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MODULES OVER THE RING OF PSEUDORATIONAL NUMBERS
AND QUOTIENT DIVISIBLE GROUPS

A. V. TSAREV

Abstract. Structure theorems are obtained for some classes of modules over the
ring of pseudorational numbers and some classes of quotient divisible mixed groups.

Introduction

The ring of pseudorational numbers and modules over this ring were introduced by
Fomin in [2] and Krylov in [12, 13]. Later, in [3, 4] Fomin applied such modules to
the study of quotient divisible mixed groups and torsion free groups of finite rank. In
[12], Krylov used modules over the ring of pseudorational numbers for the study of the
so-called sp-groups.

Many important Abelian groups are additive groups of modules over the ring of
pseudorational numbers. The periodic, divisible, and algebraically compact groups and
the groups with π-regular endomorphism ring are classical examples (all these classes
were considered in [1]). The mixed groups contained in the direct product of their p-
components (called the sp-groups) give another important example. The sp-groups were
studied in the papers [5]–[12]; this list is far from being exhaustive.

Besides [2], modules over the ring of pseudorational numbers were treated in [14],
where the injective modules were described, and in [13], where the ideals of the ring of
pseudorational numbers were described and some questions about endomorphism rings
and groups of homomorphisms for sp-groups were answered.

This paper can be divided into three parts. In the first part (§§1, 2) we introduce
the principal notions and properties of modules over the ring of pseudorational numbers.
§§3 and 4 constitute the second part. In these sections we study the structure of some
classes of finitely generated modules. Theorems 3.1 and 4.1 and Corollaries 3.1 and 4.1
are the main results of that part. In the concluding part (§5) we discuss relationships
between modules over the ring of pseudorational numbers and quotient divisible mixed
groups and torsion free groups of finite rank.

Throughout the paper, Z, Q, and Ẑp denote (respectively) the rings of integers, ra-
tional numbers, and p-adic integers, as well as the additive groups of these rings. Next,
Z(m) stands for the residue class ring modulo m, P denotes the set of all prime integers,
and N is the set of positive integers. By r(G) we denote the torsion free rank of the group
G, which will be called simply the rank of G, and r∗(M) is the pseudorational rank of
an R-module M . The periodic part of a group G will be denoted by t(G). For a subset
S of a group G, we denote by

〈
S

〉
∗ the pure hull of S in G, i.e., the set of all g ∈ G such

that mg ∈
〈
S

〉
for some nonzero integer m. The remaining notation and definitions are

standard and correspond to those in [1].
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§1. The ring of pseudorational numbers

In the ring Ẑ =
∏

p∈P Ẑp, we consider the subring generated as a pure subgroup by
the ideal

⊕
p∈P Ẑp and the unity of the ring.

Definition 1.1. The ring R =
〈
1,

⊕
p∈P Ẑp

〉
∗ is called the ring of pseudorational num-

bers.

We shall also use some other rings introduced in the papers [2] and [13]. Let χ = (mp)
be an arbitrary characteristic, and let Kp = Z/pmpZ if mp < ∞ and Kp = Ẑp otherwise.
If the characteristic χ contains infinitely many nonzero components, then we denote by
Rχ ⊂

∏
p∈P Kp the subring whose additive group is the pure hull

〈
1,

⊕
p∈P Kp

〉
∗. If the

p-components of χ are nonzero only for p = p1, . . . , pn, then we put Kχ = Kp1 ⊕· · ·⊕Kpn

and Rχ = Q ⊕ Kχ. Observe that if χ = (∞), then the ring Rχ is precisely the ring of
pseudorational numbers.

The following properties of the rings Rχ were obtained in [2].
Properties:
10. An element r = (αp) ∈

∏
p∈P Ẑp is contained in the ring R if and only if there

exists a rational number |r| = m/n such that nαp = m for almost all prime integers p.
20. For every r ∈ R the rational number |r| described in 10 is unique.
30. The elements of the form εp = (0, . . . , 0, 1p, 0, . . . ) are idempotents of the ring

R. Moreover, each idempotent of the ring of pseudorational numbers has the form ε =
εp1 + · · · + εpn

or 1 − ε.
40. T =

⊕
p∈P Ẑp is a maximal ideal of the ring of pseudorational numbers; it consists

of all r ∈ R such that |r| = 0, and R/T ∼= Q.
50. Each epimorphic image of the ring Rχ has the form Rϕ or Kϕ, where χ ≥ ϕ.
Next we consider some invariants of modules over the ring of pseudorational numbers

and recall some properties of such modules.

Definition 1.2 ([2]). We say that an R-module M is divisible if its additive group is
torsion free and divisible and rm = |r|m for all r ∈ R, m ∈ M . We say that an R-module
is reduced if it contains no divisible submodules.

Theorem 1.1 ([2]). Let M be an arbitrary R-module. Then:
1. Either the module M is reduced, or it contains the greatest divisible submodule

div M ;
2. div M = {m ∈ M | tm = 0 for every t ∈ T};
3. div M is a direct summand of M .

Theorem 1.2 ([2]). For an arbitrary R-module M , the set

TM = {tm | t ∈ T, m ∈ M}

is a submodule of the module M , and TM =
⊕

p∈P Mp, where Mp = εpM .

Let M be a finitely generated R-module, and let {x1, . . . , xn} be a generating set of
M . Obviously, the Ẑp-module Mp = εpM is generated by the elements {εpx1, . . . , εpxn}.
As any finitely generated p-adic module, Mp decomposes into the direct sum of cyclic
Ẑp-modules:

Mp =
〈
a1

〉
Ẑp

⊕ · · · ⊕
〈
an

〉
Ẑp

;

some of these modules may be zero.
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Any cyclic Ẑp-module is isomorphic either to Ẑp or to Z/pkipZ, where kip is a non-
negative integer. Therefore, the isomorphism

Mp
∼= Z(pk1p) ⊕ · · · ⊕ Z(pktp) ⊕

⊕
s

Ẑp (t + s = n)

gives rise to an ordered sequence of nonnegative integers and ∞ symbols,

(1.1) 0 ≤ k1p ≤ · · · ≤ knp ≤ ∞,

the last s terms of which are the ∞ symbols (0 ≤ s ≤ n). The sequences (1.1) constructed
for all prime integers p determine a sequence of characteristics. Several terms at the
beginning of this sequence may be the zero characteristics; deleting them, we obtain a
sequence

(1.2) χ1 ≤ · · · ≤ χk.

The sequence of characteristics (1.2) will be called the generalized characteristic of the
finitely generated R-module M .

Definition 1.3 ([2]). Let M be an R-module; by the pseudorational rank of M we mean
the dimension dimQ

(
M/TM

)
of the factor module M/TM over the field Q ∼= R/T .

Properties:
60. If M = 〈x1, . . . , xn〉R, then r∗(M) ≤ n.
70. If N is a submodule of an R-module M , then r∗(N) ≤ r∗(M).
Since N ⊆ M and TN ⊆ TM , there exists a monomorphism of vector spaces N/TN →

M/TM , which means that dimQ(N/TM) ≤ dimQ(M/TM).
80. If N is a submodule of an R-module M , then r∗(M) = r∗(M/N) + r∗(N).
Since T (M/N) = TM/TN and (M/N)/(TM/TN) ∼= (M/TM)/(N/TN), we see that

r∗(M) = dimQ((M/N)/(TM/TN)) + dimQ(N/TN) = r∗(M/N) + r∗(N).
90. If M is an R-module whose generalized characteristic is locally free (i.e., it does

not contain any ∞ symbol), then r∗(M) = r(M).
If the generalized characteristic of the R-module M is locally free, then TM = t(M);

hence, r∗(M) = r(M/t(M)) = r(M).

§2. The module of pseudorational relations

Let X = {x1, . . . , xn} be any finite system of elements of an R-module M . Obviously,
the set

∆MX = {(r1, . . . , rn) ∈ Rn | r1x1 + · · · + rnxn = 0}
is an R-module. If X is a generating system of M , then ∆MX will be called the module
of pseudorational relations of M .

Proposition 2.1. Let M and L be arbitrary modules over the ring R, let X={x1, . . . , xn}
be a generating system of M , and let Y = {y1, . . . , yn} be any system of elements of L.
A homomorphism f : M → L such that f(xi) = yi (1 ≤ i ≤ n) exists if and only if
∆MX ⊆ ∆LY .

Proof. We prove the “only if” part. Let f : M → L be a homomorphism such that
f(xi) = yi (1 ≤ i ≤ n). If (r1, . . . , rn) ∈ ∆MX , then r1x1 + · · · + rnxn = 0, whence

f(r1x1 + · · · + rnxn) = r1y1 + · · · + rnyn = 0.

Thus, ∆MX ⊆ ∆LY .
Now we prove the “if” part. Let ∆MX ⊆ ∆LY ; we construct a homomorphism

f : M → L such that f(xi) = yi (1 ≤ i ≤ n).
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We define a correspondence f : M → L by the rule

f(r1x1 + · · · + rnxn) = r1y1 + · · · + rnyn.

Let g = r1x1 + · · · + rnxn = s1x1 + · · · + snxn be two arbitrary representations of an
element g ∈ M . Then

(r1 − s1)x1 + · · · + (rn − sn)xn = 0,

i.e., ((r1 − s1), . . . , (rn − sn)) ∈ ∆MX . The condition ∆MX ⊆ ∆LY implies

(r1 − s1)y1 + · · · + (rn − sn)yn = 0,

which means that

f(r1x1 + · · · + rnxn) = r1y1 + · · · + rnyn = s1y1 + · · · + snyn = f(s1x1 + · · · + snxn).

Thus, the correspondence f is a mapping. Obviously, f is compatible with the operations;
i.e., f is a homomorphism of R-modules. It remains to observe that f(xi) = yi (1 ≤ i ≤
n). �

Corollary 2.1. Let M and L be finitely generated R-modules. They are isomorphic if
and only if they admit equal modules of pseudorational relations.1

Proposition 2.2. Let X = {x1, . . . , xn} be a generating system of an R-module M ; then

n = r∗(M) + r∗(∆MX).

Proof. Let ϕ : Rn → M be the mapping defined by the rule

ϕ(r1, . . . , rn) = r1x1 + · · · + rnxn.

It is easily seen that ϕ is a homomorphism. But X is a generating system of the R-module
M ; hence, ϕ is an epimorphism. Observe that

(r1, . . . , rn) ∈ kerϕ ⇐⇒ r1x1 + · · · + rnxn = 0,

i.e., kerϕ = ∆MX . Therefore,

M ∼= Rn/∆MX and n = r∗(M) + r∗(∆MX). �

§3. Modules of pseudorational rank 1

Lemma 3.1. If M is a cyclic R-module, then its pseudorational rank is equal to 1 or 0.
In the first case M ∼= Rχ, where χ is an arbitrary characteristic, and in the second case
M ∼= Kϕ, where ϕ is an almost zero characteristic.

Proof. Let M =
〈
x
〉

R
; then, obviously, the mapping ϕ : R → M defined by the rule

ϕ(r) = rx is an epimorphism of modules, and kerϕ is an ideal of the ring R. Thus, the
module M is isomorphic to an epimorphic image of the ring R, which is isomorphic to
one of the modules Rχ or Kϕ.

Since r∗(Rχ) = 1 and r∗(Kϕ) = 0, we obtain the second statement of the lemma. �

Lemma 3.2. If M = 〈m1, . . . , mn〉R is a finitely generated R-module of pseudorational
rank 1, then we can choose a generating system {s1, t2, . . . , tn} of the module M so that
s1 /∈ TM and t2, . . . , tn ∈ TM .

1Translator’s Note: Probably, here (as well as in the formulation of Proposition 5.1) the author has
in mind the following: there exist generating systems of these modules for which the modules of their
pseudorational relations coincide.
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Proof. We introduce the notation
mi1 = s1 /∈ TM, . . . , mik

= sk /∈ TM ;
mik+1 = tk+1 ∈ TM, . . . , min

= tn ∈ TM.

Since
M/TM =

〈
s1 + TM, . . . , sk + TM, tk+1 + TM, . . . , tn + TM

〉
Q

=
〈
s1 + TM, . . . , sk + TM

〉
Q

and dimQ M/TM = 1,

we have k ≥ 1. Since the module M/TM is a one-dimensional vector space over Q, any
two elements of M are linearly dependent modulo TM : if l, m /∈ TM , then l = rm+t for
some r ∈ R, t ∈ TM . Hence, we can represent the elements s1, . . . , sk in the following
form:

s1 = s1;
s2 = r2s1 + t2, where r2 ∈ R, t2 ∈ TM ;

...
sk = rks1 + tk, where rk ∈ R, tk ∈ TM.

It follows that M =
〈
s1, . . . , sk, tk+1, . . . , tn

〉
R

=
〈
s1, t2, . . . , tn

〉
R
. �

Theorem 3.1. If M is a finitely generated R-module of pseudorational rank 1, then

M ∼= Rχ1 ⊕ Kχ2 ⊕ · · · ⊕ Kχm
,

where χ2, . . . , χm are almost zero characteristics and χ1 is an arbitrary characteristic.

Proof. Let M be an arbitrary R-module of pseudorational rank 1. By Lemma 3.2, we
have M =

〈
s1, t2, . . . , tn

〉
R
, where s1 /∈ TM and t2, . . . , tn ∈ TM . Then

M =
〈
s1, t2, . . . , tn

〉
R

=
〈
s1

〉
R

+
〈
t2, . . . , tn

〉
R

= Rs1 + S,

where S =
〈
t2, . . . , tn

〉
R

⊆ TM . Moreover, since t2, . . . , tn ∈ TM , we can find an
idempotent ε ∈ R such that S =

〈
t2, . . . , tn

〉
R
⊆ εM . Then

M = ((1 − ε)Rs1 + εRs1) + S = (1 − ε)Rs1 + (εRs1 + S) = (1 − ε)Rs1 + S1,

where S1 = εRs1 + S. Since εRs1 and S are contained in εM , the module S1 is also
contained in εM , and (1 − ε)Rs1 ∩ S1 = 0 because (1 − ε)Rs1 ∩ εM = 0. Therefore,

M = (1 − ε)Rs1 ⊕ S1.

Being a cyclic R-module of pseudorational rank 1, the module Rs1 is isomorphic to a
module of the form Rχ. Then (1 − ε)Rs1

∼= (1 − ε)Rχ = Rχ1 .
Let ε = εp1 + · · · + εpt

. For all i ∈ {1, . . . , t}, we define mappings πi : S1 → εpi
S1 by

the rules πi(s) = εpi
s. These mappings satisfy the following conditions:

a) πiπj =
{

0 if i �= j,
πi if i = j;

b) for each s ∈ S1, s = εs = εp1s + · · · + εpt
s = πp1(s) + · · · + πpt

(s).
It follows that S1 = πp1 (S1) ⊕ · · · ⊕ πpt

(S1) = εp1S1 ⊕ · · · ⊕ εpt
S1.

Since εpi
Rχ1 = 0 for each i ∈ {1, . . . , t}, we conclude that

εpi
S1 = εpi

TM = Mpi
∼= K2pi

⊕ · · · ⊕ Kmpi
,

where each of the modules Kjpi
is isomorphic either to Z(pkj

i ) or to Ẑpi
. Therefore,

S1
∼=

t⊕
i=1

K2pi
⊕ · · · ⊕

t⊕
i=1

Kmpi
∼= Kχ2 ⊕ · · · ⊕ Kχm

.

Thus, M ∼= Rχ1 ⊕ Kχ2 ⊕ · · · ⊕ Kχm
. �
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Observe that the R-module S1 occurring in the proof of Theorem 3.1 has pseudora-
tional rank 0, and there are no other restrictions imposed on that module. Thus, we
may assume that S1 is an arbitrary finitely generated R-module of pseudorational rank
0. Taking into account the decomposition of S1 obtained in the above proof, we arrive
at the following statement.

Corollary 3.1. If M is a finitely generated R-module of pseudorational rank 0, then

M ∼= Kχ1 ⊕ · · · ⊕ Kχm
,

where χ1, . . . , χm is a sequence of almost zero characteristics.

Corollary 3.2. The generalized characteristics constitute a complete and independent
system of invariants for the class of finitely generated R-modules whose pseudorational
rank is equal to 0 or 1.

§4. Decomposability of certain R-modules

Let M be a finitely generated R-module. We denote by ρ(M) the smallest number of
generators of the module M . It is clear that ρ(M) ≥ r∗(M).

Theorem 4.1. If the generalized characteristic of a finitely generated reduced R-module
M consists of equal characteristics χ1, χ2, . . . , χn, and the number of these characteristics
is equal to ρ(M), then

M ∼= Rχ1 ⊕ Rχ2 ⊕ · · · ⊕ Rχn
or M ∼= Kχ1 ⊕ Kχ2 ⊕ · · · ⊕ Kχn

.

Proof. Let M be a finitely generated R-module, and let the sequence (χ1, χ2, . . . , χn) be
its generalized characteristic; assume that

χ1 = χ2 = · · · = χn = χ and n = ρ(M).

We consider two cases.

Case 1. The characteristic χ contains infinitely many nonzero elements. Let P1 =
{p ∈ P | χp �= 0}. Since ρ(M) = n, there exist elements x1, . . . , xn ∈ M such that〈
x1, . . . , xn

〉
R

= M . Consider an arbitrary combination

(4.1) r1x1 + · · · + rnxn = 0, where r1, . . . , rn ∈ R.

For each prime integer p, (4.1) induces the combination

(4.2) αp1εpx1 + · · · + αpnεpxn = 0, where αp1 = εpr1, . . . , αpn = εprn.

Recalling the restrictions imposed on the characteristic, we see that

(4.3)
〈
εpx1, . . . , εpxn

〉
Ẑp

=

⎧⎪⎨
⎪⎩

0 if χp = 0,⊕
n Z(pmp) if 0 < χp = mp < ∞,⊕
n Ẑp if χp = ∞.

Formulas (4.2) and (4.3) imply that

χp = ∞ =⇒ αp1 = · · · = αpn = 0 and χp = mp ∈ N =⇒ αp1, . . . , αpn ∈ pmpẐp.

If the characteristic χ contains infinitely many ∞ symbols, then infinitely many p-
components of the coefficients r1, . . . , rn in (4.1) are equal to 0, which means, by prop-
erties 10 and 20 of the ring of pseudorational numbers, that these coefficients belong to
the ideal T .

If the characteristic χ contains only a finite number of ∞ symbols, then it contains
infinitely many p-components that are positive integers. Consider the set P2 = {p ∈ P |
χp ∈ N}. Since a prime integer p divides a pseudorational number r if and only if p divides
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εpr, it follows that p divides r1, . . . , rn for all p ∈ P2. But a pseudorational number has
infinitely many prime divisors only if it belongs to T . Therefore, r1, . . . , rn ∈ T .

Thus, we have proved that the elements x1, . . . , xn are independent modulo TM ,
which means that r∗(M) = n. Now, by Proposition 2.2, we have r∗(∆MX) = 0 and

(4.4) ∆MX =
⊕
p∈P

εp∆MX =
⊕
p∈P

Kp,

where Kp =
⊕

n pmpẐp if 0 ≤ χp = mp < ∞, and Kp = 0 if χp = ∞.
In the R-module L = Rχ1 ⊕ Rχ2 ⊕ · · · ⊕ Rχn

, we take a system of elements Y =
{y1, . . . , yn}, where

y1 = (1, 0, . . . , 0), y2 = (0, 1, . . . , 0), . . . , yn = (0, 0, . . . , 1).

Obviously, Y is a generating system of the module L, and ∆LY = ∆MX . By Corollary
2.1, the modules M and L are isomorphic.

Case 2. χ is an almost zero characteristic. Then r∗(M) = 0, and consequently, M is
determined by its generalized characteristic, i.e.,

M ∼= Kχ1 ⊕ Kχ2 ⊕ · · · ⊕ Kχn
. �

Corollary 4.1. If the generalized characteristic of a finitely generated reduced R-module
M consists of characteristics χ1, χ2, . . . , χn that differ only at a finite number of positions,
and if n = ρ(M), then

M ∼= Rχ1 ⊕ Rχ2 ⊕ · · · ⊕ Rχn
or M ∼= Kχ1 ⊕ Kχ2 ⊕ · · · ⊕ Kχn

.

Proof. If an R-module M satisfies the assumptions of the corollary, then in the ring R
there exists an idempotent (1− ε) such that the module (1− ε)M satisfies the conditions
of Theorem 4.1. If r∗(M) = 0, then

M ∼= Kχ1 ⊕ Kχ2 ⊕ · · · ⊕ Kχn
,

and if r∗(M) �= 0, then

M = (1 − ε)M ⊕ εM ∼= Rχ1 ⊕ Rχ2 ⊕ · · · ⊕ Rχn
. �

§5. Quotient divisible mixed groups

In this section we consider the categories QT F and QD, the objects of which are,
respectively, the torsion free Abelian groups of finite rank and the quotient divisible
mixed groups, and the morphisms of which are quasihomomorphisms.

In [3] it was proved that the categories QT F and QD are mutually dual. On the
other hand, in [4] Fomin constructed a category F whose objects are finitely generated
R-modules with a chosen free generating system, and whose morphisms are pairs of
quasihomomorphisms; he proved that the categories F and QD are equivalent. In what
follows, we shall try to use the “nearness” of the groups in QT F and QD to R-modules,
in order to extend the above results to these categories.

Definition 5.1 ([3]). A group G is said to be quotient divisible if it contains no periodic
divisible subgroup but contains a free subgroup F of finite rank such that G/F is a
periodic divisible group.

The group F occurring in Definition 5.1 is called the fundamental subgroup, and a
fixed linearly independent generating system X = {x1, . . . , xn} of the group F is the
fundamental system of the quotient divisible group G.

Let G be any reduced quotient divisible mixed group; we denote by Ĝ its Z-adic
completion. The canonical homomorphism α : G → Ĝ is a monomorphism, because
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kerα =
⋂

n∈N nG = G1 = 0. The group Ĝ is a Ẑ-module, and consequently a module
over the ring of pseudorational numbers.

Definition 5.2 ([4]). The R-module R(G) = div G⊕
〈
α(G)

〉
R

is called the pseudorational
type of the quotient divisible group G.

The pseudorational rank r∗(G) of a quotient divisible group G is defined as the pseu-
dorational rank of its pseudorational type:

r∗(G) = r∗(R(G)).

Obviously, there exists an embedding ϕ : G → R(G); below we shall always identify
the group G with its image ϕ(G).

By definition, the generalized characteristic of a quotient divisible group is the gener-
alized characteristic of its pseudorational type.

Theorem 5.1. A quotient divisible group is an R-module if and only if its generalized
characteristic is locally free.

Proof. If G is the additive group of an R-module, then, for every prime integer p,

G = (1 − εp)G ⊕ εpG = (1 − εp)G ⊕ Ĝp.

In [4] it was proved that R(G) is a finitely generated R-module; therefore, Ĝp is a finitely
generated Ẑp-module. Consequently, it decomposes into a direct sum of finitely many
cyclic Ẑp-modules. If Ĝp is not finite, then G contains a direct summand of the form
Ẑp, which is impossible, because Definition 5.1 implies that G is a group of finite rank.
Thus, for every prime integer p the group Ĝp is finite, which means that the generalized
characteristic of G is locally free.

Let G be a quotient divisible group whose generalized characteristic is locally free. To
prove the “if” part, it suffices to show that G = R(G), i.e., that rg ∈ G for all r ∈ R,
g ∈ G.

Property 10 of the ring of pseudorational numbers shows that each number r ∈ R can
be represented in the form

r = (1 − ε)|r| + εr,

where |r| = m
n ∈ Q, ε = εp1 + · · · + εpk

is an idempotent of the ring R, and all prime
divisors of n are contained in the set {p1, . . . , pk}. Since the generalized characteristic of
G is locally free, we obtain

(5.1) G = (1 − ε)G ⊕ εG,

where the group (1 − ε)G is p-divisible for each p ∈ {p1, . . . , pk}. If g ∈ G, then

(5.2) rg = (1 − ε)
m

n
g + εrg.

But we have proved above that the element (1 − ε)m
n g is contained in (1 − ε)G, and

the element εrg is contained in εG. Thus, by (5.1) and (5.2), we have rg ∈ G, whence
G = R(G). �

In [2] it was proved that the class of quotient divisible groups with locally free gener-
alized characteristic coincides with the well-known class G of self-small groups of finite
torsion and free rank, which was introduced by Glaz and Wickless in [6].

The following facts are immediate consequences of Theorem 3.1, Property 90, and
Theorem 4.1.

Corollary 5.1. If G is a quotient divisible group with locally free generalized character-
istic, then r∗(G) = r(G).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODULES OVER THE RING OF PSEUDORATIONAL NUMBERS 665

Corollary 5.2. Let G be a quotient divisible group with locally free generalized char-
acteristic. G is a group of pseudorational rank 1 if and only if G ∼= Rχ, where χ is a
characteristic containing no infinite p-component.

Corollary 5.3. If G is a quotient divisible group with locally free generalized character-
istic, and if the reduced part of G is a group of pseudorational rank 1, then

G ∼= Rχ1 ⊕ Rχ2 ⊕ · · · ⊕ Rχn
,

where the characteristics χ1, χ2, . . . , χn do not contain the ∞ symbols, the characteristic
χ1 contains infinitely many nonzero elements, and χ2, . . . , χn are almost zero character-
istics.

Let G be a quotient divisible group, and let F =
⊕n

i=1 Zxi be its fundamental sub-
group. We define two sets depending on G:

∇GX = {(r1, . . . , rn) ∈ Rn | r1x1 + · · · + rnxn ∈ G},
∆GX = {(r1, . . . , rn) ∈ Rn | r1x1 + · · · + rnxn = 0}.

Obviously, ∇GX is a group, ∆GX is a module over the ring of pseudorational numbers,
and ∆GX ⊂ ∇GX . We call ∆GX the module of pseudorational relations of the quotient
divisible group G.

Lemma 5.1. If G is a quotient divisible mixed group, then

G ∼= ∇GX/∆GX .

Proof. Let ϕ : ∇GX → G be the mapping defined by the rule

ϕ(r1, . . . , rn) = r1x1 + · · · + rnxn.

This is an epimorphism of groups, and its kernel coincides with ∆GX ; the homomorphism
theorem yields G ∼= ∇GX/∆GX . �

Theorem 5.2 ([4]). If H is a reduced R-module, or G is a divisible R-module, then
HomZ(G, H) = HomR(G, H).

Lemma 5.2. Let G, H be quotient divisible groups; assume that either H is a reduced
group, or G is a divisible group. Next, let

⊕n
i=1 Zxi be a fundamental subgroup of G,

and let ϕ : G → H be a group homomorphism. If

g = r1x1 + · · · + rnxn ∈ G, r1, . . . , rn ∈ R,

then ϕ(g) = r1ϕ(x1) + · · · + rnϕ(xn).

Proof. We analyze several cases.

Case 1. The groups G and H are reduced. Let Ĝ and Ĥ denote the Z-adic completions
of the groups G and H; there exists a unique homomorphism ϕ∗ such that the diagram

G
ϕ−→ H

↓ µ ↓ ν

Ĝ
ϕ∗

−→ Ĥ

is commutative. Since the mappings µ and ν are monomorphisms, we may assume that
G ⊂ Ĝ and H ⊂ Ĥ . Since Ĝ and Ĥ are reduced R-modules, Theorem 5.2 applies,
showing that

ϕ(g) = ϕ(r1x1 + · · · + rnxn) = ϕ∗(r1x1 + · · · + rnxn)

= r1ϕ
∗(x1) + · · · + rnϕ∗(xn) = r1ϕ(x1) + · · · + rnϕ(xn).
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Case 2. The groups G and H are torsion free and divisible. Then they are divisible
R-modules, and by Theorem 5.2 we have

ϕ(g) = ϕ(r1x1 + · · · + rnxn) = r1ϕ(x1) + · · · + rnϕ(xn).

Case 3. The group G is divisible and H = D ⊕H1, where D is a divisible group and H1

is a reduced group. Since Hom(G, H) = Hom(G, D), this case reduces to Case 2.

Case 4. The group H is reduced and G = D ⊕ G1, where D is a divisible group and G1

is a reduced group. Since Hom(G, H) = Hom(G1, H), this case reduces to Case 1. �

Proposition 5.1. Two quotient divisible mixed groups are isomorphic if and only if they
admit equal modules of pseudorational relations.

Proof. Let G and H be quotient divisible mixed groups, and let ∆GX and ∆HY be their
modules of pseudorational relations. Suppose

(5.3) ∆GX = ∆HY .

If (r1, . . . , rn) is an element of ∇GX , then

(5.4) r1x1 + · · · + rnxn = g ∈ G.

Since X is a fundamental system of G, the group G/ 〈X〉 is periodic. Therefore, there
exists m ∈ N such that

(5.5) mg = m1x1 + · · · + mnxn,

where m1, . . . , mn are integers. By (5.4) and (5.5), we have

(mr1 − m1)x1 + · · · + (mrn − mn)xn = 0,

i.e., ((mr1 − m1), . . . , (mrn − mn)) ∈ ∆GX . Recalling (5.3), we see that

(mr1 − m1)y1 + · · · + (mrn − mn)yn = 0

or

(5.6) m(r1y1 + · · · + rnyn) = m1y1 + · · · + mnyn ∈ 〈Y 〉 ⊂ H.

Since H is a pure subgroup of the group R(H), relation (5.6) implies the existence of an
element h ∈ H such that

(5.7) mh = m1y1 + · · · + mnyn.

By (5.6) and (5.7), we have m(r1y1 + · · · + rnyn − h) = 0, i.e.,

r1y1 + · · · + rnyn − h = t ∈ t(R(H)).

But t(R(H)) = t(H), whence r1y1 + · · · + rnyn = h − t ∈ H, and

(5.8) (r1, . . . , rn) ∈ ∇HY .

This shows that ∇GX ⊆ ∇HY . Similarly we can prove that ∇HY ⊆ ∇GX , i.e., ∇GX =
∇HY . Thus,

G ∼= ∇GX/∆GX = ∇HY /∆HY
∼= H.

The “only if” part is proved.
Conversely, let ϕ : G → H be an isomorphism, and let X = {x1, . . . , xn} be a

fundamental system in G. Then Y = {ϕ(x1), . . . , ϕ(xn)} is a fundamental system in H;
moreover,

r1x1 + · · · + rnxn = 0 ⇐⇒ r1ϕ(x1) + · · · + r1ϕ(xn) = 0,

which means that ∆GX = ∆HY . �
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Theorem 5.3. If the generalized characteristic of a quotient divisible group G consists
of several copies of one and the same characteristic χ, and their number is equal to r(G),
then G ∼=

⊕
r(G) Qχ, where Qχ is a quotient divisible group of rank 1 and characteristic χ.

Proof. Let G be a group satisfying the assumptions of the theorem, and let X =
{x1, . . . , xn} be a fundamental system of this group. We consider two cases.

Case 1. G is a reduced group.
In [4] it was shown that X is a generating system of the pseudorational type of the

group G, i.e., R(G) = 〈x1, . . . , xn〉R. Precisely as in the proof of Theorem 4.1, it can be
shown that the system X is independent modulo TR(G). Therefore, r(G) = r∗(R(G)) =
n. It follows that X is a minimal generating system of the module R(G), which means
that R(G) satisfies the assumptions of Theorem 4.1. Hence,

(5.9) R(G) ∼=
⊕

n

Rχ.

This implies that r∗(R(G)) = n; hence, by Proposition 2.2, r∗(∆R(G)X) = r∗(∆GX) =
0. Therefore,

(5.10) ∆GX =
⊕
p∈P

εp∆GX =
⊕
p∈P

Kp,

where Kp =
⊕

n pmpẐp if 0 ≤ χp = mp < ∞, and Kp = 0 if χp = ∞.
Let H =

⊕
n Qχ. Since the decomposition (5.10) of the module ∆GX is completely

determined by the generalized characteristic of the group G, and the group H has the
same generalized characteristic, we obtain ∆G = ∆H. Thus, the groups G and H are
isomorphic by Proposition 5.1.

Case 2. G = div G ⊕ G/ div G and div G �= 0.
Observe that the pseudorational types of the groups G and G/ div G differ only in the

direct summand div G; consequently, their generalized characteristics coincide. Let

z1 = x1 + div G, z2 = x2 + div G, . . . , zn = xn + div G.

Then R(G/ div G) = 〈z1, . . . , zn〉R. The conditions of the theorem imply that

〈z1〉Ẑp

∼= 〈z2〉Ẑp

∼= · · · ∼= 〈zn〉Ẑp

for every prime integer p. Thus,2 o(εpz1) = · · · = o(εpzn) for each prime p, which
means that o(z1) = · · · = o(zn). Since the system {x1, . . . , xn} is independent, we see
that either r(G/ div G) = r(G) or r(G/ div G) = 0. Since div G �= 0, we conclude that
r(G/ div G) = 0, i.e., r(div G) = r(G). Consequently, the group G/ div G is periodic.

Thus, G/ div G is a quotient divisible group, the generalized characteristic of which is
locally free and has pseudorational rank 0. Now, by Theorem 5.1 and Corollary 3.1, we
have G ∼=

⊕
n Qχ, where Qχ = Q ⊕ Kχ is a quotient divisible group of rank 1. �

Observe that a quotient divisible group Qχ of rank 1 is determined (up to isomorphism)
by its characteristic χ and can be described as the pure hull of 1 in the group Rχ. In
particular, if χ does not contain the ∞ symbols, then Qχ = Rχ.

Corollary 5.4. If the generalized characteristic of a quotient divisible mixed group con-
sists of characteristics of one and the same type, and the number of these characteristics
is equal to the rank of the group, then this group decomposes into a direct sum of quotient
divisible groups of rank 1.

2Recall that o(x) is the standard notation for the order of the element x; see [1].
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Proof. Let G be a group satisfying the assumptions of the corollary, and let (χ1, . . . , χn)
be its generalized characteristic:

χ1 = (m1p)p∈P , χ2 = (m2p)p∈P , . . . , χn = (mnp)p∈P .

Consider the set P1 = {p1, . . . , pk} of all prime integers such that at least one of the
equalities

m1p = m2p = · · · = mnp

fails. Since all mipj
(1 ≤ i ≤ n, 1 ≤ j ≤ k) are nonnegative integers, the groups

εpR(G) = Ĝp = Gp are finite for all p ∈ P1. Let ε = εp1 + · · · + εpk
; we have the direct

decomposition G = (1 − ε)G ⊕ εG. Obviously, (1 − ε)G is a quotient divisible group
satisfying the requirements of Theorem 5.3, and εG is an R-module of pseudorational
rank 0. Hence,

G = (1 − ε)G ⊕ εG ∼=
⊕

n

Qχ ⊕ Kϕ1 ⊕ · · · ⊕ Kϕn
= Qχ1 ⊕ · · · ⊕ Qχn

. �

For torsion free groups of finite rank, there is a result similar to Corollary 5.4. Namely,
in [15] it was proved that if the Richman type of a torsion free group of finite rank consists
of several copies of one and the same type and the number of these copies is equal to the
rank of the group, then the group is completely decomposable; i.e., it decomposes into a
direct sum of groups of rank 1.
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