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When one studies the finitely generated modules over an Artin ring, one
basically studies the indecomposable ones. In such a study one tries to under-
stand

(1) the structure of the indecomposable modules,
(2) how to construct new indecomposable modules from old and
(3) whether or not there are a finite number of nonisomorphic indecom-

posable modules.

In this context, we introduce a new class of indecomposable modules which we
call modules having waists. Section develops the basic theory of modules
having waists. In Section 2 we restrict our study to waists in radical2 0 Artin
rings. Sections 3 and 4 deal with the construction of new modules from old
with emphasis on the construction of modules having waists.
Most of the results of this paper were originally reported at the International

Conference on the Representations of Algebras held at Carleton University in
September 1974. We would like to thank Brandeis University where some of
this work was done.

Section

Let A be a ring. All modules are left unitary modules unless otherwise stated.
We say a A-module M has a waist if there is a nontrivial proper submodule M’
of M such that every submodule of M contains M’ or is contained in M’. In
this case, we say that M’ is a waist in M. We immediately have the following.

(a) IfM has a waist then M is indecomposable.
(b) If M’ is a waist in M and X c, M’ c, Y

_
M then M’/Xis a waist

in Y/X. In particular, Y/X is indecomposable.
(c) If M has a waist and A is left Noetherian, then M has a unique maximal

waist if M is finitely generated.
(d) If M" is a waist in M’ and if M’ is a waist in M then M" is a waist in M.
(e) If M" is a waist in M’ and M’ M with M’/M" a waist in M/M"

then M’ and M" are both waists in M.

We henceforth assume A is a left Artin ring with radical r. Recall the definition
of the lower Loewy series for a A-module M. It is the sequence of submodules
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0
_

So(M) - St(M) ’" S,(M) M where So(M) soc (M) and
St(M) r/ a(soc (M/S_a(M))) with " M --. M/S_t(M) the canonical sur-
jection. We keep this notation for the rest of the paper. The following proposi-
tion shows that a module has at most a finite number of different waists and
that these waists must be of a special form.

PROPOSITION 1.1. Suppose M’ is a waist in M. Then

(1) M’ rMfor some >
(2) M’ Sj(M) for somej > O.

If M’ rM Sj(M) then + j + Loewy length of M, which we denote
by II(M). (Recall that II(M) smallest n such that rnM 0.)

Proof. Suppose rM
_
M’ but r-M M’. Then M’ is contained in

r-M. Since r-M/rM is a semisimple module with M’/rM a proper sub-
module, it follows that M’/rM is not a waist in r-M/rM. By (b) above,
M’/rM 0 and (1) is proven. One may similarly prove (2). The final state-
ment is true for arbitrary modules and is also easily proven.
As a consequence of Proposition 1.1, we get"

COROLLARY 1.2. If M’ is a waist in M, soc (M’) soc (M).

It is easy to see that the class of modules having waists includes nonsimple
modules having either a unique maximal submodule or a unique minimal sub-
module. Hence nonsimple indecomposable projective, injective, and uniserial
modules all have waists.

In studying modules having waists the following result is useful.

THEOREM 1.2. Let A be a left Artin rin#. Suppose M’ is a nontrivial sub-
module ofM. Then the following statements are equivalent.

(1) M’ is a waist in M.
(2) IfX c, M’ c, Y

_
M then Y/X is indecomposable.

(3) M’/rM’ is a waist in M/rM’.
(4) If re: M- M/M’ is the canonical surjection, then M’ is a waist in

t- (soc (M/M’)).

Proof. (1) => (2) by (b) above.
(2) =:, (3). Let/ be a submodule of M/rM’. Let N G M such that rM’ =_.

and N/rM’ . Assume/ is not contained in M’/rM’. We want to show
contains M’/rM’. It suffices to show M’

_
N. Now

NM’ c= M’ c, N+ M’.

Assume N M’ # M’. Then N + M’/N M’ - N/N c M’ @ M’/N M’.
By (2), since N + M’/N M’ is indecomposable, N/N M’= (0). Thus
N M’, a contradiction.

(3) (4). Let X
_

zr-(soc (M/M’)). Suppose X is not contained in M’.
By (3), X+ rM’ M’. Thus XcM’ + rM’ M’. By Nakayama’s
Lemma, X c M’ M’ and hence X

___
M’.
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(4) = (1). Let X
___
M. Suppose X is not contained in M’. If we show that

X c zr-l(soc (M/M’)) is not contained in M’, then X c z-l(soc (M/M’))
contains M’ and thus X contains M’. But r(X + M’) # 0 =,, soc (M/M’)
r(X+ M)# 0. It follows that there exists xX, xCM’ such that x
:- (soc (m/m’)).

We now proceed to study waists M’ in M with the property that M’/rM’ is
a simple A-module. These special kinds of waists play an important role in the
study of waists in Artin algebras A such that A/r2 is of finite representation type.
Recall that an Artin ring is of finite representation type if it has only a finite
number of nonisomorphic finitely generated indecomposable modules. In
Section 2 we show that if A/r2 is of finite representation type and if M has a
waist, then either M/rM is simple or M has a waist M’ with M’/rM’ simple.
For convenience we denote X/rX by top (X), where X is a A-module.

PROPOSITION 1.3. Suppose M’ is a proper submodule ofM such that top (M’)
is simple. Then"

(1) M’ is a waist in M ifand only if soc (M/rM’) - top (M’).
(2) Suppose rM’ # O. Let r: M M]rM’. Then rM’ is a waist in M if

and only ifrM’ is a waist in r-X(soc (M]rM’)).

Proof (1) M’ is a waist in M if and only if M’/rM’ is a waist in M/rM’ if
and only if top (M’) soc (M’/rM’) soc (M/rM’). The last equivalence
follows because top (M’) is simple.

(2) This is a special case of Theorem 1.2 (4).

Note that it can easily happen that M’ is contained in M with top (M’)
simple and rM’ is a waist in M and yet M’ is not a waist in M.

IfA is an Artin algebra, i.e., A is a finitely generated module over its center C
which is an Artin ring, then there is a duality, D, between left A-modules and
right A-modules. Namely, if E is the C-injective envelope of C/rad (C) then
D(X) Homc (X, E) for X either a left or right A-module. One may easily
check that ifA is an Artin algebra then M’ is a waist in M if and only if D(M/M’)
is a waist in D(M).
We conclude this section by showing that under suitable conditions, the

lengths ofmodules having waists are bounded. Since nonsimple indecomposable
injective modules always have waists, namely their socles, we assume that inde-
composable injectives are finitely generated and hence of finite length. If X is a
finitely generated A-module, l(X) length of X.

PROPOSITION 1.4. Let A be a left Artin ring. Assume each indecomposable
injective A-module is finitely #enerated. Let M be a A-module havin9 a waist.
Then

I(M) + 2 < max {I(P) + I(E)}

where P (resp. E) is an indecomposable projective (resp. injective) A-module.
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Proof. Choose an indecomposable projective P such that there is a nonzero
map f: P - M/M’. This lifts to g: P - M. By choice, g(P) is not contained
in M’. Thus M’

_
g(P) and hence l(M’) < l(P) 1.

Now let M" be a maximal proper submodule of M’. Then M’/M" is a waist
in M/M". Since M’/M" is simple, M’/M"= soc (M/M"). Let E be the
A-injective envelope ofM’/M". Then there is an injection M/M" - Eand hence
l(M/M") < l(E). Thus I(M/M’) < l(E) and we conclude l(M) <
I(P) + I(E) 2.

COrOLLArY 1.5. IfA is an Artin algebra andM has a waist, then the length of
M is bounded. In particular I(M) + 2 < max {I(P) + I(Q)} where P (resp. Q)
is an indecomposable left (resp. right)projective A-module.

Proof. The proof follows from the fact that the duality D preserves length
and if E is an indecomposable left injective, then D(E) is an indecomposable
right projective.

COROLLARY 1.6. If A is an Artin algebra such that every indecomposable
A-module is either simple or has a waist, then A is offinite representation type.

Proof. It follows that the lengths of the indecomposable A-modules are
bounded. The result follows from [2-1.

Section 2

We now study modules having waists in Artin rings A with r2 0. This is
especially of interest because, by Theorem 1.2, in an arbitrary Artin ring A if
M’ is a waist in M with M’ rM Sj(M) then

(1)
(2)

M’/rM’ is a waist in ri- 1M/rM’ and
M’/Sj_ ,(M) is a waist in S+ ,(M)/S_ ,(M).

Thus, given a module which has a waist in an Artin ring A, it induces in general
two different modules having waists over A/r2. Finally, if we consider the meth-
od of constructing new modules having waists discussed in Section 3, we can, at
times, knowing the modules which have a waist for A/r2, create new ones of
larger Loewy lengths.

If A is a left Artin ring with r2 0 and M has a waist, then it follows that
rM is the unique waist in M. We begin the study by refining Theorem 1.2 to get
a better classification of waists in Artin rings whose radical has square zero.

THEOREM 2.1. Let A be a left Artin ring with r2 0. Let M be a A-module
and z" M M/rM be the canonical surjection. Then the following statements
are equivalent"

(1)
(2)
(3)

M has a waist.

IfS is a simple summand ofM/rM then rt-(S) is indecomposable.
IfX is a maximal submodule ofrM then MIX is indecomposable.
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Proof (1) =:, (2) and (1) = (3) follow from Theorem 2.1.
(2) = (1). Suppose X

_
M and X is not contained in rM. Let S be a simple

summand of re(X)_ zr(M). Then z-l(S)= X’ is indecornposable. Now
rM_ X’. It suffices to show X’ X.
mutative diagram.

0 0 0

0 rM c X - rM - Z

O X’ c X X’ - X’/X’

S S 0

0 0

Consider the following exact com-

c X- 0

where Z coker (rM c X rM). If Z 4: 0, since rM is semisimple, we get
a splitting X’ (X’ c X) Z. Thus Z 0 implies rM

_
X.

(3) (1). Let X
_
M and suppose X is not contained in rM. If rM is not

contained in X, choose a maximal proper submodule Z of rM containing
X c rM. Then M/Z is indecomposable. Now Z - (X c rM) Z’ for some
semisimple module Z’. We get the following commutative diagram"

0 0 0

0 - X rM - Z - Z’ - 0

O X M - MIX -o0

0 X/(X c rM) M/Z -o (M/X)/Z’ -o 0

0 0 0

Noting that X/(X c rM) is contained in M/rM we see that M/Z M/rM
induces a splitting of the bottom row. Thus, the indecomposability of M/Z
implies X/X c rM 0 and we are done.
We assume for the rest of this section that A is an Artin algebra with r2 0.

THEOREM 2.2. Suppose A is offinite representation type.
which has a waist has a simple top or simple socle.

Then every module

Proof. Assume that M is a A-module having a waist such that top (M) and
soc (M) are both not simple. Note that soc (M) rM since M is indecom-
posable.

Case 1. M/rM has two nonisomorphic simple summands, say S and T. Let
P be the projective cover of S and P’ be the projective cover of T. Then, using
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Theorem 1.2, it is not hard to see that rM is a summand of both rP and rP’.
Now A is of finite representation type if and only if A/r + r is also [1] where
A/r + r denotes the trivial extension of A/r by r. W. Miller [8] associates to
A/r + r a weakly symmetric self-injective ring F of radical3 0 and a diagram
_D(F) which classifies whether or not A/r / r is of finite type. Since rM is not
simple, it follows that _D(F) has a subdiagram which is a cycle, namely

Simple modules in rM

This contradicts A’s being of finite representation type [8, Lemma 4.7].

Case 2. rM has two nonisomorphic summands. Apply Case to D(M).

Case 3. M/rM is a direct sum of at least two copies of one simple module,
say S, and rM is a direct sum of at least two copies of one simple module, say T.
As above T ) T

_
rP where P is the projective cover of S. One may similarly

show that S q) S
_

E/soc (E), where E is the injective envelope of T. Take F
as in Case and then one has a subdiagram in _D(F) of the following form:

S TT S

This again implies A is not of finite representation type.

It is worthwhile noting that the converse is false. There are r2 0 Artin
algebras of infinite representation type such that every module which has a
waist has a simple top or simple socle. We will also see in Section 4 that in
general there are modules which have waists in r2 0 Artin algebras with
nonsimple tops and socles.
As an application we give the following description of modules which have

waists which we mentioned in Section 1. Suppose F is an Artin algebra such
that U/r2 is of finite representation type. It follows from Theorem 2.2 and
remarks made at the beginning of this section that if M’ is a waist in M, then
at least one of the following modules must be simple: top (M), soc (M),
top (M’), soc (M/M’). Thus if M has a waist M’ and top (M) is not simple,
then M has a waist M" with top (M") simple. For, either M’ has that property
or we can take M" to be soc (M) if it is simple or if not, take

M" -l(soc (M/M’)) where zr" M M/M’.

In the proof of the next proposition we make use of the existence and nature
of "almost split exact sequence" for Artin algebras. The definitions and relevant
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properties can be found in [3]. One may also give a proof of the proposition
using techniques found in W. Mfiller’s work, but it is more lengthy.

PRO’OSITION 2.3. Let A be an Artin algebra with r2 0. If there exists an
indecomposable projective module of length > 4 then there exists an indecom-
posable A-module having a nonsimple top and socle.

Proof. Let P be an indecomposable projective such that I(P) > 4. Let
S top (P). Since A is an Artin algebra there is an almost split short exact
sequence 0 M X S 0. It follows that M is indecomposable. From
I-3] one can show that X is the A-injective envelope of rP. Now l(rP) > 3.
From this it follows easily that/(top (M)) > 2 and/(soc (M)) l(rM) > 3.
We now put the last few results together to prove the following.

THEOREM 2.4. Let A be an Artin algebra with r2 0. Then the following
statements are equivalent:

(1) Every indecomposable left A-module has a simple top or simple socle.
(2) Every indecomposable left A-module has a waist or is simple.
(3) Every indecomposable left A-module is either projective, injective, or

uniserial.
(1’) Every indecomposable right A-module has a simple top or simple socle.
(2’) Every indecomposable right A-module has a waist or is simple.
(3’) Every indecomposable right A-module is either projective, injective, or

uniserial.

Proof (1) =,, (2) and (3) = (1) are clear.
(2) =,, (1). By 1.6, A has finite representation type. Then (1) follows from

2.2.
(2) (3). By 2.3 and 2.2, it follows that every indecomposable projective

has length < 3. By duality (2’) holds and hence every indecomposable injective
has length < 3. By (1), every indecomposable is a factor of an indecomposable
projective or a submodule of an indecomposable injective. Thus if M is inde-
composable and not projective or injective, l(M) < 2 and (3) holds.
The equivalences involving (1’), (2’), and (3’) follow by duality.

We end this section with some applications. If one considers the separated
diagrams for an Artin algebra A with r2 0 (see [4]), one sees that A satisfies
Theorem 2.4 if and only if the separated diagram for A is composed of disjoint
copies of the following types of diagrams"

a a a c

a’, / ’ /

b c b

More generally, if A is a factor ring of a tensor algebra associated to a k-
species (K, M), , with k a field and each K k, then each nonsimple
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A-module has a waist if the diagram associated to 6e (see [6], [7] for definitions)
is composed of disjoint diagrams of the following types"

a2 am

an- ao b bm

an- ao b bm
This can be seen using Gabriel’s description I-5] of the indecomposable

representations of the diagrams and their relations to modules [7].
Finally, if one considers the ring

k k
k 0

a subring of the full 4 x 4 lower triangular matrix ring over a field k, we find
that A is isomorphic to a tensor algebra whose associated diagram is

Again using [5], [7], one sees that for this ring every indecomposable has a
simple top or simple socle and hence the converse to the above description is
not true.

Section 3

We begin by describing a general technique of creating new modules from old.

THEOREM 3.1. Let R be an arbitrary ring. Let A
_
B and C

_
D be R-

modules and suppose there is an isomorphism " B/A C. Then the following
statements are equivalent.

(1) There is a module X with B X and an isomorphism fl X/A D such
that the following diagram commutes"

(2)
sequence

X/A -- D

B/A C

/f " Ext (D, A) --. Ext (C, A) is inducedfrom C
_
D then the exact

0 A B "’-----L C 0, where re" B B/A,

is in the image of
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(3) If " Ext (D/C, B) Ext (D/C, C) is inducedfrom
B--C

then the exact sequence 0 - C - D D/C 0 is in the image of.
Proof Follows from standard homological techniques and consideration

of the following commutative diagram"

0 0 0

0---.A---, B ----." C ----.0

0---,A---, X D ----,0

0 D/C---2-, D/C-----, 0

0 0

Given A __. B, C
_

D, and e" B/A C as in Theorem 3.1, if conditions
(1)-(3) hold, we say that we can paste B and 1) by . We call X the pasted module.

COROLLARY 3.2. Given A
_

B, C
_

D, and cz" B/A C. Then if either the
R-projective dimension of D/C <_ or the R-injective dimension of A <_ then
we can paste B and D by o. In particular, if R is hereditary we can always paste
modules.
We hasten to remark that even if both B and D have waists, the pasted module

X need not even be indecomposable. Nevertheless the following proposition
gives a way to create new waists from old.

PROPOSITION 3.3. Let A be a left Artin ring with radical r. Let M and N be
A-modules with ll(M) rn and ll(N) n.

(1) Suppose that there is an isomorphism z M/rM r"- N and we can paste
M andN by . IfN has a waist then so does the pasted module X.

(2) Suppose that there is an isomorphism fl" M/S,_ 2(m) soc (M) and we
paste M and N by . IfM has a waist then so does the pasted module X.

Proof (1) Let N’ be a waist in N. We have fl’X/rM N. Let X’
fl-a(N’). Then X’ is a waist in X.

(2) The proof is analogous.
As an important application we have"

COROLLARY 3.4. Let A be a left Artin ring. Let M and N be A-modules such
that

(i) M/rM is simple and
(ii) there is an isomorphism " M/rM soc (N).

If we can paste M and N by then the pasted module has a waist or is simple.
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Proof Assume M or N is not simple. Say M is not simple. Then M has a
waist and the conditions of 3.3 (2) are satisfied. IfN is not simple, the conditions
of 3.3 (1) are satisfied.

We give an example of how these results may be applied. Let A be a hered-
itary Artin algebra such that A/r2 is of finite representation type. Let S be a
simple A-module. Let P be the projective cover of S and E be the injective
envelope of S. By Corollary 3.2 and Corollary 3.4 there is a module )[s having
a waist such that P

_
Zs and Zs/rP - E. From Section 2 we see that if Y is a

A-module with nonsimple top and nonsimple socle having a waist, then Y is a
submodule of a factor module of Zs for some simple module S.

Section 4

We now give a technique for constructing waists in r2 0 left Artin rings A
which have nonsimple tops and non-simple socles.

THEOREM 4.1. Let Si, 1,..., n and T, j 1,..., m be simple A-
modules. Let X LI= Si and Y LII T. Assume either that the S’s are
nonisomorphic simple or the T’s are nonisomorphic simple. Let P be the projec-
tive cover of Si, 1,..., n and let Ej be the injective envelope of T., j
1,..., m. Finally assume X is a summand ofeach E/T.for allj and Y is a sum-
mand of each rP for all i. Then there exists a module M havin# a waist so that
Y - rM and X M/rM.

Proof We only do the case where the Si’s are all nonisomorphic. We choose
U

_
rP so that r(Pi/U) - Y for each i. Let P P/U. Let P LI’= P.

Define a morphism f: I_[]- Y p by

f(Y,..., Y,-1) (Yl, Y + Y2,..., Y,-2 + Y,-, Y,-).

Then 3" is a monomorphism. Let M cokerf. Thus we get the following
commutative diagram"

where Z 11-.= Y (since rP ~= LI’= Y and P/rP ~= X).
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It remains to show Y is a waist in M since, if so, Y rM and X - M/rM.
By Theorem 2.1 it suffices to show that if S is a simple summand of M/rM then
n-1(S) is indecomposable. By distinctness, we may suppose S Si for some
< < n. Now (,) induces

0 0 0

0 Z rP Y ---0

0 z -l(s3 -(S3 0

0 Si S 0

0 0

Now -1(S) rP )’" @ rP,_a @ P @ rPi+l @’"@ rP.. But

g" -a(S) - Z

given by

g(z1, Z2, Zn) (Z1, Z2 ZI,... Zi- Zi_2,

Zi+ Zi+ 2 Zi+ 2 Zi+ 3 Zn-1 Zn, Zn)

splitsfin the middle row of (**). Thus by the Krull-Schmitt Theorem n- X(S) -P and we are done.
One may check that the ring

field,

has r2 0 and has a module having a waist with a nonsimple top and non-
simple socle. Hence A is of infinite representation type. To see this, let C1, C2,
Ca, C4 be the simples corresponding to the idempotents

0 0 0 0 0 0 0

00 00
00 00

Then take Sx C, $2 C2, T1 C3, and T2 C4. It is easy to check that
the hypotheses of the theorem are satisfied.
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