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Abstract. We use the concept of dual Goldie dimension and a characteriza-

tion of semi-local rings due to Camps and Dicks (1993) to find some classes

of modules with semi-local endomorphism ring. We deduce that linearly com-

pact modules have semi-local endomorphism ring, cancel from direct sums and

satisfy the n th root uniqueness property. We also deduce that modules over

commutative rings satisfying AB5* also cancel from direct sums and satisfy

the n th root uniqueness property.

Let R be an associative ring with 1 and let Af be a right unital i?-module.
A finite set Ax, ... , An of proper submodules of M is said to be coindependent

if for each /, 1 < i < n, A¡ + f\j:jii Aj = M, and a family of submodules of M

is said to be coindependent if each of its finite subfamilies is coindependent. The

module M is said to have finite dual Goldie dimension if every coindependent

family of submodules of M is finite. It can be shown that, in this case, there is

a maximal coindependent family of submodules of Af. If this set is finite, then

its cardinality (denoted by codim(Af) ) is uniquely determined and is called the

dual Goldie dimension of Af. If this set is infinite we set codim(Af ) = oo and
say that Af has infinite dual Goldie dimension. A module with dual Goldie

dimension 1 is said to be hollow, and a cyclic hollow module is said to be local.
We have

codim(Afi © Af2) = codim(Afi) + codim(Af2),

codim(Af/7V) < codim(Af ) for every submodule N of M,

codim(M/N) = codim( Af ) if N is a small submodule of Af,

codim(Af) = 0   if and only if Af = 0;

refer to [10] and [20] for details concerning the dual Goldie dimension.

A ring R with Jacobson radical J(R) is said to be semi-local if R/J(R) is
a semi-simple ring. Semi-local rings are characterized as those rings with finite
dual Goldie dimension. Note that for a semi-local ring R,

codim(i?Ä) = length of the right R -module R/J

and so codim(i?/;) = codim(/?i?) ; this common value is denoted by codim(i?).
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Denote by dim(Af ) the Goldie dimension of Af and by U(i?) the group of
units in the ring R. Camps and Dicks recently proved the following character-
ization of semi-local rings.

Theorem 1 (Camps and Dicks [3, Theorem 1(e)]). A ring R is semi-local if and

only if there exist an integer n and a function d : R —► {0, ... , n) satisfying
the conditions:

(1) for any r, s eR, d(r-rsr) = d(r) + d(l - rs),

(2) d(r) = 0 if and only if r e U(R).

Moreover, it follows in this situation that codim(i?) = dim(R/J(R)) <n.   D

Recall that a ring R has 1 in its stable range if whenever the equation
ax + b = 1 has a solution for x in R, there exists c e R such that a + be e
U(R). A right i?-module Af cancels from direct sums if for any right R-
modules A and B, M <$>A = M © 5 implies A = B.

By a result of Evans [6, Theorem 2], if 1 is in the stable range of the endo-

morphism ring of a module Af, then Af cancels from direct sums. Bass in

[2] proves that a semi-local ring has 1 in its stable range, and hence a module
whose endomorphism ring is semi-local cancels from direct sums.

It has been recently proved by Facchini, Herbera, Levy and Vamos [7] that if
Af and N are modules for which the endomorphism rings End Af and End N

are semi-local, then Af" = Nn for n e N implies that Af = TV. This latter

property is called the n th root uniqueness property.

We summarize these results in the following theorem.

Theorem 2. Let R be a ring and M a right R-module with semi-local endomor-

phism ring. Then 1 ¿s in the stable range of the endomorphism ring of M, M
cancels from direct sums and M satisfies the n th root uniqueness property.   D

In this paper we use Theorem 1 and the concept of dual Goldie dimension to

find classes of modules whose endomorphism rings are semi-local. Our main re-

sult is Theorem 3 which contains the result of Camps and Dicks [3, Theorem 5]

and has consequences for quasi-projective modules (Corollary 4), linearly com-
pact modules (Corollary 5) and modules satisfying AB5* and for which the

number of non-isomorphic simple subfactors is finite (Corollary 7). In general

the endomorphism ring of a right i?-module Af satisfying ABS* is not semi-
local, but we can show that if R is commutative, the endomorphism ring of M

is a product of semi-local rings, hence the conclusions of Theorem 2 are still

valid for AB5* modules over commutative rings (Corollary 9).

Example 10(1) shows that any ring that can be embedded in a local ring can
be realized as the endomorphism ring of a local module over some ring; this
contrasts with the situation for quasi-projective modules (see Corollary 4), or

with the situation for commutative or right noetherian rings (see the remarks
preceding Corollary 4).

All our results seem to indicate that there is a close relation between hav-
ing semi-local endomorphism ring and having finite dual Goldie dimension.

However Example 10 (2) shows that there exist cyclic modules with semi-local

endomorphism ring whose dual Goldie dimension is not finite.

We denote the endomorphism ring of the right i?-module Af by EndR(M) =
End(M).
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Theorem 3. Let R be a ring and M a right R-module.

( 1 ) (Camps and Dicks [3, Theorem 5]) if Af has finite Goldie dimension and

every injective endomorphism of M is bijective, then the endomorphism
ring of M is semi-local and

codim(End(Af)) = dim(End(Af)//(EndAf)) < dim(Af).

(2) If M has finite dual Goldie dimension and every surjective endomor-

phism of M is bijective, then the endomorphism ring of M is semi-local
and

codim(End(Af)) = dim(End(Af)//(EndAf)) < codim(Af).

(3) If M has finite dual Goldie dimension and finite Goldie dimension, then
the endomorphism ring of M is semi-local and

dim(End(M)/y(EndAf)) < dim(Af) + codim(Af).

Proof. If / and g are endomorphisms of Af, then

ker(/ - fgf) = ker(/) © ker( 1 - gf),

for it is clear that ker(/) n ker( 1 - gf) - 0 and for any x e ker(/ - fgf),

x = gf(x) + (l-gf)(x) where gf(x) e ktr(l-gf) and (\-gf)(x) e ker(f).
Dually,

coker(/ - fgf) a coker(/) © coker(l - fg)

which holds because

Af = im(/g) + im(l - fg) = im(/) + im(l - fg)

and

im(f-fgf) = im(f)Mm(l-fg).
The endomorphism / induces isomorphisms between ker(l - gf) and

ker(l - fg), and between coker(l - gf) and coker(l - fg).

To prove (1) let n — dim(Af), define dx : End(Af) —► {0, ... , n} by
dx(f) — dimker(/) and set d = dx. To prove (2) let m = codim(Af), define

d2 : End(Af) -* {0,... , m} by d2(f) = codimcoker(/) and set d = d2. To
prove (3) set d = dx + d2 : End(Af ) -» {0, ... , n + m} . In each of the three
cases d satisfies the conditions of Theorem 1 and the result is now clear.   D

Camps and Dicks use Theorem 3 (1) to prove that artinian modules have
semi-local endomorphism rings [3, Corollary 6] since for an artinian module
any injective endomorphism is bijective.

Following Goodearl [9] we say that a ring R is right repetitive if for any
elements a, b e R the right ideal I = Y,i>0a'bR is finitely generated. Right
repetitive rings include commutative rings, matrices over commutative rings and
right noetherian rings. Goodearl in [9] shows that Mn(R) is right repetitive for
any n > 1 if and only if any surjective endomorphism of a finitely generated

module Af is an isomorphism. Thus if Af is a finitely generated module with

finite dual Goldie dimension over a right repetitive ring whose matrices are also
right repetitive, then End Af is semi-local, and if further Af is hollow, then
End Af is local. Example 10(1) shows that this result is not true for an arbitrary
ring.
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It is well known that a quasi-injective module Af has finite Goldie dimension

if and only if End Af is a semi-perfect ring. Theorem 3 (2) gives an "almost"

dual result for quasi-projective modules.

Corollary 4. Let R be a ring and P a right quasi-projective module.

(1) If P has finite dual Goldie dimension, then End(i') is semi-local.

(2) (Ware, [21]) If P has small radical, then End(i') is local if and only if
P is a local module.

(3) If P has small radical, then End(P) is semi-local if and only if P has
finite dual Goldie dimension.

Proof. To prove (1) observe that if P is a quasi-projective module and / :

P -+ P is a surjective endomorphism, then P = X © f(P) = X © P and hence

P 9á X" © P for all n > 1. If P has finite dual Goldie dimension k, then it
cannot be a direct sum of more than k proper summands. Thus X = 0 and we

conclude that / is an isomorphism. Now Theorem 3 (2) implies that End(.P)

is semi-local.
If Pr is local, then Theorem 3 (2) implies immediately that End Pr is local.

A slight modification in the proof of Proposition 17.19 of [ 1 ] yields the converse

of this statement. This proves (2).
To prove (3) we only need to show that if P is a quasi-projective module

with small radical and whose endomorphism ring is semi-local, then P has fi-
nite dual Goldie dimension. Observe that P — P/J(P) is quasi-projective as a

module over R = R/J(R) and End(Pj) S End(P)/J(EndP) (cf. [21, Propo-
sition 1.1]) is semi-simple. Hence there exist primitive orthogonal idempotents

ex, ... , e„ in End(P^) such that 1 = ex H-hen and Ende,P = e¡End(P)e,

is a division ring. Hence P = exP © • • • © enP. It follows from (2) that (e¡P)j

is local and hence simple because it has zero radical. This shows that Pj is

semi-simple and so codim(i>) = codim(P^) = n < oo .   D

A right i?-module M is said to be linearly compact (in the discrete topology),
if any system of finitely solvable congruences

x = Xj       mod N¡,     i e I,    Ni ç Af,    x, e M,

is solvable. Artinian modules are linearly compact but the importance of linearly

compact modules comes from the fact proved by Müller in [18] (see also [22,

Corollary 4.2]) that when a ring R has a right Morita duality then the reflexive
modules are exactly the right linearly compact ones.

Carl Faith made the conjecture that a linearly compact module should have
semi-local endomorphism ring. Since a linearly compact module has both finite

dual Goldie dimension (by Zelinsky [23, Proposition 6]) and finite Goldie di-
mension (by Sandomierski [19, Lemma 2.3] or [22, Propositions 3.4 and 3.3]),

Theorem 3 (3) settles the conjecture of Faith in the affirmative.

Corollary 5. Let R be a ring and M a linearly compact right R-module. Then

the endomorphism ring of M is semi-local.   O

Right linearly compact rings are semi-perfect ([19, Proposition 2.6 corollary]
or [22, Corollary 3.14]), and since any linearly compact module over a com-
mutative ring is pure-injective, it has semi-perfect endomorphism ring (cf. [12,
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p. 174 and Corollary 8.27]). However in [4, Theorem 3.5] Camps and Menai

give an example of a cyclic indecomposable artinian module whose endomor-
phism ring is semi-local but not local, thus in general it is not true that the
endomorphism ring of a linearly compact module is semi-perfect.

We say that a module Af satisfies ABS* if

ir\(N + Mi) = N + f\Mi

for all submodules N and inverse systems of submodules {Af,},€/ of Af.

Leptin proved that linearly compact modules satisfy ABS* ([14, Satz 1] or

[22, Corollary 3.9]), but in general a module satisfying ABS* need not have

finite Goldie or dual Goldie dimension (consider for example the Z-module

Af = ®pe/> Z/pZ, where Z denotes the ring of integers and P is an infinite set

of different primes).

Lemma 6. Let R be a ring and M a right R-module satisfying ABS*. Then

the following statements are equivalent:

(1) Any quotient of M has finite Goldie dimension.
(2) Any submodule of M has finite dual Goldie dimension.

Proof. To prove that (1) implies (2), let {^4/}/eN be an infinite countable coin-

dependent family of submodules of Af. Set P¡ = {J c N \ J is finite and i £
/} , for any / e P¡ set Mj — f|j€J A¡. Now {Af/} is an inverse subsystem of

submodules of Af. Applying ABS* we have

f)(Ai + Mj) = Ai+ f| Mj.

By the definition of coindependence A¡ + Mj — M, thus for any / e N, A¡■ +

f|y€/> Afy = A¡ + pljy, Aj = M. This proves that the image of the natural

morphism Af —► Yl¡elH M/A¿ contains an infinite direct sum, which contradicts
( 1 ). Hence Af has no infinite coindependent families of submodules. Since

submodules of modules with ABS* also have this property, the result follows.
It is very easy to see that (2) always implies ( 1 ).   D

If Af is a right i?-module, we denote by 5^(M) the set of non-isomorphic

simple images of submodules of Af.

Corollary 7. If R is a ring and M a right R-module satisfying ABS* such that
y(M) is finite, then End(Af) is semi-local.

Proof. Lemonnier in [13, Lemme 2] proves that if Af is a right i?-module

satisfying ABS* such that S?(M) is finite, then any quotient of Af has finite

Goldie dimension. Now the result follows from Lemma 6 and Theorem 3(3).   D

The result of Corollary 7 does not include all linearly compact modules,
since there exist examples of linearly compact modules such that S?(M) is not

finite—see [8, Examples 3 and 4].
The next result enables us to show that over a commutative ring a module

satisfying ABS* satisfies the conclusions of Theorem 2.

If Af is a right i?-module and A is a subset of Af, put rR(A) - {r e R \
Ar = 0}.
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Lemma 8. Let R be a commutative ring and M an R-module such that for any

x e M, R/rR(x) is a semi-perfect ring. Then M = 0,€/Af, where M¡ is a

module over a local ring R¡ and EndR(M) = Y[jel EndÄ,(Af,) •

Proof. For any S, 6 <5*(Af ) consider E(S¡), the injective hull of the simple
module S¡, and set

Mi = { x e M I Hom(xi?, E(Sj)) = 0 for all ; ¿ i }.

It is easy to see that

Af,• = { x e M | R/rR(x) is a local ring with simple module S¡ } U {0}.

We prove first that Af, is a submodule of Af. Since E(S¡) is injective it is

clear that xr e Af, whenever x e Mi and reR. Let x and y be non-zero
elements of Af, and let /: (x + y)R —► E(Sj), j ^ i, be any morphism. Then

f((x + y)R)rR(x) = 0 and so im/ is an Ä/rÄ(x)-module. But x e Af, and
by the definition of Af,, R/rR(x) is a local ring with simple module S¡, thus

im / = 0 and we conclude that x + y e M,■■.
It is clear that {Af,} form a family of independent submodules of Af such

that Hom(Af,, A/)) = 0 for i ^ j, and since for any x e M, xR = R/rR(xR)
is a commutative semi-perfect ring, we deduce that Af - © Af,•.

Consider 5, e S"(M), S¡ = R/P¡, for a suitable maximal ideal P¡ of R.
To finish the proof, we show that Af, is an i?/>-module and End.R(Af,) =

End«,, (Af,). The definition of Af, implies that rR(x) ç P, for any 0 / x € Af,,

hence for any a e R\P¡ multiplication by a induces an injective R/rR(x)-

endomorphism / of xR, and since a is a unit in R/rR(x), f is also surjective.
We conclude that Af, is an i?;>-module, and as it is clear that End/j(Af,) =

EndRp (M¡), the proof of the lemma is complete.   D

Corollary 9. Let R be a commutative ring and M a module satisfying ABS*.
Then End(Af) is a product of semi-local rings, I is in the stable range of End(M),

and M cancels from direct sums and satisfies the n th root uniqueness property.

Proof. If Af is a module satisfying AB5*, then by [13, Proposition 4] for any

x e M, xR = R/rR(x) is a semi-perfect ring. Apply Lemma 8 and Corollary 7
to conclude that End(Af ) is a product of semi-local rings. Thus by Theorem 2,
1 is in the stable range of End(Af), and by [6, Theorem 2] Af cancels from

direct sums.

Theorem 2 implies that Af is a direct sum of modules that cancel from

direct sums and satisfy the n th root uniqueness property, so Af itself satisfies
the n th root uniqueness property.   D

Remark. It is easy to see that the rings such that every right ideal and every left
ideal is an annihilator satisfy ABS* (on both sides). These rings were studied by
Hajarnavis and Norton in [11]. Lemonnier's results in [13] give alternative and
shorter proofs to Theorems 3.9 and 5.3 in the Hajarnavis and Norton paper, who
also show that if R is a ring such that any right and left ideal is an annihilator,
then R/iXiLi ^W" *s a noetherian ring; it is easy to see that their proof also
works for rings satisfying ABS*. Müller in [ 17] or [22, Lemma 17.1] proves that

if R is a right linearly compact ring, then R/(X?=X J(R)n is a right noetherian
ring and in his proof only right ABS* is used. In [ 15] Menini proved that a two-
sided noetherian and right linearly compact ring satisfies that f)~ i J(R)n — 0
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(see also [22, Corollary 17.5]). Again in Menini's proof the only property used
of right linear compactness is right ABS*.

Thus if R is a ring satisfying right ABS*, then:
(1) (Müller [17]) R/f)7=x J(R)n is a noetherian ring.
(2) (Menini [15]) If R is right and left noetherian, then Ç\™=1 J(R)n =0.

In [16, Question 11, p. 106] Mohamed and Müller ask for examples of local
modules whose endomorphism ring is not local. In [4, Theorem 3.5] Camps
and Menai construct examples of indecomposable artinian cyclic modules M

whose endomorphism ring is semi-local but not local. It is easy to see that in

some of these examples Af is also a local module. The next example, patterned

after Camps and Menai techniques, shows that any ring that can be embedded
in a local ring can be realized as the endomorphism ring of a local module.

Until now all the examples we have given of modules with semi-local en-

domorphism ring (except perhaps injective modules with finite Goldie dimen-

sion) have finite dual Goldie dimension. It is clear that if R is commutative

any cyclic module with semi-local endomorphism ring should have finite dual
Goldie dimension but, as the next example shows, this is not true over arbitrary
rings.

Example 10. (1) Let R be a ring that can be embedded in a local ring S. Then
R can be realized as the endomorphism ring of a local module.

(2) There exist cyclic modules with infinite dual Goldie dimension whose en-
domorphism ring is semi-local.

Proof. Let R ç S be an embedding of rings, and consider the (S, i?)-bimodule

M = HomR(ÄS, rS/R) and the sub-bimodule N = {f e M | f(R) = 0}.

Let T be the ring T = (f MB) and consider the right ideal I = (° N) of T.
OR OR

The idealizer of i is V = (f ^) because an element (l^) e I' if and only
v 0 R' K0 r ' J

if sN ç N and fRQN which implies that s e R and f e N. Thus
Endr(77i) = i'/i = i?.

To prove (1) assume that S is a local ring. The proper right ideals of T

containing I are of the form (J* ), where J is a right ideal of S different
0 R

from S, and K is a sub-bimodule of Af containing N. Since J is a small

submodule of S, every proper submodule of T/I is small. Hence T/I is a

local right T-module with endomorphism ring R.
To prove (2) assume that R is semi-local and S is not, thus S has an

infinite co-independent family {^,},eN of right ideals. The right ideals of T,

{(A' M )},6N , will give an infinite family of coindependent submodules of T/I.

Thus T/I has infinite dual Goldie dimension but its endomorphism ring is the
semi-local ring R.   D
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