS)

(see [EHK+19, 4.3.15]) induces symmetric monoidal colimit-preserving functors

n∗ : Hfr (S) → Hfsyn (S) and n∗ : SHfr (S) → SHfsyn(S).

For clarity, we will denote the tensor products in Hfr (S) and SHfr (S) by ⊗fr and the ones in Hfsyn (S)
and SHfsyn (S) by ⊗fsyn.

We denote by hfsyn
S (X) the presheaf on Corrfsyn (SmS) represented by X ∈ SmS.

Lemma 4.1.1. The forgetful functor n∗ : Hfsyn (S) → Hfr (S) is a strict Hfr (S)-module functor. In other
words, for any A ∈ Hfr (S) and B ∈ Hfsyn (S), the canonical map

A ⊗fr n∗(B) → n∗(n
∗(A) ⊗fsyn B)

is an equivalence.

Proof. Since n∗ preserves colimits, we can assume that A = hfr
S (X) and B = hfsyn

S (Y) for some smooth
S-schemes X and Y. Since the stable tangential structure ]0 is smooth, we have by Proposition 3.3.7 a
Nisnevich equivalence

colim
(Z, b )

hfr
S (Y ×S Z, c∗Z (b)) → hfsyn

S (Y),

where the colimit is over all Z ∈ SmS and b ∈ K(Z) of rank 0. Hence, it suffices to show that the map

hfr
S (X) ⊗

fr hfr
S (Y ×S Z, c∗Z (b)) → hfr

S (X ×S Y ×S Z, c∗Z (b))

is a motivic equivalence for all such pairs (Z, b). Since the question is local on Z (by Propositions 2.3.1(iii)
and 2.3.2), we can assume b = 0, in which case it is obvious. �

Lemma 4.1.2. Σ∞
T,frn∗ ≃ n∗Σ

∞
T,fsyn.

Proof. By Lemma 4.1.1, the T-stable adjunction

n∗ : SHfr (S) ⇄ SHfsyn (S) : n∗

is obtained from the unstable one by extending scalars alongΣ∞
T,fr : Hfr (S) → SHfr (S). This immediately

implies the result. �

Theorem 4.1.3. Let S be a scheme. There is an equivalence of symmetric monoidal∞-categories

ModMGL (SH(S)) ≃ SHfsyn (S),

natural in S and compatible with the forgetful functors to SH(S).
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Proof. By Theorem 3.4.1(i), we have an equivalence of motivic E∞-ring spectra

MGLS ≃ Σ
∞
T,frh

fsyn
S (S).

By Lemma 4.1.2, the right-hand side is n∗Σ∞T,fsynhfsyn
S (S), which means that MGLS is the image of the

unit by the forgetful functor SHfsyn (S) → SH(S). We therefore obtain an adjunction

ModMGL (SH(S)) SHfsyn(S),
Φ

Ψ

where Φ is symmetric monoidal and Ψ is conservative. It remains to show that the unit map

MGLS ⊗ Σ
∞
T Y+ → ΨΦ(MGLS ⊗ Σ

∞
T Y+) ≃ ΨΣ

∞
T,fsynhfsyn

S (Y)

is an equivalence for every Y ∈ SmS. By Lemma 4.1.2 again, this map is Σ∞
T,fr of the map

hfsyn
S (S) ⊗fr hfr

S (Y) → hfsyn
S (Y),

which is an equivalence by Lemma 4.1.1. �

Theorem 4.1.4. Let : be a perfect field.

(i) There is an equivalence of symmetric monoidal∞-categories

ModMGL (SHveff (:)) ≃ Hfsyn (:)gp

under SHveff (:) ≃ Hfr (:)gp.
(ii) There is an equivalence of symmetric monoidal∞-categories

ModMGL (SHeff (:)) ≃ SHS1 ,fsyn (:)

under SHeff (:) ≃ SHS1 ,fr (:).

Proof. The proof of (i) is exactly the same as that of Theorem 4.1.3, using Corollary 3.4.2 instead of
Theorem 3.4.1. We obtain (ii) from (i) by stabilising. �

As a corollary, we obtain a cancellation theorem for A1-invariant sheaves with finite syntomic
transfers over perfect fields:

Corollary 4.1.5. Let : be a perfect field. Then the ∞-category Hfsyn (:)gp is prestable and the functor
ΣG : Hfsyn (:)gp → Hfsyn (:)gp is fully faithful.

4.2. Modules over MSL

We have completely analogous results for MSL instead of MGL. Consider the symmetric monoidal
(2, 1)-category Corror (SmS) whose objects are smooth S-schemes and whose morphisms are spans

Z

X Y

5 6
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where 5 is finite syntomic, together with an isomorphisml 5 ≃ OZ. We can form as usual the symmetric
monoidal ∞-categories Hor (S) and SHor (S). The following results are proved in the same way as the
corresponding results from § 4.1.

Theorem 4.2.1. Let S be a scheme. There is an equivalence of symmetric monoidal∞-categories

ModMSL(SH(S)) ≃ SHor (S),

natural in S and compatible with the forgetful functors to SH(S).

Theorem 4.2.2. Let : be a perfect field.

(i) There is an equivalence of symmetric monoidal∞-categories

ModMSL (SHveff (:)) ≃ Hor (:)gp

under SHveff (:) ≃ Hfr (:)gp.
(ii) There is an equivalence of symmetric monoidal∞-categories

ModMSL(SHeff (:)) ≃ SHS1 ,or (:)

under SHeff (:) ≃ SHS1 ,fr (:).

Corollary 4.2.3. Let : be a perfect field. Then the ∞-category Hor (:)gp is prestable and the functor
ΣG : Hor (:)gp → Hor (:)gp is fully faithful.

Remark 4.2.4. There are analogs of the preceding results for any E1 smooth stable tangential structure V
of rank 0 over S. Indeed, one can construct an∞-category CorrV (SmS) of V-structured finite syntomic
correspondences using the formalism of labelling functors from [EHK+19, §4.1], in a manner similar
to the construction of Corrfr (SmS). Then for S arbitrary and : a perfect field, we have equivalences of
∞-categories

ModMV (SH(S)) ≃ SHV (S),

ModMV (SHveff (:)) ≃ HV (:)gp,

ModMV (SHeff (:)) ≃ SHS1 ,V (:),

which are symmetric monoidal if V is E∞. Moreover, the ∞-category HV (:)gp is prestable and the
functor ΣG : HV (:)gp → HV (:)gp is fully faithful.

4.3. Motivic cohomology as an MGL-module

For a commutative monoid A, let AS denote the corresponding constant sheaf on SmS, which is an
A1-invariant Nisnevich sheaf. The sheaf AS has canonical finite locally free transfers [BH20, Proposi-
tion 13.13], and in particular finite syntomic transfers.

Let HZS ∈ SH(S) be the motivic cohomology spectrum defined by Spitzweck [Spi18], which is
an E∞-algebra in ModMGL (SH(S)) [Spi18, Remark 10.2]. The following theorem is a refinement of
[Hoy20, Theorem 21]:

Theorem 4.3.1. For any scheme S, there is an equivalence of E∞-algebras

HZS ≃ Σ
∞
T,fsynZS

in ModMGL (SH(S)) ≃ SHfsyn (S).
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Proof. We first note that the right-hand side is stable under base change, since Σ∞
T,frn∗(ZS) is [Hoy20,

Lemma 20], Σ∞
T,frn∗ ≃ n∗Σ

∞
T,fsyn (Lemma 4.1.2) and n∗ commutes with base change (by Theorem 4.1.3).

We can therefore assume that S is a Dedekind domain. In this case, Ω∞
T,fsynHZS is the constant sheaf

of rings ZS with some finite syntomic transfers. As shown in the proof of [Hoy20, Theorem 21], these
transfers are the canonical ones for framed finite syntomic correspondences. Since ZS is a discrete
constant sheaf and every finite syntomic morphism Z → X can be framed Zariski-locally on X, we
deduce that Ω∞

T,fsynHZS is ZS with its canonical finite syntomic transfers. By adjunction, we obtain a
morphism of E∞-algebras

iS : Σ∞T,fsynZS → HZS

in ModMGL(SH(S)), which is stable under base change. It thus suffices to show that iS is an equivalence
when S is the spectrum of a perfect field, which follows from Theorem 4.1.4. �

Arguing as in [Hoy20, Corollary 22], we obtain the following corollary:

Corollary 4.3.2. Let S be a scheme and A an abelian group (resp., a ring; a commutative ring). Then
there is an equivalence of HZS-modules (resp., of E1-HZS-algebras; of E∞-HZS-algebras)

HAS ≃ Σ
∞
T,fsynAS

in ModMGL (SH(S)) ≃ SHfsyn (S).

Remark 4.3.3. It follows from Theorem 4.3.1 that the canonical morphism ofE∞-ring spectra MGLS →

HZS is Σ∞
T,fsyn of the degree map deg: FSynS → NS.
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Appendix A. Functors left Kan extended from smooth algebras

A surprising observation due to Bhatt and Lurie is that algebraic K-theory, as a functor on commutative
rings, is left Kan extended from smooth rings. In this appendix, we present a general criterion for a
functor on commutative rings to be left Kan extended from smooth rings, which we learned from Akhil
Mathew, and we apply it to deduce some variants of the result of Bhatt and Lurie that are relevant for
the applications of Theorem 3.3.10.

A morphism of derived commutative rings 5 : A → B is called a Henselian surjection if c0 ( 5 ) is
surjective and (c0 (A), ker c0 ( 5 )) is a Henselian pair [Stacks, Tag 09XD].

Proposition A.0.1 (Mathew). Let R be a commutative ring (resp., a derived commutative ring) and
F: CAlg♥R → Spc (resp., F: CAlgΔR → Spc) a functor. Suppose that

1. F preserves filtered colimits;
2. for every Henselian surjection A → B, the map F(A) → F(B) is an effective epimorphism (that

is, surjective on c0); and
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3. for all Henselian surjections A→ C← B, the square

F(A ×C B) F(B)

F(A) F(C)

is Cartesian.

Then F is left Kan extended from CAlgsm
R .

Remark A.0.2. Conditions (1) and (2) of Proposition A.0.1 are also necessary, since they hold when
F = MapsR(S,−) for some smooth R-algebra S [Gru72, Théorème I.8]. Condition (3), on the other
hand, is not (for example, it fails for K-theory).

Proof. Let F̃ be the left Kan extension of F|CAlgsm
R . Then F̃ is a colimit of functors satisfying conditions

(1)–(3), and in particular it satisfies conditions (1) and (2). The canonical map F̃→ F is an equivalence
on smooth R-algebras, hence on ind-smooth R-algebras. For any A ∈ CAlg♥R (resp., A ∈ CAlgΔR), we
can inductively construct an augmented simplicial object B such that B[∅] = A and, for each = > 0,
B[Δ=] is ind-smooth and B[Δ=] → B[mΔ=] is a Henselian surjection. To conclude, we prove that both
F̃ and F send B to a colimit diagram. Since F̃ is a colimit of functors that satisfy (1)–(3), it will suffice
to show that F(B) is a colimit diagram. Henselian surjections are stable under pullback, so the map
B[L] → B[K] is a Henselian surjection for any inclusion of finite simplicial sets K ⊂ L. In particular,
by (2), F(B[L]) → F(B[K]) is an effective epimorphism.

Let K be a finite nonsingular simplicial set. Then K can be built from ∅ and simplices Δ= by a finite
sequence of pushouts, which are transformed by B[−] into Cartesian squares of Henselian surjections.
By (3), we deduce that F(B[K]) ≃ F(B) [K] for such K, since this is trivially true for K = ∅ and K = Δ=.
Applying this to K = mΔ=, we conclude that F(B) [Δ=] → F(B) [mΔ=] is an effective epimorphism,
hence that F(B) is a colimit diagram [Lur18, Lemma A.5.3.7]. �

Example A.0.3. SHl : CAlg♥R →∞-Cat is left Kan extended from CAlgsm
R (applying Proposition A.0.1

to Fun(Δ=, SH(−)l)≃ for = > 0).

Proposition A.0.4 (Mathew). Let R be a derived commutative ring and X a smooth algebraic stack over
R with quasi-affine diagonal (that is, a smooth quasi-separated algebraic space), viewed as a functor
X: CAlgΔR → Spc. Then X is left Kan extended from CAlgsm

R .

Proof. We check conditions (1)–(3) of Proposition A.0.1. Condition (1) holds because X is locally
of finite presentation, and condition (3) holds because Spec(A ×C B) is the pushout of Spec(B) ←
Spec(C) → Spec(A) in the ∞-category of derived algebraic stacks [Lur18, Example 17.3.1.3]. It
remains to check condition (2). Let A → B be a Henselian surjection between derived commutative
R-algebras, and let A0 = c0A ×c0B B be the relative 0-truncation of A over B. Then A → A0

induces an isomorphism on c0, so we can write A ≃ lim=>0 A=, where A → A= is =-connective and
A=+1 → A= is a square-zero extension [Lur18, Lemma 17.3.6.4]. Since X is smooth, each induced map
X(A=+1) → X(A=) is an effective epimorphism [Lur18, Remark 17.3.9.2]. Moreover, as X is nilcomplete
[Lur04, Proposition 5.3.7], we have X(A) ≃ lim= X(A=) [Lur18, Proposition 17.3.2.4]. Hence, the
induced map X(A) → X(A0) is an effective epimorphism. Since X(A0) ≃ X(c0A) ×X(c0B) X(B) by
(3), it remains to show that X(c0A) → X(c0B) is an effective epimorphism. In other words, we can
assume A discrete and B = A/I for some ideal I ⊂ A such that (A, I) is a Henselian pair.

Let 5 : Spec(A/I) → X be a morphism over R. We must show that 5 can be extended to Spec(A).
Replacing X by X ⊗R A, we may as well assume that R = A; in particular, since A is discrete, X is clas-
sical. Since Spec(A/I) is quasi-compact, we can replace X by a quasi-compact open substack [Stacks,
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Tags 06FJ and 0DQQ] and assume X finitely presented over A. By condition (1), we can also assume
that I ⊂ A is a finitely generated ideal. Then the pair (A, I) is a filtered colimit of pairs that are Henseli-
sations of pairs of finite type over Z. By [Ryd15, Proposition B.2], we are reduced to the case where
(A, I) is the Henselisation of a pair of finite type over Z. In this case, the map A→ A∧I is regular [Stacks,
Tags 0AH2, 0AH3 and 07PX], hence is a filtered colimit of smooth morphisms A → BU by Popescu
[Stacks, Tag 07GC]. Since X is smooth over A, we can compatibly extend 5 to Spec(A/I=) for all =.
As X is now Noetherian with quasi-affine diagonal, we can extend 5 to Spec(A∧I ) by Grothendieck’s
algebraisation theorem (as generalised by Bhatt and Halpern-Leistner [BHL17, Corollary 1.5] or
Lurie [Lur18, Corollary 9.5.5.3]), and hence to Spec(BU) for some U. We are thus in the following
situation:

X

Spec(A/I) Spec(BU) Spec(A).

5

Since (A, I) is Henselian and BU is a smooth A-algebra, the morphism Spec(BU) → Spec(A) admits a
section fixing Spec(A/I) [Gru72, Théorème I.8], so we are done. �

Lemma A.0.5. Let R be a derived commutative ring and X: CAlgΔR → Spc a functor left Kan extended
from CAlgsm

R . For any monoid structure on X, the group completion Xgp : CAlgΔR → Spc is also left
Kan extended from CAlgsm

R .

Proof. For every A ∈ CAlgΔR , the ∞-category (CAlgsm
R )/A has finite coproducts and hence is sifted. It

follows that the forgetful functors Mongp(Spc) → Mon(Spc) → Spc commute with left Kan extension
along the inclusion CAlgsm

R ⊂ CAlgΔR (since they preserve sifted colimits). It therefore suffices to show
that the functor

Xgp : CAlgΔR → Mongp (Spc)

is left Kan extended from CAlgsm
R . This functor is the composition of X: CAlgΔR → Mon(Spc), which

is left Kan extended, with the group completion functor Mon(Spc) → Mongp(Spc), which preserves
colimits. �

Example A.0.6. Let R be a derived commutative ring. Proposition A.0.4 and Lemma A.0.5 imply that
the following functors CAlgΔR → Spc are left Kan extended from CAlgsm

R , being the group completions
of smooth algebraic stacks with affine diagonal (defined over Z):

1. algebraic K-theory K, which is the group completion of the stack of finite locally free sheaves;
2. oriented K-theory KSL, which is the group completion of the stack of finite locally free sheaves

with trivialised determinant;
3. symplectic K-theory KSp, which is the group completion of the stack of finite locally free sheaves

(necessarily of even rank) with a nondegenerate alternating bilinear form;
4. quadratic Grothendieck–Witt theory GWq, which is the group completion of the stack of finite

locally free sheaves with a nondegenerate quadratic form;
5. symmetric Grothendieck–Witt theory GWs, which is the group completion of the stack of finite

locally free sheaves with a nondegenerate symmetric bilinear form.

All these examples are presheaves of E∞-spaces, except KSL, which is E1. However, the even rank
summand KSL

ev ⊂ KSL is E∞. Indeed, the stack in (2) is the pullback Vect ×Pic† LΣZ, where Pic† (R) =
Pic(ModR (Spt)); the map Z→ Pic† is only E1, but its restriction to 2Z ⊂ Z is E∞.
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Lemma A.0.7. Let F → H
5
← G be a diagram in Fun(CAlgΔR , Spc). If F is left Kan extended from

CAlgsm
R and 5 is relatively representable by smooth affine schemes, then F ×H G is left Kan extended

from CAlgsm
R .

Proof. We have a square of adjunctions

PSh(SmAffR)/G PSh(dAffR)/G

PSh(SmAffR)/H PSh(dAffR)/H,

LKE

5∗ 5∗

res

LKE

5 ∗

res

5 ∗

and we wish to prove that the square of left adjoints commutes. Using the identification PSh(C)/X ≃
PSh(C/X) [Lur17b, Corollary 5.1.6.12] and the assumption on 5 , we see that the functors 5∗ are
precomposition with the pullback functors 5 ∗ : (SmAffR)/H → (SmAffR)/G and 5 ∗ : (dAffR)/H →

(dAffR)/G. It is then obvious that the square of right adjoints commutes. �

Example A.0.8. Let F: CAlgΔR → Spc be one of the functors from Example A.0.6. Then there is a rank
map F → LΣZ. For any subset I ⊂ Z, let FI ⊂ F be the subfunctor consisting of elements with ranks
in I. Then FI is left Kan extended from CAlgsm

R . This follows from Lemma A.0.7, since LΣI ⊂ LΣZ is
relatively representable by smooth affine schemes.

Remark A.0.9. The proof of Proposition A.0.4 is quite nonelementary. For the algebraic stacks from
Example A.0.6, it is possible to prove more directly that they are left Kan extended from CAlgsm

R . Let
us give such a proof for Vect itself. Since the rank of a vector bundle on a derived affine scheme is
bounded, we have

Vect = colim
=

Vect6=.

Let

Gr6= = colim
:→∞

h(Gr0 (A
: ) ⊔ · · · ⊔ Gr= (A

: )),

where h is the Yoneda embedding. The canonical map Gr6= → Vect6= is an effective epimorphism of
presheaves on dAffR, since every vector bundle on a derived affine scheme is generated by its global
sections. For every = 6 : , choose a vector bundle torsor U=,: → Gr= (A: ) where U=,: is affine, and
choose maps U=,: → U=,:+1 compatible with GA= (A

: ) → GA= (A
:+1). Let

U6= = colim
:→∞

h(U0,: ⊔ · · · ⊔ U=,: ).

Then the map U6= → Gr6= is an effective epimorphism of presheaves on dAffR, because every vector
bundle torsor over a derived affine scheme admits a section. Thus, U6= → Vect6= is an effective
epimorphism, and hence Vect6= is the colimit of the simplicial diagram

· · · U6= ×Vect6= U6= U6=.

Since Vect6= is an Artin stack with smooth and affine diagonal, each term in this simplicial object is a
filtered colimit of smooth affine R-schemes.

Appendix B. The∞-category of twisted framed correspondences

In this appendix, we construct a symmetric monoidal∞-category

CorrL ((dSchS)/K)
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whose objects are pairs (X, b), where X is a derived S-scheme and b ∈ K(X), and whose morphisms
are spans

Z

(X, b) (Y, [)

5 6

where L 5 is perfect, together with an equivalence 5 ∗(b) + L 5 ≃ 6∗([) in K(Z). We also construct
symmetric monoidal functors

Corrfr (dSchS) → CorrL ((dSchS)/K), X ↦→ (X, 0),

W : (dSchS)/K → CorrL ((dSchS)/K), (X, b) ↦→ (X, b),

where Corrfr (dSchS) is the∞-category of framed correspondences constructed in [EHK+19, Section 4]
(with ‘scheme’ replaced by ‘derived scheme’, and ‘finite syntomic’ by ‘finite quasi-smooth’) and W

extends W : dSchS → Corrfr (dSchS). These constructions are used several times in the paper. For
example, the presheaf hfr

S (Y, b) on Corrfr (dSchS) is the restriction of the presheaf represented by

(Y,−b) on the wide subcategory of CorrL((dSchS)/K) whose morphisms have a finite quasi-smooth
left leg, and the right-lax symmetric monoidal structure on the functor (Y, b) ↦→ hfr

S (Y, b) is induced
by the symmetric monoidal functor W.

We will construct CorrL((dSchS)/K) using the formalism of labelling functors developed in
[EHK+19, Section 4], although we need a minor generalisation of that formalism allowing objects
to be labeled as well. The key is to generalise the notion of a Segal presheaf as follows:

Definition B.0.1. Let X• be a simplicial∞-category. A Segal presheaf on X• is a functor

F:

∫

Δop
Xop
• → Spc

such that for every = > 0 and f ∈ X=, the map

F(f) → F(d∗1 (f)) ×F(f1) · · · ×F(f=−1) F(d∗= (f))

induced by the Segal maps d8 : [1] → [=] is an equivalence. It is called reduced if F|Xop
0 is contractible,

and it is called complete if for every E ∈ X0, the map F(E) → F(]∗ (E)) induced by the unique map
] : [1] → [0] is an equivalence (equivalently, if F sends co-Cartesian edges over Δop

surj to equivalences).

Here,
∫
C

F→ C denotes the co-Cartesian fibration classified by a functor F: C→ ∞-Cat. Note that
a Segal presheaf in the sense of [EHK+19, Definition 4.1.14] is exactly a reduced Segal presheaf in the
sense of Definition B.0.1.

Let C be an ∞-category and M and N be two classes of morphisms in C that are closed under
composition and under pullback along one another. Recall from [EHK+19, 4.1.11] that we can associate
to such a triple (C,M,N) a simplicial∞-category Φ•(C,M,N) ⊂ Fun((Δ•)op,C), where Φ= (C,M,N)
is the subcategory of Fun((Δ=)op,C) whose objects are the functors sending every edge of (Δ=)op

to M and whose morphisms are the Cartesian transformations with components in N. We now repeat
[EHK+19, Definition 4.1.15] with our generalised notion of a Segal presheaf:

Definition B.0.2. Let (C,M,N) be a triple. A labelling functor on (C,M,N) is a Segal presheaf on
Φ•(C,M,N).

Given a triple with labelling functor (C,M,N; F) and = > 0, we define the space CorrF
= (C,M,N) by
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applying the Grothendieck construction to the functor

Corr= (C,M,N) → Spc

sending an =-span f : (Σ=, Σ
L
= , Σ

R
= ) → (C,M,N) to the limit of the composite

∫

Δop
Φ•(Σ=, Σ

L
= , Σ

R
= )

op f
−→

∫

Δop
Φ•(C,M,N)op F

−→ Spc.

As in [EHK+19, 4.1.18], we obtain a functor

LabTrip→ Fun(Δop, Spc), (C,M,N; F) ↦→ CorrF
• (C,M,N).

Let us unpack the simplicial space CorrF
• (C,M,N) in degrees 6 1:

◦ CorrF
0 (C,M,N) is the space of pairs (X, U), where X ∈ C and U ∈ F(X).

◦ CorrF
1 (C,M,N) is the space of spans

Z

X Y

5 6

where 5 ∈ M and 6 ∈ N, together with i ∈ F( 5 ), V ∈ F(Y), and an equivalence X∗1(i) ≃ 6∗(V).

◦ The degeneracy map B0 : CorrF
0 (C,M,N) → CorrF

1 (C,M,N) sends (X, U) to the identity span on X
with i = ]∗ (U), V = U and X∗1]

∗(U) ≃ U the canonical equivalence.

◦ The face map 30 : CorrF
1 (C,M,N) → CorrF

0 (C,M,N) sends a span as in the previous point to
(X, X∗0 (i));

◦ The face map 31 : CorrF
1 (C,M,N) → CorrF

0 (C,M,N) sends a span as in the previous point to (Y, V).

Proposition B.0.3. Let (C,M,N; F) be a triple with labelling functor. Then CorrF
• (C,M,N) is a Segal

space. If F is complete, then CorrF
• (C,M,N) is a complete Segal space.

Proof. The proof of the first statement is exactly the same as the proof of [EHK+19, Theorem 4.1.23].
The second statement is obvious from the description of 1-simplices just given. �

Remark B.0.4. One can show that the above construction subsumes Haugseng’s∞-categories of spans
with local systems [Hau18, Definition 6.8]. Indeed, to a presheaf of (complete) Segal spaces F on an∞-
category C with pullbacks, one can associate a (complete) labelling functor F on C such that CorrF

• (C)
is the Segal space of spans in C with local systems valued in F.

Let us denote by ‘perf’ the class of morphisms of derived schemes with perfect cotangent complex.
We now seek to construct a labelling functor K on the pair (dSch, perf) such that the restriction of K to
Φ0(dSch, perf)op = dSchop is the K-theory presheaf K. Moreover, for an =-simplex

f = (X0 ← X1 ← · · · ← X=)

in Φ= (dSch, perf), the first vertex map K(f) → K(X0) should be an equivalence (in particular, K
should be complete), and for 0 6 8 6 = the 8th vertex map K(X0) ≃ K(f) → K(X8) should be
b ↦→ 5 ∗8 (b) + L 58 , where 58 : X8 → X0.

Let ? : X → S be a co-Cartesian fibration classified by a functor S → ∞-Catpt,rex. In [EHK+19,
Definition 4.2.8] we introduced the∞-category GapS (=,X) of relative =-gapped objects of X, which is
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equivalent to the full subcategory of Fun(Δ=,X) spanned by the functors sending 0 to a ?-relative zero
object (that is, a zero object in its fibre). Let

FiltS (=,X) = Fun(Δ=,X).

The simplicial ∞-category FiltS(•,X) classifies a co-Cartesian fibration FiltS(X) → Δop. Let
GapS(X) ⊂ FiltS (X) be the full subcategory on those functors Δ= → X sending 0 to a ?-relative
zero object. Then GapS (X) → Δop is a co-Cartesian fibration classified by GapS (•,X). Moreover, the
inclusion GapS (X) ⊂ FiltS (X) has a left adjoint preserving co-Cartesian edges. By straightening, it
gives rise to a morphism of simplicial∞-categories

FiltS (•,X) → GapS (•,X)

over Fun(Δ•, S), sending G0 → G1 → · · · → G= to the relative =-gapped object 0? (G0) → G1/G0 →

· · · → G=/G0, where G8/G0 denotes a ?-relative cofibre.

Remark B.0.5. When S = ∗, the simplicial map FiltS (•,X) → GapS(•,X) is the one constructed by
Barwick in [Bar16, Corollary 5.20.1]. However, for general S, our notion of ‘relative’ is essentially
different.

We specialise to the co-Cartesian fibration ? : Perf → dSchop. Forf : Δ= → dSchop, let Gapf (Perf)

be the fibre of the co-Cartesian fibration

?∗ : GapdSchop (=,Perf) → Fun(Δ=, dSchop)

over f, and let Filtf (Perf) be the fibre of the co-Cartesian fibration

?∗ : FiltdSchop (=,Perf) → Fun(Δ=, dSchop)

over f. Then, by the additivity property of K-theory, we have canonical equivalences

K(Gapf (Perf)) ≃ K(f1) × · · · × K(f=),

K(Filtf (Perf)) ≃ K(f0) × K(f1) × · · · × K(f=),

such that the map Filtf (Perf) → Gapf (Perf) induces the projection onto the last = factors (compare
[EHK+19, 4.2.20]).

As in [EHK+19, 4.2.22], we can take K-theory fibrewise to obtain a morphism of simplicial co-
Cartesian fibrations in spaces

KFiltdSchop (•,Perf) KGapdSchop (•,Perf)

Fun(Δ•, dSchop).

Moreover, the horizontal arrow is itself a simplicial co-Cartesian fibration in spaces, by [Lur09,
Lemma 1.4.14]. In [EHK+19, 4.2.17], we packaged the cotangent complex into a section

KGapdSchop (•,Perf)

Φ•(dSch, perf)op Fun(Δ•, dSchop).

L
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We now form the Cartesian square

P• KFiltdSchop (•,Perf)

Φ•(dSch, perf)op KGapdSchop (•,Perf),L

(A.6)

where the vertical arrows are simplicial co-Cartesian fibrations in spaces. By [Lur09, Lemma 1.4.14],
the left vertical map induces a co-Cartesian fibration in spaces

∫

Δop
P• →

∫

Δop
Φ•(dSch, perf)op,

which is classified by a functor

K :

∫

Δop
Φ•(dSch, perf)op → Spc.

It is not difficult to show that K is a labelling functor on (dSch, perf) with the desired properties
(compare [EHK+19, Proposition 4.2.31]).

Definition B.0.7. Let S be a derived scheme. The∞-category CorrL ((dSchS)/K) is the complete Segal
space CorrK• (dSchS, perf).

The labelling functor

fr :

∫

Δop
Φ•(dSch, perf)op → Spc

constructed in [EHK+19, 4.2.29] is obtained from square (A.6) by pulling back L further along the zero
section Φ•(dSch, perf)op → KFiltdSchop (•,Perf), so there is a canonical natural transformation fr→ K

of labelling functors on (dSch, perf), inducing a functor

Corrfr (dSchS) → CorrL ((dSchS)/K), X ↦→ (X, 0).

The functor

W : (dSchS)/K → CorrL ((dSchS)/K)

is simply the inclusion of the wide subcategory on those spans whose left leg is an equivalence.
Finally, we can equip CorrL ((dSchS)/K) with a symmetric monoidal structure, where

(X, b) ⊗ (Y, [) = (X ×S Y, c∗X(b) + c
∗
Y([)).

To that end, we must promote K to a symmetric monoidal labelling functor [EHK+19, Definition 4.3.5].
This is done exactly as in [EHK+19, §4.3], starting with the functor Fin∗ → coCart sending I+ to the
co-Cartesian fibration PerfI

S → (dSchop
S )

I.
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