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MODULI OF BRIDGELAND SEMISTABLE OBJECTS ON P2
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1. Introduction

Let X be a smooth projective surface and DbðX Þ the bounded derived
category of coherent sheaves on X . We study Bridgeland stability conditions s
on DbðX Þ. We show that if a stability condition s has a certain property, the
moduli space of s-(semi)stable objects in DbðX Þ coincides with a certain moduli
space of Gieseker-(semi)stable coherent sheaves on X . On the other hand, when
X has a full strong exceptional collection, we define the notion of s being
‘‘algebraic’’, and we show that for any algebraic stability condition salg, the
moduli space of salg-(semi)stable objects in DbðXÞ coincides with a certain moduli
space of modules over a finite dimensional C-algebra. Using these observations,
we construct moduli spaces of Gieseker-(semi)stable coherent sheaves on P2 as
moduli spaces of certain modules (Theorem 5.1). This gives a new proof (§5.3)
of Le Potier’s result [P] and establishes some related results (§6).

1.1. Bridgeland stability conditions
The notion of stability conditions on a triangulated category T was intro-

duced in [Br1] to give the mathematical framework for the Douglas’s work on P-
stability. Roughly speaking, it consists of data s ¼ ðZ;AÞ, where Z is a group
homomorphism from the Grothendieck group KðTÞ to the complex number
field C, A is a full abelian subcategory of T and these data should have some
properties (see Definition 2.3). Then Bridgeland [Br1] showed that the set of
some good stability conditions has a structure of a complex manifold. This set
is denoted by StabðXÞ when T ¼ DbðXÞ. An element s of StabðXÞ is called
a Bridgeland stability condition on X . For a full abelian subcategory AHT,
StabðAÞ denotes the subset of StabðX Þ consisting of all stability conditions of the
form s ¼ ðZ;AÞ.

Let KðXÞ be the Grothendieck group of X . For a A KðXÞ, the Chern
character of a is the element chðaÞ :¼ ðrkðaÞ; c1ðaÞ; ch2ðaÞÞ of the lattice NðXÞ :¼
ZlNSðXÞl 1

2Z. For s ¼ ðZ;AÞ A StabðXÞ, we consider the moduli functor

MDbðX ÞðchðaÞ; sÞ of s-(semi)stable objects E in A with chðEÞ ¼ chðaÞ.

1.2. Geometric Bridgeland stability conditions
For b;o A NSðX ÞnR such that o is in the ample cone AmpðXÞ, we

consider a pair sðb;oÞ ¼ ðZðb;oÞ;Aðb;oÞÞ as in [ABL], where Zðb;oÞ : KðXÞ ! C

329

Received July 30, 2009; revised January 19, 2010.



is a group homomorphism and Aðb;oÞ is a full abelian subcategory of DbðX Þ
defined from b and o (see Definition 3.3 for details). It is shown in [ABL]
that sðb;oÞ is a Bridgeland stability condition if b;o A NSðXÞnQ. For general
b;o A NSðX ÞnR, we do not know whether sðb;oÞ belongs to StabðXÞ or not
(cf. §3.2).

Let gGLGLþð2;RÞ be the universal cover of the group GLþð2;RÞ :¼
fT A GLð2;RÞ j det T > 0g. The group gGLGLþð2;RÞ acts on StabðXÞ in a natural
way (cf. §2.3). Two stability conditions s and s 0 are said to be gGLGLþð2;RÞ-
equivalent if s and s 0 are in a single orbit of this action. In such cases s and
s 0 correspond to isomorphic moduli functors of semistable objects. s A StabðX Þ
is said to be geometric if s is gGLGLþð2;RÞ-equivalent to sðb;oÞ for some b;o A
NSðXÞnR with o A AmpðXÞ. We have a criterion due to [Br2] for s A StabðX Þ
to be geometric (Proposition 3.6).

On the other hand, for an integral ample divisor o and b A NSðXÞnQ,
we consider ðb;oÞ-twisted Gieseker-stability of torsion free sheaves on X , which
was introduced in [MW] generalizing the Gieseker-stability. For a A KðXÞ, we
assume rkðaÞ > 0 and consider the moduli functor MX ðchðaÞ; b;oÞ of ðb;oÞ-
semistable sheaves E with chðEÞ ¼ chðaÞ. There is a scheme MX ðchðaÞ; b;oÞ
which corepresents MX ðchðaÞ; b;oÞ [MW], and is called the moduli space (cf.
Definition 2.6).

One of our main results is the following.

Theorem 1.1. Let o be an integral ample divisor, b A NSðX ÞnQ and
a A KðXÞ with rkðaÞ > 0. Take a real number t with 0 < ta 1 and assume that

sðb; toÞ A StabðXÞ. If 0 < c1ðaÞ � o� rkðaÞb � oamin t;
1

rkðaÞ

� �
then the moduli

space MX

�
chðaÞ; b � 1

2KX ;o
�
corepresents the moduli functor MDbðX ÞðchðaÞ; sðb; toÞÞ.

A proof of Theorem 1.1 will be given in §3.3. Similar results are obtained
by [Br2] and [To] when X is a K3 surface, but our choices of o and b are
di¤erent from theirs.

1.3. Algebraic Bridgeland stability conditions
For a finite dimensional C-algebra B, mod-B denotes the abelian category

of finitely generated right B-modules and KðBÞ denotes the Grothendieck group.
For any B-module N, we denote by ½N� the image of N by the map mod-B!
KðBÞ. King [K] introduced the notion of yB-stability of B-modules, where yB is a
group homomorphism yB : KðBÞ ! R. It is shown in [K] that the moduli space
MBðaB; yBÞ of yB-semistable B-modules N with ½N� ¼ aB exists, for any aB A KðBÞ
and yB A a?B :¼ fyB A HomZðKðBÞ;RÞ j yBðaBÞ ¼ 0g.

When X has a full strong exceptional collection E ¼ ðE0; . . . ;EnÞ in DbðX Þ
(cf. §4.2), we put E ¼0

i
Ei and consider the finite dimensional C-algebra BE ¼

EndX ðEÞ. Then by Bondal’s Theorem [Bo], the functor R HomX ðE; �Þ gives an
equivalence of triangulated categories FE : DbðX ÞGDbðBEÞ, where DbðBEÞ is
the bounded derived category of mod-BE. FE induces an isomorphism of the
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Grothendieck groups jE : KðXÞGKðBEÞ. Let AE be the full abelian subcate-
gory of DbðX Þ corresponding to mod-BE HDbðBEÞ by FE. s A StabðXÞ is called
an algebraic Bridgeland stability condition associated to E ¼ ðE0; . . . ;EnÞ if s isgGLGLþð2;RÞ-equivalent to ðZ;AEÞ for some Z : KðXÞ ! C.

For any s ¼ ðZ;AEÞ A StabðAEÞ and a A KðXÞ, we associate the group
homomorphism ya

Z : KðBEÞ ! R defined by

ya
ZðbÞ ¼

Re Zðj�1E ðbÞÞ Re ZðaÞ
Im Zðj�1E ðbÞÞ Im ZðaÞ

���� ����
for b A KðBEÞ. Clearly ya

Z A jEðaÞ
?, so we have the moduli space MBE

ðjEðaÞ; ya
ZÞ.

Proposition 1.2. The moduli space MBE
ðjEðaÞ; ya

ZÞ of BE-modules corepre-
sents the moduli functor MDbðX ÞðchðaÞ; sÞ for any a A KðXÞ and s ¼ ðZ;AEÞ A
StabðAEÞ.

A proof of Proposition 1.2 will be given in §4.2.

1.4. Application in the case X ¼ P2

We prove that there exist Bridgeland stability conditions on P2 which are
both geometric and algebraic by using the criterion Proposition 3.6.

The Neron-Severi group NSðP2Þ of P2 is generated by the hyperplane
class H. Hence when X ¼ P2 the twisted Gieseker-stability coincides with the
classical one defined by H. We sometimes identify NSðP2Þ with Z by the
map b 7! b �H. For a A KðP2Þ with rkðaÞ > 0, we consider the moduli space
MP2ðchðaÞ;HÞ and sðbH; tHÞ for b; t > 0.

On the other hand, for each k A Z there exist full strong exceptional
collections on P2

Ek :¼ ðOP2ðk þ 1Þ;W1
P2ðk þ 3Þ;OP2ðk þ 2ÞÞ and

E 0k :¼ ðOP2ðkÞ;OP2ðk þ 1Þ;OP2ðk þ 2ÞÞ:
We put Ek :¼ OP2ðk þ 1ÞlW1

P2ðk þ 3ÞlOP2ðk þ 2Þ and E 0k :¼ OP2ðkÞl
OP2ðk þ 1ÞlOP2ðk þ 2Þ. Up to natural isomorphism, EndP2ðEkÞ and EndP2ðE 0kÞ
do not depend on k, hence we identify and denote them by B and B 0 respec-
tively. Using the notation in §1.3, we put

Fk :¼ FEk : D
bðP2ÞGDbðBÞ; F 0k :¼ FE 0k

: DbðP2ÞGDbðB 0Þ;
induced isomorphisms jk :¼ jEk : KðP

2ÞGKðBÞ, j 0k :¼ jE 0k : KðP2ÞGKðB 0Þ and

hearts of induced bounded t-structures Ak :¼AEk HDbðP2Þ, A 0
k :¼AE 0k

HDbðP2Þ.
For a A KðP2Þ and y A a? :¼

�
y A HomZðKðP2Þ;RÞ j yðaÞ ¼ 0

�
, we put

yk :¼ y � j�1k : KðBÞ ! R; y 0k :¼ y � j 0�1k : KðB 0Þ ! R:

There exists y A a? such that F 01 �F�10 and F1 �F 0�11 induce the following
isomorphisms (Proposition 5.4)

MBð�j0ðaÞ; y0ÞGMB 0 ð�j 01ðaÞ; y
0
1ÞGMBð�j1ðaÞ; y1Þ:ð1Þ
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We find algebraic Bridgeland stability conditions sb ¼ ðZb;A1Þ A StabðA1Þ
parametrized by real numbers b with 0 < b < 1 such that for each b there exist an

element g AgGLGLþð2;RÞ and t > 0 satisfying

sbg ¼ sðbH; tHÞ;ð2Þ

where g and t > 0 may depend on b. Then MBð�j1ðaÞ; ya
ZbÞ corepresents the

moduli functors MDbðP2Þð�chðaÞ; sbÞ by Proposition 1.2. Furthermore by (2)

and Theorem 1.1, MP2ðchðaÞ;HÞ also corepresents the same moduli functor for
suitable choice of b. From these facts and isomorphisms (1), we have our main
results (see §5.1 for the choice of y A a?). We denote by � ½1� the shift functor
DbðP2Þ ! DbðP2Þ : E 7! E½1�.

Main Theorem 1.3. For a A KðP2Þ with c1ðaÞ ¼ sH, assume 0 < sa rkðaÞ
and ch2ðaÞ < 1

2 . Then there exists y A a? such that F1ð� ½1�Þ, F 01ð� ½1�Þ and F0ð� ½1�Þ
induce the following isomorphisms.

(i) MP2ðchðaÞ;HÞGMBð�j1ðaÞ; y1Þ : E 7! F1ðE½1�Þ
(ii) MP2ðchðaÞ;HÞGMB 0 ð�j 01ðaÞ; y

0
1Þ : E 7! F 01ðE½1�Þ

(iii) MP2ðchðaÞ;HÞGMBð�j0ðaÞ; y0Þ : E 7! F0ðE½1�Þ.
These isomorphisms keep open subsets consisting of stable objects.

We remark that if we assume 0 < sa rkðaÞ and MP2ðchðaÞ;HÞ0j in Main
Theorem 1.3, then we have

dim MP2ðchðaÞ;HÞ ¼ s2 � rkðaÞ2 þ 1� 2 rkðaÞ ch2ðaÞb 0:

Hence we have ch2ðaÞa 1
2 , and ch2ðaÞ ¼ 1

2 if and only if MP2ðchðaÞ;HÞ ¼
fOP2ð1Þg. In this case, similar isomorphisms hold via F1ð� ½1�Þ in (i), F 01 in
(ii) and F0 in (iii) respectively. A proof of Main Theorem 1.3 will be given in
§5.

(ii) is obtained by Le Potier [P] (cf. [KW, §4] and [P2, Theorem 14.7.1]) by a
di¤erent method.

1.5. Wall-crossing phenomena
In §6 we consider the case rkðaÞ ¼ 1, c1ðaÞ ¼ H and ch2ðaÞ ¼ 1

2� n with
nb 1. By Main Theorem 1.3 we have

MP2ðchðaÞ;HÞGMBð�j0ðaÞ; y0ÞGMBð�j1ðaÞ; y1Þ

for some y A a?. We study how MBð�jkðaÞ; y
y
kÞ changes when y

y
k A jkðaÞ

? varies
for k ¼ 0; 1, where jkðaÞ

? :¼ fyk A HomZðKðBÞ;RÞ j ykðjkðaÞÞ ¼ 0g. We define
a wall-and-chamber structure on jkðaÞ

? as follows (cf. §5.1). Within jkðaÞ
?,

there are finitely many rays corresponding to certain B-modules. In our case,
a ray may be called a wall, since jkðaÞ

?GR2. Let Wk be the union of such
rays. A connected component of the complement of Wk is called a chamber.

The moduli space MBð�jkðaÞ; y
y
kÞ does not change when y

y
k moves in a chamber.
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If two chambers ĈCjkðaÞ and CjkðaÞ on jkðaÞ
? are adjacent to each other having a

common wall wk, then for ŷyk A ĈCjkðaÞ, yk A CjkðaÞ and
~yyk A wk we have a diagram:

MBð�jkðaÞ; ykÞ  � �������
k

MBð�jkðaÞ; ŷykÞ:

MBð�jkðaÞ; ~yykÞ

ð3Þ  ������
������!f 00 f 0

Further, if both MBð�jkðaÞ; ŷykÞ and MBð�jkðaÞ; ykÞ are non-empty, then we see
that f 0, f 00 are birational morphisms by general theory of Thaddeus [Th].

Within jkðaÞ
?, we have a chamber CP2

jkðaÞ such that MP2ðchðaÞ;HÞG
MBð�jkðaÞ; ykÞ for any yk A CP2

jkðaÞ. In the case rkðaÞ ¼ 1, c1ðaÞ ¼ 1 and

ch2ðaÞ ¼ 1
2� n, diagrams (3) with k ¼ 0; 1 give the two birational transformations

of the Hilbert schemes ðP2Þ½n� (Theorem 6.5). In the case rkðaÞ ¼ r, c1ðaÞ ¼ 1,
ch2ðaÞ ¼ 1

2� n with arbitrary r > 0, we will describe these diagrams more ex-
plicitly in [O].

Similar phenomena as in (3), sometimes called Wall-crossing phenomena,
occur by variation of polarizations on some surfaces X in case of Gieseker-
stability. However the polarization is essentially unique in our case X ¼ P2

since Pic P2 GZH. So our phenomena are of di¤erent nature. We expect that
Bridgeland theory is useful to study such phenomena systematically.

Convention

Throughout this paper we work over C. Any scheme is of finite type over
C. For a scheme Y , we denote by CohðY Þ the abelian category of coherent
sheaves on Y and by DbðYÞ (respectively, D�ðY Þ) the bounded (respectively,
bounded above) derived category of CohðYÞ. For E A CohðYÞ, by dim E we
denote the dimension of the support of E. For a ring B, by mod-B we denote
the abelian category of finitely generated right B-modules. We denote by DbðBÞ
(respectively, D�ðBÞ) the bounded (respectively, bounded above) derived category
of mod-B. For an abelian category A and a triangulated category T, their
Grothendieck groups are denoted by KðAÞ and KðTÞ. For any object E of
A (resp. T) we denote by ½E� the image of E by the map A! KðAÞ (resp.
T! KðTÞ). When A ¼ mod-B and T ¼ DbðYÞ, we simply write them KðBÞ
and KðYÞ. For objects E, F , G of T, the distinguished triangle E ! F !
G ! E½1� is denoted by:

E �����! F

G

����!
����!½1�

For objects F0; . . . ;Fn in T we denote by hF0; . . . ;Fni the smallest full sub-
category of T containing F0; . . . ;Fn, which is closed under extensions.
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2. Generalities on Bridgeland stability conditions

Here we collect some basic definitions and results of Bridgeland stability
conditions on triangulated categories in [Br1], [Br2].

2.1. Bridgeland stability conditions on triangulated categories
Let A be an abelian category.

Definition 2.1. A stability function on A is a group homomorphism
Z : KðAÞ ! C such that ZðEÞ A R>0 expð

ffiffiffiffiffiffiffi
�1
p

pfðEÞÞ with 0 < fðEÞa 1 for any
nonzero object E of A. The real number fðEÞ A ð0; 1� is called the phase of the
object E. A nonzero object E of A is said to be Z-(semi)stable if for every
proper subobject 00F WE we have fðFÞ < fðEÞ (resp. a).

If we define the slope of E by

msðEÞ :¼ �
ReðZðEÞÞ
ImðZðEÞÞ ;

which possibly be infinity, then a nonzero object E of A is Z-(semi)stable if and
only if msðF Þ < msðEÞ (resp. a) for any subobject 00F WE in A.

The stability function Z is said to have the Harder-Narasimhan property if
every nonzero object E A A has a finite filtration

0 ¼ E0 HE1 H � � �HEn�1 HEn ¼ E

whose factors Fj ¼ Ej=Ej�1 are Z-semistable objects of A with

fðF1Þ > fðF2Þ > � � � > fðFnÞ:
Let T be a triangulated category. We recall the definition of a t-structure

and its heart (cf. [Br1]).

Definition 2.2. A t-structure on T is a full subcategory Ta0 of T
satisfying the following properties.

(1) Ta0½1�HTa0.
(2) If one defines Tb1 :¼ fF A T jHomTðG;FÞ ¼ 0 for any G A Ta0g, then

for any object E A T there is a distinguished triangle

G ! E ! F ! G½1�
with G A Ta0 and F A Tb1.

We define Ta�i :¼Ta0½i� and Tb�i :¼Tb1½i þ 1�. Then the heart of
the t-structure is defined to be the full subcategory A :¼Ta0 VTb0. It was
proved in [BBD] that A is an abelian category, with the short exact sequences
in A being precisely the triangles in T all of whose vertices are objects of A. A
t-structure Ta0 HT is said to be bounded if

T ¼ 6
i; j AZ

Tai VTb j:

If A is the heart of a bounded t-structure on T, then we have KðAÞGKðTÞ.
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Definition 2.3. A Bridgeland stability condition s on a triangulated cate-
gory T is a pair ðZ;AÞ of a group homomorphism Z : KðTÞ ! C and the heart
A of a bounded t-structure on T such that Z is a stability function on A having
the Harder-Narasimhan property.

For each n A Z and f 0 A ð0; 1�, we define a full subcategory Pðnþ f 0Þ of T
by

Pðnþ f 0Þ :¼ fE A T jE½�n� A A is Z-semistable and fðE½�n�Þ ¼ f 0g:

For any f A R, a nonzero object E of PðfÞ is said to be s-semistable and f is
called the phase of E. E A PðfÞ is said to be s-stable if f ¼ nþ f 0 with n A Z
and f 0 A ð0; 1�, and E½�n� A A is Z-stable. It is easy to see that each subcate-
gory PðfÞ of T is an abelian category (cf. [Br1, Lemma 5.2]). E A PðfÞ is s-
stable if and only if E is a simple object in PðfÞ. For any interval I HR, PðIÞ
is defined by PðIÞ :¼ hfPðfÞ j f A Igi: In particular the Harder-Narasimhan
property implies that Pðð0; 1�Þ ¼A.

Proposition 2.4. (1) The pair ðZ;PÞ of the group homomorphism
Z : KðTÞ ! C and the family P ¼ fPðfÞ j f A Rg of full subcategories of T
has the following property.

(a) PðfÞ is a full additive subcategory of T.
(b) Pðfþ 1Þ ¼ PðfÞ½1�.
(c) If f1 > f2 and Ei A PðfiÞ, then HomTðE1;E2Þ ¼ 0.
(d) ZðEÞ A R>0 expð

ffiffiffiffiffiffiffi
�1
p

pfÞ for any nonzero object E of PðfÞ.
(e) For a nonzero object E A T, we have a collection of triangles

0 ¼ E0 ���! E1 ���! E2 ���! � � � ���! En ¼ E

F1 F2 Fn

����!
����! ����!

����! ����!

����!½1� ½1� ½1�

such that Fj A PðfjÞ with f1 > f2 > � � � > fn.
(2) Giving a stability condition s ¼ ðZ;AÞ on T is equivalent to giving a pair
ðZ;PÞ with the above properties.

Proof. See [Br1, Definition 5.1 and Proposition 5.3]. Originally the pair
ðZ;PÞ is called the stability condition s in [Br1]. r

The filtration in (e) of Proposition 2.4 is called the Harder-Narasimhan
filtration of E and the objects Fj are called s-semistable factors of E. We can
easily check that the Harder-Narasimhan filtration is unique up to isomorphism.
For a Bridgeland stability condition s ¼ ðZ;AÞ (or ðZ;PÞ), Z, A and P is
denoted by Zs, As and Ps.
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2.2. Bridgeland stability conditions on smooth projective surfaces
Let X be a smooth complex projective surface. The Chern character of an

object E of DbðXÞ is the element chðEÞ :¼ ðrkðEÞ; c1ðEÞ; ch2ðEÞÞ of the lattice
NðXÞ :¼ ZlNSðX Þl 1

2Z. We define the Euler form on the Grothendieck
group KðX Þ of X by

wðE;F Þ :¼ Sið�1Þ i dimC HomDbðXÞðE;F ½i�Þ:ð4Þ
Let KðXÞ? ¼ fa A KðXÞ j wða; bÞ ¼ 0 for each b A KðXÞg and KðX Þ=KðX Þ? is
called the numerical Grothendieck group of DbðXÞ.

By the Riemann-Roch theorem the Chern character gives an inclusion
KðX Þ=KðX Þ? !NðXÞ. Furthermore we define a symmetric bilinear form
ð� ; �ÞM on NðXÞ, called Mukai pairing, by the following formula

ððr1;D1; s1Þ; ðr2;D2; s2ÞÞM :¼ D1 �D2 � r1s2 � r2s1:ð5Þ
This bilinear form makes NðX Þ a lattice of signature ð2; rÞ by the Hodge Index
Theorem, where rb 1 is the Picard number of X .

A Bridgeland stability condition s ¼ ðZ;AÞ is said to be numerical if there is
a vector pðsÞ A NðXÞnC such that

ZðEÞ ¼ ðpðsÞ; chðEÞÞMð6Þ
for any ½E� A KðXÞ. s is said to be local finite if it satisfies some technical
conditions [Br1, Definition 5.7].

The set of all the numerical local finite Bridgeland stability conditions on
DbðXÞ is denoted by StabðXÞ. It is shown in [Br1, Section 6] that StabðX Þ has
a natural structure as a complex manifold. The map

p : StabðXÞ !NðXÞnC;ð7Þ
defined by (6), is holomorphic.

For the fixed heart A of a bounded t-structure on DbðXÞ, we write

StabðAÞ :¼ fs A StabðXÞ jAs ¼Ag:

2.3. gGLGLþð2;RÞ action on StabðX Þ
Let gGLGLþð2;RÞ be the universal cover of GLþð2;RÞ ¼ fT A GLð2;RÞ j

det T > 0g. The group gGLGLþð2;RÞ can be viewed as the set of pairs ðT ; f Þ
where T A GLþð2;RÞ and f is the automorphism of RGfS1S1 such that f covers
the automorphism T of S1 G ðR2n0Þ=R>0 induced by T .

The topological space StabðX Þ carries the right action of the group gGLGLþð2;RÞ
[Br1, Lemma 8.2] as follows. Given s A StabðX Þ and g ¼ ðT ; f Þ AgGLGLþð2;RÞ,
a new stability condition sg is defined to be the pair ðZsg;PsgÞ where Zsg :¼
T�1 � Zs and PsgðfÞ :¼ Psð f ðfÞÞ for f A R, where we identify C with R2 by

xþ
ffiffiffiffiffiffiffi
�1
p

y 7! x

y


 �
:

It is easy to check that the pair ðZsg;PsgÞ satisfies the properties of Proposition
2.4 (1). Hence by Proposition 2.4 (2), we have sg ¼ ðZsg;PsgÞ A StabðX Þ. We
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remark that the sets of the (semi)stable objects of s and sg are the same, but
the phases have been relabelled. For our purpose, it is convenient to introduce
the following definition.

Definition 2.5. Two stability conditions s; s 0 A StabðX Þ are said to begGLGLþð2;RÞ-equivalent to each other if s and s 0 are in a single gGLGLþð2;RÞ orbit.

For any element T A GLþð2;RÞ, the right GLþð2;RÞ action on NðXÞnC

is defined by idNðXÞnT�1. Hence the gGLGLþð2;RÞ acts on NðX ÞnC via the
covering map gGLGLþð2;RÞ ! GLþð2;RÞ : ðT ; f Þ 7! T :

The map p : StabðXÞ !NðXÞnC is equivariant for these gGLGLþð2;RÞ actions.

2.4. Moduli functors of Bridgeland semistable objects
For s ¼ ðZ;AÞ A StabðXÞ and a A KðX Þ, we define a moduli functor

MDbðXÞðchðaÞ; sÞ : ðscheme=CÞ ! ðsetsÞ : S 7!MDbðX ÞðchðaÞ; sÞðSÞ
as follows, where ðscheme=CÞ is the category of schemes of finite type over C
and ðsetsÞ is the category of sets. For a scheme S, the set MDbðX ÞðchðaÞ; sÞðSÞ
consists of isomorphism classes of E A DbðX � SÞ such that for every closed point
s A S the restriction to the fiber

Es :¼ Li�X�fsgE

is a s-semistable object in A with chðEsÞ ¼ chðaÞ A NðX Þ, where iX�fsg is the
embedding

iX�fsg : X �
�
s
�
! X � S:

Note that by definition each object Es belongs to AHDbðXÞ for every closed
point s A S, so chðEsÞ A NðX Þ is well-defined. Let Ms

DbðXÞðchðaÞ; sÞ be the sub-

functor of MDbðX ÞðchðaÞ; sÞ corresponding to s-stable objects of A.

Since the action of gGLGLþð2;RÞ does not change the set of (semi)stable objects,
for any g AgGLGLþð2;RÞ there exists an integer n such that the shift functor ½n� gives
an isomorphism

MDbðX ÞðchðaÞ; sÞGMDbðXÞðð�1Þn chðaÞ; sgÞ : E 7! E½n�:ð8Þ

Here we recall the definition of a moduli space. For a scheme Z, we denote
by Z the functor

Z : ðscheme=CÞ ! ðsetsÞ : S 7! HomðS;ZÞ:

The Yoneda lemma tells us that every natural transformation Y ! Z is of the
form f for some morphism f : Y ! Z of schemes, where f sends t A Y ðTÞ to
f ðtÞ ¼ f � t A ZðTÞ for any scheme T . A functor ðscheme=CÞ ! ðsetsÞ isomor-
phic to Z is said to be represented by Z.
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In the terminology introduced by Simpson [S, Section 1], a moduli space is a
scheme which ‘corepresents’ a moduli functor.

Definition 2.6. Let M : ðscheme=CÞ ! ðsetsÞ be a functor, M a scheme
and c : M!M a natural transformation. We say that M corepresents M if for
each scheme Y and each natural transformation h : M! Y , there exists a unique
morphism s : M ! Y such that h ¼ s � c:

M

c

???y
M ���!

s
Y

 �����
��

h

This characterizes M up to a unique isomorphism. If M represents M we
say that M is a fine moduli space.

For any functor M : ðscheme=CÞ ! ðsetsÞ, we consider the sheafication of M

shM : ðscheme=CÞ ! ðsetsÞ
with respect to the Zariski topology. For a scheme S, shMðSÞ is defined as fol-
lows. For an open cover U ¼ fUig of S, S ¼6Ui, let MU :¼ fðEiÞ A

Q
MðUiÞ j

EijUiVUj
¼ EjjUiVUj

g. If V is a refinement of U, then we have a natural map
MU !MV. The set of open covers forms a direct system with respect to the
preorder defined by refinement. We define a functor M0 by

M0 : ðscheme=CÞ ! Sets : S 7!M0ðSÞ :¼ lim�!
U

MU:ð9Þ

Then shMðSÞ is defined by shM :¼ ðM0Þ0. Actually, the limit can be computed
over a‰ne coverings only, because every covering U has a refinement which is
a‰ne. Since any scheme Y satisfies Y G shY , we have

HomðM;Y ÞGHomðshM;YÞ:ð10Þ
In particular, a scheme M corepresents M if and only if M corepresents shM.

3. Geometric Bridgeland stability conditions

Let X be a smooth projective surface. In this section, we introduce the
notion of geometric Bridgeland stability conditions on DbðX Þ and see that if
s A StabðXÞ is geometric, then under suitable assumptions the above functor
Ms

DbðXÞðchðaÞ; sÞ (resp. MDbðX ÞðchðaÞ; sÞ) is corepresented by a certain moduli

space of Gieseker-(semi)stable coherent sheaves on X .

3.1. Twisted Gieseker-stability and m-stability
We recall the notion of twisted Gieseker-stability and m-stability. For details,

we can consult [HL], [MW]. Take g;o A NSðX ÞnR, and suppose that o is in
the ample cone

AmpðX Þ ¼ fo A NSðX ÞnR jo2 > 0 and o � C > 0 for any curve CHXg:
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For a coherent sheaf E with rkðEÞ0 0, define moðEÞ and ngðEÞ by

moðEÞ :¼
c1ðEÞ � o
rkðEÞ ; ngðEÞ :¼

ch2ðEÞ
rkðEÞ �

c1ðEÞ � KX

2 rkðEÞ �
c1ðEÞ � g
rkðEÞ :ð11Þ

Definition 3.1. Let E be a torsion free sheaf.
(i) E is said to be ðg;oÞ-semistable if for every proper nonzero subsheaf F

of E we have

ðmoðFÞ; ngðFÞÞa ðmoðEÞ; ngðEÞÞð12Þ
in the lexicographic order, namely moðF Þ < moðEÞ or moðF Þ ¼ moðEÞ,
ngðFÞa ngðEÞ. E is said to be ðg;oÞ-stable if ðmoðFÞ; ngðFÞÞ <
ðmoðEÞ; ngðEÞÞ for any such F .

(ii) E is said to be mo-semistable if moðFÞa moðEÞ for any such F . E is
said to be mo-stable if in addition moðFÞ < moðEÞ for any F with
rk F < rk E.

ðg;oÞ-stability is called twisted Gieseker-stability in [To]. Correspondingly
to these semistability notions, every torsion free sheaf E on X has a unique
Harder-Narasimhan filtration (cf. [J, Example 4.16 and 4.17]). If

0 ¼ E0 HE1 H � � �HEn�1 HEn ¼ E

is the Harder-Narasimhan filtration with respect to mo-semistability, we define
mo-minðEÞ :¼ moðEn=En�1Þ and mo-maxðEÞ :¼ moðE1Þ.

Theorem 3.2 (Bogomolov-Gieseker Inequality). Let X be a smooth projec-
tive surface and o an ample divisor on X. If E is a mo-semistable torsion free
sheaf on X , then

c21ðEÞ � 2 rkðEÞ ch2ðEÞb 0:

Proof. See [HL, Theorem 3.4.1]. r

We take a A KðX Þ with rkðaÞ > 0 and consider the moduli functor
MX ðchðaÞ; g;oÞ of ðg;oÞ-semistable torsion free sheaves E with chðEÞ ¼ chðaÞ A
NSðXÞ. Let Ms

X ðchðaÞ; g;oÞ be the subfunctor of MX ðchðaÞ; g;oÞ corresponding
to ðg;oÞ-stable ones.

We denote by MX ðchðaÞ; g;oÞ the moduli space of ðg;oÞ-semistable torsion-
free sheaves if it exists. When o is an integral ample divisor and g A NSðXÞnQ,
the moduli space MX ðchðaÞ; g;oÞ exists [MW, Theorem 5.7]. Furthermore if
g ¼ 0, we write MX ðchðaÞ;oÞ instead of MX ðchðaÞ; 0;oÞ for the sake of simplicity.
In this case there is an open subset Ms

X ðchðaÞ;oÞ of MX ðchðaÞ;oÞ that corep-
resents the functor Ms

X ðchðaÞ;oÞ [HL, Theorem 4.3.4].

3.2. Geometric Bridgeland stability conditions
We construct some Bridgeland stability conditions on DbðXÞ following

[ABL]. For every coherent sheaf E on X , we denote the torsion part of E
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by Etor and the torsion free part of E by Efr ¼ E=Etor. Suppose that b;o A
NSðXÞnR with o A AmpðXÞ, then we define two full subcategories T and F of
CohðXÞ as follows;

obðTÞ ¼ ftorsion sheavesgU fE jEfr 0 0 and mo-minðEfrÞ > b � og
obðFÞ ¼ fE jEtor ¼ 0 and mo-maxðEÞa b � og:

We define a pair sðb;oÞ ¼ ðZðb;oÞ;Aðb;oÞÞ of the heart Aðb;oÞ of a bounded t-
structure on DbðXÞ and a stability function Zðb;oÞ on Aðb;oÞ in the following
way.

Definition 3.3. A full subcategory Aðb;oÞ of DbðXÞ is defined as follows;

Aðb;oÞ :¼ fE A DbðX Þ jH iðEÞ ¼ 0 for all i0 0; 1 and

H0ðEÞ A T and H�1ðEÞ A Fg:

The group homomorphism Zðb;oÞ is defined by Zðb;oÞðaÞ :¼ ðexpðb þ
ffiffiffiffiffiffiffi
�1
p

oÞ;
chðaÞÞM , where

expðb þ
ffiffiffiffiffiffiffi
�1
p

oÞ ¼ 1; b þ
ffiffiffiffiffiffiffi
�1
p

o;
1

2
ðb2 � o2Þ þ

ffiffiffiffiffiffiffi
�1
p

ðb � oÞ

 �

A NðX Þ

and ð� ; �ÞM is the Mukai pairing defined in §2:2.

From the general theory called tilting we see that Aðb;oÞ is the heart of a

bounded t-structure on DbðX Þ (for example, see [Br1, §3]). By definition, for
a A KðXÞ with chðaÞ ¼ ðr; c1; ch2Þ we have

Zðb;oÞðaÞ ¼ �ch2 þ c1 � b þ
r

2
ðo2 � b2Þ þ

ffiffiffiffiffiffiffi
�1
p

o � ðc1 � rbÞ:ð13Þ

Furthermore if r0 0, we can write

Zðb;oÞðaÞ ¼
1

2r
ððc21 � 2r ch2Þ þ r2o2 � ðc1 � rbÞ2Þ þ

ffiffiffiffiffiffiffi
�1
p

oðc1 � rbÞ:ð14Þ

Our sðb;oÞ is slightly di¤erent from that in [Br2], [To].

Proposition 3.4 [ABL, Corollary 2.1]. For each pair b;o A NSðXÞnQ
with o A AmpðX Þ, sðb;oÞ is a Bridgeland stability condition on DbðXÞ.

For general b;o A NSðXÞnR, we do not know whether sðb;oÞ belongs to
StabðXÞ or not since we do not know if Zðb;oÞ has the Harder-Narasimhan prop-
erty. If b;o A NSðX ÞnQ it directly follows from [Br2, Proposition 7.1]. How-
ever we consider the following definition.
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Definition 3.5. s A StabðX Þ is called geometric if s is gGLGLþð2;RÞ-equivalent
to sðb;oÞ for some b;o A NSðXÞnR with o A AmpðX Þ.

We have the following criterion due to [Br2] for s A StabðXÞ to be geometric.
It reduces the proof of Theorem 5.1 to easy calculations (§5.2).

Proposition 3.6. s A StabðXÞ is geometric if and only if
1. For all x A X , the structure sheaves Ox are s-stable of the same phase.
2. There exist T A GLþð2;RÞ and b;o A NSðXÞnR such that o2 > 0 and

pðsÞT ¼ expðb þ
ffiffiffiffiffiffiffi
�1
p

oÞ;

where p : StabðXÞ !NðXÞ is defined by ð7Þ and GLþð2;RÞ action on
NðXÞnC is defined in §2.3.

Proof. From [Br2, Lemma 10.1 and Proposition 10.3] the assertion holds
because [Br2, Lemma 6.3 and Lemma 10.1] hold for an arbitrary smooth pro-
jective surface. However we give the proof of this proposition for the reader’s
convenience.

The only if part is easy. By [Br2, Lemma 6.3], for any closed point x A X
the structure sheaf Ox is a simple object of the abelian category Aðb;oÞ, hence

sðb;oÞ-stable for any b;o A NSðXÞ with o A AmpðXÞ. Since gGLGLþð2;RÞ action
does not change stable objects, Ox is also s-stable. Furthermore since the map p
is equivariant for gGLGLþð2;RÞ actions, s also satisfies condition 2 (cf. §2.3).

Now we consider the if part. We show that sg ¼ sðb;oÞ for some g ¼
ðT ; f Þ AgGLGLþð2;RÞ, where b, o and T are as in the condition 2. We may

assume pðsÞ ¼ expðb þ
ffiffiffiffiffiffiffi
�1
p

oÞ for some b;o A NSðX ÞnR with o2 > 0. The

kernel of the homomorphism gGLGLþð2;RÞ ! GLþð2;RÞ acts on StabðXÞ by even
shifts, so we may assume furthermore that Ox A Psð1Þ for all x A X .

We show that o is ample. It is enough to show that C � o > 0 for any
curve CHX . The condition 1 and [Br2, Lemma 10.1(c)] show that the torsion
sheaf OC lies in the subcategory Psðð0; 1�Þ. If ZsðOCÞ lies on the real axis it
follows that OC A Psð1Þ which is impossible by [Br2, Lemma 10.1(b)]. Thus
Im ZsðOCÞ ¼ C � o > 0.

The same argument of STEP 2 in [Br2, Proposition 10.3] holds and we see
that Psðð0; 1�Þ ¼Aðb;oÞ. r

3.3. Moduli spaces corepresenting MDbðXÞðchðaÞ; sðb;oÞÞ and
Ms

DbðXÞðchðaÞ; sðb;oÞÞ
In this subsection we fix a A KðXÞ with chðaÞ ¼ ðr; c1; ch2Þ A NðXÞ, r > 0

and b A NSðX ÞnR, o A NSðXÞ with o ample. We put

e :¼ Im Zðb;oÞðaÞ ¼ c1 � o� rb � o A Rð15Þ

and g :¼ b � 1
2KX A NSðX ÞnR. We take 0 < ta 1 and assume that sðb; toÞ ¼

ðZðb; toÞ;Aðb; toÞÞ satisfies the Harder-Narasimhan property, that is, sðb; toÞ A
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StabðXÞ. We will show that if e > 0 is small enough and the moduli
space MX ðchðaÞ; g;oÞ exists, then it corepresents the moduli functor
MDbðX ÞðchðaÞ; sðb; toÞÞ:

Lemma 3.7. For any sðb; toÞ-semistable object E A Aðb; toÞ with ½E� ¼ a, the
following hold.

(1) Assume that 0 < ea t and Re Zðb; toÞðaÞb 0. Then E is a torsion free
sheaf.

(2) Furthermore assume that ea
1

r
. Then E is a mo-semistable torsion free

sheaf.

Proof. (1) For a contradiction we assume that H�1ðEÞ0 0 and take
chðH�1ðEÞÞ ¼ ðr 0; c 01; ch

0
2Þ A NðX Þ. Then there exists an exact sequence in

Aðb; toÞ,

0!H�1ðEÞ½1� ! E !H0ðEÞ ! 0ð16Þ
and we have

Zðb; toÞðEÞ ¼ Zðb; toÞðH0ðEÞÞ þ Zðb; toÞðH�1ðEÞ½1�Þ:
Since Im Zðb; toÞðH0ðEÞÞ > 0 and Im Zðb; toÞðH�1ðEÞ½1�Þb 0, we get

0a to � ð�c 01 þ r 0bÞ ¼ Im Zðb; toÞðH�1ðEÞ½1�Þ < Im Zðb; toÞðEÞ ¼ te:

By the Hodge Index Theorem, we have

ð�c 01 þ r 0bÞ2 < e2

o2
a t2:ð17Þ

Here we assume that H�1ðEÞ is mo-semistable. Then by Theorem 3.2 we

have �ðc 021 � 2r 0 ch 02Þa 0. It follows from (14), (17) and r 02o2 A Z>0 that

Re Zðb; toÞðH�1ðEÞ½1�Þ ¼ 1

2r 0
ð�ðc 021 � 2r 0 ch 02Þ � r 02t2o2 þ ðc 01 � r 0bÞ2Þ

<
1

2r 0
ð�r 02o2 þ 1Þt2 a 0:

In the general case, H�1ðEÞ factors into mo-semistable sheaves and we also get
the inequality

Re Zðb; toÞðH�1ðEÞ½1�Þ < 0:

Hence we have 0 < msðb; toÞ ðH
�1ðEÞ½1�Þ.

On the other hand by the assumption that Re Zðb; toÞðEÞb 0, we have

msðb; toÞ ðEÞa 0. Thus we have msðb; toÞ ðEÞ < msðb; toÞ ðH
�1ðEÞ½1�Þ. This contradicts

the fact that E is sðb; toÞ-semistable since H�1ðEÞ½1� is a subobject of E in Aðb; toÞ
by (16). Thus H�1ðEÞ ¼ 0 and E is a sheaf.

Next we show that E is torsion free. We assume that E has a torsion
Etor 0 0. In the case dim Etor ¼ 1, we have m :¼ o � c1ðEtorÞb 1. Since
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E A Aðb; toÞ we get to � b < mtoðEfrÞ ¼
tc1 � o�mt

r
. However by (15), to � b ¼

tc1 � o� te

r
. This implies that e > mb 1. This contradicts the assumption that

ea ta 1. In the case dim Etor ¼ 0, we get a nonzero subobject Etor of E in
Aðb; toÞ. However the slope msðb; toÞ ðEtorÞ is infinity and greater than msðb; toÞ ðEÞ.
This contradicts the fact that E is sðb; toÞ-semistable.

(2) By (1), E is a torsion free sheaf. For a contradiction we assume that
E is not mo-semistable. Then there exists an exact sequence in CohðXÞ

0! E 00 ! E ! E 0 ! 0:

Here E 0 is a mo-semistable factor of E with the smallest slope moðE 0Þ. Since
E A Aðb; toÞ, we have to � b < mto-minðEÞ ¼ mtoðE 0Þ. Hence

mtoðEÞ � mtoðE 0Þ < mtoðEÞ � to � b ¼ te=r:

On the other hand, since moðEÞ � moðE 0Þ > 0 and rkðE 0Þc1 � o� rc1ðE 0Þ � o is an
integer, we have

moðEÞ � moðE 0Þ ¼
rkðE 0Þc1 � o� rc1ðE 0Þ � o

r rkðE 0Þ > 1=r2:

Hence we get e=r > moðEÞ � moðE 0Þ > 1=r2 and this contradicts the assumption

that ea
1

r
. Thus E is mo-semistable. r

Next we consider the relationship between sðb; toÞ and the ðg;oÞ-stability,
where g ¼ b � 1

2KX . By (13) the slope msðb; toÞ ðEÞ is written as

msðb; toÞ ðEÞ ¼
ngðEÞ � 1

2 ðt2o2 � b2Þ
tmoðEÞ � tb � oð18Þ

for any coherent sheaf E A CohðX Þ with rkðEÞ0 0.

Theorem 3.8. Assume that 0 < eamin t;
1

r

� �
and Re Zðb; toÞðaÞb 0. Then

for E A Aðb; toÞ with ½E� ¼ a, E is sðb; toÞ-(semi)stable if and only if E is a ðg;oÞ-
(semi)stable torsion free sheaf.

Proof. )) From Lemma 3.7, E is a mo-semistable torsion free sheaf.
Hence to see that E is ðg;oÞ-(semi)stable it is enough to show that for any
subsheaf F HE with E=F torsion free and moðF Þ ¼ moðEÞ, the inequality
ngðF Þ < ngðEÞ, (resp.a) holds. Since E is mo-semistable and moðFÞ ¼ moðE=FÞ ¼
moðEÞ, both F and E=F are mo-semistable and belong to Aðb; toÞ. Hence the
exact sequence in CohðXÞ

0! F ! E ! E=F ! 0

is also exact in Aðb; toÞ.
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Since E is sðb; toÞ-(semi)stable, we have msðb; toÞ ðFÞ < msðb; toÞ ðEÞ, (resp. a). By

equation (18) we have the desired inequality ngðFÞ < ngðEÞ, (resp. a).
() We take an arbitrary exact sequence in Aðb; toÞ

0! K ! E ! Q! 0ð19Þ
with K0 0 and Q0 0. We will show the inequality

msðb; toÞ ðH
�iðQÞ½i�Þ > msðb; toÞ ðEÞ; ðresp: bÞð20Þ

if H�iðQÞ0 0 for i ¼ 0; 1. Then since Zðb; toÞðQÞ ¼ Zðb; toÞðH0ðQÞÞþ
Zðb; toÞðH�1ðQÞ½1�Þ, we have the desired inequality

msðb; toÞ ðQÞ > msðb; toÞ ðEÞ; ðresp: bÞ;
showing that E is sðb; toÞ-(semi)stable.

First we assume H�1ðQÞ0 0 and show (20). In fact we see that the
inequality is always strict. The fact that E is a torsion free sheaf implies that K
is also a torsion free sheaf. Hence we have Im Zðb; toÞðKÞ > 0. Since

Im Zðb; toÞðEÞ ¼ Im Zðb; toÞðKÞ þ Im Zðb; toÞðH0ðQÞÞ þ Im Zðb; toÞðH�1ðQÞ½1�Þ;
we see that 0a Im Zðb; toÞðH�1ðQÞ½1�Þ < Im Zðb; toÞðEÞ ¼ te. The same argu-
ment as in the proof of Lemma 3.7 (1) shows the strict inequality
Re Zðb; toÞðH�1ðQÞ½1�Þ < 0. Hence by the assumption that Re Zðb; toÞðEÞb 0
we have the strict inequality

msðb; toÞ ðEÞ < msð b; toÞ ðH
�1ðQÞ½1�Þ:

Next we assume H0ðQÞ0 0. We take the cohomology long exact sequence
of (19) in CohðX Þ;

0!H�1ðQÞ ! K ! E !H0ðQÞ ! 0:

We take I :¼ imðK ! EÞ. Since the fact that K ;Q A Aðb; toÞ implies mtoðKÞ >
mtoðH�1ðQÞÞ, we have KZH�1ðQÞ. Hence I is not equal to 0 and is torsion
free.

If the strict inequality

moðIÞ < moðEÞð21Þ
holds we show a contradiction in the following way. We can write

mtoðEÞ � mtoðIÞ ¼
tðrðIÞc1 � o� rc1ðIÞ � oÞ

rrðIÞ :

By (21) we have ðrðIÞc1 � o� rc1ðIÞ � oÞ A Z>0. Hence we get

mtoðEÞ � mtoðIÞb
t

r2
:ð22Þ

On the other hand since K ! I is surjective, we have the following inequalities

b � to < mto-minðKÞa mtoðIÞ:
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Hence we get

mtoðEÞ � mtoðIÞ <
c1 � to

r
� b � to ¼ te

r
ð23Þ

by (15). Combining (22) and (23) with the assumption that ea
1

r
, we get a

contradiction.
In the case rðIÞ ¼ r and dim H0ðQÞ ¼ 1 we have moðIÞ < moðEÞ. Hence

we may assume that 0 < rkðIÞ < rkðEÞ holds or that rkðIÞ ¼ rkðEÞ and

dimðH0ðQÞÞ ¼ 0 holds. In the latter case, we see that the slope msðb; toÞ ðH
0ðQÞÞ

is infinity and the desired inequality msðb; toÞ ðEÞ < msðb; toÞ ðH
0ðQÞÞ holds.

We assume that rkðIÞ < rkðEÞ. Since E is ðg;oÞ-(semi)stable,

ðmoðEÞ; ngðEÞÞ < ðmoðH0ðQÞÞ; ngðH0ðQÞÞÞ; ðresp: aÞ:
Then since moðIÞ ¼ moðEÞ by the above argument, we have

moðEÞ ¼ moðH0ðQÞÞ and ngðEÞ < ngðH0ðQÞÞ; ðresp: aÞ:
Hence by (18) we get the desired inequality msð b; toÞ ðEÞ < msðb; toÞ ðH

0ðQÞÞ, (resp.a).
r

Here we assume that b belongs to NSðXÞnQ, or that g ¼ b � 1
2KX is

proportional to o in NSðXÞnR. In the latter case we have MX ðchðaÞ; g;oÞ ¼
MX ðchðaÞ; 0;oÞ by (11) and (12). We recall that o is an integral divisor.
Hence in both cases we have moduli spaces MX ðchðaÞ; g;oÞ of MX ðchðaÞ; g;oÞ by
[MW, Theorem 5.7].

Corollary 3.9. Under the assumptions in the above theorem the moduli
space MX ðchðaÞ; g;oÞ of ðg;oÞ-semistable sheaves corepresents the moduli functor
MDbðX ÞðchðaÞ; sðb; toÞÞ. In the case where g is proportional to o, or g ¼ 0, the open
subset M s

X ðchðaÞ;oÞHMX ðchðaÞ;oÞ corepresents the functorM s
DbðX ÞðchðaÞ; sðb; toÞÞ.

Proof. This follows directly from Theorem 3.8 and [Hu, Lemma 3.31].
r

By this corollary we get Theorem 1.1 in the introduction.

4. Algebraic Bridgeland stability conditions

4.1. Moduli functors of representations of algebras
For a finite dimensional C-algebra B, we consider the abelian category mod-

B of finitely generated right B-modules and introduce the notion of yB-stability of
B-modules and families of B-modules over schemes following [K].

Definition 4.1. Let yB : KðBÞ ! R be an additive function on the Gro-
thendieck group KðBÞ. An object N A mod-B is called yB-semistable if yBðNÞ ¼ 0
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and every subobject N 0HN satisfies yBðN 0Þb 0. Such an N is called yB-stable
if the only subobjects N 0 with yBðN 0Þ ¼ 0 are N and 0.

For S A ðscheme=CÞ, define CohBðSÞ to be the category with objects ðF ; rÞ
for F a coherent sheaf on S and r : B! HomSðF ;F Þ a C-linear homomorphism
with rðabÞ ¼ rðbÞ � rðaÞ for each a; b A B, and morphisms h : ðF ; rÞ ! ðF 0; r 0Þ to
be morphisms of sheaves h : F ! F 0 with h � rðaÞ ¼ r 0ðaÞ � h in HomSðF ;F 0Þ for
all a A B. It is easy to show CohBðSÞ is an abelian category. Let VecBðSÞ be
the full subcategory of CohBðSÞ consisting of objects ðE; rÞ A CohBðSÞ where E is
locally free.

Definition 4.2. [K, Definition 5.1] Objects of VecBðSÞ are called families of
B-modules over S.

For aB A KðBÞ and an additive function yB : KðBÞ ! R as in Definition 4.1,
let MBðaB; yBÞ be the moduli functor which sends S A ðscheme=CÞ to the set
MBðaB; yBÞðSÞ consisting of isomorphism classes of families of yB-semistable right
B-modules N with ½N� ¼ aB. Let Ms

BðaB; yBÞ be the subfunctor of MBðaB; yBÞ
corresponding to yB-stable right B-modules. There exist moduli spaces Ms

BðaB; yBÞ
HMBðaB; yBÞ of Ms

BðaB; yBÞ and MBðaB; yBÞ [K, Proposition 5.2].
Here we recall the definition of the S-equivalence. Since any object of mod-

B is finite dimensional C-vector space, any yB-semistable B-module N has a
filtration, called Jordan-Hölder filtration,

0 ¼ N0 HN1 H � � �HNn ¼ N

such that Ni=Ni�1 is yB-stable for any i. The grading GryBðNÞ :¼0
i
Ni=Ni�1

does not depend on a choice of a Jordan-Hölder filtration up to isomorphism (for
example, see [HL, Proposition 1.5.2]). yB-semistable B-modules N and N 0 are
said to be S-equivalent if GryBðNÞGGryBðN 0Þ.

Proposition 4.3 (cf. [K, Proposition 3.2]). For B-modules N and N 0 with
½N� ¼ ½N 0� ¼ aB A KðBÞ, N and N 0 define the same point of MBðaB; yBÞ if and only
if they are S-equivalent to each other.

4.2. Algebraic Bridgeland stability conditions
Let X be a smooth projective surface. An object E A DbðX Þ is said to be

exceptional if

Homk
DbðX ÞðE;EÞ ¼

C if k ¼ 0

0 otherwise:

�
An exceptional collection in DbðX Þ is a sequence of exceptional objects E ¼
ðE0; . . . ;EnÞ of DbðXÞ such that

nb i > jb 1) Homk
DbðXÞðEi;EjÞ ¼ 0 for all k A Z:
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The exceptional collection E is said to be full if E0; . . . ;En generates DbðX Þ,
namely the smallest full triangulated subcategory containing E0; . . . ;En coincides
with DbðX Þ. The exceptional collection E is said to be strong if for all
1a i; ja n one has

Homk
DbðX ÞðEi;EjÞ ¼ 0 for k0 0:

We assume that DbðX Þ has a full strong exceptional collection E ¼
ðE0; . . . ;EnÞ on DbðX Þ. We put E :¼ E0 l � � �lEn, BE :¼ EndX ðEÞ. By Bon-
dal’s theorem [Bo] we have an equivalence

FE : DbðXÞGDbðBEÞ : E 7! R HomX ðE;EÞ:
We obtain the heart AE HDbðX Þ by pulling back mod-BE via the equivalence
FE. The equivalence FE induces an isomorphism jE : KðX ÞGKðBEÞ of the
Grothendieck groups.

For a stability function Z on AE and a A KðX Þ, we define ya
Z : KðBEÞ ! R

by

ya
ZðbÞ :¼

Re Zðj�1E ðbÞÞ Re ZðaÞ
Im Zðj�1E ðbÞÞ Im ZðaÞ

���� ����ð24Þ

for any b A KðBEÞ. Then for an object E A AE with ½E� ¼ a A KðXÞ, E is Z-
(semi)stable if and only if FEðEÞ is ya

Z-(semi)stable. We also notice that by the
existence of full exceptional collection, KðXÞ is isomorphic to the numerical
Grothendieck group KðXÞ=KðX Þ?. Hence for E A DbðX Þ the class ½E� is equal
to a in KðX Þ if and only if chðEÞ ¼ chðaÞ.

Proposition 4.4. The moduli space MBE
ðjEðaÞ; ya

ZÞ (resp. M s
BE
ðjEðaÞ; ya

ZÞ)
corepresents the moduli functor MDbðX ÞðchðaÞ; sÞ (resp. Ms

DbðX ÞðchðaÞ; sÞ) for any
a A KðXÞ, s ¼ ðZ;AEÞ A StabðAEÞ.

Proof. We only give a proof for the moduli functor MDbðXÞðchðaÞ; sÞ,
since a similar argument also holds for the other moduli functor M s

DbðX ÞðchðaÞ; sÞ
corresponding to stable objects. We show that

shMDbðXÞðchðaÞ; sÞG shMBE
ðjEðaÞ; ya

ZÞ:ð25Þ
Then, since MBE

ðjEðaÞ; ya
ZÞ corepresents MBE

ðjEðaÞ; ya
ZÞ, the assertion holds by

(10). By the remark after (9), to establish (25) it is enough to give a functorial
isomorphism

MDbðXÞðchðaÞ; sÞðSÞGMBE
ðjEðaÞ; ya

ZÞðSÞ;ð26Þ
for every a‰ne scheme S ¼ Spec R. We consider XS :¼ X � S, projections p
and q from XS to X and S, the pull back ES :¼ p�E of E and R-algebra BES :¼
HomXS

ðES;ESÞ. Since BES GRnBE, we have mod-BES GCohBE
ðSÞ. From [TU,

Lemma 8] we see that via the above identification FES ð�Þ :¼ R HomXS
ðES; �Þ gives

equivalences

DbðXSÞGDbðCohBE
ðSÞÞ; D�ðXSÞGD�ðCohBE

ðSÞÞ:
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These equivalences are compatible with pull backs, that is, the following diagram
is commutative

D�ðXSÞ ���!FES
D�ðCohBE

ðSÞÞ

Lf �

???y ???yLf �

D�ðXS 0 Þ ���!FE
S 0

D�ðCohBE
ðS 0ÞÞ

for every morphism f : S 0 ! S of a‰ne schemes. In the following we show that
this equivalence FES defines an isomorphism (26).

For any S-valued point E of MDbðX ÞðchðaÞ; sÞ, by the above diagram the fact
that E A MDbðX ÞðchðaÞ; sÞðSÞ implies that Li�s FES ðEÞ A D�ðCohBE

ðfsgÞÞGD�ðBEÞ
is a ya

Z-semistable BE-module for any closed point s A S, where is : fsg ! S is the
embedding. By the standard argument using the spectral sequence (for example,
[Hu, Lemma 3.31]), we see that FES ðEÞ belongs to VecBE

ðSÞHCohBE
ðSÞ. Hence

FES defines a desired map. We see that this map is an isomorphism since F�1ES
gives the inverse map by a similar argument. r

By this proposition we get Proposition 1.2 in the introduction.

Definition 4.5. s A StabðXÞ is called an algebraic Bridgeland stability
condition associated to the full strong exceptional collection E ¼ ðE0; . . . ;EnÞ
if s is gGLGLþð2;RÞ-equivalent to ðZ;AEÞ for some Z : KðXÞ ! C, where E ¼
E0 l � � �lEn.

4.3. Full strong exceptional collections on P2

In the rest of the paper, we assume that X ¼ P2 and H is the hyperplane
class on P2. We put OP2ð1Þ :¼ OP2ðHÞ and denote the homogeneous coordinates
of P2 by ½z0 : z1 : z2�. We introduce two types of full strong exceptional
collections Ek and E 0k on P2 for each k A Z as follows,

Ek :¼ ðOP2ðk þ 1Þ;W1
P2ðk þ 3Þ;OP2ðk þ 2ÞÞ;

E 0k :¼ ðOP2ðkÞ;OP2ðk þ 1Þ;OP2ðk þ 2ÞÞ:
We put

Ek :¼ OP2ðk þ 1ÞlW1
P2ðk þ 3ÞlOP2ðk þ 2Þ;

E 0k :¼ OP2ðkÞlOP2ðk þ 1ÞlOP2ðk þ 2Þ

and B :¼ EndP2ðEkÞ, B 0 :¼ EndP2ðE 0kÞ, which do not depend on k up to natural
isomorphism. Using the notation in §4.2, we define functors

Fk :¼ FEk : D
bðP2ÞGDbðBÞ; F 0k :¼ FE 0k

: DbðP2ÞGDbðB 0Þ;

induced isomorphisms jk :¼ jEk : KðP
2ÞGKðBÞ, j 0k :¼ jE 0k : KðP2ÞGKðB 0Þ and

full subcategories Ak :¼AEk , A 0
k :¼AE 0k

of DbðP2Þ.
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To explain finite dimensional algebras B and B 0 we introduce some
notations. For any l A Z, we denote by zi the morphism OP2ðlÞ ! OP2ðl þ 1Þ
defined by multiplication of zi for i ¼ 0; 1; 2. We put V :¼ Ce0 lCe1 lCe2 and
denote i-th projection and i-th embedding by e�i : V ! C and ei : C! V for
i ¼ 0; 1; 2. We consider the exact sequence for each k A Z

0! W1
P2ðk þ 3Þ !i OP2ðk þ 2ÞnV !j OP2ðk þ 3Þ ! 0;ð27Þ

where we put j :¼ z0 n e�0 þ z1 n e�1 þ z2 n e�2 and identify W1
P2ðk þ 3Þ with ker j.

We define morphisms pi : W
1
P2ðk þ 3Þ ! OP2ðk þ 2Þ by pi :¼ ðidO

P2 ðkþ2Þn e�i Þ � i
and qi : OP2ðk þ 1Þ ! W1

P2ðk þ 3Þ by qi :¼ ziþ2 n eiþ1 � ziþ1 n eiþ2 for i A Z=3Z.

We introduce the following quiver Q with 3 vertices fv0; v1; v2g and 6 arrows
fg0; g1; g2; d0; d1; d2g

�v0 �������gi �v1 �������dj �v2 ði; j ¼ 0; 1; 2Þ

and consider ideals J and J 0 of the path algebra CQ defined as follows. J and
J 0 are two-sided ideals generated by fgidj þ gjdi j i; j ¼ 0; 1; 2g and fgidj � gjdi j
i; j ¼ 0; 1; 2g, respectively. We have isomorphisms

r : CQ=JGB : gi; dj 7! pi; qj ; r 0 : CQ=J 0GB 0 : gi; dj 7! zi; zj:ð28Þ

These isomorphisms r and r 0 map vertices v0; v1; v2 A CQ=J (resp. CQ=J 0) to
idempotent elements

rðv0Þ ¼ idO
P2 ðkþ2Þ; rðv1Þ ¼ idW1

P2 ðkþ3Þ
; rðv2Þ ¼ idO

P2 ðkþ1Þ A B

ðresp: r 0ðv0Þ ¼ idO
P2 ðkþ2Þ; r

0ðv1Þ ¼ idO
P2 ðkþ1Þ; r

0ðv2Þ ¼ idO
P2 ðkÞ A B 0Þ:

They also map gi; dj A CQ=J (resp. CQ=J 0) to

rðgiÞ ¼ pi; rðdjÞ ¼ qj A B ðresp: r 0ðgiÞ ¼ zi; r
0ðdjÞ ¼ zj A B 0Þ

for i; j ¼ 0; 1; 2. We identify B and B 0 with CQ=J and CQ=J 0 via isomorphisms
r and r 0.

For any finitely generated right B-module N, we consider the right action
on N of a path p of Q as a pull back by p and denote it by p�. Notice that
vertices v 0i s are regarded as paths with the length 0. We have the decom-
position N ¼ Nv�0 lNv�1 lNv�2 as a vector space. This gives the dimension
vector dimðNÞ ¼ ðdimC Nv�0 ; dimC Nv�1 ; dimC Nv�2 Þ of N and an isomorphism
dim : KðBÞGZl3. The B-module structure of N is written as;

Nv�0 !
g �i

Nv�1 !
d �j

Nv�2 ði; j ¼ 0; 1; 2Þ:
We sometimes use notation g�i jN and d�j jN to avoid confusion. We define B-
modules Cvi for i ¼ 0; 1; 2 as follows. As vector spaces Cvi ¼ C and can be
decomposed by ðCviÞv�i ¼ C, ðCviÞv�j ¼ 0 for j0 i. Actions of B are defined in
obvious way. They are simple objects of mod-B and we have

mod-B ¼ hCv0;Cv1;Cv2ið29Þ
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as a full subcategory of DbðBÞ. Similar results hold for B 0 and we use similar
notations for B 0.

Since OP2ðk � 1Þ½2�, OP2ðkÞ½1� and OP2ðk þ 1Þ correspond to B-modules Cv0,
Cv1 and Cv2 via Fk, we have

Ak ¼ hOP2ðk � 1Þ½2�;OP2ðkÞ½1�;OP2ðk þ 1Þi:
Similarly we have

A 0
k ¼ hOP2ðk � 1Þ½2�;W1

P2ðk þ 1Þ½1�;OP2ðkÞi:

On the other hand, OP2ðk þ 1Þ, W1
P2ðk þ 3Þ and OP2ðk þ 2Þ correspond to B-

modules B, v1B and v2B via Fk. Similarly OP2ðkÞ, OP2ðk þ 1Þ and OP2ðk þ 2Þ
correspond to B 0-modules B 0, v1B

0 and v2B
0 via F 0k. They are projective modules

and we can compute Ext groups by using them. Hence we get the following
lemma.

Lemma 4.6. For bounded complexes E, F of coherent sheaves on P2, the
following hold for each k A Z.

(1) By E i, we denote each term of complex E. We assume that (i) E i is a
direct sum of OP2ðk þ 1Þ, W1

P2ðk þ 3Þ and OP2ðk þ 2Þ for any i A Z and F
belongs to Ak, or that (ii) Ei is a direct sum of OP2ðkÞ, OP2ðk þ 1Þ and
OP2ðk þ 2Þ for any i A Z and F belongs to A 0

k . Then the complex
R HomP2ðE;FÞ is quasi-isomorphic to the following complex

� � � ! HomDbðP2ÞðE�i;F Þ !
d i

HomDbðP2ÞðE�i�1;FÞ ! � � � ;ð30Þ

where HomDbðP2ÞðE�i;F Þ lies on degree i and d i is defined by

d ið f Þ :¼ f � d�i�1E : E�i�1 ! F for f A HomP2ðE�i;FÞ:

In particular, we have HomDbðP2ÞðE;F ½i�ÞG ker d i=im d i�1

(2) If E belongs to Ak (resp. A 0
k ), then we have the following isomorphism in

DbðP2Þ
EG ðOP2ðk � 1Þla0 ! OP2ðkÞla1 ! OP2ðk þ 1Þla2Þ;

ðresp: EG ðOP2ðk � 1Þla0 ! W1
P2ðk þ 1Þla1 ! OP2ðkÞla2ÞÞ;

where ða0; a1; a2Þ A Z3
b0 and OP2ðk þ 1Þla2 (resp. OP2ðkÞla2 ) lies on degree 0.

Proof. (1) We only prove (i). We put N :¼ FkðEÞ, M :¼ FkðF Þ. Then
by the assumption the each term N i of the complex N is a direct sum of B, v1B
and v2B for any i. Hence N i is a projective module. Furthermore since the
fact F A Ak implies that M is a B-module, R HomP2ðE;F ÞGR HomBðN;MÞ is
quasi-isomorphic to the following complex

� � � ! HomBðN�i;MÞ !
d i

HomBðN�i�1;MÞ ! � � � :
Via Fk this complex coincides with (30).
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(2) For any object E A Ak we consider the B-module N ¼ FkðEÞ. If we put
dimðNÞ ¼ ða0; a1; a2Þ, then N can be obtained by extensions

0! ðCv1Þla1 ! N 0 ! ðCv0Þla0 ! 0;ð31Þ
0! ðCv2Þla2 ! N ! N 0 ! 0:ð32Þ

Since FkðOP2ðk � 1Þ½1�Þ ¼ Cv0½�1� and FkðOP2ðkÞ½1�Þ ¼ Cv1, we have a homo-
morphism

f : OP2ðk � 1Þla0 ! OP2ðkÞla1

in CohðP2Þ such that FkðCð f Þ½1�ÞGN 0, where Cð f Þ is the mapping cone of
f . From (32) E can be obtained as a mapping cone of a certain homomorphism
in HomDbðP2ÞðCð f Þ;OP2ðk þ 1Þla2Þ, since FkðOP2ðk þ 1ÞÞ ¼ Cv2. By (1) this

homomorphism is identified with a homomorphism

g : OP2ðkÞla1 ! OP2ðk þ 1Þla2

in CohðP2Þ satisfying g � f ¼ 0. Thus E is isomorphic to the following complex

ðOP2ðk � 1Þla0 !f OP2ðkÞla1 !g OP2ðk þ 1Þla2Þ;
where OP2ðk þ 1Þla2 lies on degree 0. r

The vector ða0; a1; a2Þ A Z3
b0 in Lemma 4.6 (2) coincides with dimðFkðEÞÞ

and is explicitly computed from chðEÞ ¼ ðr; sH; ch2Þ. For example, we assume
that E belongs to A1. Since

chðOP2 ½2�Þ ¼ ð1; 0; 0Þ; chðOP2ð1Þ½1�Þ ¼ � 1;H;
1

2


 �
; chðOP2ð2ÞÞ ¼ ð1; 2H; 2Þ;ð33Þ

we have ða0; a1; a2Þ ¼ rð1; 0; 0Þ � s

2
ð3; 4; 1Þ þ ch2ð1; 2; 1Þ.

5. Proof of Main Theorem 1.3

In this section we fix a A KðP2Þ with chðaÞ ¼ ðr; sH; ch2Þ and 0 < sa r. In
the sequel, we sometimes identify NSðP2Þ with Z by the isomorphism NSðP2ÞG
Z : b 7! b �H.

5.1. Wall-and-chamber structure
We consider the full strong exceptional collection E1 ¼ ðOP2ð2Þ;W1

P2ð4Þ;
OP2ð3ÞÞ on P2, the equivalence F1ð�Þ ¼ R HomP2ðE1; �Þ : DbðP2ÞGDbðBÞ and

the induced isomorphism j1 : KðP2ÞGKðBÞ, where E1 ¼ OP2ð2ÞlW1
P2ð4Þl

OP2ð3Þ and B ¼ EndP2ðE1Þ. We consider the plane j1ðaÞ
? :¼ fy1 A

HomZðKðBÞ;RÞ j y1ðj1ðaÞÞ ¼ 0g and define a subset W1 H j1ðaÞ
? as follows. A

subset W1 consists of elements y1 A j1ðaÞ
? satisfying that there exists a y1-

semistable B-module N with ½N� ¼ j1ðaÞ such that N has a proper nonzero sub-
module N 0HN with y1ðN 0Þ ¼ 0 and ½N 0� B Q>0j1ðaÞ in KðBÞ. The subset W1 is
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a union of finitely many rays in j1ðaÞ
?. These rays are called walls and the

connected components of j1ðaÞ
?nW1 are called chambers.

We take a line l1 in j1ðaÞ
? defined by l1 :¼ fy1 A j1ðaÞ

? j y1ðj1ðOxÞÞ ¼ 0g,
where Ox is the structure sheaf of a point x A P2. We take a chamber CP2

j1ðaÞH
j1ðaÞ

?, if any, such that the closure intersects with l1 and there exists an ele-

ment y1 A CP2

j1ðaÞ satisfying the inequality y1ðj1ðOxÞÞ > 0 and MBð�j1ðaÞ; y1Þ0j.

These conditions characterize CP2

j1ðaÞ uniquely.
We have the following theorem, which gives a proof of (i) in Main Theorem

1.3. The proof of Theorem 5.1 in the next subsection shows that if there is not
such a chamber CP2

j1ðaÞH j1ðaÞ
?, then MP2ðchðaÞ;HÞ ¼ j.

Theorem 5.1. The map E 7! F1ðE½1�Þ gives an isomorphism

MP2ðchðaÞ;HÞGMBð�j1ðaÞ; y1Þ
for any y1 A CP2

j1ðaÞ. This isomorphism keeps open subsets consisting of stable
objects.

Here we remark that if we assume MP2ðchðaÞ;HÞ0j, then dim MP2ðchðaÞ;HÞ
¼ s2 � r2 þ 1� 2r ch2 b 0. Hence we have ch2 a

1
2 . We see that ch2 ¼ 1

2 if and
only if chðaÞ ¼

�
1; 1; 12

�
.

5.2. Proof of Theorem 5.1
We will find Bridgeland stability conditions s in StabðA1ÞV fsðbH; tHÞ A

StabðP2Þ j t > 0ggGLGLþð2;RÞ for suitable b A R and obtain Theorem 5.1.

We put H ¼ fr expð
ffiffiffiffiffiffiffi
�1
p

pfÞ j r > 0 and 0 < fa 1g the strict upper half-plane
and F0 ¼ OP2 ½2�, F1 ¼ OP2ð1Þ½1� and F2 ¼ OP2ð2Þ. The full subcategory A1 of
DbðP2Þ is generated by F0, F1 and F2,

A1 ¼ hOP2 ½2�;OP2ð1Þ½1�;OP2ð2Þi:ð34Þ
Since KðP2Þ ¼ Z½F0�lZ½F1�lZ½F2�, a stability function Z on A1 is identi-

fied with the element ðZðF0Þ;ZðF1Þ;ZðF2ÞÞ of H3. Furthermore since the cate-
gory A1 Gmod-B has finite length, all stability functions on A1 satisfy the Harder-
Narasimhan property. Hence StabðA1ÞGH3.

For s ¼ ðZ;A1Þ A StabðA1Þ, we put ZðFiÞ ¼ xi þ
ffiffiffiffiffiffiffi
�1
p

yi A H3 and consider
the conditions for s to be geometric. In the next lemmas we consider the condi-
tion 1 of Proposition 3.6. For any point x A P2 we take a resolution of Ox

0! OP2 ! OP2ð1Þl2 ! OP2ð2Þ ! Ox ! 0:ð35Þ
Hence from (34) we have Ox A A1 and ½Ox� ¼ ½F0� þ 2½F1� þ ½F2� A KðP2Þ.

Lemma 5.2. For any subobject E of Ox in A1, the class ½E� in KðP2Þ is equal
to ½F2�, ½F1� þ ½F2� or 2½F1� þ ½F2�.

Proof. If the conclusion is not true, we can find a subobject F½i�HOx in
A1 with F a nonzero sheaf on P2 and i ¼ 1 or 2; for example, if E is a subobject
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of Ox in A1 and ½E� ¼ ½F0� þ ½F1� þ ½F2� in KðP2Þ, then by Lemma 4.6 (2), E is
written as

E ¼ ðOP2 !f OP2ð1Þ !g OP2ð2ÞÞ:
If g ¼ 0 and f 0 0, then E ¼ Olð1Þ½1�lOP2ð2Þ, where l is a line on P2 deter-
mined by Olð1Þ ¼ coker f . If g ¼ f ¼ 0, then E ¼ OP2 ½2�lOP2ð1Þ½1�lOP2ð2Þ.
If g0 0, then we have a distinguished triangle

Ol 0 ð2Þ ! E ! OP2 ½2� ! Ol 0 ð2Þ½1�
for a line l 0 on P2 determined by Ol 0 ð2Þ ¼ coker g. The fact that
HomDbðP2ÞðOP2 ½2�;Ol 0 ð2Þ½1�Þ ¼ 0 implies E ¼ OP2 ½2�lOl 0 ð2Þ.

However the fact that HomDbðP2ÞðF½i�;OxÞ ¼ 0 for ib 1 contradicts the fact
that F½i� is a nonzero subobject of Ox in A1. r

Lemma 5.3. For s ¼ ðZ;A1Þ A StabðA1Þ, Ox is s-stable for each x A P2 if
and only if (a), (b) and (c) hold;

ðaÞ x2 x0 þ 2x1 þ x2
y2 y0 þ 2y1 þ y2

���� ����> 0; ðbÞ x1 þ x2 x0 þ 2x1 þ x2
y1 þ y2 y0 þ 2y1 þ y2

���� ����> 0;

ðcÞ 2x1 þ x2 x0 þ 2x1 þ x2
2y1 þ y2 y0 þ 2y1 þ y2

���� ����> 0:

Proof. By Lemma 5.2, it is enough to show fðbÞ < fðOxÞ for each b ¼ ½F2�,
½F1� þ ½F2�, 2½F1� þ ½F2�, where fðbÞ is the phase of ZðbÞ A C. It is equivalent to

Re ZðbÞ Re ZðOxÞ
Im ZðbÞ Im ZðOxÞ

���� ����> 0;

which is equivalent to (a), (b) and (c) for the case b ¼ ½F2�, ½F1� þ ½F2� and
2½F1� þ ½F2� respectively. Hence the assertion follows. r

By Lemma 5.3 and some easy calculations, we can find Bridgeland stability
conditions sb ¼ ðZb;A1Þ with 0 < b < 1 which satisfy the conditions 1 and 2 in
Proposition 3.6 as follows. We put x0 :¼ �b, x1 :¼ �1þ b, x2 :¼ �3bþ 3 and
y0 ¼ y1 ¼ 0, y2 ¼ 1, that is,

ZbðF0Þ :¼ �b; ZbðF1Þ :¼ �1þ b; ZbðF2Þ :¼ �3bþ 3þ
ffiffiffiffiffiffiffi
�1
p

:ð36Þ

sb ¼ ðZb;A1Þ A StabðP2Þ satisfies the conditions (a), (b) and (c) in Lemma
5.3. The vector pðsbÞ is written as

pðsbÞ ¼ uþ
ffiffiffiffiffiffiffi
�1
p

v A NðP2ÞnC

with u ¼
�
2b� 1;

�
bþ 1

2

�
H; b

�
, v ¼

�
�1;� 1

2H; 0
�
A NðP2Þ. If we put

T�1 :¼
b� 1

2 2b2 � 2b� 1
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

b� b2
p

ð2b� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� b2
p

 !
A GLþð2;RÞ;
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then pðsbÞT ¼ expðbH þ
ffiffiffiffiffiffiffi
�1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

b� b2
p

HÞ;
b� 1

2 2b2 � 2b� 1
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

b� b2
p

ð2b� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� b2
p

 !
u

v


 �
¼

1 bH b2 � 1
2 b

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� b2
p

H b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� b2
p

 !
:

Hence sb also satisfies the condition 2 of Proposition 3.6 and sb A StabðP2Þ
is geometric. The proof of Proposition 3.6 implies that there exists a lift g AgGLGLþð2;RÞ of T A GLþð2;RÞ such that pðsbgÞ ¼ pðsbÞT and

sbg ¼ sðbH; tHÞ;ð37Þ

where we put t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� b2
p

. We fix a A KðP2Þ with chðaÞ ¼ ðr; sH; ch2Þ,
0 < sa r. By the remark after Main Theorem 5.1 we may assume that ch2 a

1
2 .

We choose 0 < b <
s

r
such that a A KðP2Þ and sðbH; tHÞ ¼ ðZðbH; tHÞ;AðbH; tHÞÞ

satisfy the conditions in Theorem 3.8;

0 < e ¼ Im ZðbH; tHÞðaÞ ¼ s� rbamin t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� b2
p

;
1

r

� �
ð38Þ

and Re ZðbH; tHÞðaÞ ¼ �ch2 þ r=2ðb� 2b2Þ þ sbb 0:

In the following we assume that s=r� b > 0 is small enough such that these
inequalities are satisfied. Then by Corollary 3.9 we have

MDbðP2ÞðchðaÞ; sðbH; tHÞÞGMP2ðchðaÞ;HÞ:ð39Þ

Since sbg ¼ sðbH; tHÞ, by (8) we see that the shift functor � ½n� gives an
isomorphism

MDbðP2ÞðchðaÞ; sðbH; tHÞÞGMDbðP2Þðð�1Þ
n chðaÞ; sbÞ : E 7! E½n�ð40Þ

for some n A Z. We show that n ¼ 1. First notice that a ¼ a0½F0� þ a1½F1� þ
a2½F2� A KðP2Þ, where ða0; a1; a2Þ A Z3 is defined by

a0 :¼ r� 3

2
sþ ch2

a1 :¼ �2sþ 2 ch2

a2 :¼ �
s

2
þ ch2:

For every C-valued point E of MDbðP2ÞðchðaÞ; sðbH; tHÞÞ, by Lemma 4.6 (2), E½n� is
written as

E½n�G ðOð�1Þ
n
a0

P2 ! OP2ð1Þð�1Þ
n
a1 ! OP2ð2Þð�1Þ

n
a2Þ A A1;ð41Þ

where OP2ð2Þð�1Þ
na2 lies on degree 0. The conditions that 0 < sa r and ch2 a

1
2

imply that a2 a 0 and that a2 ¼ 0 if and only if chðaÞ ¼
�
1; 1; 12

�
. In the case

a2 < 0, the form (41) of E½n� implies n ¼ 1 since E is a sheaf. In the case a2 ¼ 0,
we have MP2ðchðaÞ;HÞ ¼ fOP2ð1Þg. Since OP2ð1Þ½1� A A1, we also have n ¼ 1.
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On the other hand we define ya
Zb : KðBÞ ! R by (24) using j1 : KðP2ÞG

KðBÞ. Then by Proposition 4.4 the moduli functor MDbðP2Þð�chðaÞ; sbÞ is co-
represented by the moduli scheme MBð�j1ðaÞ; ya

ZbÞ. Combining this with the
above isomorphisms (39) and (40) with n ¼ 1 we have an isomorphism

MP2ðchðaÞ;HÞGMBð�j1ðaÞ; ya
ZbÞ : E 7! F1ðE½1�Þ:ð42Þ

Isomorphisms (39) and (40) hold for moduli functors corresponding to stable
objects. Hence the isomorphism (42) keeps open subsets of stable objects.

Finally we see that if s=r� b > 0 is small enough, this ya
Zb belongs to CP2

j1ðaÞ
in the Main Theorem as follows. The above isomorphism (42) implies that
if s=r� b > 0 is small enough, ya

Zb belongs to the same chamber Cj1ðaÞ. This
chamber Cj1ðaÞ satisfies the desired conditions. In fact we have ya

Zbðj1ðOxÞÞ > 0

for b < s=r and ya
Zs=rðj1ðOxÞÞ ¼ 0, furthermore MP2ðchðaÞ;HÞ0j implies

MBð�j1ðaÞ; y1Þ0j for y1 A Cj1ðaÞ because of the isomorphism (42). This com-
pletes the proof of Main Theorem 5.1.

5.3. Comparison with Le Potier’s result
In the sequel we show that our Theorem 5.1 implies Main Theorem 1.3 (ii),

(iii), in particular, Le Potier’s result. In addition to E1, we consider the following
full strong exceptional collections on P2

E 01 ¼ ðOP2ð1Þ;OP2ð2Þ;OP2ð3ÞÞ; E0 ¼ ðOP2ð1Þ;W1
P2ð3Þ;OP2ð2ÞÞ;

the equivalences F 01ð�Þ ¼ R HomP2ðE 01 ; �Þ, F0ð�Þ ¼ R HomP2ðE0; �Þ between DbðP2Þ
and DbðB 0Þ, DbðBÞ and the induced isomorphisms j 01 : KðP2ÞGKðB 0Þ,
j0 : KðP2ÞGKðBÞ, where E 01 ¼ OP2ð1ÞlOP2ð2ÞlOP2ð3Þ, E0 ¼ OP2ð1Þl
W1

P2ð3ÞlOP2ð2Þ and B 0 ¼ EndP2ðE 01 Þ, B ¼ EndP2ðE0Þ. We also recall from §4.3
that

A 0
1 ¼ hOP2 ½2�;W1

P2ð2Þ½1�;OP2ð1Þi; A0 ¼ hOP2ð�1Þ½2�;OP2½1�;OP2ð1Þi:ð43Þ

We remark that A 0
1 is the left tilt of A1 ¼ hOP2 ½2�;OP2ð1Þ½1�;OP2ð2Þi at OP2ð1Þ½1�

and A0 is the left tilt of A 0
1 at OP2 ½2�. See [Br3] for this terminology and

relationship between tilting and exceptional collections although we do not use
this fact.

For y A HomZðKðP2Þ;RÞ, we put yk :¼ y � j�1k A HomZðKðBÞ;RÞ for k ¼ 0; 1
and y 01 :¼ y � j 0�11 A HomZðKðB 0Þ;RÞ. We put

ðy0k ; y
1
k ; y

2
kÞ :¼ ðykðCv0Þ; ykðCv1Þ; ykðCv2ÞÞ for k ¼ 0; 1;

ðy 001 ; y 011 ; y
02
1 Þ :¼ ðy

0
1ðCv0Þ; y

0
1ðCv1Þ; y

0
1ðCv2ÞÞ:

ð44Þ

For any B-module N and B 0-module M, we have

ykðNÞ ¼ y0k dimCðNv�0 Þ þ y1k dimCðNv�1 Þ þ y2k dimCðNv�2 Þ for k ¼ 0; 1;

y 01ðMÞ ¼ y 001 dimCðMv�0 Þ þ y 011 dimCðMv�1 Þ þ y 021 dimCðMv�2 Þ:
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By abbreviation we denote this by yk ¼ ðy0k ; y
1
k ; y

2
kÞ and y 01 ¼ ðy

00
1 ; y 011 ; y 021 Þ. It is

also convenient to write the following equality

ðy0k ; y
1
k ; y

2
kÞ ¼ ðyðOP2ðk � 1Þ½2�Þ; yðOP2ðkÞ½1�Þ; yðOP2ðk þ 1ÞÞÞ for k ¼ 0; 1;

ðy 001 ; y
01
1 ; y 021 Þ ¼ ðyðOP2 ½2�Þ; yðWP2ð2Þ½1�Þ; yðOP2ð1ÞÞÞ:

ð45Þ

Proposition 5.4. Let y : KðP2Þ ! R be an additive function with y1 ¼
ðy01 ; y

1
1 ; y

2
1Þ and a A KðP2Þ with yðaÞ ¼ 0. If y01 ; y

1
1 < 0, then equivalences

F 01 �F�11 : DbðBÞGDbðB 0Þ and F0 �F 01
�1

: DbðB 0ÞGDbðBÞ between derived cat-
egories induce the isomorphisms

MBðj1ðaÞ; y1ÞGMB 0 ðj 01ðaÞ; y
0
1ÞGMBðj0ðaÞ; y0Þ:

These isomorphisms keep open subsets of stable modules.

We only show the first isomorphism using the assumption that y11 < 0. The
other assumption that y01 < 0 is used for the second isomorphism.

Step 1. The assumption y11 < 0 implies that F 01 �F�11 ðNÞ A mod-B 0 for any
N A MBðj1ðaÞ; y1Þ.

Proof. We take E A A1 such that F1ðEÞ ¼ N. Then the decomposition of
N ¼ R HomP2ðE1;EÞ is given by

Nv�0 ¼ R HomP2ðOP2ð3Þ;EÞ

Nv�1 ¼ R HomP2ðW1
P2ð4Þ;EÞ

Nv�2 ¼ R HomP2ðOP2ð2Þ;EÞ;

ð46Þ

and g�i jN ¼ p�i , d�j jN ¼ q�j from (28). On the other hand, we have

F 01 �F�11 ðNÞ ¼ R HomP2ðE 01 ;EÞð47Þ
¼ R HomP2ðOP2ð3Þ;EÞlR HomP2ðOP2ð2Þ;EÞ
lR HomP2ðOP2ð1Þ;EÞ:

The fact that N A mod-B and (46) implies

R i HomP2ðOP2ð3Þ;EÞ ¼ R i HomP2ðOP2ð2Þ;EÞ ¼ 0

for i0 0. From the exact sequence

0 ���! OP2ð1Þ ���!Szinei
OP2ð2ÞnV ���!qine �i

W1
P2ð4Þ ���! 0;ð48Þ

we have an isomorphism of complexes in DbðP2Þ

OP2ð1ÞG ðOP2ð2ÞnV ���!Sqine �
i
W1

P2ð4ÞÞ;ð49Þ
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where OP2ð2ÞnV lies on degree 0. By applying Lemma 4.6 (1) to ð49Þ and
E A A1, we have an isomorphism in DbðCÞ

R HomP2ðOP2ð1Þ;EÞG ðNv�1 !
d �V ðNv�2 ÞnVÞ;ð50Þ

where ðNv�2 ÞnV lies on degree 0 and d�V ¼ d�0 n e0 þ d�1 n e1 þ d�2 n e2. Hence
F 01 �F�11 ðNÞ belongs to mod-B 0 if and only if

ker d�V ¼ R�1 HomP2ðOP2ð1Þ;EÞ ¼ 0:

However if ker d�V 0 0, we can view ker d�V as a submodule N 0 of N with
N 0v�0 ¼ N 0v�2 ¼ 0 and N 0v�1 ¼ ker d�V . This contradicts y1-semistability of N since
y1ðker d�V Þ ¼ y11 � dimCðker d�V Þ < 0. r

Step 2. For any N A MBðj1ðaÞ; y1Þ, y1-(semi)stability of N implies y 01-
(semi)stability of M :¼ F 01 �F�11 ðNÞ A mod-B 0.

Proof. We recall that vi A CQ=J 0 correspond to idO
P2 ð3�iÞ A B 0 for i ¼ 0; 1; 2

via the isomorphism (28). Hence by (46), (47) and (50) we have

Mv�0 ¼ Nv�0 ; Mv�1 ¼ Nv�2 ; Mv�2 ¼ coker d�V :ð51Þ

Since zi ¼ piþ2 � qiþ1 A HomP2ðOP2ð2Þ;OP2ð3ÞÞ, g�i jM : Mv�0 !Mv�1 is defined by

g�i jM :¼ d�iþ1jN � g�iþ2jN : Nv�0 ! Nv�2 :

Via the isomorphism (49), homomorphisms zi : OP2ð1Þ ! OP2ð2Þ correspond to
homotopy classes of homomorphisms idO

P2 ð2Þn e�i : OP2ð2ÞnV ! OP2ð2Þ in

HomDbðP2ÞðOP2ð1Þ;OP2ð2ÞÞG cokerðHomP2ðW1
P2ð4Þ;OP2ð2ÞÞ

! HomP2ðOP2ð2ÞnV ;OP2ð2ÞÞ

for i ¼ 0; 1; 2. Hence d�j jM : Mv�1 !Mv�2 is defined by

d�j jM : Nv�2 ����!idNv �
2
nej

ðNv�2 ÞnV ����! coker d�V ;

where ðNv�2 ÞnV ! coker d�V is a natural surjection.
Conversely from this description we see easily that the above B-module N is

reconstructed from the B 0-module M ¼ F 01 �F�11 ðNÞ as follows. We define

d�V :¼ Siðd�i jMÞn e�i : ðMv�1 ÞnV !Mv�2 :ð52Þ
We put

Nv�0 :¼Mv�0 ; Nv�1 :¼ ker d�V ; Nv�2 :¼Mv�1ð53Þ
and define g�i jN : Nv�0 ! Nv�1 and d�j jN : Nv�1 ! Nv�2 by

g�i jN :¼ ðg�iþ1jMÞn eiþ2 � ðg�iþ2jMÞn eiþ1 : Mv�0 ! ker d�V ;

d�j jN : ker d�V H ðMv�1 ÞnV ����!idMv �
1
ne �

j

Mv�1 :

ð54Þ
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Imitating this, for any B 0-submodule M 0 of M we construct an B-submodule
N 0 of N by (52), (53) and (54) with Mv�i and Nv�j replaced by M 0v�i and N 0v�j .
However in this case

d�V : ðM 0v�1 ÞnV !M 0v�2

is not necessarily surjective. Hence we have

dimCðN 0v�1 Þ ¼ dimC kerðd�V jðM 0v �
1
ÞnV Þb 3 dimCðM 0v�1 Þ � dimCðM 0v�2 Þ:

Hence the assumption that y11 < 0 and the following equality by (45)

ðy01 ; y
1
1 ; y

2
1Þ

1 0 0

0 3 �1
0 1 0

0B@
1CA¼ ðy 001 ; y 011 ; y

02
1 Þ

implies y1ðN 0Þa y 01ðM 0Þ. Thus y1-(semi)stability of N implies y 01-(semi)stability
of M and we have

F 01 �F�11 ðMBðj1ðaÞ; y1ÞÞHMB 0 ðj 01ðaÞ; y
0
1Þ:

The proof of the opposite inclusion is similar and we leave it to the readers. r

If we assume ch2 <
1
2 , the chamber CP2

j1ðaÞH j1ðaÞ
? defined in Section 5.1

intersect with the region defined by the inequalities y01 ; y
1
1 < 0. Hence from the

above proposition and Theorem 5.1 we have isomorphisms

MP2ðchðaÞ;HÞGMB 0 ð�j 01ðaÞ; y
0
1Þ : E 7! F 01ðE½1�Þð55Þ

MP2ðchðaÞ;HÞGMBð�j0ðaÞ; y0Þ : E 7! F0ðE½1�Þð56Þ

for a A KðP2Þ with 0 < c1ðaÞa rkðaÞ, ch2 <
1
2 and y : KðP2Þ ! R satisfying

y1 A CP2

j1ðaÞ with y01 ; y
1
1 < 0. This completes the proof of Main Theorem 1.3.

(55) was obtained by Le Potier [P].

6. Computations of the wall-crossing

In this section, we identify the Hilbert schemes of points on P2

ðP2Þ½n� :¼ fIHOP2 jLengthðOP2=IÞ ¼ ng
with the moduli spaces MBð�j0ðaÞ; y0ÞGMBð�j1ðaÞ; y1Þ by Theorem 5.1 and

Proposition 5.4, where a A KðP2Þ with chðaÞ ¼
�
1; 1; 12� n

�
, y1 A CP2

j1ðaÞ and y0 ¼
y1 � j1 � j�10 . We study the wall-crossing phenomena of the Hilbert schemes of
points on P2 via this identification.

6.1. Geometry of Hilbert schemes of points on P2

We recall the geometry of Hilbert schemes of points on P2 (cf. [LQZ]). Let
l be a line in P2, and x1; . . . ; xn�1 A P2 be distinct fixed points in l. Let

M2ðx1Þ ¼ fx A ðP2Þ½2� j SuppðxÞ ¼ x1g
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be the punctual Hilbert scheme parameterizing length-2 0-dimensional subschemes
supported at x1. It is known that M2ðx1ÞGP1. Let N1ððP2Þ½n�Þ be the R-vector

space of numerical equivalence classes of one-cycles on ðP2Þ½n�. We define two
curves bn and zl in ðP2Þ½n� as elements in N1ððP2Þ½n�Þ by the following formula

bn :¼ fxþ x2 þ � � � þ xn�1 A ðP2Þ½n� j x A M2ðx1Þg

zl :¼ fxþ x1 þ � � � þ xn�1 A ðP2Þ½n� j x A lg:
ð57Þ

The definition of bn and zl does not depend on the choice of a line l on P2 and
points x1; . . . ; xn�1 on l (cf. [LQZ, Theorem 3.2 and Theorem 5.1]). We define

a cone NEððP2Þ½n�Þ in N1ððP2Þ½n�Þ by

NEððP2Þ½n�Þ :¼ fSai½Ci� jCi H ðP2Þ½n� an irreducible curve; ai b 0g

and NEððP2Þ½n�Þ to be its closure.

Theorem 6.1 [LQZ, Theorem 4.1]. NEððP2Þ½n�Þ is spanned by bn and zl.

Let SnðP2Þ be the nth symmetric product of P2, that is, SnðP2Þ :¼
ðP2Þn=Sn, where Sn is the symmetric group of degree n. The Hilbert-Chow

morphism p : ðP2Þ½n� ! SnðP2Þ is defined by pðIÞ ¼ SuppðOP2=IÞ A SnðP2Þ for

every I A ðP2Þ½n�. The morphism p is the contraction of the extremal ray R>0bn.
Denote by c : ðP2Þ½n� ! Z the contraction morphism of the extremal ray

R>0zl. In the case n ¼ 2, c : ðP2Þ½2� ! Z coincide with the morphism

Hilb2ðPððTðP2Þ� Þ
�ÞÞ ! ðP2Þ� up to isomorphism, where Hilb2ðPððTðP2Þ� Þ

�ÞÞ is the

relative Hilbert scheme. In the case n ¼ 3, c : ðP2Þ½3� ! Z is a divisorial con-
traction. In the case nb 4, c : ðP2Þ½n� ! Z is a flipping contraction.

6.2. Wall-Crossing of the Hilbert schemes of points on P2

We take a A KðP2Þ with chðaÞ ¼
�
r; 1; 12� n

�
and assume that nb 1. By

(33), we have dimð�j1ðaÞÞ ¼ ðn� rþ 1; 2nþ 1; nÞ. For b A R with 0 < b <
1

r
we

put t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� b2
p

. From (40) and Proposition 4.4, we have isomorphisms

shMDbðP2ÞðchðaÞ; sðbH; tHÞÞG shMDbðP2Þð�chðaÞ; sbÞ : E 7! E½1�ð58Þ
shMDbðP2Þð�chðaÞ; sbÞG shMBð�j1ðaÞ; ya

ZbÞ : E½1� 7! F1ðE½1�Þ;ð59Þ

where sb is defined by (36) and ya
Zb is defined by (24) using j1 : KðP2ÞG

KðBÞ. We recall that from §5.2, if
1

r
� b0 > 0 is small enough, then

MP2ðchðaÞ;HÞ corepresents shMDbðP2ÞðchðaÞ; sðb0H; t0HÞÞ, where t0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 � b20

q
.

We have ya
Zb0 A CP2

j1ðaÞ and the isomorphism

MP2ðchðaÞ;HÞGMBð�j1ðaÞ; ya
Zb0 Þ

in Theorem 5.1. In fact the following lemma holds.
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Lemma 6.2. We have R>0y
a
Z0 þ R>0y

a
Z1=r HCP2

j1ðaÞ, that is, the moduli functor

MDbðP2ÞðchðaÞ; sðbH; tHÞÞ does not change as b moves in the interval 0;
1

r


 �
.

Proof. We assume that there exists a C-valued point E of
MDbðP2ÞðchðaÞ; sðb0H; t0HÞÞ such that E is not sðb1H; t1HÞ-semistable for some

b1 A 0;
1

r


 �
, where we put t1 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 � b21

q
. From (58) and (59), sðbH; tHÞ-

semistability for E and ya
Zb -semistability for F1ðE½1�Þ are equivalent for

b A 0;
1

r


 �
. Using the notation (44) in §5.3, ya

Zb is computed from (36) and (45)

as follows:

ya
Zb ¼ ð1� bÞð0;�n; 2nþ 1Þ þ bð�n; 0; nþ 1� rÞ A HomZðKðBÞ;RÞGR3:

If we fix any b A KðBÞ, then ya
ZbðbÞ is a monotonic function for b. Hence we

may assume that such a real number b1 is small enough.
We take the sðb1H; t1HÞ-semistable factor G of E with the smallest slope

msðb1H; t1HÞ
ðGÞ and the exact sequence in Aðb1H; t1HÞ

0! F ! E ! G ! 0;ð60Þ
where F is a nonzero object of Aðb1H; t1HÞ. From (60) we see that F is a sheaf
since E is a sheaf and H iðGÞ ¼ 0 for i0 0;�1. From (58) we have E½1� A A1.
By the uniqueness of Harder-Narasimhan filtration we see that G½1� and F ½1�
also belong to A1. Hence from the exact sequence (60), we see that dimension
vectors of B-modules F1ðG½1�Þ and F1ðF ½1�Þ are bounded from above by
dimð�j1ðaÞÞ. In particular there exists a bound of rkðF Þ and rkðGÞ independent
of the choice of E and b1. The inequality 0 < Im Zðb1H; t1HÞðFÞ ¼ t1ðc1ðF Þ�
rðF Þb1Þ < Im Zðb1H; t1HÞðEÞ implies that 0 < c1ðF Þa c1ðEÞ ¼ 1 since we can take
arbitrary small b1 > 0 and rkðF Þ is bounded from above. So we have c1ðFÞ ¼ 1
and c1ðGÞ ¼ c1ðEÞ � c1ðFÞ ¼ 0.

We put I :¼ imðF ! EÞ. Since F ! I is surjective we have 0 < mH-minðF Þa

mðIÞ. Furthermore since E is Gieseker-semistable, we have mðIÞa mðEÞ ¼ 1

r
.

Hence rkðIÞ ¼ r, c1ðIÞ ¼ 1 and H0ðGÞ is a 0-dimensional sheaf. Since G½1� A A1,
by Lemma 4.6 (2) we have an isomorphism

G½1�G ðOla0
P2 ! OP2ð1Þla1 ! OP2ð2Þla2Þ;

where ða0; a1; a2Þ ¼ �rðGÞð1; 0; 0Þ � ch2ðGÞð1; 2; 1Þ A Z3
b0. Hence ch2ðGÞ must be

non-positive and ch2ðGÞ ¼ 0 if and only if G½1�GOla0
P2 ½2�. In this case, we have

ya
Zb1 ðF1ðG½1�ÞÞ ¼ �nb1a0 < 0 and F1ðG½1�Þ does not break ya

Zb1 -semistability
of F1ðE½1�Þ. This contradicts the choice of G. We have ch2ðH�1ðGÞÞ ¼
�ch2ðGÞ þ ch2ðH0ðGÞÞ > 0. On the other hand, we have c1ðH�1ðGÞÞ ¼
�c1ðGÞ þ c1ðH0ðGÞÞ ¼ 0 and from G A Aðb1H; t1HÞ we have mH-maxðH�1ðGÞÞa 0
for small enough b1 > 0. Hence H�1ðGÞ is mH -semistable and satisfy the
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inequality �2rðH�1ðGÞÞ ch2ðH�1ðGÞÞb 0 by Theorem 3.2. This is a contra-
diction. r

In the following we consider the case r ¼ 1. We fix a A KðP2Þ with chðaÞ ¼�
1; 1; 12� n

�
, nb 1 and y1 A CP2

j1ðaÞ. Tensoring by OP2ð1Þ ¼ OP2ðHÞ does not

change Gieseker-semistability of torsion free sheaves on P2 and induces an
automorphism of KðP2Þ sending âa with chðâaÞ ¼ ð1; 0;�nÞ to a. Since by defini-
tion ðP2Þ½n� ¼MP2ðchðâaÞ;HÞ, we have an isomorphism

ðP2Þ½n�GMP2ðchðaÞ;HÞ : I 7! Ið1Þ:
On the other hand, by Theorem 5.1 and Proposition 5.4, we have isomorphisms

Fkð� ½1�Þ : MP2ðchðaÞ;HÞGMBð�jkðaÞ; ykÞ
for k ¼ 0; 1, where y0 ¼ y1 � j1 � j�10 . In what follows, we often use these
identifications

ðP2Þ½n�GMBð�jkðaÞ; ykÞ : I 7! FkðIð1Þ½1�Þ; and Fk : Ak Gmod-B:

For any 0-dimensional subscheme Z of P2, IZ denotes the ideal of Z, that is,
the structure sheaf OZ is defined by OZ :¼ OP2=IZ. If the length of Z is n, then
IZ is an element of ðP2Þ½n�.

We recall that

A1 ¼ hOP2 ½2�;OP2ð1Þ½1�;OP2ð2Þi; A0 ¼ hOP2ð�1Þ½2�;OP2 ½1�;OP2ð1Þi;ð61Þ
dimð�j1ðaÞÞ ¼ ðn; 2nþ 1; nÞ; dimð�j0ðaÞÞ ¼ ðn; 2n; n� 1Þ:

For b A R, we put

yðbÞ1 :¼ ð1� bÞð0;�n; 2nþ 1Þ þ bð�n; 0; nÞ A HomZðKðBÞ;RÞð62Þ
yðbÞ0 :¼ ð1� bÞð�nþ 1; 0; nÞ þ bð�2n; n; 0Þ A HomZðKðBÞ;RÞ:ð63Þ

If 0 < b < 1, by (36) and (45) we have yðbÞ1 ¼ ya
Zb and yðbÞ0 ¼ ya

Zb � j1 � j�10 .

By Lemma 6.2, we have R>0yð0Þ1 þ R>0yð1Þ1 HCP2

j1ðaÞ in j1ðaÞ
?. We define a

wall-and-chamber structure on j0ðaÞ
? as in §5.1 and take the chamber CP2

j0ðaÞ on
j0ðaÞ

? containing R>0yð0Þ0 þ R>0yð1Þ0.

Lemma 6.3. The following hold.
(1) R>0yð0Þ1 þ R>0yð1Þ1 ¼ CP2

j1ðaÞ for nb 1.

(2) R>0yð0Þ0 þ R>0yð1Þ0 ¼ CP2

j0ðaÞ for nb 2.

Proof. It is enough to show that yð0Þk and yð1Þk lie on walls on jkðaÞ
? for

k ¼ 0; 1.
(1) Any B-module N with ½N� ¼ j1ðaÞ has a surjection N ! Cv0 and

yð0Þ1ðCv0Þ ¼ 0. Thus yð0Þ1 lies on a wall on j1ðaÞ
?. We take any element

IZ A ðP2Þ½n�. We have an exact sequence

0! IZ ! OP2 ! OZ ! 0:ð64Þ
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OZ can be obtained by extensions of fOx j x A SuppðZÞg. Since Ox belongs to A1

by (35), we have OZ A A1. From (64), tensoring by OP2ð1Þ we have an exact
sequence in A1

0! OZ ! IZð1Þ½1� ! OP2ð1Þ½1� ! 0:

Furthermore we have yð1Þ1ðF1ðOZÞÞ ¼ 0, since dimðF1ðOxÞÞ ¼ ð1; 2; 1Þ and
yð1Þ1ðF1ðOxÞÞ ¼ 0 for any closed point x A P2 by (62). Thus yð1Þ1 also lies
on a wall on j1ðaÞ

?.
(2) Any B-module N with ½N� ¼ j0ðaÞ has a submodule Cv2. Since

yð1Þ0ðCv2Þ ¼ 0, yð1Þ0 lies on a wall on j0ðaÞ
?. On the other hand, for any

line l on P2 we take an element IZ of zl. Since Z is a closed subscheme of l
by the definition (57), we have a diagram:

0 ���! IZ ���! OP2 ���! OZ ���! 0x??? ���� x???
0 ���! OP2ð�1Þ ���! OP2 ���! Ol ���! 0:

Hence tensoring by OP2ð1Þ, we get an exact sequence in CohðP2Þ
0! OP2 ! IZð1Þ ! Olð�nþ 1Þ ! 0;

where Olð�nþ 1Þ ¼ kerðOlð1Þ ! OZÞ. This gives a distinguished triangle in
DbðP2Þ

OP2 ½1� ! IZð1Þ½1� ! Olð�nþ 1Þ½1� ! OP2 ½2�:ð65Þ

We show that this gives an exact sequence in A0. It is enough to show that
Olð�nþ 1Þ½1� A A0. An exact sequence in CohðP2Þ

0! OP2ð�1Þ ! OP2 ! Ol ! 0

implies that Ol½1� A A0 from (61). For an integer m > 0 and a closed point x in
l, we consider an exact sequence in CohðP2Þ

0! Olð�mÞ ! Olð�mþ 1Þ ! Ox ! 0:

This gives a distinguished triangle in DbðP2Þ

Ox ! Olð�mÞ½1� ! Olð�mþ 1Þ½1� ! Ox½1�:

Since Ox belongs to A0 as in Lemma 5.3, by induction on m we have
Olð�mÞ½1� A A0 for any mb 0. Since yð0Þ0ðjðOP2 ½1�ÞÞ ¼ 0, IZð1Þ½1� and the

subobject OP2 ½1� define a wall Rb0yð0Þ0 on j0ðaÞ
?. r

We take the chamber Cþ
j1ðaÞ

0CP2

j1ðaÞ in j1ðaÞ
? sharing the wall Rb0yð1Þ1

with CP2

j1ðaÞ. Similarly we take the chamber C�j0ðaÞ0CP2

j0ðaÞ in j0ðaÞ
? sharing the

wall Rb0yð0Þ0 with CP2

j0ðaÞ. We take a real number 0 < e < 1 small enough such

that yð1� eÞ1 A CP2

j1ðaÞ, yð1þ eÞ1 A Cþ
j1ðaÞ

and yðeÞ0 A CP2

j0ðaÞ, yð�eÞ0 A C�j0ðaÞ.
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Lemma 6.4. The following hold.
(1) MBð�j1ðaÞ; yð1þ eÞ1Þ0j for nb 1.
(2) MBð�j0ðaÞ; yð�eÞ0Þ0j for nb 3.

Proof. (1) For any N A MBð�j1ðaÞ; yð1� eÞ1Þ, we show that the dual
vector space N � :¼ HomCðN;CÞ has a natural B-module structure and belongs
to MBð�j1ðaÞ; yð1þ eÞ1Þ as follows. We put N �v�i :¼ HomCðNv�2�i;CÞ and define
g�i jN � and d�j jN � by pull backs of d�i jN and g�j jN , respectively. Any surjection

N � ! ðN 0Þ� corresponds to a submodule N 0 of N and

dimððN 0Þ�Þ ¼ ðdimC N 0v�2 ; dimC N 0v�1 ; dimC N 0v�0 Þ:ð66Þ

On the other hand, from (62) we have

yð1þ eÞ1 ¼ eð�2n� 1; n; 0Þ þ n� ðnþ 1Þe
n

ð�n; 0; nÞ A HomZðKðBÞ;RÞ:ð67Þ

By (66) and (67), we have the following equality

yð1þ eÞ1ððN 0Þ
�Þ ¼ � eyð0Þ1 þ

n� ðnþ 1Þe
n

yð1Þ1

 �

ðN 0Þ:ð68Þ

Since by Lemma 6.3, we see that yð1� eÞ1 and eyð0Þ1 þ
n� ðnþ 1Þe

n
yð1Þ1 belong

to the same chamber CP2

j1ðaÞ for e small enough, the right hand side of (68) is

non-positive for any submodule N 0 of N A MBð�j1ðaÞ; yð1� eÞ1Þ. We have
yð1þ eÞ1ððN 0Þ

�Þa 0 for any surjection N � ! ðN 0Þ�. Thus N � belongs to
MBð�j1ðaÞ; yð1þ eÞ1Þ.

(2) For nb 3 we take an element IZ A ðP2Þ½n� such that SuppðOP2=IZÞ is
not contained in any line l on P2. Hence we have HomP2ðOP2 ;IZð1ÞÞ ¼ 0.
Below we show that this implies that the B-module M :¼ F0ðIZð1Þ½1�Þ A
MBð�j0ðaÞ; yðeÞ0Þ is also yð�eÞ0-semistable. For any B-submodule M 0HM,
if yð0Þ0ðM 0Þ > 0 then by taking e small enough we have yð�eÞ0ðM 0Þ > 0 and
M 0 does not break yð�eÞ0-semistability of M. If yð0Þ0ðM 0Þ ¼ 0, then from (63)
dim M 0 ¼ ðn; �; n� 1Þ or ð0; �; 0Þ. However the latter case contradicts the
fact that HomBðCv1;MÞGHomP2ðOP2 ;IZð1ÞÞ ¼ 0. Hence we have dim M 0 ¼
ðn; l; n� 1Þ with 0a la 2n and yð�eÞ0ðM 0Þb 0. Thus M is yð�eÞ0-semistable.

r

For yk A CP2

jkðaÞ, we have natural morphisms

ðP2Þ½n�GMBð�jkðaÞ; ykÞ !MBð�jkðaÞ; yðkÞkÞð69Þ

for k ¼ 0; 1, since Rb0yð1Þ1 and Rb0yð0Þ0 are walls of the chamber CP2

j1ðaÞ and

CP2

j0ðaÞ, respectively. We study the Stein factorization p 0k : ðP2Þ½n� ! Yk of the

above morphism (69) for each k ¼ 0; 1. Since by Lemma 6.4, for nb 3 our
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situations satisfy the assumptions in [Th, Theorem (3.3)], we see that p 01 and p 00
are birational morphisms and have the following diagram:

MBð�j0ðaÞ; yð�eÞ0Þ  ������
k ðP2Þ½n�

Y0 Y1:

ð70Þ

 �����
�� �������!  �����

�

p 0
0

p 0
1

Theorem 6.5. The following hold.
(1) There exists an isomorphism Y1 GSnðP2Þ and via this isomorphism, the

morphism p 01 coincide with the Hilbert-Chow morphism p.
(2) For nb 3, the morphism p 00 is the contraction morphism of the extremal

ray R>0zl. Hence p 00 coincide with c defined in §6.1 up to isomorphism.

Proof. (1) We take two elements IZ;IZ 0 A ðP2Þ½n�. We show that if
SuppðZÞ ¼ SuppðZ 0Þ, then F1ðIZð1Þ½1�Þ and F1ðIZ 0 ð1Þ½1�Þ are S-equivalent
yð1Þ1-semistable B-modules. By Proposition 4.3 this implies that p 01 contracts
the curve bn to one point. This shows that the morphism p 01 coincides with the

Hilbert-Chow morphism p via an isomorphism Y1 GSnðP2Þ, since the Picard
number of ðP2Þ½n� is two ðnb 2Þ.

We put SuppðOZÞ ¼ SuppðOZ 0 Þ ¼ fx1; . . . ; xng and consider a filtration of

IZð1Þ½1� in A1. We put Z0 :¼ Z A ðP2Þ½n� and inductively define Ziþ1 A ðP2Þ½n�i�1�
from Zi by the following exact sequence in CohðP2Þ

0! OZiþ1 ! OZi
! Oxiþ1 ! 0ð71Þ

for i ¼ 0; . . . ; n� 2. We have OZn�1 ¼ Oxn and Oxi A A1 for any i by (35). By
(71) we have OZi

A A1 for i ¼ 0; . . . ; n� 1. Hence (71) is also exact in A1. On
the other hand, from the exact sequence in CohðP2Þ

0! IZ ! OP2 ! OZ ! 0ð72Þ

we have an exact sequence in A1

0! OZ ! IZð1Þ½1� ! OP2ð1Þ½1� ! 0:ð73Þ

Since dimðF1ðOP2ð1Þ½1�ÞÞ ¼ ð0; 1; 0Þ and dimðF1ðOxÞÞ ¼ ð1; 2; 1Þ for any
closed point x A P2, we have yð1Þ1ðF1ðOP2ð1Þ½1�ÞÞ ¼ yð1Þ1ðF1ðOxÞÞ ¼ 0 from (62).
Furthermore from (71) we have yð1Þ1ðF1ðOZi

ÞÞ ¼ 0 for any i. Hence (71) and
(73) give a Jordan-Hölder filtration of F1ðIZð1Þ½1�Þ with yð1Þ1-stable quotients
fF1ðOP2ð1Þ½1�Þ;F1ðOx1Þ; . . . ;F1ðOxnÞg. This set only depends on SuppðZÞ. Thus
F1ðIZð1Þ½1�Þ and F1ðIZ 0 ð1Þ½1�Þ represent the same S-equivalence class of yð1Þ1-
semistable B-modules.

(2) For a line l, we take an element IZ of zl. As in Lemma 6.3, we get an
exact sequence in A0

0! OP2 ½1� ! IZð1Þ½1� ! Olð�nþ 1Þ½1� ! 0
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and yð0Þ0ðF0ðOP2 ½1�ÞÞ ¼ yð0Þ0ðF0ðOlð�nþ 1Þ½1�ÞÞ ¼ 0. Hence by a similar ar-
gument as in the proof of (1), we see that p 00 contracts the curve zl on ðP2Þ½n� to
one point. r

If nb 4, the morphism c is small and induces a flip in the sense of [Th].
For general r > 0 it will be shown in [O] that k in the above diagram (70) is the
Mori flip for ng 0 and described by stratified Grassmann bundles.
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