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MODULES OVER DEDEKIND PRIME RINGS Iil
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(Received Novermber 9, 1973)

Let R be a Dedekind prime ring with the quotient ring Q. Let F be any
right additive topology (cf. [11]). 'Then R is a topological ring with elements
of F as the neighborhoods of zero. Let M be a topological right R-module with
submodule neighborhoods of zero. M is called F-linearly compact if

(a) it is Hausdorff,

(b) if every finite subset of the set of congruences x=m, (mod N,), where
N, are closed submodules of M, has a solution in M, then the entire set of the
congruences has a solution in M.

The purpose of this paper is to study the algebraic and topological properties
of F-linearly compact modules.

After discussing some properties on R which need in this paper, we show, in
Section 2, that the Kaplansky’s duality theorem holds for F-linearly compact
modules (Theorem 2.12). By using the duality theorem we determine, in
Section 3, the algebraic and topological structures of F-linearly compact modules
when F is bounded. Moreover we define the concepts of Fe-pure injective and
F~-pure injective modules, and investigate the relations of between these concepts
and F-linearly compact modules.

I wish to express my appreciation to the referee for his adequate advice.

1. Topologies on Dedekind prime rings

Throughout this paper, R will denote a Dedekind prime ring which is not
artinian, and Q will denote the quotient ring of R. We will denote the (R, R)-
bimodule Q/R by K. A subring of Q containing R is called an overring of R.
For any essential right ideal I, the left order of I is defined by 0,(I)={¢= Q|
gIS1}. We define the inverse of I to be I7'={q=Q|IqI SI}. Then we obtain
II"*=0,I) and I7* I=R. Let I be a right ideal of R. By Theorem 1.3 of [1],
R/I is an artinian R-module if and only if I is an essential right ideal of R. For
any right ideal I and any element a of R, we define a™ ' I={r&R|arcl}. Let M
be a (right R-) module. M is said to be torsion if, for every me M, mI=0 for
some essential right ideal I. We say that M is divisible if MJ=M for every
essential left ideal J of R. Let F be any (right additive) topology (cf. [11]). We
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say that me M is an F-torsion element if O(m)={reR|mr=0}< F, and denote
the submodule of F-torsion elements by M. If Mp=0, then we say that M
is F-torsion-free. A topology F is trivial if all modules are F-torsion or F-
torsion-free. If F={R}, then it is clear that all modules are F-torsion-free.
Assume that F contains a non essential right ideal I of R, then F-torsion module
R/I is a direct sum of a torsion module and a non-zero projective module C by
Theorem 2.1 cf [1]. By Theorem 2.4 of [1], a finite copies of C contains R as
right modules and so R is F-torsion. Hence all modules are F-torsion. So if F
is a non-trivial topology, then F consists of essential right ideals. Conversely a
topology F consists of essential right ideals, then it is non-trivial, because R is
F-torsion-free and R/I is F-torsion (I F).

From now on, F will denote a non-trivial topology. We define O le_il’_)n I,

where I ranges over all elements of F. Clearly Q is an overring of R.

Proposition 1.1 (i) The mapping F— Qp is one-to-one correspondence
between all non-trivial topologies and all overrings of R properly containing R.

(it) A module M is F-torsion if and only if M Q0 =0.

(1i1) For any module M, M p="Tor(M, Qz/R).

Proof. By Corollary 13.4 of [11], F is perfect. Hence (ii) and (iii) follow
from Exercise 2 of [11, p. 81].

(i) Let O, be an overring of R properly containing R. Then it is well
known that Q, is R-flat and that the inclusion map: R—Q, is an epimorphism
(cf. [11, p. 75]). Hence, by Theorem 13.10 of [11], F,={I[1Q,=Q,, I is a right
ideal} is a topology. Since Q,®Q,=0, and Q, is R-flat, we have O,/R®Q,=0.
Hence 04=0Q,/R is F-torsion. It is evident that R is not F,-torsion. Hence F,
is non-trivial. Thus (i) follows from Theorem 13.10 of [11].

Let {S,|la=A} be the representative class of simple modules which are
non-isomorphic mutually. For any subset T' of A, we denote the set of R and
of essential right ideals I such that any composition factor of the module R/I is
isomorphic to S, for some y=T by F(T').

Proposition 1.2. A non-empty family of right ideals of R is a non-trivial
topology if and only if it is of the form F(T) for some subset T" of A.

Proof. First we shall prove that F(T") is a non-trivial topology. (i) If I
F(T') and a<R, then a ' I = F(T), because R/a"'I==(aR+I)/I. (ii) Let I be a
right ideal of R. Assume that there exists J& F(T") such that a 1= F(T) for
every a< J. Again, since Rfa *I=(aR+1)/I for every ac J, we obtain that
(I+))/1 is a torsion module. Hence R/I is also torsion and so [ is an essential
right ideal. By Theorem 3.3 of [1], I+ J=aR-+I for some ac J, and thus
Rja1=(I4-])/I. Therefore Ic F(T'). Thus F(T) is a topology. Since F(T")
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consists of essential right ideals, it is non-trivial. Conversely let F be any
topology and let '={y= A|S,=R/I for some IF}. From Lemma 3.1 of [11],
we have TI'f=¢. We shall prove that F=F(T'). For an essential right ideal I of
R, I=F if and only if R/IQQ =0 by Proposition 1.1 and so F 2F(T"). Assume
that FR2F(T). Then there is I € F such that some composition factor of R/ is
isomorphic to S, for some a=A—T'. So there are right ideals J,2 J,21 such
that J,//,=S,. Take ac ], with ad J,. Then we get: Rla™'],~ J,[],=S,.

Hence, since a™J,& F, we have o =T, which is a contradiction.
Corollary 1.3. The lattice of all overrings of R is a Boolean lattice.

The family F, of left ideals J of R such that Q=0 is a left additive
topology. We call it the left additive topology corresponding to F. F), is also non-
trivial by Proposition 1.1. Thus F, consists of essential left ideals of R. We put
QOp,=lim J7(J€F,). Amodule M is said to be F,-divisible if M ]J=M for every
J<F,. In asimilar way, we define the concepts of F,-torsion and F-divisible for
any left module.

Proposition 1.4. (i) Qr=0r, and so Qr is (F, F,)-divisible.

(i) Kp=Kp=0QrR, where K=Q[R. Thus Ky is also (F, F)-divisible.

(ii1) Let I be an essential right ideal of R. Then I F if and only if I7*|R is
F-torsion.

Proof. (i) follows from Proposition 1.1 of [10] and the definitions. (ii) is
clear.

(iii) Since Qg is flat as R-modules, the sequence 0—»Qr— Q0 QI "' —
Or@I7[R—0 is exact. Further, since QrQQr=0p, we obtain that I F if
and only if Q,®I*/R=0. So I<F if and only if I7}/R is F-torsion.

2. Duality theorem for F-linearly compact modules

Let F be any non-trivial topology. We define R =1lim R/I(I < F) and
kp,z lim R/J(JEF,). Itis easy to see that both ﬁF and R F, Are rings contain-
—

ing R (cf. §4 of [10]). Let M be an F-torsion module. Then M is an K z-module
as follows: For me M, +=([r,+1])€ Ry, we define mi=mr;, where J<O(m).
Similarly, an F,-torsion left module is an R, ,-module.

Lemma 2.1. A module is F-linearly compact in the discrete topology if and
only if it is F-torsion and artinian.

Proof. The sufficiency follows from Proposition 5 of [13]. Conversely
assume that M is F-linearly compact in the discrete topology. Take me M.
Then, by the continuity of multiplication, there exists /& F such that m/=0.
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Thus M is F-torsion. By Lemma 2.3 of [9], M is finite dimensional in the
sense of Goldie. So the socle S(M) of M is finitely generated and M is an
essential extension of S(M). Let N be any submodule of M. Then, since N
is an open and closed submodule, M=M|N is also F-linearly compact in the
discrete topology by Proposition 2 of [13]. Thus the socle S(M) of M is also
finitely generated and M is an essential extension of S(#). 'This implies that
M is an artinian module by Proposition 2* of [12].

Corollary 2.2. Let M be F-lincarly compact and let N be a submodule.
Then N is a neighborhood of zero if and only if M|N is F-torsion and artinian.

Proof. If N is a neighborhood of zero, then M/N is F-linearly compact in
the discrete topology. So the necessity follows from Lemma 2.1. Conversely,
assume that M/N is F-torsion and artinian. Let {M,} be the set of submodule
neighborhoods of zero. Since the topology is Hausdorff, N M, =0, and so
NM,=0 in M=M/|N. Therefore there are finite submodules M, -, M,,
such that N}_,M, =70, i.e., N7, M, SN. Thus N is open.

Corollary 2.3. If a module is F-linearly compact in two topologies, then
these topologies coincide.

Lemma 2.4. A module is F-linearly compact if and only if it is an inverse
limit of F-torsion and artinian modules.

Proof. 'The sufficiency follows from Proposition 4 of [13] and Lemma 2.1.
To prove the necessity let {N,} be the set of submodule neighborhoods of zero.
Then the modules M/N, with the natural maps: [m-+N,]— [m+Ng], where
N,& Ng, form an inverse system. Write M=lim M /N,. Thenitis a topological
module; each M/N, has the discrete topolt)gy and the product topology on
TIM/N, induces a subspace topology on M. Since N N,=0, the canonical map
f: M— M is a monomorphism. Itis easy to see that f is a topological isomorphism
from M onto f(M) and that f(M) is dense in M. On the other hand, M is
complete by Proposition 8 of [13] and so f(M)=M. Further M|N, is F-torsion
and artinian by Corollary 2.2.

Following [11], a module D is F-injective if Ext(R/I, D)=0 for every I F.
By Proposition 6.2 of [11], D is F-injective if and only if Ext(T, D)=0 for every
F-torsion T. TFurther, since every F-torsion module 7' can be embedded in an
exact sequence 0—>7T—->>PK, with sufficiently many copies of K, D is F-
injective if and only if Ext(K,, D)=0. For any module M, we denote the
injective hull of M by E(M) and denote the F-injective hull of it by E (M) (cf.

[11].
Lemma 2.5. (i) A module is F-injective if and only if it is F~divisible.
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(ii) Let M be a module with M z=0. Then E(M)=MQQ .

Proof. (i) Assume that D is F-injective. Let J=F,. Then J7'/Ris F-
torsion by Proposition 1.4 and so the necessity follows from Proposition 3.2 of
[10]. Conversely assume that D is F,-divisible. Let I be any element of F.
Then I [R=3_PR/], for J,=F,. By Proposition 3.3 of [10], we have

R/I=Hom(I'|R, Kp)=>%_PHom(R/];, Kz)=>%_.PJ7'[R, and so Ext
(R/I, D)=3>Y_ PExt(J;/R, D)=>"_ . @®D/DJ,=0. Therefore D is F-injective.

(i1) By Proposition 1.1, M .=Tor(M, K,). Hence from the exact sequence
0—->R—->0Q,—K;—0 we get an exact sequence 0>M ->MQQ ,—~M QK — 0.

By Proposition 1.4 and (i), M @ Q. is F-injective and so M QQ ,=E (M).

Corollary 2.6. Let M be a module. Then MQQr and MQKy are both

F-injective.

For a module M, we define MFlzii_rEl_M/M](]EF,). MF, is an ﬁF,-module
(cf. §4 of [10]). Similarly, for a left module N, we can define a left R,-module
i
Lemma 2.7. Let M be a module with M .=0. Then there are commutative
diagrams:
My, = Hom (K, MQK ) = Ext(K;, M)
| ls
M = M = M

where a(m)(7)=mQg (ncM, g= K ) and 3 is the connecting homomorphism.

Proof. From the exact sequence 0—>R—Q,—K;—0, we get an exact
sequence:

(1) 0 = Tor(M, K;)—>M—>MQQ —MQK,—>0.

Hence the assertion of the first diagram follows from the similar way as in
Theorem 4.4 of [10]. Applying Hom(K, ) to the sequence (1), we obtain the
exact sequence:

Hom(Ky, M®QQ p)—Hom(K z, M QK )—Ext(K z, M)—>Ext(K z, MQQQ ).
The first and last terms are zero, because M ®Q  is F-torsion-free and F-injective.
Hence Hom(K ;, M QK ;)=Ext(K », M). We consider the following commutative
diagram with exact rows and columns:

0 0
} J
0>M—>MROQ, > MRKy — 0
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If [x+M]I=0, where x= E(M) and I<F, then xISM and so xeMQQ, by
Proposition 6.3 of [11] and Lemma 2.5. Hence [x+M]e M ®K. This implies
that (E(M)/M)z=M QK. Itis evident that E(M),=0. Thus we have Ext
(Kg, My=Hom(K, E(M)[M)=Hom(K r, MQK ). Now it is easy to see that
a=g.

Corollary 2.8. (i) Rg/R is F-divisible.
(i) R/I=R /IR for every IEF.

Proof. (i) Applying Lemma 2.7 to the left module R, we get an isomor-
phism: I@F/R Ext(Qp, R). Since Ext(Q, R) is a left Qg-module, it is F-
divisible and so R »/R is also F-divisible.

(i) It is evident that IR, N R=1I. Hence (ii) follows from (i).

By Lemma 2.4, ﬁF is an F-linearly compact module in the topology which
is defined by taking as a subbase of neighborhoods of zero the set {z7'(0)N Ry
I F}, where z,;: [IR/I—-R/I is the projection. Further we have

Corollary 2.9. (i) =7*(0)N Ry=IRy, for every IEF.
(i1) R, is a complete topological ring in the topology which has the set {IR|
I<F} as neighborhoods of zero.

Proof. (i) Clearly z~'(0)N Rp2IR,. By Corollary2.8, there exists a right
ideal J2I such that J/I=[z7'(0)N Rp)/IRz, i.c., z7'(0)N Rp=IR+J= ]ﬁ’p,
because z7'(0)N R 18 an Ry-module. From this fact we easily obtain that J=1
and so z7(0) N Rp=1IR ;.

(ii) For any & Ry, we define £ (I R.)={t< R,| ## IR}, where I&F.

Then we have the natural isomorphisms f\’F/ﬁ‘l(IéF)i(ﬁﬁF+IﬁF)/IﬁF§ JiI
for some J21. Define pf([1+ £ (IRz)]=[a+I](acJ). Then J=aR+I and

]/I’ZR/a“I, where %n([a+I])=[1+a 'I]. Therefore we get the natural
1somorph1sms Rp/2 (IR F)~R/a =R #/(a[)Rp. Thus we have (aI)Rp=

£7(IRy). This implies that R is a topological ring. The completeness of Ry
follows from Proposition 8 of [13].

Let F={IRz|I=F}. For any Rr-module, we can define the concept of
F-linearly compact modules.

Proposition 2.10. A module is F-linearly compact if and only if it is an R p-
module and is F-linearly compact.

Proof. Assume that M is F-linearly compact. By Lemma 2.4, M isan Ry
module. Let N be a closed submodule of M. Then N is F-linearly compact by
Proposition 3 of [13], and so it is an R-submodule. Hence it is enough to
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prove that M is a topological Re-module. Take meM, <= Ry. Then we define

mN={§c Ry|méc N} for any submodule neighborhood N of zero. Since
M|N is F-torsion, we have m~*N < F. Further we have (m-+N)(#+m—'N )Cmr
+Nandso M is a topologxcal R-module. Conversely assume that M is -
linearly compact as an Re-module. Let {N,} be the set of submodule neigh-
borhoods of zero. Then, by a similar way as in Lemmas 2.1, 2.4 and Corollaries
2.2, 2.8, we have M =li£1_ M|N, and M|N, is F-torsion and artinian. Thus M

is F-linearly compact.

Let M be F-linearly compact. * will mean the module of all continuous
homomorphisms from M into K, where K has been awarded the discrete to-
pology. It is evident that an element f € Hom(M, K) is continuous if and only
if Ker f is open.

Lemma 2.11. Let M be F-linearly compact. Then

(i) M*isan RFI-module

(ii) Let N* be a finitely generated left I@F,—submodule of M* and let g
Hompiy (M*, Kr). Then there exists an element me M such that (f)g=f(m) for
every f & N*.

Proof. (i) For feM* and f'e]/éFI, we have Ker(#f) 2Ker f and so #f = M*.

We shall prove (ii) by Miiller’s method (cf. Lemma 1 of [8]). Write N*=
Rp fit-+Re f,, where f,eN*, and let W={(f(m), -, f(m))|meM}<
SYDKp. Assume that x=((f.)g, '+, (f)g)EW. Then O(x)={r=R|zr=0}
eF, where x=[x+ W] in 2P K,/W. Hence there exists a map §: xR—Ky
with (2)==0. Since K is F-injective, the map § is extended to the map §:
SIPK/W—-Ky. Hence there exists a map ¢: > "PKr—Kp with @(x)=0.
From Lemma 2.7 we have Hom(3 P K, Kp)= ZEB&F and so @=(#, -, #,)
for some 7,&R,. Thus we get: O p(x)=3"_, 7 [(f)g] >%_(#:f)g and so
S f:=£0. On the other hand, 0=¢(w)=2’;=1i’i fdm) for every w=/(f,(m),
ooy fo(m)), where me M. Hence 3.7, f;=0, a contradiction.

Let G be a left R F l-module. We denote the right module HomieFl(G, Ky)
by G* and define its finite topology by taking the submodules Anng#(IN)=
{f=G*H(N)f=0} as a fundamental system of neighborhoods of zero, where N
ranges over all finitely generated R r,-submodules of G. The following theorem
was proved by I. Kaplansky [4] for modules over commutative, complete
discrete valuation rings.

Theorem 2.12. Let M be an F-linearly compact module. Then M is
isomorphic to M** as topological modules.

Proof. Let o be the canonical homomorphism from M into M** which is
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defined by a(m)(f)=f(m), where me M and fe M*.

(i) First we shall prove that ¢ is a monomorphism. To prove this, we
assume that q(m)=0 and Ofme&M. Then there exists an open submodule N
with N$m. Let #i=[m+N]in M/N. Then O(m)eF by Lemma 2.1. So we
can define a homomorphism f: mR—K with f(m)=0. This map can be ex-
tended to a homomorphism g from M/N into K. Let k: M—M|N be the
natural homomorphism. Then g-h= M* and (g-h)(m)=+0. This implies that
a(m)=0, a contradiction, and so « is a monomorphism.

(ii) Secondly, we shall prove that « is an epimorphism. Let x be any
element of M**#. Then, for every f & M*, there exists an element m &M such
that (f)x=f(m,) by Lemma 2.11. We consider the congruences

(1) x=m (Ker f) .

Again, by Lemma 2.11, any finite number of congruences (1) have a solution.
Further Ker fis open and so it is closed. By F-linearly compactness of M, there
exists a solution me M. Hence (f)x=f(m )=f(m) for every f&M* and so x=
a(m).

(iif) Finally we shall prove that ¢ is a topological isomorphism. Let S be
any submodule neighborhood of zero in the finite topology. Then S=Ann,(f,)
N -+ N Ann,e(f,), where f,e M*. It is evident that S=Ker f,N--- N Ker f, in
M and so it is open in the orginal topology. Conversely, let N be any open
submodule in the orginal topology. Then M/N is F-torsion and artinian. So

M|N can be embedded in an exact sequence 0->M/N i >V'DK with finite
copies of K. Let z;: 2P Kp—K be the projection (1=7/=<n) and let »: M
—M/|N be the natural map. Then we have N=N"7_Ker g,, where g;=n,-0-7
e M* and so N is open in the finite topology.

3. In case Fis bounded.

A topology F is said to be bounded if, for every I < F, there is an nonzero
ideal 4 such that I 2 4. When F is bounded, we shall determine, in this section,
the algebraic and topological structures of F-linearly compact modules. Let P
be a prime ideal of R and let Fp={I|I 2P" for some n, I is a right ideal of R}.
Then Fp is a bounded atom in the lattice of all topologies. Fp-linearly compact
modules is called P-linearly compact. Write’ kP:EE R/P*. Then it is evident

that ﬁFleépzlé(FP)lAas ril}gs. . Itis well-k/r\lown that IA\’P is a prime, princi}A)al

ideal ring and that P=PR=RpP, where P is the unique maximal ideal of Rp.

In this section, we shall use the following notations: Qp=0Qp,; Kp=Kr,; R(P")

=eRpleP™; R(P”)lzépe/p”e; R(P~)=lim eRpleP™; R(P7),=lim Rpe| P"e, where
N — —

e is a uniform idempotent in Rp. First we shall study P-linearly compact mo-

dules.
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Lemma 3.1. Q®R, is the quotient ring of Rp.

Proof. From the exact sequence 0—>R—Rp—Rp/R—0, we get the exact
sequence: 0=Tor(K,, Rp|R)—K,—>KpQ@Rp—>Kp,QRp/R=0, since R,/R is
P-divisible and has no P-primary submodules, and so Kp=~K,®@Rp. Hence we
have the exact sequence 0—>]A?P—>Q®IQP—>KP—>O. Thus Q® K is an essential
extension of IAQP as a right Rp-module. Since 15"=P”IA?P=IAQPP” and IA€p is
bounded, local, we obtain that Q@IAEP is divisible as an Rp-module. Hence
ORRp is an Rp-injective hull of R,. By Theorem of [2, p 69], it is the maximal
quotient ring of R, in the sense of [2] and so it is the quotient ring of Rp.

For an Rp-module M, we let M*=Homg (M, Kp).

Lemma 3.2. (i) R(P*)'=~R(P"),.
(i) R(P~)'=Rpe.

(i) (eRp)=R(P~).

(iv) [(QRKp)'=(QDRp)e.

These modules are all P-linearly compact.

Proof. (i) is evident. (ii) R(P~)=[lim R(P")]*=lim R(P"),~ Re.
—_— «—

(iii) R(P~), is Fp-torsion and artinian. Hence it is P-linearly compact and
s0 R(P=) = [R(P=),J=(lim R(P"))*=(lim R(P"))'=(eRz)'

(iv) From the exact sequence 0—>eﬁp—>e(Q®IA?P)—>R(P°")—>0, we get the
exact sequence 0—>1A?Pe—>[e(Q®RP)]*—>R(P°°) —0 as left Rp-modules. Let f be
any element of [e(Q®]A?P)]* Assume that P*f=0 for some n. Then P"f(e(Q®
RP)) 0 implies that O—f(e(Q®RP))P”——f(e(Q®RP)) and so f=0. Hence
[e(Q@ﬁP))]’ is torsmn-free as a left Rp-module. Thus [e(Q®1QP)]* is an
essential extension of RPe Hence we may assume that RPeC[e(Q®RP)]'C
(O®Rp)e. From Lemma 3.2 of [6], we ecasily obtain that [e(Q®RP)]’~
(ORRp)e. |

By Lemma 2.1, R(P*) and R(P<) are P-linearly compact in the discrete
topology. By Lemma 2.4 and Corollary 2.9, eRp is P-linearly compact in the
P-adic topology. e(Q®Kp) is a topological module by taking as neighborhoods
of zero the submodules {els“|n=0, +1, +2, ---}. Further the exact sequence
0—>e1§‘P—>e(Q®IA€P)—>R(P"°)—>O satisfies the assumption of Proposition 9 of [13]
and so e(Q@]AQP) is P-linearly compact in the above topology.

Lemma 3.3. Let 0—L—>M—>N—0 be an exact sequence of Rp-modules.
If the sequence is P°-pure in the sense of [7], then the exact sequence 0—N*—M*—
L0 is also P-pure.

Proof. Since R, is a principal ideal ring, the proof of the lemma is similar
to the one of Proposition 44.7 of [3] (see, also Lemma 1.1 of [7]).
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Theorem 3.4. (i) A module is P-linearly compact if and only if it is isomor-
phic, as topologzcal modules to a direct product of modules of the followmg types:
R(P"), R(P~), eRp, e(QRRy), where e is a uniform idempotents in Rp and the
topologies of these modules are defined in the proof of Lemma 3.2.

(i1) A module M is P-linearly compact, then M* is isomorphic to a direct sum
of modules of the followmg types: R(P™),, R(P~),, Rpe, (Q@I%P)e, where e is a
uniform idempotent in R p.

Proof. (i) Since each of these modules does admit a P-linearly compact
topology, the sufficiency is evident from Proposition 1 of [13]. Conversely, let
M be P-linearly compact. Then M* is a left Rp-module and Rp is a complete
g-discrete valuation ring in the sense of [6] (cf. p. 432 of [6]). So M* possesses
a basic submodule B by Theorem 3.6 of [6]. Further any finitely generated
module and any injective module over a Dedekind prime ring are both a direct
sum of indecomposable modules. Hence, from the definition of basic submodules,
Corollary 4.4 of [6] and Lemma 3.1 we have B=>, D> PR(P*) BIDRpe and
M*|B=3YDR(P~),S3B(QQRp)e. By Theorem 1.5 of [7] and Lemmas 3.2,
3.3, the exact sequence 0—(M*/B)*—M**—B*-0 splits and so, from Theorem
2.12 and Lemma 3.2, we get:

(1) ME L, IIR(PYD TIR(P*)® [1eRrD TTe(QRRy) .

The right sided module is P-linearly compact and so, by Corollary 2.3, @ is an
isomorphism as topological modules.

Since the topology of the left sided of (1) is the product topology, (ii) follows
easily from Lemma 3.2.

From Theorem 1.5 of [7], Theorem 3.4 and definitions, we have the follow-
ing chain of implications;
(P™-pure injective)
(P=-pure injective) = (P~-pure injective).
(P-linearly compact) e

Let F be a bounded topology and let M be F-linearly compact. Then we
know from Lemma 2.4 that M=I1im M,, where M, is F-torsion and artinian.
—

By the same way as in Theorem 3.2 of [5], we have M;=> P M ;p, where M =
{xe M,|xP*=0 for some n} and P ranges over all prime ideals contained in F.
Write M, P=li(_m M;p. Then My is P-linearly compact and M is isomorphic
naturally to [TMp as topological modules, where TIM, will carry the product
topology. It is evident that K,=>'@Kp, where P ranges over all prime ideals
in F. Further we can easily prove that M*=> P M¥ and that M**=[[ M},
where M} consists of all continuous maps of Mp into Kp. Thus, from Theorem
3.4, we have
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Theorem 3.5. Let F be a bounded topology. Then

(1) A module is F-linearly compact if and only if it is isomorphic as topological
modules to a direct product of modules of the following types: R(P"), R(P~), epRp,
eP(Q®IA€ p), Where P ranges over all prime ideals in F and ep is a uniform idempotent
in Rp.

(1) If M s F-linearly compact, then M* 1is isomorphic to a direct sum of
modules of the following types: R(P");, R(P~);, Rpep, (QQRp)ep.

Let F be any topology. A short exact sequence
(E): 0-L—->M—->N—-0

is said to be Fe-pure if MJ N L=L] for every JeF,. (E)is said to be F~-pure
if the induced sequence 0—L—M—>Nr—0 is splitting exact. A module is
called Fe(F=)-pure injective if it has the injective property relative to the class of
Fe(F~)-pure exact sequences. The structure of F>-pure injective modules is
investigated in the forthcoming paper.

Lemma 3.6. Let F be a bounded topology. Then (E) is F-pure if and only
if (E) is Pe-pure for every prime ideal P F.

Proof. For any prime ideal P, it is clear that P F if and only if P& F,.
So the necessity is evident. Conversely assume that () is P~pure for PEF.
Let J be any element of F,. Then there is a nonzero ideal 4 with J24. Write
A=P{'---Py", where P; are prime ideals. Then P,eF and X/XA=X/XP{'®
- @X/XP," for every module X. Hence by Lemma 1.1 of [7] the sequence
0—->L/LA—-M|MA—N|NA—Q is splitting exact. Hence MJNL=LJ and so
(E) is Fe-pure.

From the same ways as (1.2), (1.4), (1.5) of [7] and Lemma 3.6 we have

Proposition 3.7. Let F be a bounded topology. Then a module G is F*-pure
injective if and only if it is isomorphic to the module E(GF*)®TIGp, where P
ranges over all prime ideals in F, GF*=NGJ(J€F,) and Gp=lim G/GP™.

Let F be a bounded topology. Then from Theorem 3.5, Proposition 3.7
and definitions, we get the following chain of implications;

(F-linarly compact) = (F*-pure injective) = (F~-pure injective).
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