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The purpose of this paper is to generalize some results on abelian groups
to the case of modules over bounded Dedekind prime rings. After several
definitions (section 1), we give, in section 2, some properties on bounded
Dedekind prime rings. In section 3, we investigate the structure and proper-
ties of modules over bounded Dedekind prime rings. For finitely generated
modules, we give a complete structure theorem (Theorems 3.1 and 3.38). Any
torsion module is a direct sum of primary modules (Theorem 3.2) and so the
study of torsion modules is reduced to that of primary modules. In Theorem
3.33, we give a necessary and sufficient condition for a primary module to be
direct sum of cyclic modules. A module is called decomposable if it is
isomorphic to a direct sum of uniform right ideals and cyclic modules. Then
it can be shown that any submodule of a decomposable module is also decom-
posable (Theorem 3.36). This is a generalization of the result on modules
over commutative Dedekind domains. We define, in section 2, the concept
of divisible modules and show that any divisible module is a direct sum of
indecomposable divisible modules (Theorem 3.18). In particular, we show
that an indecomposable divisible R-module is either isomorphic to a minimal
right ideal of O or a module of type P~ (Lemma 3.16 and Theorem 3.17), where
O is the quotient ring of the bounded Dedekind prime ring R. We also
study the ring of endomorphisms of divisible indecomposable modules and
give a complete structure theorem for those rings (Theorem 3.21).

Most of the results in this paper were announced without proofs in [17].

1. Definitions and notations

In this paper, all rings have identity and are associative and modules are
unitary. Ideals always mean two-sided ideals. A ring R is called a Goldie ring if
R satisfies the ascending chain condition annihilator right (left) ideals and has no
infinite direct sum of non-zero right (left) ideals. Let R be a prime Goldie
ring. ‘'Then, by virtue of Goldie’s theorem [8], R has a quotient ring Q which
is a simple artinian ring. A prime Goldie ring R is called a Dedekind ring if R
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is a maximal order in Q and every essential one-sided ideal of R is projective
(see [22]), or eqgivalently [5] R is a hereditary Noetherian prime ring with no
proper idempotent two-sided ideals. Again, by Goldie’s theorem, a one-sided
ideal I of R is essential if and only if I contains a regular element of R. R
is bounded if every essential one-sided ideal of R contains a non-zero ideal.
Let M be a right R-module. We say that me M is a torsion element if there is
a regular element ¢ in R such that mc=0. Since R satisfies the Ore condition,
the set of torsion elements of M is a submodule T&M. And M/T is evidently
torsion-free (has no torsion elements). Let x be an element of M. Then we
define O(x)={reR|xr=0} and say that O(x) is an order right ideal of x.
Analogously, for a submodule N of M, we define O(N)={reR|Nr=0} and
say that O(V) is an order ideal of N. Let P be a prime ideal of R and let M be
a torsion R-module. Then we say that M is primary (P-primary) if O(x)
contains a power of P for every element x in M. A submodule S of an R-
module M is said to be pure if Sc=S N Mc for every regular element ¢ in R.
In particular, S is said to be strongly pure (s-pure) if Sr=S N Mr for every
element 7 in R. 'Then the following properties hold: (i) Any direct summand
is strongly pure. (ii) A (strongly) pure submodule of a (strongly) pure submo-
dule is (strongly) pure. (iii) The torsion submodule is pure. (iv) If M/S is
torsion-free, then S is pure. We define an R-module M to be divisible if
Mc=M for all regular element ¢ in R. If an R-module M is n-dimensional in
the sense of Goldie [8], then we write n=dim M. A submodule U of an
R-module M is uniform if any two non-zero submodules of U have a non-zero
intersection. A right ideal I of a ring R is uniform if I is a uniform submodule
when considered as a right R-module. J or J(R) always denotes the Jacobson
radical of the ring R. 'The ring R is local if R[] is artinian and N5, J°=0.
R is a discrete valuation ring if R is a local and pri-pli-domain (i.e., a principal
right and left ideal domain) and R/J is a division ring. Finally, if R is any
ring, then (R), will always denote the ring of all # X7 matrices over R and e;;
will denote the matrix with 1 in the (7, j) position and zero elsewhere.

2. Bounded Dedekind prime rings

In this section, R will denote a bounded Dedekind prime ring and Q will
denote the quotient ring of R. Let P be a non-zero prime ideal of R. Now we
put C(P)={ceR|cxcP— xP}. Then each ¢ in C(P) has an inverse ¢™' in
Q. We denote the subring of Q generated by the elements of the form
{ac"'|aeR, ce(C(P)} by Rp and Rp is called a local ring of R with respect to
P. Following [1], we put A(P)={¢g=Q|¢B<R for some non-zero ideal B of
R not contained in P}. We call A(P) an Asano’s local ring of R with respect to P.

Lamma 2.1. Let P be a non-zero prime ideal of a bounded Dedekind prime
ring R. Then
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(1) Rp=A(P).

(i1) R satisfies the right and left Ore condition with respect to C(P) and Rp is
a bounded Dedekind prime local ring which is a pri-pli-ring.

(i) Rp=(L),, where L is a local pri-pli-domain.

Proof. (i) and (ii) follow from Lemmas 2.12, 3.4 and Theorem 2.14 of [20].
(iii) follows from Corollary 3.10 of {20].

REMARK. The domain L in Lemma 2.1 is an Asano order in its division
quotient ring. Hence if J(L)=p,L, where p,=L, then J(L)=Lp,.

Let Rp be the local ring of R with respect to P and let P'=J(Rp). Then
Rp/P’" is an artinian ring by Theorem 1.3 of [6] and the mapping:
Rp[P™""'—-Rp [P defined by ¢+ P"**'—gq+ P, for g= Rp, is an Rp-homomor-
phism. By Goldie’s theorem [9], the inverse limit Ry of the ring Rp/P™", n—=
1,2,-.-, is a complete local ring. We call R p the completion of Rp with respect
to P’.  Since Rp/P"=R/P", clearly, R, coincides the completion R of R with
respect to P (see [9]).

Lemma 2.2. Kp is a bounded local Dedekind prime ring which is a pri-
pli-ring and Kp=(D),, where D is a complete discrete valuation ring.

Proof. For a convenience, we let R be a local Dedekind prime ring which
1s a pri-pli-ring and let P=J(R). Then by Lemma 2.1, R=(L), and
J(L)=P=p,L=Lp, for some p,=L. Then P=(P,),=p,R=Rp,. Now we
shall show that P=J(R)=p,R, where p,=(0, p,+P? p,+P* ). It is clear
that P;ﬁok Let §=(q,, ., -**) be any element of P, where gu=t,+P"=R[P".
Then clearly ¢,=0 and 7,,,, € P for every n (see [9]). Hence 7,,,=psSs+;- On
the other hand, since 7,,,+P"=r,+P”", we obtain 7, ,—7,=p(Sy,,—Ss)EP"
and thus s,.,—s,€P""'. Hence §,=(s,+P, s,+F?, )EIAQ and Qzﬁoqlei)olé,
as desired. In the same way, we obtain ﬁ:ﬁﬁo. By Theorem 3.5 of [21], R
is either artinian primary or a prime ring. But R is not artinian, because
P*2P" and P*=0 for every n. Hence R is a prime ring. By Theorem 5.1 of
[21] and Theorem 4.5 of [9], R=(D),, D is a complete discrete valuation ring.
Hence R is a pri-pli-ring and thus is a Dedekind prime ring. Since Pisa
Jacobson radical of R, R is bounded by Theorem 4.13 of [5].

ReEMark. If D is a discrete valuation ring with maximal ideal P,, then, by
Theorem 3.1 of [11, p 112], every one-sided ideal is two-sided and the ideals of
D are only the powers of P,. Let P,=p,D=Dp, with p,& D. Then every
element d+0 of D has a unique representation of the form d=pjs=1p5, where
s and ¢ are units in D.

An idempotent ¢ in a ring R is uniform if eR is a uniform right ideal of R.

Lemma 2.3. Let P be a non-zero prime ideal of a bounded Dedekind prime
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ring R and let e, f be any uniform idempotents in Rp. Then we obtain: (In (2)~(2),
P=JRe)). .

(i) eRpleP is a simple Rp-module.

(ii) eﬁp/ep"%ﬂép/fls"for n=0,1,2, .-

(i) eRpjeP"=eP™[eP™" for n=0, 1, 2, -

(iv) Let g be an idempotent in R,. Then gisa umform idempotent in Ry if
and only if g_g-}—ﬁ is a primitive idempotent in RP/P

(v) Idempotents in Rp/P can be lifted to Rp.

Proof. For a convenience, we let R be a local, Dedekind prime, complete
ring which is a pri-pli-ring and let P=J(R). By Lemma 2.2, R=(D),, where
D is a complete and discrete valuation ring with maximal ideal P, and
P—p,R=Rp, with P,=p,D=Dp,. Furthermore we put R= R/P and denote
the image of x in R by & for every element x in R. Then &,R=e R/e,P is a
simple R-module by Lemma 2 of [15, p 76], because D/P, is a division ring.
Now the map: e, R/e, P"—e, P”[e, P"*" defined by e,,q+ ¢, P"—e, pTq+e, P""™",
for g=R, is an R-isomorphism, because e, P"=e psR. Hence (i)~(iii) follow
from the fact that eR=¢e,R for every uniform idempotent e¢ in R. But it is
shown in Theorem 2.2 of [11, p46]. 'To prove (iv), suppose that g is a uniform
idempotent. Then, by Lemma 2 of [15, p 76] and (ii), § is a primitive
idempotent in R. Conversely, suppose that g is primitive, i.e., ZR is a minimal
right ideal of R and so gR=e¢,R. Hence gR=¢,R by Proposition 1 of [10,
p 53] and thus g is a uniform idempotent in R.

Since dim (R/P)=dim R, where dim R denotes the dimension of R in the
sense of Goldie, (v) immediately follows from Hilfssatz 3.7 of [19].

3. Modules over bounded Dedekind prime rings

Let R be a semi-hereditary prime Goldie ring, let Q be the quotient ring
of R and let M be a finitely generated torsion-free R-module. Then the
sequence 0—M—->M® 0 is exact and MQ g0 is Q-projective, because Q is a
simple artinian ring. So M®g O is a submodule of a finitely generated free
O-module. Furthermore, since M is finitely generated, M is a submodule of a
free R-module. Hence M is R-projective by Proposition 6.2 of [3]. On the
other hand, R is a direct sum of a finite number of uniform right ideals by
Hilfssatz 3.6 of [19]. Hence, by the same way as the proof in Proposition 6.1
of [3], we have

Theorem 3.1. Let R be a semi-hereditary prime Goldie ring and let M be
a finitely generated R-module with torsion submodule T. Then

(i) M]T is a projective R-module and is a direct sum of a finite number of
uniform right ideals.

(ii) M=TeM|T.
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From now on, R will be a bounded Dedekind prime ring which is not an
artinian ring and Q will be the simple artinian quotient ring of R.

Theorem 3.2. Any torsion module over a bounded Dedekind prime ring is
a direct sum of primary submodules.

Proof. Let M be a torsion module over a bounded Dedekind prime ring
R and let Mp be the P-primary submodule of M for every prime ideal P. Then
it is clear that the sum > M, is direct, because R is an Asano order. Let x be
a non-zero element of M. Then xc=0 for some regular element ¢ in R. Since
¢R is an essential right ideal, there exists a non-zero ideal 4 such that cR2A.
Since A=+R, there are positive integers n, n,, -+, 7, and maximal ideals
P; (=1, 2, ---, k) such that

A= PrPr..Ph

because R is an Asano order. It is clear that 3),Pp-.- PFiz1 P¥ixt--- Ppe=R and
%(Pfi-+ Pjist Pligte PR)S My,
Hence
xeExR =37 2P+ Plis Pligte- Pin) S Mp D+ DMp, .
This completes the proof of Theorem 3.2.

By Theorem 3.2, the study of torsion modules is reduced to that of primary
modules.

Lemma 3.3. Let P be a non-zero prime ideal of a bounded Dedekind prime
ring R and let M be a P-primary module. Then M is in a natural way an
Rp-module.

Proof. We put C={ceR|cxesP->x=P}. (i) We shall first show that
Mc=M for every cc(C. To prove this, let x be a non-zero element of M.
Then there is an integer » such that xP"=0. By Theorem 4.2 of [9] and
Proposition 2.5 of [20], ¢4 P”* is a regular element in R/P" for every c=C(.
Since R/P” is an artinian ring, ¢+ P” is a unit and thus we obtain ¢R+P*=R
and Rc+P"=R. We have then

x=xR = %(Rc+P") = xRc .

Hence x=x,¢ for some x, &M and thus M=Mec for every c=(. (ii) We shall
prove that if xc=0, where x& M and ¢=(C, then ¥=0. By (i), there exists an
integer # such that xP"=0 and cR+P"=R. So if xc=0, then xcxR=
x(cR+4-P™)=0, as desired.

Now if 0fx=M and c=C, then the solution x, of x=x,¢ is unique by (ii),
and we can define xc'=ux,, it is easily verified that this definition mades M into
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an Rp-module.

Lemma 3.4. (Kaplansky [12]). Let M be any module, let S be a submodule
such that M(S is a direct sum of modules U, and let T; be the inverse tmage in M
of U;,. Suppose that S is a direct summand of each T;. Then S is a direct sum-
mand of M.

Lemma 3.5. Let R be a bounded Dedekind prime ring, let M be an R-module
and let S be a pure submodule such that M|S is torsion. If x, is a non-zero element
of MJS, then there exists an element x in M, which maps on x, mod S, and
O(x)=0(%,)-

Proof. (i) We shall first show that the lemma holds if R is a right principal
prime ring. To prove this we put O(x,)=cR, where ¢ is a regular element of R
and let o: M—M]|S be the canonical epimorphism. First choose any z in M
such that o(2)=x,. Then o(2¢)=x,=0 and thus zc=S. By the purity of
S, there exists an element s&.S with 2c=sc. Set x=z—s. Then x has the
desired properties, that is, x maps on x, mod S, and O(x)=0(x,).

(i) If Ris a bounded Dedekind prime ring, then, by the validity of (i),
the proof of the lemma proceeds just like that of Lemma 4 of [12] did.

We shall call an R-module decomposable if it is a direct sum of cyclic
modules and uniform right ideals,

By Lemmas 3.4 and 3.5, we have

Theorem 3.6. Let R be a bounded Dedekind prime ring, let M be an
R-module and let S be a pure submodule such that M|S is decomposable. Then
S is a direct summand of M.

Since every proper homomorphic image of a bounded Dedekind prime ring
is uniserial, by Theorem 2.54 of [1, p 79] we have

Theorem 3.7. Let R be a bounded Dedekind prime ring and let M be an
R-module of bounded order (i.e., Mc=0 for some regular element ¢ of R). Then
M is a direct sum of cyclic modules, each of which is an artinian module.

Since a finitely generated torsion R-module is of bounded order we obtain
the following corollary by Theorems 3.1 and 3.7.

Corollary 3.8. Let R be a bounded Dedekind prime ring and let M be a
finitely generated R-module. Then M is decomposable.

Corollary 3.9. Let R be a bounded Dedekind prime ring and let M be a
finitely generated R-module. If S is a submodule of M, then the following three
conditions are equivalent:

(1) S isa direct summand of M;

(ii) Sis an s-pure submodule of M
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(iii) S is a pure submodule of M.

Proof. (i)=>(ii) and (ii)=(iii) are clear. (iii)=>(i) follows from Theorem
3.6 and Corollary 3.8.

Theorem 3.10. Let R be a bounded Dedekind prime ring, M be an
R-module and let S be a submodule of M. Then the following conditions are
equivalent:

(i) S s s-purein M;

(ii) S is pure in M;

(i) If N is a submodule between S and M such that N|S is decomposable,
then S is a direct summand of N ;

(iv) If the system

Te1 X1 = S8, €8, r,ER,i€])

with a finite number m of unknowns is solvable in M, then it possesses a solution in
S, too;

(v) Every coset of M modulo S contains an element of the same order as this
coset.

Proof. (1)=(ii): This is a special case.

(i1)=>(ii1): This follows from Theorem 3.6.

(iii)=>(iv): Assume that the system >3}, x;7;;=s;
is solvable in M and that m; (1<j</) is a solution in M. Let N be the
submodule generated by m; and S. Then, by the assumption and Corollary
3.8, N=S®K, where K is a submodule of M. Now let m ,=sj+k,;(1=j=1)
with sj€.S and k;€K. Then clearly s} is a solution in S.

(iv)=>(v): Let m be a non-zero element of M and let 7 be the image of m
in M/S. 1f O(m)=0, then O(m)=0. If O(m) =K =0 is a right ideal of R,
then the system

mr; = s;=S

where 7, runs all over elements in K. By the assumption, there exists an ele-
ment s&S such that sr,=s,. We put m,=m—s, then m,=m and O(m,)DK,
because m,r;=mr,—sr;=s,—s,=0 for every r,&K. Therefore we have that
O(m,)=K.

(v)=(); f mr=s(me M, reR, s&S), then O(m)>r.
By the assumption, there exists an element m,=m—s,(s,S) of M such that
mr=0 and so s,y=(m—m,)r=s, as desired. ’

By Theorem 3.10, we have
Corollary 3.11. Let S be a submodule of an R-module M. Then S is pure
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in M if and only if SA=MAN S for every subset A of R.

Theorem 3.12. Let R be a bounded Dedekind prime rving, let M be an
R-module and let S be a pure submodule of bounded order. Then S is a direct
summand of M.

Proof. We put P=S+McR, where ¢ is a regular element contained in
O(S). Then SN McR=0, because S satisfy (iv) of Theorem 3.10. Hence,
by the same argument as in Theorem 5 of [12], we obtain that S is a direct
summand of M.

By Theorem 3.4 of [16] and Theorem 3.12, we have

Corollary 3.13. Let R be a bounded Dedekind prime ring, let M be an
R-module with torsion submodule T. Suppose that T is the direct sum of a divisible
submodule and a submodule of bounded order. Then T is a direct summand of M.

Lemma 3.14. Let M be a P—pnmary R-module. Then M is in a natural
way an Ry-module and M is torsion as an Kp-module.

Proof. Let g=(r,+PF’, r,4-P’*---) be a non-zero element of Rp, where
P'=PR,=RpP, r,cRp and r,—7,_,=P""7", and let ¥ be an non-zero element
of M. Since M is P-primary, there exists an integer n, such that xP"=0
and so x7,=uxr, for every n=n, Thus if we define xg=uxr,(n=n), 1t is easﬂy
verified that this definition makes M into an Rp-module. Since P= PRP_RP
by Lemmas 2.1 and 2.2, M is torsion as an R,-module.

Lemma 3.15. Let R be a bounded Dedekind prime ring. Then

(1) Every simple R-module is primary.

(i) An R-module M is simple and P- -primary if and only tf M is isomorphic
to eR /e]5 Jor some uniform idempotent e in Ry, where P is a prime ideal of R

and P= J(Ry).

Proof. (i) If a simple R-module M is torsion-free, then, by Theorem 3.1,
M is isomorphic to a uniform right ideal of R. This is a contradiction, because
R is not a simple artinian ring. Hence M is primary.

(ii) By Lemma 2.3, elA?P/eI3 is a simple and P-primary module. Conver-
sely, if M is simple and P-primary, then MP=0, because M is of bounded order.
By Lemma 3.14, we can assume without loss of generality that R is a complete,
local, bounded Dedekind prime ring with maximal ideal P. Then M is an
R-module, where R=R/P. Now let x be a non-zero element in M. Then
M=xR and the exact sequence 0—>O(x)—>R—xR—0 splits, because R is a
simple artinian ring. So R=O0(x)@éR and éR is a minimal right ideal. By
Lemma 2.3, we may assume that ¢ is a uniform idempotent in R and thus we
obtain M=¢R=eR/eP, as desired.
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We denote the injective hull of an R-module 4 by E(A).

Lemma 3.16. Let R be a bounded Dedekind prime ring and let Q be the
quotient ring of R. If E is an indecomposable injective R-module, then E is either
isomorphic to a minimal right ideal of Q or isomorphic to E(eIA?P/eIS), where P is a
prime ideal of R and e is a uniform idempotent contained in R,. Furthermore,

E(eI%P/els) is P-primary.

Proof. It is clear that E can not be mixed.

(1) If Eis torsion-free and x is a non-zero element of E, then xR=>%_,PI;
by Theorem 3.1, where I;-is a uniform right ideal of R and thus
E=E(xR)=3%.1®1;Q. Son=1 and E=I0 is a minimal right ideal of Q.

(ii) If E is torsion, then E is primary by Theorem 3.2. Suppose that E is
P-primary and x is a non-zero element of E. Then xR is an R/P*-module for
some 7 and thus xR is an artinian module, because R/P” is artinian. By
Lemma 3.15, we obtain acR:).elAEP/el5 for some uniform idempotent e contained
in Rp. Hence E=E(xR)=E(elA?P/eIS), as desired.

By Lemmas 3.15 and 3.16, we obtain the following remarks:

RemARks. (i) Torsion-free simple modules do not exist and the torsion-
free indecomposable injective module is unique up to isomorphism.

(ii) 'The primary simple module is unique up to isomorphism.

(iii) The primary indecomposable injective module is unique up to
isomorphism.

Further, we shall give a characterization of E(el'ép/els). Let IA3P=(D),,, let
ﬁ:poépzléppo, where D is a discrete valuation ring with maximal ideal
P,=p,D=Dp, (sce Lemma 2.2) and let ¢ =e¢,,. By Lemma 2.3, the sequence

(¥) 0—eRpfeP 25 e plebm+
is exact, where cp,,(eq—l—els")=ej>oq—i—e15"+1 for every ¢ in R,.

Theorem 3.17. The inductive limit E=lim eﬁp/ep” of the R-modules
eIA?P/eIS", n=1, 2, ---, under the homomorphism d?ﬁned in (%), is divisible and is
isomorphic to E(el@,;/eﬁ). In particular, E is isomorphic to the injective hull
E ﬁp(ePIA?/eIS) of the Rp-module eép/eﬁ.

Proof. We first prove that Ee=lim D/Pjis a divisible D-module, where
P,=J(D). Letx=y+Pjbea non-zero element of Ee, where yeD and let d
be a non-zero element of D. We put d=pis=1ipf and y=piu—uvp;, where
s, t, uw and v are units in D and #>[=0. Then x=piu+P; *** in Fe. For
the element pfu, there exists a unit @ in D such that piu=wp} and thus
x=(wt'4+P37***)d. Hence Ee is a divisible D-module. By Theorem 3.4 and
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Corollary 2.3 of {16], E is a divisible Rp-module. Since E is a maximal essential
extension of eRp/eP as an R-module, we obtain E gE;eP(eﬁp/eIS)zE(eRP/eP)
by E. Eckmann and A. Schopf [4].

Remark. The module E in Theorem 3.17 is a natural generalization of
the typical divisible, torsion, abelian group Z ..

We call the module E(elép/eﬁ) a module of type P>,

By Theorems 1.4, 2.5 of [18], Theorem 3.4 of [16] and Lemma 3.16 we

obtain the following two theorems:

Theorem 3.18. Let R be a bounded Dedekind prime ring with quotient
ring Q. Then any divisible R-module is the direct sum of minimal right ideals of
O and modules of type P~ for various prime ideals P.

Theorem 3.19. Any module M over a bounded Dedekind prime ring
possesses a unique largest divisible submodule D; M=D®K, where K has no
divisible submodules.

Lemma 3.20. Let R be a complete, local, bounded Dedekind prime ring with
unique maximal ideal P and let e be a uniform idempotent of R. Then

(i) H,=Hompg(eR|eP", eR|eP")==¢Re|eP"e.

(ii) eRefeP”e is completely primary in the sense of [2].

Proof. (i) Let a be a non-zero element of H, and let a(e+eP")=
ere+eP*. 'Then the mapping 6: H,—eRe[eP" defined by 6(a)=ere4-eP" is
an isomorphism.

(ii) is clear.

Theorem 3.21. Let P be a prime ideal of a bounded Dedekind prime ring
R and let E be an R-module of type P~. Then the endomorphism ring of E
is isomorphic to eRPe, where e is a uniform idempotent in RP

Proof. It is easily seen that H=Homg(E, E)=Homp(E, E). Hence we
can assume without loss of generality that R is a complete, local, bounded
Dedekind prime ring with unique maximal ideal P. Furthermore, we may
assume that R=(D), and e==¢,;, where D is a discrete valuation ring. Since
E= hm eR/eP" by Theorem 3.17, E is in a natural way left eRe-module. Since
Nx Pr— 0, E 1s a faithful left eRe-module. Consequently, we can identify eRe
with the subring of H consisting of multiplications by elements of eRe. Let a
be a non-zero element of H. Then since a(eR/eP")P"=0, we may assume that
a,=Hompg(eR/eP”, eR/eP”), where a,=aleR[eP" and so a,=er,e+eP" by
Lemma 3.20. Now we put #=(er,e+ P, er,e+P?-.:). 'Then since a,=a,_, on
ePleP”, we obtain (er,e—er,_e)ePZeP” and thus er,e—er,_ecP"'. Hence
7R, because R is complete. Since #—er,e<P”, it is easily checked that a=7
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and #=-e7e, which completes the proof.

Remark. If E is a torsion-free indecomposable divisible R-module, then
E is isomorphic to eQ, where e is a primitive idempotent in Q. Thus the
ring of endomorphisms of E is isomorphic to eQe and so the rings of
endomorphisms of indecomposable divisible R-modules are completely
determined.

Let R be a local, bounded Dedekind prime ring with unique maximal
ideal P and let M be an R-module. An element x in M has height n if x& MP"
and x&= MP**, it has infinite height if x= MP” for every n. We write h(x) for
the height of x; thus A(x) is a (non-negative) integer or the symbol co. If x lies
in a submodule S of M, we may define two heights for x. When it is necessary
to make a distinction, we shall write ks(x) and A,,(x) for the height of x in S and
M, respectively. Note that we always have hg(x)<hp(x). If A(x) and A(y) are
unequal, then A(x-+y) is precisely the smaller of the two. If A(x)=4A(y), then
h(x+y)=h(x). Let D be a discrete valuation ring with maximal ideal Py=p,D
and let M be a D-module. Then an element x in M has height # if and only if
it is divisible by ps but not by p3*'. Furthermore a submodule S of M is pure
if and only if hs(x)="hp(x) for every x= S.

‘By the same arguements as in Lemmas 7 and 8 of [13], we have the follow-
ing two lemmas.

Lemma 3.22. Let D be a discrete valuation ring with maximal ideal
P=p,D, let M be a primary D-module and let S be a submodule with no elements
of infinite height. Suppose that the elements of order P, in S have the same height
in S asin M. Then S is pure.

Lemma 3.23. Let D be a discrete valuation ring with maximal ideal
P,=p,D and let M be a primary D-module. Suppose that all elements of order P,
in M have infinite height. Then M is divisible.

An R-module is said to be reduced if it has no non-zero divisible submodules.

Theorem 3.24. Let R be a bounded Dedekind prime ring and let P be a
prime ideal of R. If M is a P-primary reduced R-module, then M possesses a direct
summand which is isomorphic to eép/eﬁ", where e is a uniform idempotent contained
in R p.

Proof. We can assume without loss of generality that R is a complete,
local, bounded Dedekind prime ring with maximal ideal P and that R=(D),,
where D(==e,,Re,,) is a discrete valuation ring with maximal ideal P,=p,D. By
Corollary 2.3 of [16], Me,, is reduced as a D-module. So, by Lemma 3.23,
there exists an element xe,, in Me,, such that O(xe,)=P, and h(xe,)=r<oo.
Now we put xe, =ye, p; and H=ye,, D. Then it follows from Lemma 3.22
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that I is pure and is of bounded order, because the elements of order P, in H
are only the multiples of xe,, by units in D. Hence, by Theorem 3.12, H is a
direct summand of Me,, and we put Me,,=HPK, where K is a D-submodule

of Me,,. Since Me,,=Me,,,we have
M = Me, D Me,, D DPMe,, = SV_,PMe,e,; .
Hence
M = 3% . BDHPK)e,; = He, RDKe, R.

On the other hand, the sequence 0—O(ye,)—D->ye,D—0 is exact and so
O(ye,,)=Pj for some n. Hence we obtain

ye, R=e R[>, e, Pge,; = e, Rle, P".

This completes the proof of Theorem 3.24.
By Theorems 3.12 and 3.24, we have

Corollary 3.25. Let R be a bounded Dedekind prime ring and let M be
a reduced R-module which is not torsion-free. Then M possesses a direct summand
which s isomorphic to eIAep/ep”, where P is a prime ideal of R and e is a uniform
idempotent in Rp.

By Theorem 3.17 and Corollary 3.25, we obtain

Corollary 3.26. An indecomposable module over a bounded Dedekind prime
ring R can not be mixed, i.e., it is either torsion-free or torsion. In the latter case it
is either of type P~ or isomorphic to elép/els” for some prime ideal P of R and e is a
uniform idempotent in Rp.

By the same arguments as in Lemmas 10, 11 and 12 of [13], we have the
following three lemmas.

Lemma 3.27. Let D be a discrete valuation ring with maximal ideal
Py=p,D. Let M be a primary D-module, let H be a pure submodule and let x be
an element of order P, not in H.  Suppose that h(x)=n<oco and suppose further
that h(x--a) < h(x) for every a in H with O(a)=P,. If K is the cyclic submodule
generated by y with x=ypy and if L=H+K, then L is the direct sum of H and K,
and L is pure again.

Let M be a module over a bounded local Dedekind prime ring and we say
that M is of bounded height if there exists a constant k such that A(x)=<k for all
xin M. A set {x;} of elements of M is pure independent if the sum > xR is
direct and pure in M.
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Lemma 3.28. Let D be a discrete valuation ring with maximal ideal P,, let
M be a primary D-module and let A be the submodule of elements x satisfying
O(x)=P,. Suppose that B, C are submodules of A, with CSBC A, and that B is
of bounded height. If {x;} is a pure independent set satisfying >, Px;DN A=
C, then {x;} can enlarged on a pure independent set {y ;} satisfying 33, Dy , DN A=B.

Lemma 3.29. Let D be a discrete valuation ring with maximal ideal
P=p,D, let M be a primary D-module and let H be a pure submodule of M
containing all the elements of order P, in M. Then H=M.

Proposition 3.30. Let D be a discrete valuation ring with maximal ideal P,,
let M be a primary D-module and let A be the submodule of elements satisfying
xP,=0. Then a necessary and sufficient condition for M to be a direct sum of
cyclic submodules is that A be the union of an ascending sequence of submodules of

bounded height.

Proof. By the validity of Lemmas 3.28 and 3.29, this follows from the
same way as in Theorem 12 of [13].

Proposition 3.31. Let P be a prime ideal of a bounded Dedekind prime ring
R, let Rp=(D), and let M be a P-primary module. Then M is a direct sum of
cyclic R-modules if and only if Me,, is a direct sum of cyclic D-modules.

Proof. It is clear that a P-primary module M is a direct sum of cyclic
R-modules if and only if it is a direct sum of cyclic Rp-modules. Hence we
can assume without loss of generality that R is a complete, local, bounded
Dedekind prime ring and that R=(D),, where D is a discrete valuation ring.
If M=% Pu.R, then Me,=>,Pu,Re, and u,Re, is a finitely generated
torsion D-module. Thus u Re,, is a direct sum of cyclic D-modules by Corol-
lary 3.8. Hence Me,, is a direct sum of cyclic D-modules.

Conversely, suppose that Me,,=>" . Pu,D. Then we have

M = Me,,®---PMey, = Me,,D--- D Me,e,,
= (Zu@ua-D)en@ e @(Za‘@uaD)elk
= Zo@uo—en(Ren+ e +Re1k)
= Ea@uaenR
, which completes the proof of Proposition 3.31.
Lemma 3.32. Let P be a prime ideal of a bounded Dedekind prime ring R
and let Rp=(D),. If M is a P-primary module with no elements of infinite height.

Then Me,, is a D-module with no elements of infinite height and if M is of bounded
height, then so is Me,,.

Proof. This is immediate.
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Theorem 3.33 (Kulikov’s Criterion [13]). Let P be a prime ideal of a
bounded Dedekind prime ring R, let M be a P-primary module and let A be the
submodule of elements x satisfying xP=0. Then a necessary and sufficient condition
Jfor M to be a direct sum of cyclic R-modules is that A be the union of an ascending
sequence of submodules of bounded height.

Proof. We can assume without loss of generality that R is a complete,
local, bounded Dedekind prime ring and that R=(D),, where D is a discrete
valuation ring and P,=J(D). The necessity is clear. To prove the sufficiency
we suppose A= U ;4;, where 4, S A4, -, and each A4; is of bounded height.
Then it is clear that Ae,= {xe,,=Me, |xe,, P,—0} and A, is of bounded
height as a D-module by Lemma 3.32. Hence Me,, is a direct sum of cyclic
D-modules and so M is a direct sum of cyclic R-modules by Proposition 3.31.

By Theorem 3.33, we have the following two Corollaries:

Corollary 3.34 (Prufer’s theorem [13]). Let R be a bounded Dedekind
prime ring and let M be a countable primary R-module with no elements of infinite
height, Then M is a direct sum of cyclic R-modules.

Corollary 3.35. Let R be a bounded Dedekind prime ring and let M be a
primary R-module which is a direct sum of cyclic R-modules. Then any submodule
N of M is a direct sum of cyclic R-modules.

Now, by the validity of Theorems 3.2, 3.6 and Corollary 3.35, the proof of
the following theorem proceeds just like that of Theorem 4 of [12] did.

Theorem 3.36. Let R be a bounded Dedekind prime ring and let M be
a decomposable R-module. Then any submodule of M is decomposable.

Lemma 3.37. Let P be a prime ideal of a bounded Dedekind prime ring
R and let K be a cyclic uniform P-primary module. Then O(K)=P" if and only
if K is isomorphic to eRP/eIs", where e is uniform idempotent contained in Rp.

Proof. It follows immediately from Theorem 3.24.

Now, let M be a finitely generated R-module. Then M is a direct sum
of uniform right ideals and uniform cyclic R-modules by Corollary 3.8,
Theorems 3.1 and 3.24. Furthermore we have

Theorem 3.38. Let R be a bounded Dedekind prime ring and let M be
a finitely generated R-module. Then for a decomposition of M into the direct sum
of uniform right ideals and uniform cyclic R-modules, suppose that:

(1) the number of direct summands of uniform right ideals is r,

(i1) the number of P-primary cyclic summands for a given prime ideal P is
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k,, where k,=0, and that the orders of these summands are
P®n, Pz ... P®k

where Ay =ty =0 Z0lpe, -
For a decomposition of any submodule N of M into the direct sum of uniform right
ideals and uniform cyclic R-modules, suppose that:

(1) the number of direct summands of uniform right ideals is s,

(ii) the number of P-primary cyclic summands for given prime ideal P is [,
where 1,=0, and that the orders of these summands are

Py PBez ... PPy

where ﬁplgﬂng e gﬁpl,-
Then
(a) s=r,
(b) 1,=Fk, for each prime ideal P,
() BpuZau(=1,2,-,1,),
(d) r4+2k,=dim M and s>l ,=dim N.

Proof. By Goldie’s dimension [8], (a), (b) and (d) are clear.

(c) We may assume without loss of generality that R is a complete,
local, bounded Dedekind prime ring with maximal ideal P and that M, N are
P-primary with M2 N, k,=dim M and /,=dim N. By Lemma 3.37, we have
M=eR|[eP*"@D-.- PeR[eP*?*», where e is a uniform idempotent in R. Suppose
now that

Bu=Cps =y By S0y ;0 but B,,>a,;.
Then dim MP?» < j—1 and dim NP®% = §, which is contradiction.

By Theorem 1 of [2], Theorem 3.24 and Lemma 3.20, we have

Theorem 3.39. Let M be a decomposable primary modules over a bounded
Dedekind prime ring. Then M is a direct sum of uniform cyclic modules and the
number of uniform cyclic summands of a given order is an invariant of M; these
cardinal numbers are a complete set of invariants for M.

RemARK. Theorems 3.35 and 3.39 are generalized to the case of torsion
modules.
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