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' MODULES OVER DEDEKIND PRIME RINGS. V
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(Received December 1, 1977)

Let R be a Dedekind prime ring, let F be a non-trivial right additive topo-
logy on R and let F; be the left additive topology corresponding to F (cf. [8]).
For any positive integer #, let F” be the set of all right ideals containing a finite
intersection of elements in F, each of which has at most # as the length of com-
position series of its factor module. An exact sequence 0—L-—>M—>N—>0 of
right R-modules is EF"-pure if the induced sequence 0—Ext(Qp/R, L)— Ext
(Qp+/R, M)—Ext(Qp/R, N)—0 is splitting exact, where Qp»=1lim I (I ranges

over all elements in F”). If R is the ring of integers, p is a prime number and
F is the topology of all powers of p, then EF”"-purity is equivalent to p"-purity in
the sense of [12].

The aim of this paper is to investigate the structure of EF"-pure injective
modules. In Section 1, a notion of maximal F"-torsion modules will be in-
troduced. It is shown, in Theorem 1.10, that there is a duality between all
maximal F”-torsion modules and all direct summands of direct products of
copies of I%F»; by using the results in [9], where IAQF»;:Iir_n R[J(JeFT). In
Section 2, we shall study the category C(F") of F"-reduced, EF"-pure injective
modules. After discussing some properties of EF"-puries and F"-purities we
shall give, in Theorem 2.9, characterizations of projective objects in the category
C(F"). In particular, it is established that a module is a direct summand of
a direct product of copies of IAQF;: if and only if it is a projective object in C(F").
F is bounded if each element of F contains a non-zero ideal of R. If F is boun-
ded, then R r1=IIR/P", where P ranges over all prime ideals contained in F. So
our results may essentially be interesting in case F' contains completely faithful
right ideals of R in the sense of [3].

1. The Harrison duality

Throughout this paper, R will be a Dedekind prime ring with the two-
sided quotient ring QO and K=Q/R=+0. By a module we shall understand a
unitary right R-module. In place of ®g, Homy, Ext, and Tor?, we shall just
write ®, Hom, Ext and Tor, respectively. Since R is hereditary, Tor,=0
=Ext” for all n>>1 and so we shall use Ext for Ext' and Tor for Tor,. Let I be
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an essential right ideal of R. Then R/I is an artinian module by Theorem 1.3
of [3]. So the length of the composition series of the module R/I is finite. We
call it the Jemgth of I. Let F be any non-trivial right additive topology, then
F consists of essential right ideals of R (cf. p. 548 in [8]). For any positive
integer n, let F" be the set of all right ideals containing a finite intersection of
elements in F, each of which has at most # as the length. Let M be a module.
An element m of M is said to be F-torsion if O(m)={rER|mr=0} €F", and
we denote the set of all F"-torsion elements in M by Mps. M« is a submodule
of M, because F" is a pretopology on R. Following [8], we shall denote the left
additive topology corresponding to F' by F,. In a similar way we can define
the concepts of Fi-torsion elements and Fi-torsion sumbodules for left modules.
We put Qf:li_r)n I (I€F") and QF;:zli_r)n J Y (JEFY).
Concerning the terminology we refer to [8] and [9].

Lemma 1.1. (1) Qp=0 and so Qp is an (R, R)-bimodule.
(2) KF":QF"/R:KF,

Proof. (1) We shall prove that Qf,20s. To prove this let J be any
element of F7 with length J<#s. Then the length of the composition series of
the module /~'/R 1s at most n. By Proposition 1.4 of [8], J7!/R is F-torsion.
Hence, for every element g J !, we have ¢I, SR for some I ,&F with length
I,=<n. Hence qeql I7'SRI;'S Qp» and thus J'SOpn. So Om&SQpn by
Lemma 4.8 of [5]. Similarly Q20 and thus Qpr=0Qp.

(2) is evident from (1).

The exact sequence 0 SRS Op—>K»—0 yields the exact sequences:
0 Tor(M, K gr)—> MEMQQm—>MRK o0,
Hom(K ;», M)— Hom(Q s, M) L:M—> Ext(K s, M),
where ¢ (m)=m®1 and *(f)=f(1) (meM and f €Hom(Q», M)).

Lemma 1.2. (1) Tor(M, K,)==Mp».
(2) If M s F"-torsion, then MQQ = MQK pa.
(3) ImF= NMJ(JEFY).

Proof. (1) is obtained by the similar way as in Theorem 3.2 of [11], and
(2) is evident from (1) and the above exact sequence.

(3) Let J be any element of F7. Then from the exact sequence 0—>R—
J 1= J/R—0 we have the following commutative diagram with exact rows:

Hom (Qyn, M)— M — Ext(K zs, M)

! Il !
Hom(J !, M)—> M —Ext(J R, M).
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From this diagram and Proposition 3.2 of [13], we get Im:*SMJ and so
Im*c NMJ.

We denote the submodule Im ¢* of the module M by MF*, and if MF"=
0, then M is said to be F"-reduced. If M is F"-reduced, then it is F-reduced
in the sense of [9].

Lemma 1.3. Let 0—>L—->M—>N—0 be an exact sequence such that Ext
(Qpn, LY=0 and M is F"-reduced. Then N is F"-reduced.

Proof. This is evident from the following commutative diagram with
exact columns:

Hom(Qp», M) — M
v !
Hom(Qp, N) - N

| |
0 0.

For any module M we denote by M the submodule of F-torsion elements
in M. If M,=0, then we say that M is F-torsion-free.

Following [9], an exact sequence 0—L—M—N—0 is F~-pure if the induced
sequence 0—>L;—>M—N;—0 is splitting exact. A module is F*-pure injective
if it has the injective property to the class of F~-pure exact sequences. We de-
note the injective hull of a module M by E(M), and the F-injective hull of M
by E(M). By the results in §1 of [9], we have the following:

(1) A module G is F~-pure injective if and only if G=E(GF~)DExt(K,
G), where GF* is the maximal Fj-divisible submodule of G.

(2) For a module G, the following are equivalent:

(i) G is F-reduced and F~-pure injective.

(i) 8: G=Ext(Kj, G), where § is the connecting homomorphism.

(iii) G is F-reduced and Ext(Qg, G)=0.

(iv) G is F-reduced and Ext(X, G)=0 for every F-torsion-free module X.

These results will be used in this paper without references.

Lemma 1.4. Let M be a module. Then H,—=Hom(K, M) and G,=
Ext(K g, M) are both F -reduced and F=-pure injective.

Proof. (1) H, is F>=-pure injective by Proposition 5.1 of [13] and Propo-
sition 1.4 of [9]. Further, from the exact sequence Qpn—>K»—>0 and Proposi-
tion 5.2" of [2, Chap. IT], we get the following commutative diagram with exact
rows:

0 — Hom(K», H,) ——> Hom(Qp», H,)

U f zn
0 — Hom (K p#@K ps, M) = Hom (Q @K pr, M) .
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By Lemma 1.2, f is an isomorphism and so H, is F"-reduced.
(2) From the exact sequence 0—M —>E(M)£> E(M)[M—0 we derive

an exact sequence 0—H,—Hom(K E(]W))éfHom(KFn, EM)/M)—G,— 0.
Since Hom(K», E(M)) is F-reduced and F=-pure injective, Ext(Q, Hom
(K, E(M))=0. So Ext(Qps, Im g4)=0 and thus G, is F"-reduced by (1)
and Lemma 1.3. By Proposition 3.5a of {2, Chap. VI], we have Ext(Qy, G,)=<
Ext(Tor(Qp, Kp»), M)=0. Therefore G, is F~-pure injective.

Let M be any module. From the exact sequence 0 —=>R—>Q n—>K»—>0

we have the exact sequences:
U

5
Ext(K g, M) = Ext (K gn, Ext(K g, M)) — Ext (Q gn, Ext(K pn, M),
5 ‘
M > Ext(K pr, M) — Ext(Q s, M) .

The second exact sequence yields a homorphism 8y: Ext(Kp, M)—
Ext(K p», Ext(K pn, M)).

Lemma 1.5. 3’ and 3, are both isomorphisms.

Proof. From the exact sequence 0—->R—Q»—K»—>0 we have the
isomorphism: Tor(Kzs, Kn)==RQK . Applying Theorem 2.1 of [11] we
get the commutative diagram:

Ext(RQKp, M) = Ext(Tor(Kpm, K;»), M)
U Y U
Hom(R, Ext(K zs, M)) — Ext(K p», Ext(K pn, M)) .

Hence 8’ is an isomorphism.
From Theorem 1.5 of [9] we obtain the following commutative diagram
with exact row:

h
0 - M — E(MF~*)®Ext(K, M) — Coker & — 0
o,
M — Ext(K;, M),

where p is the projection and §, is the connecting homomorphism. Since
Coker % is F-torsion-free and injective, applying Ext(Kz», ) to the diagram we
have the isomorphism 8, : Ext(K », M)=~Ext(K », Ext(K, M)). From the exact

sequence 0—K»— K we have the commutative diagram:

m Ext(K, M)
L

M = Ext(Kpn, M).
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From this diagram we get the commutative diagram:
8
Ext(K j», M) 2= Ext (K g, Ext(K z, M)

- [
Ext(K pr, M) -2 Ext(K pn, Ext(K ;n, M)).

By Proposition 3.5a of [2, Chap. VI] and Lemma 1.2, (8*) is an isomorphism
and so 8y is also an isomorphism.

From the inclusion map 0: K »—Kj, we get the epimorphism *: Ext
(Kp, M)—Ext(K , M) for any module M.

Lemma 1.6. Ker 0*=Ext(K,, M)F".

Proof. We consider the following commutative diagram with exact row:

0—>Ker6* ——> FExt(Kp,M) —— Ext(Km M)—0

l l g
" l
Ext(Kzn, Ker %) — Ext(K g, Ext(K, M)) (——)>*Ext(KFn, Ext(K s, M)).
By Lemma 1.5 and its proof, § and (%), are both isomorphisms. Hence Ker
0*=Ext(K,, M)F*.

Lemma 1.7. Let N be an F-torsion let module. Then E;(N) is a direct
summand of a direct sum of copies of K.

Proof. Since E(N) is a torsion left module, there 1s a torsion left module L
such E(N)®L=Z@®K. So ZDK,=ZDKp = (3DK)r,=EN)r DL, by
Proposition 1.4 of [8]. It is evident that E(N)y SEp(N) by Proposition 6.3
of [14]. Since N is F-torsion, the converse inclusion also holds. Thus E(N)
is a direct summand of =P K.

An F-torsion module D is said to be maximal F*-torsion provided (E(D))p=
D. This is clearly equivalent to (Eg(D))z»=D. For any module M we define
M, m=lim M/M] (JE€F%). Then ﬁF'; becomes a ring and MFr; becomes an
ﬁF7-m(;gule by the similar way as in §4 of [13]. Let a: M—>MF7 be the cano-
nical map. Then Ker a=NMJ (JEF").

Lemma 1.8. Let M be an F-torsion-free module. Then
(1) MQK g is maximal F"-torsion.
(2) There are isomorphism M pn=< Hom(K pn, MQK pr) == Ext(K p», M) such
that the diagram
M—M — M

e L

MF.I.gHom(KFn, M@K pr)=Ext(Kpn, M)
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commutes, where B(m) ()=mQF (mcM, §EK ») and § is the connecting homo-
morphism.

Proof. (1) The commutative diagram

O_)R_—)QF”_)KF"—)O

| e b

0->R—-Qp - K; =0
yields the commutative diagram with exact rows:
0>M->MRQm—>MIKm—0

@ e e
0—>M—> MRQ, > MK, —0.

By Proposition 1.1, Lemma 2.5 of [8] and Lemma 1.7, Tor(M, Qp/Op)=0.
Hence #, is a monomorphism and so 6, is also a monomorphism. Let x
be any element in M ®K such that [=0O(x)F”" and let ¥ be an element in
M@QQr mapping on x. Then YIS M and so yeMQI ! in MQQp. This im-
plies that yEM®Qz» and thus x&eMQQK . Hence (MQKp)pm=MQQK .
Therefore M@K ;= is maximal F"-torsion, because M QK ; is F-injective.

(2) By the similar way as in Lemma 2.7 of [8], we have Hom(Kz», MQ
K ;)=Ext(K», M) such that the diagram

M ——— M

! V
Hom (K 5, MQK ;)=Ext(K y, M)

V v

Hom (K p», MQK ;)=Ext (K, M)

commutes. Since (M Q@ Ky)pm=MQ Kz, we have Hom(K, MQQK)=
Hom(K z», M@K »). This is the proof of the assertion to the right diagram.
Next we consider the following commutative diagram with exact right column:

My, > Hom (K, M®K)
Voo !
My 2> Hom (K s, MQK ;) (= Hom (K yr, MQK )
y
0,

where (1) (7)=m,;Qq (M= ([m;+M]]), =[qg+R] and g€ ]™), »" is the
homomorphism induced by 7 and the map: My —>M» is the natural homo-
morphism. By Lemma 2.7 of [8], 7 is an isomorphism. If »'(#)=0, where
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ﬁ’l:([m,—]—M]])EMF7, then m;® J'/R=0 in M@K This implies that
m;@ J 'S M by the diagram (A4) and so m;eM]. Hence #=0 and thus 7’
is an isomorphism. The commutativity of the left diagram is clear.

Lemma 1.9. Let M be an F-torsion-free module. Then Ext(K -, M) is
isomorphic to a direct summand of a direct product of copies of Rpn.

Proof. Since M;=0, the exact sequence 0—Ker f— = @RLM —0 is
F~-pure and so the sequence 0—Ext(Kj, Ker f)—Ext(K;, ZPR)—Ext(K,
M)— 0 is splitting exact by Lemma 1.3 of [9]. By Proposition 3.5a of [2,
Chap. VI] and Lemma 1.2, this sequence yields the splitting exact sequence
0— Ext(K pn, Ker f)—>Ext(K p», ZPR)~>Ext(K s, M)—0. So it suffices to prove
that Hom(K p», ZPKn) is a direct summand of Hom(K z», IT1 K ) by Lemma
1.8. To prove this we consider the following commutative diagram with exact
rows and columns:

0 0
| |

0— = @K — (I K ) pr
| |

0> DK, > IKp)s.

The second row splits, because =P Ky is F-injective. Since (ZPKy)pn=
% P K p», the splitting map induces an splitting map of the first row. Hence
Hom(K s, 2P K ) is a direct summand of Hom(K p», (11K p#)ps)=Hom(K p»,
H KF”)‘

Theorem 1.10 (The Harrison duality). The correspondence
(B) D — G = Hom(Ky», D)
is one-to-ome between all maximal F"-torsion modules D and all direct summands

G of direct products of copies of R pn. The inverse of (B) is given by the correspon-
dence G—>GRK pn.

Proof. (i) Let D be maximal F"-torsion and let H=Hom(K, Ex(D)).
Then H is F-torsion-free, F~-pure injective and 7: H QK =< E;(D) by Theorem
2.2 of [9], where 7(x*®q)=x(7) (x€H and g&K ). From the exact sequence

*

0
0—-K FniK # we get the exact sequence: H—Hom(K p, Ep(D)) (=Hom(K p,
D))—0. This yields the commutative diagram:

H®K, = E«D)
e
H@Kpn - D
N P
Hom(KF”, D)®KF”)
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where p(x®g)=x(7) and 7’ is the map induced by #. Since H is F-torsion-
free, 6, is a monomorphism and H®K» is maximal F"-torsion. Hence 7’
is an isomorphism, and @(8*),=7" implies that @ is also an isomorphism,
because (6%*), is an epimorphism. From D=HQK ;», we have Hom(K», D)
=~Hom(K s, HQK p»)=Ext(Kzs, H) by Lemma 1.8. Hence Hom(K», D) is a
direct summand of a direct product of copies of ﬁﬂ; by Lemma 1.9.

(i) Let G be a direct summand of a direct product of copies of ﬁF»;. Then
we may assume from Lemma 1.8 that GOX=Hom(K s, [1K)=Hom(K»,
(T1K g#) =), where X is a module. Since (IIKy»)z» is maximal F”-torsion, we
get, by (i), the isomorphism ¢@: (GQRKp)D(X QK pn) =< (1K ). Hence
G®K» is maximal F"-torsion. Applying Hom(Ks, ) to the isomorphism
we obtain the isomorphism @, : Hom(K, GQK»)DHom(K i, X QK pn)=x
GPX. We may define »: GOX—-Hom(K s, GRK pr)PHom(K i, X QK pn)
by AMg+x){(7)=(g®7)+(x®g), where g=G, x&X and g=Ky». Then it
follows that @sA=1 and that M(G)SHom(K», GQK ), MX)EHom(K», X
QK ). Hence G=Hom(Kz», GRK pr).

This duality was first exhibited by Harrison in [4] between all divisible,
torsion abelian groups and all reduced, torsion-free cotorsion abelian groups.
This duality was generalized by Matlis [10] to modules over commutative
integral domains. To modules over non-commutative complete discrete
valuation rings the result was established by Liebert [6]. The author genera-
lized it in [9] to the case of modules over Dedekind prime rings.

2. Projective objects of the category of F"-reduced, EF"-pure in-
jective modules

In this section we shall define a notion of EF”"-pure injective modules aAnd
give characterizations of direct summands of direct products of copies of Rpn
which were discussed in §1.

A short exact sequence

(E): 0>L—>M->N—0

of modules is said to be F™-pure if MJNL=L] for all JeF};. (E) is said to be
Ext-F"-pure (abbr. EF"-pure) if the induced sequence 0—=Ext(K ps, L)—>Ext(K ;»,
M)—Ext(K s, N)—0 is splitting exact. A module G is EF"-pure injective if it
has the injective property relative to the class of EF”-pure exact sequences. A
right additive topology F is bounded if any clement of F contains a non-zero
ideal of R.

Lemma 2.1. (1) If (E) is EF"-pure, then it is F"-pure.
(2) If (E) is F=-pure, then it is EF"-pure.
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(3) If F is bounded and (E) is F"-pure, then it is EF"-pure.

Proof. (1) If (E)is EF"-pure, then the induced sequence 0—Ext(K z», L)
—Ext(K g, M) is splitting exact. Let J be any clement of F7. Then we get
the following commutative diagram with splitting exact rows:

0 — Ext(J /R, Ext(K g, L)) = Bxt(J YR, Ext(K y», M))
0 — Ext(Tor (2}-1/1&, K ), L) — Ext(Tor( J—f%, Kp), M)
0—> Extg-l/R, L)y —> Ext( ]‘lsz, M)

0 —> L/i J — M/il{l].

Hence (E) is F"-pure.

(2) If (E) is F=-pure, then the induced sequence 0—Ext(K, L)—Ext
(Kp, M) is splitting exact by Lemma 1.3 of [9]. Applying to Ext(Kz, )
the above sequence we get the splitting exact sequence 0—Ext(K g, L)—Ext
(K, M) by the same way as in (1). Therefore (E) is EF"-pure.

(3) Let P be a prime ideal of R. Then the set Fp={I|I2P* for some
non-negative integer &, I is a right ideal of R} is a right additive topology. We
shall prove that F;={I|I2P" and I€F,}. It is well known that R/P"=
(D),,, where D is a completely primary ring with the Jacobson radical J(D) such
that one-sided ideals of D are only {J(D)|!=0,1,2, ,n} (cf. Theorem
4.32 of [1]). we can easily see that P"F}. Let I be any element of F;. To
prove that 72P", it suffices to prove it in case the length of I is k (k=n). If
k=1 and I2P. Then I4+P=R. Since I€F;, we may assume that /2 P!
and I 2P for some natural number 7. It follows that P"'=(I4P)P"'C1,
which is a contradiction. Hence I2P. Assume that k>1. Let I; be any
element of Fp such that I;2] and the length of I, is k—1. By induction
assumption, we have I,2P*'. Write I,=aR-+I. Then we have a ' /2P,
since the length of ™I is 1. Thus we get P*=P*'PS I PS]. Hence I2P",
as desired.

Now let F be a bounded right additive topology. Then by Proposition
1.2 of [8], F is determined by a class {Sy|YET} of simple modules and each
Sy is annihilated by a prime ideal Py of R, since F is bounded. Further, we
obtain that a prime ideal P of R is an element in F if and only if simple modules
in R/P are isomorphic to Sy for some y&T, because R/P is a simple and
artinian ring. So F={I|I2PhN---N P}, where P,€F and n, -, n, are
non-negative integers} by Proposition 1.2 of [8]. Thus we have F"={I|I2
PN+ NP;, where P,F} and so Kxn=2@P"/R, where P ranges over all
prime ideals contained in F. If (E) is F"-pure, then it is P"-pure in the sense
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of [7] for any PEF and so the sequence 0—L/LP"—M/MP" splits by Lemma
1.1 of [7]. Hence we get the commutative diagram with splitting exact rows:

0 — 11 L/LP" — 11 M/MP"
i zu
0 — Ext(K gn, L) — Ext(K g, M) .

Therefore (E) is EF"-pure.

Lemma 2.2. The following conditions of a short exact sequence (E): 0—>
L—-M—>N—0 are equivalent:

(1) (E)is F"-pure.

(2) For any finitely generated F"-torsion module T, the natural homomor-
phism Hom(T, M)—Hom(T, N)— 0 is exact.

(3) For any Fi-torsion left module T, the natural homomorphism 0—>L @
T—-MQT is exact.

Proof. Let I be any element of F”. Then I7'/RE&K by Lemma 1.1
and it is finitely generated. So I7'/R=Z@R/]; for some J;&F} by Theorem
3.11 of [3]. Applying Hom( , Kj) to this isomorphism we get R[I=33 J7'/R
by Proposition 3.3 of [13], because Hom(R//J;, Kz)= J7'/R. Further any fini-
tely generated F”-torsion module is a finite direct sum of modules R/I (I &F").
Combining these facts with Lemma 5.2 of [11], we get the equivalence of (1)
and (2). For any module X and any left ideal J, (X/X])=X@R/] and ®

commutes with direct limits. So the equivalence of (1) and (3) is also evident.

Lemma 2.3. If a short exact sequence 0—L—>M—>N—0 is F"-pure, then
the induced sequence 0—Lpn—>M pn—>Npn— 0 s exact.

Proof. It follows from Lemmas 1.2 and 2.2.

Lemma 2.4. For a module G, the following are equivalent:

(1) G is F"-reduced and EF"-pure injective.

(2) G is F"-reduced and F=-pure injective.

(3) The connecting homomorphism 8: G— Ext(K s, G) is an isomorphism.

Proof. (1)=>(2): It is evident from Lemma 2.1.
(2)=(3): We consider the commutative diagram:

G = Ext(K, G)

s o

G - Ext(Kr, G)
!
0.

By Lemma 1.6 and the assumption, §* is an isomorphism and so & is an iso-
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morphism.

(3)=(1): It is evident from Lemma 1.4 and definition.

Let f: M—E(MF") be an extension of the inclusion map MF"—M and §:
M—Ext(K i, M) be the connecting homomorphism. We define a map g: M—
E(MF"YDExt(K =, M) by g(m)=(f(m), 8(m)) for every me M.

Lemma 2.5. The sequence
0 M & E(MF")@ Ext(K p, M) — Coker g — 0

1s exact and EF"-pure. Further E(MF"YDExt(Kzs, M) is EF"-pure injective
and Coker g is injective.

Proof. By the similar way as in Lemma 2.7 of [7], Coker g is injective.
The other assertions follow from Lemmas 1.5 and 2.4,

Lemma 2.6. Let M be any module. Then the natural homomorphism 7:
M—M|MF" induces the following commutative diagram:

5
M2 s Bt (e, M) —L s Bxt(0p, M)
©<© In U U 7,
M|MF"—Ext(K pr, M{MF") — Ext(Qps, M/MF").

Proof. It is evident that f, %;, %, are all epimorphisms. & induces the
homomorphism §: M/MF"— Ext(K y», M) such that 87=38. Hence we get the
commutative diagram with exact column:

5
Ext(Kpn, M) ———> Ext(K p, Ext(K p», M))

Ym (s
Ext(K z», M{MF™)

!

0.

By Lemma 1.5, &4 is an isomorphism. Therefore 7, is an isomorphism. So
it follows from the diagram (C) that 7, is also an isomorphism.

Corollary 2.7. For any module M, M|/MF” is F"-reduced.
Proof. It is clear from the diagram (C).

Let C(F") be the category of F”-reduced and EF”-pure injective modules
together with their homomorphisms. We note that a module G is an element
in C(F) if and only if Ext(Qr, G)=0=GF" by Proposition 1.4 of [9] and Lemma
24.

Proposition 2.8. C(F") is an Abelian category.



388 H. MARUBAYASHI

Proof. Let M, N be modules in C(F") and f: M—N be a homomorphism.
Then the exact sequence 0 =Ker f—M— Im f—0 yields an exact sequence:
0=Hom(Qf, Im f)—Ext(Q, Ker f)— Ext(Qr, M)—Ext(Qr, Im f)—0. The
first term is zero, because QO is F-injective and Im f is F-reduced. Therefore
Ext(Qr, Ker f)=0=Ext(Qz, Im f), because Ext(Qr, M)=0 and so Ker f,
Im feC(F"). Next we consider the exact sequence 0—Im f-—»N— Coker
f—0. By Lemma 1.3, Coker f is F"-reduced. Since Ext(Qp, N)—Ext (O,
Coker f)—0 is exact, it follows that Coker feC(F"). It is easy to prove the
other axioms for Abelian categories.

A module in C(F") is said to be C(F")-projective if it is a projective object
in the category C(F").

Theorem 2.9. Let G be a module. Then the following conditions are
equivalent:

(1) G is C(F")-projective.

(2) G is a direct summand of Ext(K s, 3 D R).

(3) G is a direct summand of 11 I@F;.

(4) G is isomorphic to Ext(Kp, M), where M is an F-torsion-free module.

(5) G is a direct summand of Ext(K pn, = D R%r;).

Proof. We shall give the following implications: (2)«(5) and (1)« (2)=>
()= H=(2).

(2)=(5): By Lemmas 1.8 and 2.5, the exact sequence 0—>R£>E(RF”)€B
IA?F»;—>Coker g—0 is EF"-pure and Coker g is divisible. So it is F"-pure by

k
Lemma 2.1. Hence the exact sequence 0 — EEBR@E P E(RF"BZ EBéFf;——»

Coker (ZPg)—0 is F"-pure and Coker (= Pg) is divisible. Applying Hom
(Kgn, ) to the exact sequence we obtain the exact sequence 0—> Hom(K z», (XD

E(RFYDHEDR, ))IE';Hom(KFn Coker (E@P g))— Ext(K pn, ZPR)—> Ext(K s, 2D
R, n)—0. On the other hand F’-purity of the exact sequence yields the iso-
morphism E: (ZBE(RF")HZD Rpr)pnax(Coker (Pg));» by Lemma 2.3. So
k4 is an isomorphism and thus we get Ext(K z», Z@OR)=Ext(K p, EGBI% )

(1)=(2): An exact sequence 0—Ker f—3 EBR—f->G —0 yields the exact

sequence 0 — Ker f ,— Ext(Kz», = EBR)& Ext(K pn, G) (==G)—0. Since Ext(K pn,

3@R), GEC(F"), we have Ker f, €C(F") by Proposition 2.8. Hence, by as-
sumption, the sequence splits.

(2)=(3): This is clear from Lemma 1.9.

(3)=#): By Theorem 1.10 G=Hom(K», D), where D is a maximal
F"-torsion module. We let H=Hom(K, E(D)). Then it is F-torsion-free
and G=Hom(Kz+, HRQK pn)=Ext(Ky, H) by Lemma 1.8 and the proof of
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Theorem 1.10.
(4)=(2): Let M be an F-torsion-freec module. Then an exact sequence

0—Ker k— E@RiM —0 is F~-pure and so it is EF"-pure. Hence the in-
duced sequence 0— Ext(K, Ker k)— Ext(Kzm, ZPR)—Ext(Kpm, M)—0 is
splitting exact.

(2)=(1): It suffices to prove that Ext(Kp, S@R) is C(F")-projective.
We consider a diagram of the form

SPHR
1 5 AN
(D) 0-— =ZBR/(ZBR)F” — Ext(Kps, ZDR) — Ext(Qpn, ZPR) -0
f 74
M — N —_— 0,

where M and N&C(F”), f is an epimorphism, § is the connecting homomor-
phism and 7 is the natural homomorphism. Then there is a homomorphism
h: SBR—M such that gd=fh. The homomorphism % and % yield the com-
mutative diagram by Lemmas 2.4 and 2.6:

8
M = Ext(K zn, M)

ho thy
SOR —> Ext(Km, ZBR)
1'77 5 2[[77*

(EBR)/(EPRF" -4 Ext(K o, (SEBR)(EDR)F") .

We put £=38,hy75'8,. Then h=h7n. The upper row in the diagram (D) is
exact and is EF”"-pure by Lemmas 2.5, 2.6 and Corollary 2.7. So we have a
a homomorphism k: Ext(Kp, Z@R)—>M such that kd=h. Hence gé=fh
—fhn=fk8n=fkS. So g—fk induces a homomorphism g—fk: Ext(K ;», ZR)/
S(Z®R)—N. On the other hand Ext(K, ZDR)/6(ZDR)=Ext(Qz, ZPR)
and Ext(Qz+Z@R) is a homomorphic image of Ext(Q, ZPR). Hence Ext(Qp,
S@PR) is injective. Since N is reduced, i.e., the injective submodule of N is

zero, g—fk=0 and so g=fk. Hence Ext(K», ZPR) is C(F")-projective.

Corollary 2.10. There is one-to-one between all maximal F"-torsion modules
and all C(F")-projective objects in the category C(F").

ReMaARk. (1) Let C(F*) be the category of F-reduced and F~-pure injective
modules together with their homomorphisms. Then the corresponding results
to Theorem 2.9 also hold for the category C(F*), where IQF}»:IA@F, and Kpe=
K,. Further a module G is C(F~)-projective if and only if GEC(F~) and G
is F-torsion-free by Proposition 2.3 of [9].
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(2) C(F™)-projective objects are not necessaily F-torsion-free. For

example, let P be a prime ideal of R and let F,={l|I2P* for some k}.
Then the C(F7)-projective object Ext(Kps, R) is Fp-torsion, because Ext(Kps,
R)=R/P” by Proposition 3.2 of [13].

(3) C(F™-projective objects are not necessarily F-torsion. For example,

let R be a simple hereditary noethenian prime ring and let F be any non trivial
right additive topology. Then 0— R—Ext(K», R) is exact, because RF"=0.
Thus the C(F™)-projective object Ext(K z», R) is not F-torsion.
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