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Introduction

In order to study a class of algebraic varieties one constructs moduli spaces. A point of
a moduli space corresponds to an isomorphism class of the varieties we want to study.
In this way we parametrize all possible isomorphism classes of these varieties. Proper-
ties of the moduli space give information about the deformations of the varieties under
consideration. Classically, moduli spaces over C are constructed via periods as quotient
manifolds. In modern algebraic geometry one uses ideas of Grothendieck, Mumford,
Artin and others to construct moduli spaces over an arbitrary base, such as Z.

We will consider moduli spaces of K3 surfaces with a polarization. For a natural
number d and an algebraically closed field k, a K3 surface with a polarization of degree
2d over k is a pair (X,L) consisting of a K3 surface X over k and an ample line bundle
L on X with self-intersection number (L,L) = 2d. The moduli space of polarized K3
surfaces with certain level structure over C is constructed as an open subspace of the
Shimura variety associated with SO(2, 19). Over Z we use techniques developed by Artin
to show the existence of such spaces.

When studying algebraic curves one constructs an abelian variety, called the Jacobian
of the curve. The geometry of this abelian variety describes properties of the curve. Here
we consider a similar construction for K3 surfaces. Namely, we assign to every polarized
K3 surface an abelian variety with certain properties.

Kuga and Satake associate with every polarized complex K3 surface (X,L) a complex
abelian variety called the Kuga-Satake abelian variety of (X,L). We use this construc-
tion to define morphisms between moduli spaces of polarized K3 surface with certain
level structures and moduli spaces of polarized abelian varieties with level structure over
C. In this thesis we study these morphisms. We prove first that they are defined over
finite extensions of Q. Then we show that they extend in positive characteristic. In this
was we give an indirect construction of Kuga-Satake abelian varieties over an arbitrary
base.

Moduli spaces. In Chapter 1 we construct moduli spaces of polarized K3 surfaces
using the language of algebraic stacks. We define the categories F2d and M2d of primi-
tively polarized (respectively polarized) K3 surfaces of degree 2d over Z and show that
they are Deligne-Mumford stacks over Z.
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Introduction

For various technical reasons we will need to work with algebraic spaces rather than
with Deligne-Mumford stacks. In the case of abelian varieties one introduces level n-
structures using Tate modules and considers moduli functors of polarized abelian va-
rieties with level n-structure for n ∈ N, n ≥ 3. These functors are representable by
schemes. We adopt a similar strategy in order to define moduli functors which are
representable by algebraic spaces. For a certain class of compact open subgroups K
of SO(2, 19)(Af ) we introduce the notion of a level K-structure on K3 surfaces using
their second étale cohomology groups. Further, we introduce moduli spaces F2d,K of
primitively polarized K3 surfaces with level K-structure and show that these are smooth
algebraic spaces over Spec(Z[1/NK]) where NK ∈ N depends on K. These moduli spaces
are finite unramified covers of F2d. Important examples of level structures are spin
level n-structures. These are level structures defined by the images of some principal
level n-subgroups of CSpin(2, 19)(Af ) under the adjoint representation homomorphism
CSpin(2, 19)→ SO(2, 19). We denote the corresponding moduli space by F2d,nsp .

Strata. In positive characteristic one can define interesting subvarieties of moduli spaces
of abelian varieties and of curves. Such loci can be given by considering the collection of
these objects having fixed certain discrete invariants, such as for instance filtrations on
BT1-groups or Newton polygons (see [Oor01a] and [Oor01b]). A similar approach can
be taken when studying moduli spaces of K3 surfaces.

To every K3 surface over a perfect field k of characteristic p > 0 one associates a
Newton polygon. By definition it is the Newton polygon of the F -crystal H2

cris(X/W (k)).
Denote by α the smallest slope of the Newton polygon of X. We define the height of
X to be infinite if α = 1 and 1/(1 − α) otherwise. If finite, the height of a K3 surface

takes integral values from 1 to 10. We look at the subspacesM(h)
2d,Fp

ofM2d ⊗ Fp of K3
surfaces with height at least h. The collection of those 11 subspaces is called the height
stratification of M2d ⊗ Fp. One further stratifies M(11)

2d,Fp
by the Artin invariant (see for

instance [Art74]). In this way we obtain a filtration of the moduli spaceM2d ⊗ Fp

M2d ⊗ Fp =M(1)
2d,Fp

⊃M(2)
2d,Fp

⊃ · · · ⊃ M(11)
2d,Fp

= Σ1 ⊃ · · · ⊃ Σ10.

The following question rises naturally.

Question. Are the all subspaces in the height strata of M2d ⊗ Fp non-empty?

This can be reformulated in the following way: For a given natural number d and a
prime p determine all Newton polygons of polarized K3 surfaces of degree 2d over fields
of characteristic p. This is an analogue of the Manin problem for Newton polygons of
abelian varieties ([Man63, Conj. 2, p. 76]).

In Chapter 2 we answer partially the question posed above proving the following
result.
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Theorem. For every d, large enough and prime to p > 2, the subspaces in the height
strata of M2d ⊗ Fp are non-empty.

The idea of the proof is to start with a polarized abelian surface (A, λ) over k of
certain degree and to use λ to construct an ample line bundle on the Kummer surface
X associated to A. In this way we find k̄-valued points of M2d ⊗ Fp. Making some ap-
propriate choices of supersingular polarized abelian surfaces (A, λ) we are able to show
that the height strata ofM2d⊗Fp are non-empty if d is large enough. The construction
gives explicit bounds for d.

Complex multiplication for K3 surfaces. The construction of Kuga-Satake va-
rieties given in [KS67] uses transcendental methods involving Betti cohomology groups.
It gives a relation between the Betti cohomology groups of a K3 surface X and of its
associated abelian variety A. In its simplest form this relation can be written as an
inclusion of Hodge structures

H2
B(X,Q) ↪→ H1

B(A,Q)⊗H1
B(A,Q).

P. Deligne ([Del72]) shows, among other things, that a similar relation holds for étale
cohomology groups. He uses it to prove the Weil conjecture for K3 surfaces over fi-
nite fields. In [And96a] Y. André studies the rationality properties of the Kuga-Satake
construction, describing the motive of a K3 surface and computing the motivic Galois
group.

The main goal of our work is to extend this construction to K3 surfaces in positive
characteristic. We will do this by defining morphisms from moduli spaces of primitively
polarized K3 surfaces with spin level n-structure to moduli spaces of polarized abelian
varieties with level n-structure. An essential step in carrying out this program is to
build a bridge between the two approaches to moduli of K3 surfaces, namely the one via
algebraic stacks and the one using Shimura varieties.

For a certain class of compact open subgroups K of SO(2, 19)(Af ) we define a period
morphism

jd,K,C : F2d,K ⊗ C→ ShK(SO(V2d, ψ2d),Ω
±)C.

This period morphism differs slightly from the ones considered for instance in [BBD85,
Exposé XIII] and [Fri84, §1]. This is due to the fact that we work with moduli spaces
of polarized K3 surfaces over Q and in general these have more than one connected
component. In Chapter 3 we study the field of definition of this period morphism.

The main theorem for complex multiplication for abelian varieties describes the action
of the elements of Gal(Qab/Q) on the torsion points of an abelian variety A with complex
multiplication. In [Del71] Deligne uses this description as a departure point for the
definition of canonical models of Shimura varieties and proves that lim←−Ag,1,n,Q is the
canonical model of Sh(CSp2g,H

±)C (Théorème 4.21 in loc. cit.). The main result of
Chapter 3 is the following.
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Theorem. The field of definition of the period morphism jd,K,C is Q. In other words
jd,K,C descends to a morphism

jd,K : F2d,K ⊗Q→ ShK(SO(2, 19),Ω±)

where ShK(SO(2, 19),Ω±) is the canonical model of ShK(SO(2, 19),Ω±)C.

Just like in the case of abelian varieties it gives a modular interpretation of (an open
part of) the canonical model of Sh(SO(2, 19),Ω±)C as a moduli space.

To prove that the field of definition of jd,K,C is Q we need to find ‘enough’ points in
F2d,K ⊗C and ShK(SO(2, 19),Ω±)C for which we can control the action of Aut(C). The
definition of canonical models of Shimura varieties suggests a collection of such points,
namely the set of special points. Here we will restrict this set a bit by working with
points corresponding to exceptional K3 surfaces. By definition these are K3 surfaces X
over C such that rkZ Pic(X) = 20.

The proof of the preceding theorem splits up in two parts. We first prove a version
of the main theorem for complex multiplication [Mil04, Thm. 11.2] for exceptional K3
surfaces. It gives a relation between the transcendental lattices of an exceptional K3
surface X and of its conjugate Xσ by an automorphism σ ∈ Aut(C), fixing the reflex
field of X. The main tool is a result of Shioda and Inose. Using their construction
we reduce the proof of the main theorem of complex multiplication for exceptional K3
surfaces to a similar statement for abelian surfaces. The latter follows easily from the
theorem of Shimura and Taniyama. Next we show that the set of points in F2d,K ⊗ C
corresponding to exceptional K3 surfaces with a given reflex field is dense for the Zariski
topology. The proof of the fact that the field of definition of the period morphism jd,K,C
is Q is a formal consequence of those two results.

We conclude Chapter 3 by showing that an analogue of the theorem of Shimura and
Taniyama holds for all complex K3 surfaces with complex multiplication. Further, we
prove that any such K3 surface can be defined over an abelian extension of its reflex
field. In this way we complete a theory of complex multiplication for K3 surfaces.

We should mention that the proofs given in Chapter 3 are quite different from the
ones given in [ST61] in the case of abelian varieties. Shimura and Taniyama work di-
rectly with a given abelian variety A using the geometric interpretation of H1

et(A, Ẑ).
We obtain our results from the general properties of canonical models of Shimura vari-
eties using the period morphisms. We wonder if one can give proofs of the statements in
Chapter 3 working directly with an exceptional K3 surface just like in the case of abelian
varieties. More precisely, we wonder if argumentation of the type ‘a Hodge cycle is an
absolute Hodge cycle’ on a K3 surface (see [And96b] and [Del82]) could lead to complete
proofs of the results in question.

Kuga-Satake morphisms. Chapter 4 is devoted to Kuga-Satake abelian varieties.
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Let us explain briefly the construction of these varieties over C. Starting with a po-
larized complex K3 surface (X,L) one considers the second primitive Betti cohomology
group

P 2
B(X,Z(1)) := c1(L)⊥ ⊂ H2

B(X,Z(1)).

The orthogonal complement is taken with respect to the Poincaré pairing onH2
B(X,Z(1)).

Using the polarized Z-Hodge structure on P 2
B(X,Z(1)) one defines a polarized Z-Hodge

structure of type {(1, 0), (0, 1)} on the even Clifford algebra C+
(
P 2
B(X,Z(1))

)
. One

might think of this construction as “taking a square root of a Hodge structure”. Such
a Hodge structure corresponds to a complex abelian variety A, called the Kuga-Satake
abelian variety associated to (X,L). Using Kuga-Satake varieties one can deduce some
properties of K3 surfaces, mostly of motivic nature, from the corresponding properties
of abelian varieties.

At this point one may ask whether one can use this construction to define Kuga-
Satake abelian varieties over subfields of C. Or whether one can construct Kuga-Satake
abelian schemes starting with families of polarized K3 surfaces. We find some answers
in [Del72] and [And96a]. One can go even further and ask whether one can define Kuga-
Satake abelian varieties in positive characteristic. We combine all these questions in one,
which was originally the motivation for our work.

Question. Can one define Kuga-Satake abelian varieties using only methods of algebraic
geometry without making use of complex analytic constructions?

Up to isogeny a positive answer to this question can be found in [And96b, Thm 7.1]
and [And96a, Thm. 1.5.1]. We refer also to Chapter 9 and 10.2.4 in [And04]. Starting
with a polarized K3 surface (X,L), Y. André constructs a “motive” which is isomorphic
to the motive of the Kuga-Satke abelian variety of (X,L). The construction is purely
algebro-geometric.

In Chapter 4 we solve a modification of this problem. Namely, we will be interested
in a Kuga-Satake construction over an arbitrary base without putting any restriction on
the “methods”. The reason is that we will use the existing transcendental construction
as a starting point. We explain this in more detail.

P. Deligne gives an interpretation of the Kuga-Satake construction in terms of the
adjoint representation homomorphism CSpin(2, 19) → SO(2, 19) and the spin represen-
tation homomorphism CSpin(2, 19) ↪→ CSp2g where g = 219 (see [Del72, §§3 & 4]).
We consider the morphisms, between the Shimura varieties associated to the groups
CSpin(2, 19), SO(2, 19) and CSp2g, defined by the adjoint and the spin representations.
Putting together these maps and the results of Chapter 3, for every n ≥ 3, we define a
Kuga-Satake morphism

fksd,a,n,γ,En
: F2d,nsp ⊗ En → Ag,d′,n ⊗ En

where En is a finite abelian extension of Q. For details we refer to Section 4.2.5. The
morphism fksd,a,n,γ,En

assigns to every primitively polarized complex K3 surface with spin
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level n-structure its associate Kuga-Satake abelian variety plus extra data (polarization
and level n-structure). In this way the first step of our program is completed. Next we
show that fksd,a,n,γ,En

extends over an open part of Spec(OEn) where OEn is the ring of
integers in En. In a sense this is the core of the matter. First we prove a general result
on extension of morphisms.

Proposition. Let U be a scheme smooth over a discrete valuation ring R of mixed
characteristic (0, p). Suppose given three natural numbers g, d, n such that n ≥ 3 and
p does not divide dn. Let {η, s} be the generic and the special points of Spec(R) and
let fη : Uη → Ag,d,n,η be a morphism. Assume that the total ramification index e of R
satisfies e < p − 1 and that all generic points x of the special fiber Us of U satisfy the
following:

Let OU,x be the local ring of x and denote by L the field of fractions of OU,x. Then
the morphism fη : Spec(L) → Ag,d,n,η extends to a morphism f̃ : Spec(OU,x) →
Ag,d,n ⊗R.

Then fη extends uniquely to a morphism f : U → Ag,d,n ⊗R over R.

The proof of this proposition is based on a result of G. Faltings on extension of
abelian schemes (see for instance [Moo98, Lemma 3.6]). It is not difficult to see that
one can apply this proposition to an atlas U of F2d,nsp over an open part of Spec(OEn).
Then using a descent argument one concludes that the Kuga-Satake morphism extends
over that open part of Spec(OEn). More precisely we prove the following statement.

Theorem. Let d, n ∈ N and suppose that n ≥ 3. Then the Kuga-Satake morphism
fksd,n,a,γ,En

: F2d,nsp,En → Ag,d′,n,En extends uniquely to a morphism

fksd,a,n,γ : F2d,nsp ⊗OEn [1/N ]→ Ag,d′,n ⊗OEn [1/N ]

where N = 2dd′nl and l is the product of the prime numbers p whose ramification index
ep in En is ≥ p− 1.

We conclude Chapter 4 with some applications. First we show that the étale co-
homology relations from [Del72, (6.6.1)] hold for the Kuga-Satake abelian varieties we
construct. Then we focus our attention on the ordinary locus of F2d,nsp ⊗ Fp, where p
is a prime not dividing N . Suppose that k is a finite field of characteristic p. One can
easily see that fksd,a,n,γ maps an ordinary point x = (X,L, ν) in F2d,nsp ⊗Fp(k) to an ordi-
nary point y = (A, µ, ε) in Ag,d′,n ⊗ Fp(k). For both ordinary K3 surfaces and ordinary
abelian varieties we have the notion of canonical lifts. We denote by xcan = (Xcan,L, ν)
the canonical lift of X over W (k) and by ycan = (Acan, µ, ε) the canonical lift of A. We
prove that fksd,a,n,γ(x

can) = ycan. A straightforward corollary of this is that the restriction
of the Kuga-Satake morphism to the ordinary locus of F2d,nsp ⊗ Fp is quasi-finite. One
can also use this result to prove a special case of the André-Oort conjecture for the
Shimura variety associated to SO(2, 19). As we have not included the proof in this work
we will omit any discussion in this direction.
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Notations and Conventions

General

We write Ẑ for the profinite completion of Z. We denote by A the ring of adèles of Q
and by Af = Ẑ ⊗ Q the ring of finite adèles of Q. Similarly, for a number field E we
denote by AE and AE,f the ring of adèles and the ring of finite adèles of E.

If A is a ring, A→ B a ring homomorphism then for any A-module (A-algebra etc.)
V we will denote by VB the B-module (B-algebra etc.) V ⊗A B.

For a ring A we denote by (Sch/A) the category of schemes over A. We will write
Sch for the category of schemes over Z.

By a variety over a field k we will mean a separated, geometrically integral scheme of
finite type over k. For a variety X over C we will denote by Xan the associated analytic
variety. For an algebraic stack F over a scheme S and a morphism of schemes S ′ → S
we will denote by FS′ the product F ×S S ′ and consider it as an algebraic stack over S ′.

A Jacobi level n-structure on a polarized abelian scheme (A, λ) of relative dimension
g over a base scheme S is an isomorphism of sheaves

θ : A[n]→ (Z/nZ)2g
S

such that there exists an isomorphism of sheaves ν : (Z/nZ)S → µn making the following
diagram

A[n]× A[n]
ελ //

θ×θ
��

µn,S

(Z/nZ)2g
S × (Z/nZ)2g

S

ψ // (Z/nZ)S

ν

OO

commutative. Here ελ is the Weil pairing and ψ denotes the standard alternating bilin-
ear form on (Z/nZ)2g. We denote by Ag,d,n the moduli stack of g-dimensional abelian
varieties with a polarization of degree d2 and a Jacobi level n-structure. It is a Deligne-
Mumford stack which is smooth over Z[1/dn]. We will write Ag,d for Ag,d,1.

Algebraic Groups

A superscript 0 usually indicates a connected component for the Zariski topology. For
an algebraic group G will denote by G0 the connected component of the identity. We
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Notations and Conventions

will use the superscript + to denote connected components for other topologies.
For a reductive group G over Q we denote by Gad the adjoint group of G, by Gder the

derived group of G and by Gab the maximal abelian quotient of G. We let G(R)+ denote
the group of elements of G(R) whose image in Gad(R) lies in its identity component
Gad(R)+, and we let G(Q)+ = G(Q) ∩G(R)+.

Let V be a vector space over Q and let G ↪→ GL(V ) be an algebraic group over Q.
Suppose given a full lattice L in V (i.e., L⊗Q = V ). Then G(Z) and G(Ẑ) will denote
the abstract groups consisting of the elements in G(Q) and G(Af ) preserving the lattices
L and LẐ respectively.
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Chapter 1

Moduli Stacks of Polarized K3
surfaces

In this chapter we set up the basic theory of moduli stacks of (primitively) polarized
K3 surfaces. In various places in the literature one finds detailed accounts on coarse
moduli schemes of primitively polarized complex K3 surfaces. We outline in Section 1.4.3
two approaches to the theory, one via geometric invariant theory ([Vie95]) and another
via periods of complex K3 surfaces ([BBD85, Exposé XIII] and [Fri84, §1]). Here we
take up a different point of view and work with moduli stacks rather than with coarse
moduli schemes. In this way, our exposition is closer to [Ols04] where moduli stacks
of primitively polarized K3 surfaces and their compactifications over Q are constructed.
This approach turns out to be essential for our ultimate goal - the construction of Kuga-
Satake morphisms in mixed characteristic.

Let us outline briefly the contents of this chapter. In the first few sections we review
some basic properties of K3 surfaces. Then we continue with the study of the repre-
sentability of Picard and automorphism functors arising from K3 surfaces. The core of
the chapter is Section 1.4.3 in which we define various moduli functors of polarized K3
surfaces and prove that those define Deligne-Mumford stacks. In Section 1.5.1 we define
level structures on K3 surfaces associated to compact open subgroups of SO(2, 19)(Af ).
In the last section we show that the moduli functors of primitively polarized K3 surfaces
with level structure are representable by algebraic spaces.

1.1 Basic Results

1.1.1 Definitions and Examples

We will briefly recall some basic notions concerning families of K3 surfaces.

Definition 1.1.1. Let k be a field. A non-singular, proper surface X over k is called a
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

K3 surface if Ω2
X/k
∼= OX and H1(X,OX) = 0.

Note that a K3 surface is automatically projective. Let us give some basic examples
one can keep in mind:

Example 1.1.2. Let S be a non-singular sextic curve in P2
k where k is a field and

consider a double cover i.e., a finite generically étale morphism, π : X → P2
k which is

ramified along S. Then X is a K3 surface.

Example 1.1.3. Complete intersections: Let X be a smooth surface which is a complete
intersection of n hypersurfaces of degree d1, . . . , dn in Pn+2 over a field k. The adjunction
formula shows that Ω2

X/k
∼= OX(d1 + · · · + dn − n − 3). So a necessary condition for X

to be a K3 surface is d1 + · · ·+ dn = n+ 3. The first three possibilities are:

n = 1 d1 = 4
n = 2 d1 = 2, d2 = 3
n = 3 d1 = d2 = d3 = 2.

For a complete intersection M of dimension n one has that H i(M,OM(m)) = 0 for all
m ∈ Z and 1 ≤ i ≤ n − 1. Hence in those three cases we have H1(X,OX) = 0 and
therefore X is a K3 surface.

Example 1.1.4. Let A be an abelian surface over a field k of characteristic different
from 2. Let A[2] be the kernel of the multiplication by-2-map, let π : Ã→ A be the blow-
up of A[2] and let Ẽ be the exceptional divisor. The automorphism [−1]A lifts to an
involution [−1]Ã on Ã. LetX be the quotient variety of Ã by the group of automorphisms
{idÃ, [−1]Ã} and denote by ι : Ã→ X the quotient morphism. It is a finite map of degree
2. We have the following diagram

Ã

π
����

��
��

�

ι
��?

??
??

??
?

A X

of morphisms over k. The variety X is a K3 surface and it is called the Kummer surface
associated to A.

Definition 1.1.5. By a K3 scheme over a base scheme S we will mean a scheme X and
a proper and smooth morphism π : X → S whose geometric fibers are K3 surfaces. A
K3 space over a scheme S is an algebraic space X together with a proper and smooth
morphism π : X → S such that there is an étale cover S ′ → S of S for which π′ : X ′ =
X ×S S ′ → S ′ is a K3 scheme.

If π : X → S is a K3 space, then π∗OX = OS. Indeed, this is true since π is proper
and its geometric fibers are reduced and connected.
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1.1. Basic Results

1.1.2 Ample Line Bundles on K3 Surfaces

In order to construct the moduli stacks of polarized K3 spaces one needs a number of
results on ample line bundles. We give them below.

Definition 1.1.6. Let X be a K3 surface over a field k. The self-intersection index
(L,L)X of a line bundle L on X will be called its degree. A line bundle L on X is called
primitive if L ⊗ k̄ is is not a positive power of a line bundle on Xk̄.

Theorem 1.1.7. Let X be a K3 surface over a field k.

(a) If L is a line bundle on X, then (L,L) is even. If L is ample and d := (L,L)/2,
then the Hilbert polynomial of L is given by hL(t) = dt2 + 2.

(b) Suppose L is an ample bundle. Then L is effective and H i(X,L) = 0 for i > 0.
Further, Ln is generated by global sections if n ≥ 2 and is very ample if n ≥ 3.

Proof. (a) First note that, by Serre duality, h2(OX) = h0(Ω2
X/k) = h0(OX) = 1. Since

h1(OX) = 1 we find that χ(OX) = 2. Hirzebruch-Riemann-Roch gives

χ(L) = χ(OX) +
1

2
·
(
(L,L)− (L,Ω2

X/k)
)

= 2 +
1

2
· (L,L)

as Ω2
X/k is trivial. Hence (L,L) = 2d is even. If L is ample then its Hilbert polynomial

is hL(t) = dt2 + 2
(b) By Serre duality and the fact that Ω2

X/k
∼= OX we have hi(L) = h2−i(L−1).

In particular h2(L) = h0(L−1) = 0 as an anti-ample bundle is not effective. Since
d := (L,L)/2 > 0 it follows that h0(L) = d + 2 + h1(L) > 0, so L is effective. For the
remaining assertions we refer to [SD74], Section 8.

Example 1.1.8. Let π : X → P2 be a double cover of P2 as in Example 1.1.2. The
line bundle L = π∗OP2(1) is ample and one has that (L,L)X = 2(OP2(1),OP2(1))P2 = 2.
Hence any K3 surface X which is a double cover of P2 ramified along a non-singular
sextic curve has an ample line bundle L of degree 2.

Example 1.1.9. Let X ⊂ Pn+2 be a K3 surface which is obtained as a complete in-
tersection of multiple degree (d1, d2, . . . , dn); see Example 1.1.3. Then OX(1) degree
d1d2 · · · dn. Note that the equality d1 + d2 + · · ·+ dn = n+ 3 implies that at least one of
the di is even.

The following lemma shows that for a K3 scheme fiberwise ampleness is equivalent
to relative ampleness. Note first that if π : X → S is a K3 scheme over a connected base
S then for a line bundle L on X the intersection index (Ls̄,Ls̄)Xs̄ is constant for any s̄.
This follows from the fact that π is flat and the relation (Ls̄,Ls̄)Xs̄ = 2χ(Ls̄)− 4.
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

Lemma 1.1.10. Let π : X → S be a K3 scheme and let L be a line bundle on X which
is fiberwise ample on X i.e., Ls̄ is ample on Xs̄ for every geometric point s̄ ∈ S. Let
2d = (Ls̄,Ls̄)Xs̄ for any point s̄ ∈ S. Then π∗Ln is a locally free sheaf of of rank dn2 + 2
and Ln is relatively very ample over S if n ≥ 3.

Proof. By Theorem 1.1.7 (b) we have that for all s̄ ∈ S the group H1(Xs̄,Lns̄ ) is trivial.
It follows from [GD67, Ch. III, §7], that π∗Ln is a locally free sheaf and that π∗Ls̄ ∼=
H0(Xs̄,Lns̄ ). The rank statement follows from Theorem 1.1.7 (a). By part (a) of Theorem
1.1.7 one sees that for every geometric point s̄ ∈ S and any n ≥ 3 the line bundle Lns̄
gives a closed immersion Xs̄ ↪→ P(π∗Lns̄ ) over κ(s̄). Hence the morphism X ↪→ P(π∗Ln)
induced by Ln is a closed immersion. This finishes the proof.

1.2 Cohomology Groups of K3 Surfaces

1.2.1 Quadratic Lattices Related to Cohomology Groups of K3
Surfaces

In this section we introduce some notations which will be used in the sequel. Let U be
the hyperbolic plane and denote by E8 the positive quadratic lattice associated to the
Dynkin diagram of type E8 (cf. [Ser73, Ch. V, 1.4 Examples]).

Notation 1.2.1. Denote by (L0, ψ) the quadratic lattice U⊕3⊕E⊕2
8 . Further, let (V0, ψ0)

be the quadratic space (L0, ψ)⊗Z Q.

We have that L0 is a free Z-module of rank 22. The form ψR has signature (19+, 3−)
on L0 ⊗ R.

Let {e1, f1} be a basis of the first copy of U in L0 such that

ψ(e1, e1) = ψ(f1, f1) = 0 and ψ(e1, f1) = 1.

For a positive integer d we consider the vector e1 − df1 of L0. It is a primitive vector
i.e., the module L0/〈e1 − df1〉 is free and we have that ψ(e1 − df1, e1 − df1) = −2d. The
orthogonal complement of e1 − df1 in L0 with respect to ψ is 〈e1 + df1〉 ⊕ U⊕2 ⊕ E⊕2

8 .

Notation 1.2.2. Denote the quadratic sublattice 〈e1 + df1〉 ⊕ U⊕2 ⊕ E⊕2
8 of L0 by

(L2d, ψ2d). Further, we denote by (V2d, ψ2d) the quadratic space (L2d, ψ2d)⊗Z Q.

The signature of the form ψ2d,R is (19+, 2−). We have that 〈e1 − df1〉 ⊕ L2d is a
sublattice of L0 of index 2d. The inclusion of lattices i : L2d ↪→ L0 defines injective
homomorphisms of groups

iad : {g ∈ O(V0)(Z) | g(e1 − df1) = e1 − df1} ↪→ O(V2d)(Z) (1.1)
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1.2. Cohomology Groups of K3 Surfaces

and

iad : {g ∈ SO(V0)(Z) | g(e1 − df1) = e1 − df1} ↪→ SO(V2d)(Z). (1.2)

Let L∗2d denote the dual lattice Hom(L2d,Z). Then the bilinear form ψ2d defines an
embedding L2d ↪→ L∗2d and we denote by A2d the factor group L∗2d/L2d. It is an abelian
group of order 2d ([LP81, §2, Lemma]). One can extend the bilinear form ψ2d on L2d to
a Q-valued form on L∗2d and define

q2d : A2d → Q/2Z

defined by

q2d(x+ L2d) = ψ2d(x, x) + 2Z

for any x ∈ L∗2d. Let O(q2d) denote the group of isomorphisms of A2d preserving the
form q2d. Then one has a natural homomorphism τ : O(V2d)(Z) → O(q2d). It is shown
in [Nik80] that

iad
(
{g ∈ O(V0)(Z) | g(e1 − df1) = e1 − df1}

)
= ker(τ).

1.2.2 De Rham Cohomology

Let X be a K3 surface over a field k. The following proposition will play an essential rôle
when studying deformations of K3 surfaces (Section 1.4.1). We will use it also to show
that the automorphism group Aut(X) of a K3 surface is reduced (see Theorem 1.3.13
below).

Proposition 1.2.3. If X is a K3 surface over a field k, then

(a) The Hodge-de Rham spectral sequence

Ei,j
1 = Hj(X,Ωi

X/k) =⇒ H i+j
DR(X, k)

degenerates at E1. For the Hodge numbers hi,j = dimkH
j(X,Ωi

X/k) of X we have

h1,0 = h0,1 = h2,1 = h1,2 = 0

h0,0 = h2,0 = h0,2 = h2,2 = 1

h1,1 = 20.

(b) Let ΘX/k = Ω1∨
X/k be the tangent bundle of X. Then H i(X,ΘX/k) = 0 for i = 0 and

2 and dimkH
1(X,ΘX/k) = 20.
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

Proof. If k has characteristic zero, then one may assume that k = C and the proposition
follows from [LP81, §1, Prop. 1.2]. The case char(k) = p > 0 is treated in Proposition
1.1 in [Del81b].

Remark 1.2.4. Part (b) of the proposition is classical in the case k = C. The proof in
the general case is due to Rudakov and Shafarevich. It can be reformulated in following
way: There exist no non-trivial regular vector fields on a K3 surface (see [RS76, §6,
Thm. 7]).

1.2.3 Betti Cohomology

Let X be a complex K3 surface. Then the Betti cohomology groups H i
B(X,Z) are free

Z-modules of rank 1, 0, 22, 0, 1 for i = 0, 1, 2, 3, 4 respectively. One has a non-degenerate
bilinear form (given by the Poincaré duality pairing):

ψ : H2
B(X,Z)(1)×H2

B(X,Z)(1)→ Z

given by
ψ(x, y) = −tr(x ∪ y)

where x∪ y is the cup product of x and y and tr : H4
B(X,Z(2))→ Z is the trace map. It

has signature (19+, 3−) over R. The quadratic lattice
(
H2
B(X,Z)(1), ψ

)
is isometric to

(L0, ψ) (cf. Section 1.2.1). For proofs of those results we refer to [LP81, §1, Prop. 1.2].
The group H2

B(X,Z) carries a natural Z-Hodge structure (which we will abbreviate
as Z-HS) of type {(2, 0), (1, 1), (0, 2)} with h2,0 = h0,2 = 1 and h1,1 = 20 as we see from
Proposition 1.2.3.

For a complex K3 surface H1(X,OX) is trivial so the first Chern class map

c1 : Pic(X)→ H2
B(X,Z)(1)

is injective. Exactly in the same way we see that for a K3 space π : X → S, where S is
a scheme over C, one has a short exact sequence of sheaves

0→ R1πan
∗ O∗X → R2πan

∗ Z(1)

as R1πan
∗ OX is trivial.

Notation 1.2.5. Let L be an ample line bundle on X. We denote by P 2
B(X,Z)(1) the

orthogonal complement of c1(L) with respect to ψ. It is a free Z-module of rank 21 called
the primitive part (or the primitive cohomology group) of H2

B(X,Z)(1) with respect to
c1(L). The restriction of ψ defines a non-degenerate bilinear form:

ψL : P 2
B(X,Z)(1)× P 2

B(X.Z)(1)→ Z.
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1.2. Cohomology Groups of K3 Surfaces

The group P 2
B(X,Z(1)) carries a natural Z-HS induced by the one on H2

B(X,Z(1))
of type {(−1, 1), (0, 0), (1,−1)} with h−1,1 = h1,−1 = 1 for which ψL is a polarization.

Remark 1.2.6. Let L be an ample line bundle for which (L,L)X = 2d and assume that
it is primitive. Let {e1, f1} be a basis of the first copy of U in L0 as in Section 1.2.1. By
[BBD85, Exp. IX, §1, Prop. 1] one can find an isometry

a :
(
H2
B(X,Z(1)), ψ

)
→ L0

such that a(c1(L)) = e1 − df1. Therefore a induces an isometry

a :
(
P 2
B(X,Z(1)), ψL

)
→ (L2d, ψ2d).

1.2.4 Étale Cohomology

Let k be a field of characteristic p ≥ 0 and fix a prime l which is different from p.
Suppose given a K3 surface X over k. Then the étale cohomology group H i

et(Xk̄,Zl) is
a free Zl-module of rank 1, 0, 22, 0, 1 for i = 0, 1, 2, 3, 4. One sees this in the following
way: If k has characteristic zero, then the claim follows from the corresponding result
for Betti cohomology and the comparison theorem between Betti and étale cohomology
([Mil80, Ch. III, §3, Thm. 3.12]). Assume that p > 0. By [Del81b, §1, Cor. 1.8] there
exists a discrete valuation ring R with residue field k̄ and a smooth lift X over R of X.
If η is the generic point of Spec(R), then by the smooth base change theorem for étale
cohomology ([Mil80, Ch. VI, §4, Cor. 4.2]) one has that

H i
et(Xk̄,Z/lnZ) ∼= H i

et(Xη̄,Z/lnZ) (1.3)

for every i = 0, . . . , 4 and every n. Hence H i
et(Xk̄,Zl) ∼= H i

et(Xη̄,Zl) and we deduce the
claim from the characteristic zero result.

Further, one has a non-degenerate bilinear form

ψZl
: H2

et(Xk̄,Zl)(1)×H2
et(Xk̄,Zl)(1)→ Zl

given by
ψZl

(x, y) = −trZl
(x ∪ y)

where trZl
: H4

et(Xk̄,Zl)(2) → Zl is the trace isomorphism. This is simply Poincaré
duality for étale cohomology ([Mil80, Ch. VI, §11, Cor. 11.2]).

The Kummer short exact sequence of étale sheaves on X

1→ µln → Gm → Gm → 1

gives an exact sequence of cohomology groups

H1
et(Xk̄,µln)→ H1

et(Xk̄,Gm)→ H1
et(Xk̄,Gm)→ H2

et(Xk̄,µln).
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By (1.3) the group H1
et(Xk̄,µln) is trivial we have an injection

0→ Pic(X)/ln Pic(X)→ H2
et(Xk̄,µln).

Taking the projective limit over n one sees that the first Chern class map

c1 : Pic(X)⊗Z Zl ↪→ H2
et(Xk̄,Zl)(1)

is injective. In particular, since H2
et(Xk̄,Zl(1)) is free, Pic(X) has no l-torsion for any l

different from p.
Similarly, if π : X → S is a K3 space then one can consider the long exact sequence

of higher direct images, coming from the Kummer sequence

R1
etπ∗µln → R1

etπ∗Gm → R1
etπ∗Gm → R2

etπ∗µln .

Further, since the stalk of R1
etπ∗µln at any geometric point of S is zero (one uses here

the proper base change theorem), the sheaf itself is zero ([Mil80, Ch. II, §2, Prop.
2.10]). Hence passing again to the projective limit over n we obtain the exact sequence
of Zl-sheaves

0→ R1
etπ∗Gm ⊗ Zl → R2

etπ∗Zl(1).

Notation 1.2.7. Let L be a primitive ample line bundle on X with (L,L)X = 2d.
Denote by P 2

et(Xk̄,Zl(1)) the primitive part of H2
et(Xk̄,Zl)(1) with respect to c1(L) i.e.,

the orthogonal complement of c1(L) in H2
et(Xk̄,Zl)(1) with respect to ψZl

. Denote the
restriction of ψZl

to P 2
et(Xk̄,Zl(1)) by ψL,Zl

.

If k has characteristic 0, then by the comparison theorem between Betti and étale
cohomology one has that

(
H2

et(Xk̄,Zl(1)), ψZl

)
is isometric to

(
H2
B(XC,Z(1)), ψ

)
⊗Z Zl

which is isometric to (L0, ψ)⊗Z Zl. Moreover since the comparison isomorphism respects
algebraic cycles, the same holds for the primitive parts with respect to L i.e., we have
that

(
P 2

et(Xk̄,Zl(1)), ψL,Zl

) ∼= (L2d, ψ2d)⊗Z Zl.
Assume that char(k) = p > 0. Then the pair (X,L) ⊗ k̄ has a lift (X ,L) over a

discrete valuation ring R with char(R) = 0 and with residue field k̄ (see [Del81b, §1,
Cor. 1.8]). Using the same argument as above one concludes that

H i
et(Xk̄,Zl)(m) ∼= H i

et(Xη̄,Zl)(m)

and that
(
H2

et(Xk̄,Zl)(m), ψZl

)
is isometric to

(
H2

et(Xη̄,Zl)(m), ψZl

)
, where η is the

generic point of Spec(R). Consequently the two quadratic lattices
(
P 2

et(Xk̄,Zl(1)), ψL,Zl

)
and

(
P 2

et(Xη̄,Zl(1)), ψLη̄

)
⊗Z Zl are also isometric. Thus, if L is primitive, then there is

an isometry
a :

(
H2

et(Xk̄,Zl(1)), ψl
)
→ L0 ⊗ Zl

such that a(c1(L)) = e1 − df1. It induces an isometry

a :
(
P 2

et(Xk̄,Zl(1)), ψL,Zl

)
→ (L2d, ψ2d)⊗ Zl.
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Remark 1.2.8. Let k be a field of characteristic p. We make the following notations

Ẑ(p) :=
∏
l 6=p

Zl and A(p)
f = Ẑ(p) ⊗Q.

In the sequel we will be considering étale cohomology with Ẑ(p) or A(p)
f coefficients. Then

we have that for a K3 surface over a field k one has isometries(
H2

et(Xk̄, Ẑ(p)(1)), ψf
) ∼= (L0, ψ)⊗Z Ẑ(p)

and for a primitive ample line bundle L of degree 2d on X one has(
P 2

et(Xk̄, Ẑ(p)(1)), ψL,f
) ∼= (L2d, ψ2d)⊗Z Ẑ(p).

Here ψf and ψL,f are the corresponding bilinear forms coming from the Poincaré duality

on H2
et(Xk̄, Ẑ(p)(1)).

1.2.5 Crystalline Cohomology

Let k be a perfect field of characteristic p > 0 and let W = W (k) be the ring of Witt
vectors with coefficients in k. Consider a K3 surface X over k. Then by [Del81b, Prop.
1.1] the crystalline cohomology group H i

cris(X/W ) is a free W -module of rank 1,0,22,0,2
for i = 0, 1, 2, 3, 4 respectively. We consider next the crystalline Chern class map

c1 : Pic(X)→ H2
cris(X/W ).

As pointed out in [Del81b, Appendice, Rem. 3.5] the Chern class map defines an injection

c1 : NS(Xk̄)⊗Z Zp ↪→ H2
cris(X/W (k̄))

where NS(Xk̄) = Pic(Xk̄)/Pic0(Xk̄) is the Néron-Severi group of Xk̄. In particular this
means that the Néron-Severi group of Xk̄ has no p-torsion.

If K is the fraction field of W then we shall denote by H i
cris(X/K) the K-vector space

H i
cris(X/W )⊗W K.

1.3 Picard Schemes and Automorphisms of K3 Sur-

faces

1.3.1 Picard and Néron-Severi Groups of K3 Surfaces.

In this section we will study Picard functors of K3 spaces. Those functors will play
an important rôle in two aspects in the construction of moduli spaces of (primitively)
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

polarized K3 surfaces. First, we will define (quasi-) polarizations on K3 surfaces using
Picard spaces (cf. Definition 1.3.10 below). Later, in Section 1.4.2, we will use Picard
spaces in the construction of the Hilbert scheme parameterizing K3 subschemes of PN .

For a separated algebraic space X over a scheme S we denote by Pic(X) the group
of isomorphism classes of invertible sheaves on X. Let π : X → S be a K3 space and
consider the relative Picard functor

PicX/S : (Sch /S)0 → Groups.

By definition it is the fppf-sheafification of the functor

PX/S : (Sch /S)0 → Groups given by T 7→ Pic(X ×S T ).

For every g : T → S we have that PicX/S(T ) = H0(T,R1π′∗Gm) where π′ : X ×S T → T
is the product morphism and all derived functors are taken with respect to the fppf-
topology.

Theorem 1.3.1. For a K3 space π : X → S the relative Picard functor PicX/S is repre-
sented by a separated algebraic space locally of finite presentation over S.

Proof. The representability follows form [Art69, §7, Thm. 7.3]. The proof of the sepa-
ratedness property goes exactly in the same way as the proof of Theorem 3 in [BLR90,
Ch. 8, §8.4].

Let S = Spec(k) be a spectrum of a field. Then PicX/k is represented by a group
scheme (cf. [Oor62] or Lemma 1.3.2 below) and shall denote by Pic0

X/k its identity
component. We set further

PicτX/k =
⋃
n>0

n−1
(
Pic0

X/k

)
where n : PicX/k → PicX/k is the multiplication by n.

Lemma 1.3.2. Let X be a K3 surface over a field k. Then PicX/k is represented by
a separated, smooth, zero dimensional scheme over k. In particular Pic0

X/k is trivial.
Further, we have also that PicτX/k is trivial.

Proof. Combining Theorem 3 and Theorem 1, with S = Spec(k), of [BLR90, Ch. 8,
§8.2] one concludes that PicX/k is representable by a separated scheme, locally of finite
type over k.

By Theorem 1 of [BLR90, Ch. 8, §8.4] one has that

dimk PicX/k ≤ dimkH
1(X,OX) = 0
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and hence PicX/k is smooth over k. This shows the validity of all assertions except for
the claim about PicτX/k.

The scheme PicτX/k is proper and of finite type over k. Since its dimension is zero it is
a finite commutative group scheme over k. The injectivity of the étale Chern class map
shows that Pic(X) has no l-torsion for l 6= p. By the first part of the lemma we have
that NS(X) = Pic(X). Then the injectivity of the crystalline Chern class map shows
that Pic(X) has no p-torsion either. Thus Pic(X) is torsion free and therefore PicτX/k(k̄)
is trivial. Since in this case PicτX/k is reduced we conclude it is trivial.

If X is a K3 surface over a field k, then NS(X) = Pic(X), which follows from the
fact that in this case Pic0(X) is trivial. Hence Pic(X) is a free abelian group of rank at
most 22 (use [Mil80, Ch. V, §3, Cor 3.28]). If the characteristic of the ground field is
zero, then rkZ Pic(X) ≤ 20.

Let π : X → S be a K3 scheme. Define Pic0
X/S and PicτX/S as the subfunctors of

PicX/S consisting of all elements whose restrictions to all fibers Xs belong to Pic0
Xs/κ(s)

and PicτXs/κ(s) respectively.

Proposition 1.3.3. For a K3 scheme π : X → S over a quasi-compact base S one has
that PicX/S is an algebraic space which is unramified over S. Further, we have that
Pic0

X/S and PicτX/S are trivial.

Proof. The first part of the proposition follows from the preceding lemma as it is enough
to check the PicX/S is unramified in the case S is a spectrum of a field. To prove the
second part we notice that according to [BLR90, Ch. 8, §8.3, Thm. 4] we have open
immersions Pic0

X/S ↪→ PicX/S and PicτX/S ↪→ PicX/S. By Lemma 1.3.2 above for every

geometric point s̄ ∈ S the subspaces Pic0
Xs̄/κ(s̄) and PicτXs̄/κ(s̄) are trivial hence Pic0

X/S

and PicτX/S are trivial.

Remark 1.3.4. Let π : X → S be a K3 scheme and let L and M be two line bundles
on X. If Ln =Mn for some n ∈ N, then L is isomorphic toM⊗π∗N where N is a line
bundle on S. Indeed, we have that cl(L)n = cl(M)n in PicX/S. Since PicτX/S is trivial
we have that the multiplication by n-morphism [n] : PicX/S → PicX/S is an injective
homomorphism of group schemes. Since cl(L)n = cl(M)n we conclude that cl(L⊗M−1)
is trivial, soM and L differ by an invertible sheaf coming from the base S ([BLR90, Ch.
8, §8.1, Prop. 4]).

Remark 1.3.5. It is easy to see that the statement of Proposition 1.3.3 remains true
for K3 spaces.

Recall that a morphism of schemes π : X → S is called strongly projective (respec-
tively strongly quasi-projective) if there exists a locally free sheaf E on S of constant finite
rank such that X is S-isomorphic to a closed subscheme (respectively a subscheme) of
P(E).

11



Chapter 1. Moduli Stacks of Polarized K3 surfaces

Lemma 1.3.6. Let S be a noetherian scheme and suppose given a K3 scheme π : X → S.
If π is a strongly projective morphism, then we have that

(i) for any n ∈ N the multiplication by n-morphism

[n] : PicX/S → PicX/S

is a closed immersion of group schemes over S.

(ii) for any λ ∈ PicX/S(S) the set of points

So = {s ∈ S | λs is primitive on Xs}

is open in S.

Proof. (i): By definition we have a closed immersion X ↪→ P(E) for some locally free
sheaf E on S. Let OX(1) denote the pull-back of the canonical bundle O(1) on P(E)
via this inclusion. For a polynomial Φ ∈ Q[t] let PicΦ

X/S be the subfunctor of PicX/S
which is induced by the line bundles L on X with a given Hilbert polynomial Φ (with
respect to OX(1)) on the fibers of X over S. Then PicΦ

X/S is representable by a strongly
quasi-projective scheme over S and PicX/S is the disjoint union of the open and closed
subschemes PicΦ

X/S for all Φ ∈ Q[t]. For a proof of this result we refer to [BLR90, Ch.
8, §8.2, Thm. 5].

Since all schemes PicΦ
X/S are quasi-compact we have that for a given Φ the image

[n](PicΦ
X/S) is contained in a finite union

⋃
i∈Cn

Φ
PicΦi

X/S. We will show first that for a

given Φ ∈ Q[t] the morphism

[n] : PicΦ
X/S →

⋃
i∈Cn

Φ

PicΦi

X/S

is proper. As all schemes involved are noetherian we can apply the valuative criterion
for properness. We may assume that S is a spectrum of a discrete valuation ring R and
that X admits a section over S and let η and s be the generic and the special point of
S. Under those assumptions any element of PicX/S comes from a class of a line bundle
([BLR90, Ch. 8, §8.1, Prop. 4]). To show that the restriction of [n] to PicΦ

X/S is proper
we have to show that if L is a line bundle over the generic fiber Xη of X, then Ln extends
uniquely to a line bundle on X which is a n-th power of a line bundle. This follows from
[BLR90, Ch. 8, §8.4, Thm. 3] as both L and Ln extend uniquely over X.

Further, the morphism [n] : PicX/S → PicX/S is an immersion of the correspond-
ing topological spaces and as it is proper on every open and closed PicΦ

X/S, the image
[n](PicX/S) is closed in PicX/S. We are left to show that the natural homomorphism
of sheaves OPicX/S

→ [n]∗OPicX/S
is surjective. As this can be checked on stalks we see

further that it is enough to show the surjectivity assuming that S is a spectrum of a

12
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field. But under this condition the claim follows from Lemma 1.3.2. Indeed, PicX/k
is a reduced, zero dimensional scheme. Hence all subschemes PicΦ

X/k being reduced,
quasi-projective and zero dimensional, are finite unions of points. Then the restrictions
[n] : PicΦ

X/k →
⋃
i∈Cn

Φ
PicΦi

X/k are closed immersions and hence [n] : PicX/k → PicX/k is

also a closed immersion. Therefore OPicX/k
→ [n]∗OPicX/k

is surjective.
(ii): We may assume that S is connected. Then the intersection index (λs̄, λs̄)

is constant on S, say (λs̄, λs̄) = 2d. For any natural number n consider the closed
subscheme Sn of S defined by the following Cartesian diagram

Sn

��

// S

λ
��

PicX/S
[n] // PicX/S .

Then the subset So of S can be identified with S \
⋃
n Sn where the union is taken over

all n ∈ N such that n2 divides d. So it has a structure of an open subscheme of S.

Remark 1.3.7. Note that if π : X → S is a K3 scheme, then the Picard functor PicX/S
can be constructed using the étale topology on S instead of the fppf-topology. In other
words PicX/S is also the étale sheafification of PX/S. This follows from the fact that π
is a proper morphism, using the Leray spectral sequence for π and the sheaf Gm. For a
proof we refer to the comments on p. 203 in [BLR90, Ch. 8, §8.1].

Example 1.3.8. Let A be an abelian surface over an algebraically closed field k of
characteristic different from 2 and let X be the associated Kummer surface. Then one
has that

Pic(X)Q = NS(X)Q ∼= NS(A)
[−1]A
Q ⊕Q⊕16

where NS(A)[−1]A denotes the elements of NS(A) invariant under the action of [−1]A.
We refer to [Shi79, §3, Prop. 3.1] for a proof.

1.3.2 Polarizations of K3 Surfaces

Here we will define the notion of a polarization on a K3 space.

Definition 1.3.9. Let k be a field. A polarization on a K3 surface X/k is a global
section λ ∈ PicX/k(k) which over k̄ is the class of an ample line bundle Lk̄. The degree
of Lk̄ is called the polarization degree of λ. A quasi-polarization on X is a global section
λ ∈ PicX/k(k) which over k̄ comes from a line bundle Lk̄ with the following property:

(i) Lk̄ is nef i.e.,
(
Lk̄,OXk̄

(C)
)
≥ 0 for all irreducible curves in Xk̄,

(ii) if
(
Lk̄,OXk̄

(C)
)

= 0 for a curve C in Xk̄ then (C,C)Xk̄
= (−2).

13
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If (X,λ) is a polarized K3 surface over k, then one can find a finite separable extension
k′ of k such that λ comes from a line bundle Lk′ over k′. Indeed, this follows either from
Remark 1.3.7 or from Proposition 4 in [BLR90, Ch. 8, §8.1] taking T = Spec(ksp) and
the fact that Br(ksp) is trivial.

Definition 1.3.10. Let S be scheme. A polarization on a K3 space π : X → S is a
global section λ ∈ PicX/S(S) such that for every geometric point s̄ of S the section λs̄ ∈
PicXs̄/κ(s̄)(κ(s̄)) is a polarization of Xs̄. A quasi-polarization on X/S is a global section
λ ∈ PicX/S(S) such that for every geometric point s̄ of S the section λs̄ ∈ PicXs̄/κ(s̄)(κ(s̄))
is a quasi-polarization of Xs̄.

Definition 1.3.11. A polarization (respectively quasi-polarization) λ on a K3 space
π : X → S is called primitive if for every geometric point s̄ of S the polarization (respec-
tively the quasi-polarization) λs̄ ∈ PicXs̄/κ(s̄)(κ(s̄)) is primitive i.e., it is not a positive
power of any element in PicXs̄/κ(s̄)(κ(s̄)).

Lemma 1.3.12. Let (π : X → S, λ) be a K3 space over S with a polarization λ. Then
one can find an étale covering S ′ → S such that πS′ : XS′ → S ′ is a K3 scheme and λS′
is the class of a relatively ample line bundle LS′ on XS′.

Proof. By definition one can find an étale covering S1 → S such that π1 : XS1 → S1 is a
K3 scheme. The pull-back λS1 of λ is a polarization on XS1 . By Remark 1.3.7 the Picard
functor PicXS1

/S1 can be computed using the étale topology on S1. Hence one can find
an étale covering S ′ → S such that λS′ is equal to the class of a line bundle LS′ on XS′ .
By definition LS′ is pointwise ample hence using Lemma 1.1.10 we conclude that it is
relatively ample. This finishes the proof.

The self-intersection (Ls̄′ ,Ls̄′) for a geometric point s̄′ on S ′ is constant on every
connected component of S ′. We say that λ is a polarization of degree 2d if (Ls̄′ ,Ls̄′) = 2d
for every geometric point s̄′ of S ′.

1.3.3 Automorphism Groups

Let S be a scheme and π : X → S be an algebraic space over S. Define the automorphism
functor in the following way:

AutS(X) : (Sch /S)0 → Groups

AutS(X)(T ) = AutT (XT )

for every S-scheme T .

Theorem 1.3.13. If π : X → S is a K3 space over S, then AutS(X) is representable by
a separated group scheme which is unramified and locally of finite type over S.

14
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Proof. Let S ′ → S be an étale cover such that π′ : X ′ = X×SS ′ → S ′ is a K3 scheme over
S ′. Denote by πi the projection morphisms πi : X

′ ×X X ′ → X ′ → X → S for i = 1, 2.
By definition X ′ ×X X ′ is representable by a quasi-compact subscheme of X ′ ×S X ′.

According to Proposition 1.4 in [Knu71, Ch. II] we have an exact sequence of groups

0 // AutS(X)(T ) // AutS(X
′)(T ) //// AutS(X

′ ×X X ′)(T ). (1.4)

It follows from [Gro62, Exp. 221, §4.c] that the functors AutS(X
′) and AutS(X

′×X X ′)
are representable by group schemes locally of finite type over S. For simplicity we denote
them by Y andW respectively. Then from the exact sequence (1.4) we see that AutS(X)
is representable by the fiber product

AutS(X)

��

//W
∆
��

Y
(pr∗1 ,pr

∗
2)
//W ×S W

where ∆: W →W ×S W is the diagonal morphism.
The fact that the AutS(X) is separated follows directly from the valuative criterion

for separatedness.
To check that AutS(X) is unramified we may take S to be the spectrum of an

algebraically closed field k. A point in Autk(X)(k[ε]/(ε2)), which under the natural
homomorphism maps to the the identity in Autk(X)(k), may be identified with a vector
field on X. By Proposition 1.2.3 (1) a K3 surface has no non-trivial vector fields hence
we conclude that Autk(X) is reduced.

Remark 1.3.14. The proof of the theorem shows that AutS(X) is 0-dimensional over
S. Its fibers are constant group schemes.

Let π : X → S be a K3 space and let λ be a polarization of X. Define the subfunctor
AutS(X,λ) of AutS(X) in the following way

AutS(X,λ) : (Sch /S)0 → Groups

AutS(X,λ)(T ) = {α ∈ AutS(X)(T ) | α∗λ = λ ∈ PicX/S(T )}

for every S-scheme T .

Proposition 1.3.15. The functor AutS(X,λ) is a closed subfunctor of AutS(X). It is
represented by a separated group scheme which is unramified and of finite type over S.
Its relative dimension over S is zero.

Proof. The functor AutS(X,λ) is a closed subfunctor of AutS(X). It is representable
by the subgroup scheme of G = AutS(X) (locally of finite type over S) given by the

15
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following (Cartesian) diagram:

AutS(X,λ) //

��

S

(λ,id)
��

G = G×S S
ψ // PicX/S ×SS = PicX/S .

Here we have that λ : S → PicX/S is the section given by λ and ψ is the composition
σ ◦ (id, λ) where

σ : G× PicX/S → PicX/S

is the action of G on PicX/S.
Just as in the proof of the preceding theorem we may take S to be the spectrum

of an algebraically closed field k in order to check that AutS(X,λ) is unramified. If
α ∈ Autk(X,λ)(k[ε]/ε2) which is the identity in Autk(X,λ)(k), then by Theorem 1.3.13
above we see that α is the identity element of the group Autk(X)(k[ε]/ε2). Since by
definition we have an inclusion

Autk(X,λ)(k[ε]/ε2) ⊂ Autk(X)(k[ε]/ε2)

we conclude that AutS(X,λ) is unramified over S.
Let s̄ : Spec(Ω)→ S be a geometric point. Then by [Mat58] (see also Corollary 2 in

[MM64]) the set AutS(X,λ)(Ω) is finite. Hence AutS(X,λ) is of finite type over S.

Note that in general, for a K3 surface X over a field k, the group Autk(X)(k) might
be infinite.

Example 1.3.16. For any complex K3 surface X with rkZ Pic(X) = 20 one has that
AutC(X)(C) is infinite. For a proof see [SI77, §5, Thm. 5].

There are also examples of K3 surfaces X having a finite group of automorphisms.
An example of a complex K3 surface with rkZ Pic(X) = 18 and finite automorphism
group is given in the remark on page 132 in [SI77].

1.3.4 Automorphisms of Finite Order

In this section k will be an algebraically closed field. If it is a field of characteristic p,
then we will denote by W the ring of Witt vectors with coefficients in k and K will be
the field of fractions of W .

Let X be a K3 surface over k. If k = C, then it is a well-known theorem that
AutC(X)(C) acts faithfully on H2

B(X,Z). Here we prove a similar result for the auto-
morphisms of finite order of X acting trivially on H2

et(X,Zl) where l is a prime number
different from char(k). The only restriction we impose is that char(k) 6= 2. Later on in
Section 1.5.1 we will introduce level structures on K3 surfaces and we will use this result
to show that the corresponding moduli stacks are algebraic spaces.
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Lemma 1.3.17. Let X be a K3 surface over k and assume that char(k) = 0. Then
Autk(X)(k) acts faithfully on H2

et(X,Zl) for every prime l.

Proof. Without loss of generality we may assume that the field k can be embedded
into C. Fix an embedding σ : k ↪→ C. By the comparison theorem between Betti and
étale cohomology we have an isomorphism H2

et(X,Zl) ∼= H2
B(X ⊗σ C,Z) ⊗Z Zl. Let

α ∈ Autk(X)(k) be an automorphism acting trivially on H2
et(X,Zl). Then αC acts

trivially on H2
B(X ⊗σ C,Z)⊗ Zl. Since H2

B(X ⊗σ C,Z) is a free Z-module we conclude
from [LP81, Prop. 7.5] that α = idX .

Proposition 1.3.18. Let (X,λ) be a polarized K3 surface over k and assume that
char(k) = p is different from 2. Then the finite group Autk(X,λ)(k) acts faithfully
on H2

et(X,Zl) for any l 6= p.

Remark 1.3.19. This result can be viewed as an analogue of Theorem 3 in [Mum74,
Ch. IV] for (polarized) K3 surfaces.

We will reduce the proof of Proposition 1.3.18 to the preceding lemma. To do so we
will use crystalline cohomology and compare the action of an element in Autk(X,λ)(k)
on H2

et(X,Ql) and H2
cris(X/K).

Let X be a K3 surface over a field k. We denote by Hn(X) and Hn(X ×X) either
Hn

et(X,Ql) and Hn
et(X ×X,Ql) for any l prime to char(k) or Hn

cris(X/K) and Hn
cris(X ×

X/K). Note that we will be working with classes of certain algebraic cycles on X and
X ×X so we should consider some Tate twists of these cohomology groups. But since k
is algebraically closed and the Galois action does not play any rôle in our consideration
(we shall only consider some characteristic polynomials of automorphisms of X) we will
omit these twists.

For an isomorphism α : X → Y we will denote by α∗l and α∗cris the isomorphisms
induced on H2

et(X,Ql) and H2
cris(X/K) respectively.

Lemma 1.3.20. The Künneth components of the class cl(u) ∈ H4(X × X) of any
algebraic cycle on X ×X are algebraic.

Proof. We have that H1
et(X,Ql) = H3

et(X,Ql) = 0 and H1
cris(X/W ) = H3

cris(X/W ) = 0.
Then the Künneth isomorphism reads

H4(X ×X) =
(
H4(X)⊗H0(X)

)
⊕

(
H2(X)⊗H2(X)

)
⊕

(
H0(X)⊗H4(X)

)
.

Using this decomposition we write

cl(u) = u0 ⊕ u2 ⊕ u4.

Every element of the one dimensional spaces H4(X) ⊗ H0(X) and H0(X) ⊗ H4(X) is
algebraic. These are rational multiple of the classes of {pt}×X and X×{pt}. Hence u0

and u4 are algebraic. It follows that u2 is expressed as a linear combination of algebraic
classes, hence it is algebraic.
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In particular, if ∆ = δ(X) ⊂ X ×X is the diagonal, then its Künneth components
cl(∆) = π0⊕π2⊕π4 ∈ H4(X×X) are algebraic. Denote by 〈·, ·〉 the intersection pairing
on CH2(X ×X)Q.

Corollary 1.3.21. Let u ∈ CH2(X×X)Q be a rational cycle and let cl(u) ∈ H4(X×X)
be its algebraic class. Then its characteristic polynomial det

(
1− t · cl(u)|H2(X)

)
has ra-

tional coefficients which are independent of l and p (i.e., of H2
et(X,Ql) and H2

cris(X/K)).
The coefficient in front of ti is given by

si = 〈ui, π2〉

for i = 1, . . . , 22.

Proof. The proof follows from the preceding lemma and by Theorem 3.1 in [Tat95].

Theorem 1.3.22 (Ogus). If p > 2 then the natural morphism of groups

Autk(X)(k)→ Aut
(
H2

cris(X/W )
)

is injective.

Proof. This is a result of A. Ogus and can be found in his paper on Supersingular K3
crystals [Ogu79, §2, Cor. 2.5].

Proof of Proposition 1.3.18. Take an element α ∈ Autk(X,λ)(k). According to Propo-
sition 1.3.15 it has finite order. Denote by u = Γσ ⊂ X ×X the graph of α. Then the
automorphism of H2

et(X,Ql) induced by cl(u) ∈ H4
et(X × X,Ql) is the one induced by

α. By assumption it is the identity hence its characteristic polynomial is (t − 1)22. By
Corollary 1.3.21 it is exactly the characteristic polynomial of the automorphism α∗cris of
H2

cris(X/K) induced by α. Since α is an automorphism of finite order the induced map
α∗cirs on the crystalline cohomology is semi-simple (K has characteristic zero). Hence
α∗cris acts trivially on H2

cris(X/K) and by Theorem 1.3.22 it is the identity automorphism
as H2

cris(X/W ) is torsion free.

Remark 1.3.23. Note that the only property of α which we used in the proof of Propo-
sition 1.3.18 is that it has finite order. This is really essential as in general the charac-
teristic polynomial of α∗l will not give enough information to conclude that the action of
αcris on H2

cris(X/W ) is trivial. The proof given above shows actually that any automor-
phism of finite order α of X acting trivially on H2

et(X,Zl) for some l 6= p is the identity
automorphism idX .
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1.4 The Moduli Stack of Polarized K3 Surfaces

We are ready to define moduli functors of (primitively) polarized K3 surfaces over
Spec(Z). We will follow the line of thoughts in [DM68] in order to prove that these
functors define Deligne-Mumford stacks. Shortly, this can be given in three steps.

1. Describe the deformations of primitively polarized K3 surfaces.

2. Construct a Hilbert scheme parameterizing K3 surfaces embedded in PN for some
appropriate N ∈ N.

3. Construct a “Hilbert morphism” πHilb from the Hilbert scheme to the moduli stack
which is surjective and smooth. Use this morphism to conclude that the moduli
stack is a Deligne-Mumford stack.

These steps are spelled out in detail in Sections 1.4.1-1.4.3.

1.4.1 Deformations of K3 Surfaces

Let k be an algebraically closed field. Denote by W the ring of Witt vectors W (k)
in case char(k) = p > 0 and W = k otherwise. Let A be the category of local ar-
tinian W -algebras (A,mA) together with an isomorphism A/mA

∼= k compatible with
the isomorphism W/pW ∼= k.

Let X0 be a K3 surface over k. Consider the covariant functor

DefSch(X0) : A→ Sets

given by

DefSch(X0)(A) =
{
isom. classes of pairs (X,φ0) |where X → Spec(A)

is a K3 scheme and φ0 is

an isom. φ0 : X ⊗A k ∼= X0

}
.

Proposition 1.4.1. The functor DefSch(X0) is pro-representable by a formal scheme
S over Spf(W ) which is formally smooth of relative dimension 20 i.e., it is (non-
canonically) isomorphic to Spf(W [[t1, . . . , t20]]).

Proof. This is Corollary 1.2 in [Del81b] in case char(k) = p > 0 and [LP81, Cor. 5.7] in
case char(k) = 0.

Let L0 be a line bundle on X0. For moduli problems one should study the deforma-
tions of the pair (X0,L0). Define

DefSch(X0,L0) : A→ Sets
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to be the functor sending an object A of A to the isomorphism classes of triples (X,L, φ0)
of flat deformations X of X0 over A, an invertible sheaf L on X and an isomorphism
φ0 : (X,L)⊗A k ∼= (X0,L0). We have a morphism

DefSch(X0,L0)→ DefSch(X0). (1.5)

Theorem 1.4.2. If the line bundle L0 is non-trivial, then the functor DefSch(X0,L0)
is pro-representable by a formally flat scheme of relative dimension 19 over W and the
morphism (1.5) is a closed immersion, defined by a single equation.

Proof. See [Del81b, Prop. 1.5 and Thm. 1.6].

Deligne proves that if L0 is an ample line bundle over X0 then one can find a discrete
valuation ring R which is a finite W module and a lift (X → Spec(R),L) of (X0,L0)
over R. In general one needs ramified extensions of W in order to find a lift of (X0,L0).
The next lemma shows that one can find a lift over W if the self-intersection of L0 is
prime to the characteristic of k. More precisely one has:

Lemma 1.4.3. Let L0 be an ample line bundle over X0. If the polarization degree
(L0,L0)X0 = 2d is prime to the characteristic of k, then DefSch(X0,L0) is formally
smooth.

Proof. According to [Ogu79, §2, Prop. 2.2 ] (see also Lemma 2.2.6 in [Del81a]) it is
enough to see that c1(L0) 6∈ F 2H2

DR(X0/k). Since we have that (c1(L0), c1(L0)) = 2d 6= 0
in k it follows that c1(L0) 6∈ F 2H2

DR(X0/k). For the proof in the case k has characteristic
zero we refer to [PSS72, §2, Thm. 1].

1.4.2 The Hilbert Scheme

Recall that if X is a K3 surface over a field k with an ample line bundle L, then the
Hilbert polynomial of L is hL(x) = dx2 + 2, where (L,L) = 2d.

We fix two natural numbers n and d assuming that n ≥ 3. Let Pd,n(x) be the

polynomial n2dx2 + 2 and let N = Pd,n(1) − 1. Denote by Hilb
Pd,n

N the Hilbert scheme
over Z representing the subvarieties of PN with Hilbert polynomial Pd,n(x). Let

π : Z → Hilb
Pd,n

N

be the universal family over the Hilbert scheme. For any morphism of schemes f : S →
Hilb

Pd,n

N we consider the following (Cartesian) diagram:

X = S ×(
Hilb

Pd,n
N

) Z f ′ //

π′

��

Z

π

��

S
f //Hilb

Pd,n

N

(1.6)
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1.4. The Moduli Stack of Polarized K3 Surfaces

Proposition 1.4.4. There is a unique subscheme Hd,n of Hilb
Pd,n

N with the property:

A morphism of schemes f : S → Hilb
Pd,n

N factors through Hd,n if and only if the following
conditions are satisfied.

(i) The pull-back X of the universal family over Hilb
Pd,n

N is a K3 scheme over S (see
Diagram (1.6) above),

(ii) the line bundle f ′∗OPN (1) is isomorphic to Ln⊗ π′∗M for some ample line bundle
L on X and some line bundle M on S,

(iii) for every geometric point s̄ : Spec(Ω)→ S the natural homomorphism

H0(PN ,OPN (1))⊗ Ω→ H0(Xs̄,Lns̄ )

is an isomorphism.

There exists an open subscheme Hpr
d,n of Hd,n such that: A morphism of schemes f : S →

Hilb
Pd,n

N factors through Hpr
d,n if and only if conditions (i), (ii) and (iii) are satisfied and

in addition for every geometric point s̄ of S the line bundle Ls̄ from (ii) is primitive.

Proof. The proof of the proposition is standard and can be found in the case of curves
in Mumford’s book [Mum65, Ch. 5, §2, Prop. 5.1]. We shall sketch only the additional
arguments needed in our situation.

There is a maximal open subscheme U1 of Hilb
Pd,n

N such that every fiber of the pull-
back X1 of the universal family Z over U1 is a non-singular variety. Let U2 be the open
subscheme of U1 consisting of the points s for which H1(X1,s,OX1,s) = 0 (see [Har77, Ch.
III, §12, Thm. 12.8]). Denote by X2 the pull-back of the universal family over U2.

Let PicX2/U2 be the relative Picard scheme of X2 over U2. The two line bundles Ω2
X2/U2

and OX2 define two morphisms: ω, λ : U2 → PicX2/U2 . Define U2 to be the fiber product:

U3

��

// U2

(λ,ω)
��

PicX2/U2

∆ // PicX2/U2 ×U2 PicX2/U2

where ∆ is the diagonal morphism. Since PicX2/U2 is separated U3 is a closed subscheme

of U2. The pull-back X3 → U3 of the universal family over Hilb
Pd,n

N is a K3 scheme.
Let [n] : PicX3/U3 → PicX3/U3 be the multiplication by-n-morphism. The pull-back of

OPN (1) over U3 defines a morphism λ : U3 → PicX3/U3 . Define U4 to be the fiber product

U4

��

// U3

λ
��

PicX3/U3

[n] // PicX3/U3 .
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

By Lemma 1.3.6 the morphism [n] is a closed immersion hence U4 is a closed subscheme

of U3. Clearly, U4 is the subscheme of Hilb
Pd,n

N for which properties (i) and (ii) hold.
One takes Hd,n to be the (closed) subscheme of U4 obtained as in the end of the proof
of Proposition 5.1 in [Mum65, Ch. 5, §2] (where instead of Ω1

Γ/U2
one works with the

pull-back L′ of the bundle OPN (1)). It satisfies all conditions of the proposition.
To show the existence of Hpr

n,d one has to take the open subscheme U0
4 of U4 above

corresponding to the points in U4 over which the class of the pull-back of OPN (1) in
PicX4/U4 is only divisible by n. The existence of such a subscheme can be seen, in a
way similar to the proof of Lemma 1.3.6 (ii), using the fact that the homomorphisms
[n] : PicX4/U4 → PicX4/U4 are closed immersions.

We will use the schemes Hd,n and Hpr
d,n to construct moduli stacks of polarized K3

surfaces over Z.

1.4.3 The Moduli Stack

One way to construct the coarse moduli space of complex K3 surfaces with a primitive
polarization of degree 2d is to use period maps. This approach is taken up in [BBD85,
Exposé XIII, §3]. Here we will use rather different techniques to deal with this problem
in positive and more generally in mixed characteristic.

Definition 1.4.5. Let d be a natural number. Consider the category F2d defined in the
following way:

Ob: The objects of F2d are pairs (π : X → S, λ) consisting of a K3 space π : X → S
with a primitive polarization λ of degree 2d over S ∈ Sch.

Mor: For two objects X1 = (π1 : X1 → S1, λ1) and X2 = (π2 : X2 → S2, λ2) we define the
morphisms to be

Hom(X1,X2) =
{
pairs (fS, f) |fS : S1 → S2 is a morph. of

schemes and f : X1 → X2 ×S2,fS
S1

is an isom. over S1 with f ∗λ2 = λ1

}
.

The functor pF2d
: F2d → Sch sending a pair (π : X → S, λ) to S makes F2d into a

category over Sch. We will denote by F2d,S the full subcategory of F2d consisting of the
objects over S.

Definition 1.4.6. For a natural number d we define the category M2d of K3 spaces
with a polarization of degree 2d in the same way as in Definition 1.4.5 but taking as
objects pairs of polarized K3 spaces (π : X → S, λ) over a scheme S.
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1.4. The Moduli Stack of Polarized K3 Surfaces

We have that F2d is a full subcategory ofM2d. Those two categories are the same if
and only if d is square-free.

Theorem 1.4.7. The categories F2d andM2d are separated Deligne-Mumford stacks of
finite type over Z. The inclusion F2d ↪→M2d is an open immersion.

Definition 1.4.8. We will call F2d the moduli stack of primitively polarized K3 surfaces
of degree 2d andM2d the moduli stack of polarized K3 surfaces of degree 2d.

Remark 1.4.9. Let us explain first why we want to consider moduli of primitively po-
larized K3 surfaces. For various reasons we will have to work with algebraic spaces rather
than with algebraic stacks. Just like in the case of abelian varieties one can introduce
level structures on K3 surfaces and hope that the corresponding moduli problems are
representable by algebraic spaces. We will define level structures on a polarized K3 sur-
face (X,λ) using its primitive cohomology groups P 2

et(Xk̄,Zl(1)) for certain primes l (see
Section 1.5.1). To be able to do that we will need that P 2

et(Xk̄,Zl(1)) belongs to a single
isometry class of quadratic lattices, which is the case, if λ is primitive. We will use the
moduli stackM2d only in Chapter 2.

We will prove the theorem in a sequence of steps.

Lemma 1.4.10. The categories F2d and M2d are groupoids.

Proof. We have to check two axioms. See for instance [LMB00, Ch. 2, Def. 2.1] or p.
96 of [DM68]. One sees immediately that the usual notions of pull-backs satisfy these
two axioms.

Lemma 1.4.11. The groupoids F2d and M2d are stacks for the étale topology.

Proof. The proofs forM2d and F2d are exactly the same so we will prove the lemma for
F2d. We have to check two properties. Namely, first we will show that for any scheme
S ∈ Sch and any two objects X and Y over S the functor

IsomS(X ,Y) : (Sch /S)→ Sets

defined by
(π : S ′ → S) 7→ Hom(π∗X , π∗Y)

is a sheaf for the étale topology on S. Then we prove that descent data are effective (cf.
[LMB00, Ch. 2, Def. 3.1] or Definition 4.1 in [DM68]).

The functor IsomS(X ,Y) is an étale sheaf: Take two objects X = (X → S, λX) and
Y = (Y → S, λY ) over S. Let S ′ be an S-scheme.

Let {S ′i}i∈I be an étale covering of S ′ and fj ∈ IsomS(X ,Y)(S ′) for j = 1, 2 are
two elements such that f1|S′i = f2|S′i . Then clearly f1 = f2 as isomorphisms of the pair
(XS′ ,YS′).
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

Let {S ′i}i∈I be an étale covering of S ′. Suppose given elements fi ∈ IsomS(X ,Y)(S ′i)
such that fi|S′ij = fj|S′ij where S ′ij = S ′i ×S′ S ′j. We have to show that those come from a

global “isomorphism”. Note that without loss of generality we may assume that Xi → S ′i
are K3 schemes. Combining [Knu71, Ch. II, Prop. 1.4] and effectiveness of descent for
morphisms of schemes (see [BLR90, Ch. 6, §1, Thm. 6(a)]) we conclude that f ′ descends
to a morphism f : XS′ → YS′ such that fS′i = fi. Since PicX/S and PicY/S are algebraic
spaces (in particular sheaves for the étale topology on S) and f ∗λYS′

|S′i = λXS′
|S′i we see

that f ∗λYS′
= λXS′

. Hence we have that f ∈ IsomS(X ,Y)(S ′) and f |S′i = fi. This shows
that IsomS(X ,Y) is an étale sheaf.

Effectiveness of descent: Suppose given an étale cover S ′ of S and an object X ′ =
(π′ : X ′ → S ′, λ′) with descent datum over S. Without loss of generality we may as-
sume that the algebraic space X ′ is actually a scheme (by refining the étale covering S ′

if needed). We have to show that (π′ : X ′ → S ′, λ′) descends to a polarized K3 space
(π : X → S, λ) over S.

Denote by S ′′ the product S ′ ×S S ′ and let pri for i = 1, 2 be the two projection
maps. The descent datum on X ′ → S ′ over S identifies the two schemes pr∗1X

′ and
pr∗2X

′. Denote this scheme by R. Then we have two étale morphisms

R
// // X ′

which make R ⊂ X ′×SX ′ into an étale equivalence relation. Following the constructions
of [Knu71, Ch. I, §5, 5.4] we obtain an algebraic space X over S such that X ×S S ′ is
isomorphic to X ′. Hence π : X → S is a K3 space.

Since PicX/S is an étale sheaf the local section λ′ over S ′ together with descent datum
over S give rise to a global section λ ∈ PicX/S(S) such that λS′ = λ′. Clearly, λ is a
polarization of X → S.

Next we deal with the representability of the isomorphism functors of polarized K3
surfaces. For two algebraic spaces X and Y over a base scheme S define the contravariant
isomorphism functor

IsomS(X, Y ) : (Sch /S)→ Sets

by

IsomS(X, Y )(T ) = {f : XT → YT | f is an isomorph. of alg. spaces over T}

for any S-scheme T .

Lemma 1.4.12. For any S ∈ Sch and two objects X and Y of F2d (respectively M2d)
over S, the functor IsomS(X ,Y) is representable by a separated scheme which is unram-
ified and of finite type over S.
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1.4. The Moduli Stack of Polarized K3 Surfaces

Proof. Let X and Y be the objects (X → S, λX) and (Y → S, λY ) respectively.

Step 1: We can find an étale cover S ′ of S such that X ′ = X ×S S ′ and Y ′ = Y ×S S ′
are K3 schemes over S ′. By [Gro62, Exp. 221, §4.c]) the functors IsomS(X

′, Y ′) and
IsomS(X

′ ×X X ′, Y ′ ×Y Y ′) are representable by schemes U and V , locally of finite type
over S. By Proposition 1.4 in [Knu71, Ch. II] one has an exact sequence of sets

0 // IsomS(X, Y )(T ) // IsomS(X
′, Y ′)(T ) //// IsomS(X

′ ×X X ′, Y ′ ×Y Y ′)(T ).

Then we see that IsomS(X, Y ) is representable by the scheme defined by the following
Cartesian diagram

IsomS(X, Y )

��

// V
∆
��

U
(pr∗1 ,pr

∗
2)
// V ×S V

where ∆: V → V ×S V is the diagonal morphism.

Step 2: By Step 1 the functor IsomS(X, Y ) is represented by a scheme locally of fi-
nite type over S. Then the functor IsomS(X ,Y) is represented by the scheme defined by
the following Cartesian diagram:

IsomS(X ,Y) //

��

S

λX

��
IsomS(X, Y )×S S

(id,λY ) // IsomS(X, Y )×S PicY/S // PicX/S

where the bottom-right arrow is just the pull back morphism.

Step 3: We are left to show that IsomS(X ,Y) is unramified over S. As in the proof of
Theorem 1.3.13 it is enough to check the properties of IsomS(X ,Y) when S is a spec-
trum of an algebraically closed field. In this case IsomS(X ,Y) is either empty or it is
isomorphic to Autk(X,λ). As the latter is separated, reduced and of finite type over k
we conclude that the same holds for IsomS(X ,Y).

Proof of Theorem 1.4.7: We will give the proof for F2d in several steps. For the proof
thatM2d is a Deligne-Mumford stack one should only replace Hpr

d,3 by Hd,3 below.

Step 1: We saw in Proposition 1.4.4 that there exists a Hilbert scheme Hpr
3,d, of fi-

nite type over Z, classifying K3 surfaces with a polarization of degree 2d which are
embedded in a projective space via the third power of the polarization. One has then
the universal family f : X → Hpr

3,d and we know that OX (1) ∼= L3⊗ f ∗M for some ample
line bundle L on X of degree 2d and an invertible sheaf M on Hpr

3,d. Although the line
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

bundle L with this property is not unique, its class λX = cl(L) ∈ PicX/Hpr
3,d

is uniquely

determined as λ3
X = cl(OX (1)). Define the morphism of stacks

πHilb : Hpr
3,d → F2d.

sending Hpr
3,d to the pair (f : X → Hpr

3,d, λX ). By construction the self-intersection
(λX ,h, λX ,h) = 2d for any h ∈ Hpr

3,d and λX is primitive so this morphism is correctly
defined.

Step 2: The morphism πHilb is surjective. This follows form the definition (cf. [LMB00,
Def. 3.6]) and Lemma 1.3.12. Indeed, for any (π : X → S, λ) ∈ F2d(S) one can find an
étale cover S ′ → S such that πS′ : XS′ → S ′ is a K3 scheme and λS′ is equal to the class
of a relatively ample line bundle L′ on XS′ . By Lemma 1.1.10 the line bundle L′3 defines
a closed immersion XS′ ↪→ P(πS′∗L′3). Refining S ′ further if needed we may assume that
P(πS′∗L′3) is isomorphic with P9d+1

S′ . Then the inclusion XS′ ↪→ P(πS′∗L′3) satisfies the
conditions of Proposition 1.4.4 by construction. Hence it corresponds to a morphism
fX : S ′ → Hpr

3,d and we have that

πHilb(fX : S ′ → Hpr
3,d) = (πS′ : XS′ → S ′, λS′).

Step 3: The morphism πHilb is representable and smooth. Let S be a scheme and
suppose given a morphism S → F2d corresponding to a primitively polarized K3 space
(π : X → S, λ). We have to show that the product S ×F2d

Hpr
3d is representable by an

algebraic space which is smooth over S (via pr1). By the surjectivity of πHilb one can
find an étale cover S ′ of S and a projective embedding XS′ ↪→ P9d+1

S′ , defined by a very
ample line bundle L3. It gives rise to a morphism S ′ → Hpr

3,d with

πHilb(S
′ → Hpr

3,d) = (XS′ → S ′, λS′) ∈ F2d(S
′).

We claim that the product S ′ ×F2d
Hpr

3,d is representable by a scheme isomorphic to
PGL(9d+ 2)S′ . For any S ′-scheme U we have that

S ′ ×F2d
Hpr

3,d(U) =

{ (
(U → S ′), (U → Hpr

3,d), g
) ∣∣

g ∈ Hom
(
(XU → U, λU), πHilb(U → Hpr

3,d)
)

in F2d

}
where πHilb(U → Hpr

3,d) = (XU → U, λX |U). Any such morphism g gives rise to an
isomorphism L3 ∼= OXU

(1) ⊗ f ∗UM for some invertible sheaf M on U and hence an
isomorphism

P(πU∗L3) ∼= P
(
fU∗OXU

(1)⊗M
)
.
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1.4. The Moduli Stack of Polarized K3 Surfaces

But by condition (iii) of Proposition 1.4.4 we have an isomorphism

P(fU∗OXU
(1)⊗M) ∼= P

(
prU∗OP9d+1

U
(1)

)
= P9d+1

U

and hence we obtain an isomorphism P(πU∗L3) ∼= P9d+1
U . This correspondence gives a

bijection
S ′ ×F2d

Hpr
3,d(U)↔

{
isomorphisms P(πU∗L3) ∼= P9d+1

U

}
and the right hand set can be identified with PGL(9d+ 1)S′(U). For this we refer to the
arguments given on pp. 101-103 in [Mum65]. Hence S ′×F2d

Hpr
3,d is representable by the

scheme PGL(9d+ 1)S′ which is smooth over S ′.
We will show next that S ×F2d

Hpr
3,d is a smooth algebraic space over S. We have a

surjective map of étale sheaves

S ′ ×F2d
Hpr

3,d → S ×F2d
Hpr

3,d.

The product
R :=

(
S ′ ×F2d

Hpr
3,d

)
×(

S×F2d
Hpr

3,d

) (
S ′ ×F2d

Hpr
3,d

)
can be identified with the smooth S-scheme (S ′×S S ′)×F2d

Hpr
3,d. The natural morphism

R→ (S ′ ×F2d
Hpr

3,d)× (S ′ ×F2d
Hpr

3,d)

is quasi-compact and the two projection maps

R
//// S ×F2d

Hpr
3,d

are étale as they correspond to the two étale projection morphisms S ′ ×S S ′ //// S .

Hence S×F2d
Hpr

3,d is an algebraic space, which is moreover smooth over S as it possesses
a smooth atlas S ′ ×F2d

Hpr
3,d (over S).

Step 4: Using Remark 4.1.2 (i) in [LMB00, Ch. 4] (or Prop. 4.4 in [DM68]) and Lemma
1.4.12 we see that the diagonal morphism ∆: F2d → F2d ×Z F2d is representable, sepa-
rated and quasi-compact. Then we can apply Theorem 4.21 of [DM68] to the morphism
πHilb : Hpr

3,d → F2d and conclude that F2d is a Deligne-Mumford stack of finite type over Z.

Step 5: We will show that the algebraic stack F2d is separated. As F2d is of fi-
nite type over Z one can use the valuative criterion for separateness from [DM68,
Thm. 4.18] (cf. [LMB00, Prop. 7.8 and Thm. 7.10]). It reduces to showing that if
(πi : Xi → S, λi), for i = 1, 2, are two primitively polarized K3 spaces over the spec-
trum S of a discrete valuation ring R with field of fractions K, then every isomorphism
f : (X1 ⊗K,λ1 ⊗K)→ (X2 ⊗K,λ2 ⊗K) extends to a S-isomorphism between (X1, λ1)
and (X2, λ2). Note that after taking a finite étale covering of S we may assume that:
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(a) Xi are schemes,

(b) λi = c1(Li) for some ample line bundle Li,

(c) f gives an isomorphism of pairs f : (X1 ⊗K,L1 ⊗K)→ (X2 ⊗K,L2,⊗K).

Then using [MM64, Thm. 2] (as a K3 surface is non-ruled) we see that f extends
uniquely to an isomorphism between (X1,L1) and (X2,L2).

Step 6: We are left to show that the natural inclusion F2d ↪→ M2d is an open im-
mersion. Take a noetherian scheme S and suppose given a morphism S → M2d corre-
sponding to a polarized K3 space (π : X → S, λ). Let f : S ′ → S be an étale covering
such that πS′ : XS′ → S ′ is strongly projective (cf. Step 2 in the proof of Theorem 1.4.7).
According to Lemma 1.3.6 the set of points

S ′
o

= {s ∈ S ′ | such that λS′,s is primitive}

is an open subscheme of S ′. The morphism f is étale and hence f(S ′o) ⊂ S is also an
open subscheme which represents S ×M2d

F2d.

Remark 1.4.13. Another possible proof of Theorem 1.4.7 is to use Artin’s criterion
([LMB00, Cor. 10.11]). This approach is taken up in [Ols04, Thm. 6.2] where M. Olsson
constructs a compact stack of “polarized log K3 spaces” over Q.

An immediate consequence of Theorem 1.4.7 is the existence of a coarse moduli space
of polarized K3 surfaces. More precisely Corollary 1.3 in [KM97] says

Corollary 1.4.14. The moduli stacks F2d andM2d have coarse moduli spaces which are
separated algebraic spaces.

Before going on we will shortly outline how one can obtain stronger results on coarse
moduli schemes of polarized K3 surfaces in characteristic zero.

Approach via periods of K3 surfaces. As we mentioned in the beginning of this
section one can use analytic methods to construct a coarse moduli scheme of primitively
polarized K3 surfaces. Consider the complex space

Ω± = {ω ∈ P(L2d ⊗ C)| ψ2d(ω, ω) = 0 and ψ2d(ω, ω̄) > 0}

which consists of two connected components. It can be identified with the space

SO(2, 19)(R)/
(
SO(2)(R)× SO(19)(R)

)
.

Let Ω+ denote one of its connected components, say corresponding to

SO(2, 19)(R)+/
(
SO(2)(R)× SO(19)(R)

)
,
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where SO(2, 19)(R)+ is the connected component of SO(2, 19)(R) containing the iden-
tity. It is a bounded symmetric domain of type IV and of dimension 19. Let Γ be the
group {g ∈ O(V0)(Z) | g(e1 − df1) = e1 − df1} and denote by Γ+ the subgroup of Γ of
index 2 which consists of isometries preserving the connected components of Ω±. Then
Γ+ acts on Ω+ properly discontinuously and the space Ω+/Γ+ is a coarse moduli scheme
for primitively quasi-polarized complex K3 surfaces of degree 2d. There is an open part
Ω0 of Ω+ such that Ω0/Γ+ is a coarse moduli scheme for primitively polarized complex
K3 surfaces of degree 2d. For details and proofs we refer to [BBD85, Exp. XIII]. The
existence of a coarse moduli scheme is Proposition 8 in loc. cit..

Approach via geometric invariant theory. Let k be an algebraically closed field of
characteristic zero. Then using the techniques of [Vie95, Ch. 8], and more precisely §8.2
(see Theorem 8.23), one can prove that the moduli functor F2d⊗k (respectivelyM2d⊗k)
has a quasi-projective coarse moduli scheme over k. Indeed, one has that Assumptions
8.22 in [Vie95, §8.2] are satisfied:

(i) The functor is locally closed. This follows from the proof of Proposition 1.4.4.

(ii) The separateness property is shown in Step 2 of the proof of Theorem 1.4.7.

(iii) The functor is bounded by Theorem 1.1.7. See also Remark 8.24 in loc. cit. and
note that the condition ‘ω2 is trivial’ is a locally closed condition.

One actually shows that the scheme in question is Hpr
3,d ⊗ k/PGL(N)k (respectively

H3,d ⊗ k/PGL(N)k) for a suitable N ∈ N.
Combining the approach to coarse moduli schemes via geometric invariant theory

and Corollary 1.4.14 we conclude that F2d,Q (respectivelyM2d,Q) has a quasi-projective
coarse moduli scheme.

Proposition 1.4.15. The moduli stacks F2d andM2d are smooth of relative dimension
19 over Z[ 1

2d
].

Proof. According to [LMB00, Prop. 4.15] we have to show that for any strictly henselian
local ring R and surjection Spec(R) → Spec(R′) defined by a nilpotent sheaf of ideals
one has that the natural map

Hom(Spec(R′),F2d,Z[1/2d])→ Hom(Spec(R),F2d,Z[1/2d])

is surjective. Since R is strictly henselian every K3 space over Spec(R) is a K3 scheme
and the same holds for spaces over Spec(R′) (see [GD67, EGA IV, 18.1.2]). Hence by
Lemma 1.4.3 we conclude that F2d,Z[1/2d] is smooth over Z[1/2d].

The same argument applies also to the dimension claim. Since every K3 space over
Spec(k[ε]/ε2) is a K3 scheme we conclude from Theorem 1.4.2 that the dimension of
F2d,Z[1/2d] at every point is 19.

This proof also shows thatM2d is smooth of relative dimension 19.
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Remark 1.4.16. Since smoothness will be essential for all our further considerations,
unless explicitly stated, by F2d (respectivelyM2d) we will mean the smooth stack F2d⊗Z
Z[ 1

2d
] (respectivelyM2d ⊗Z Z[ 1

2d
]) over Spec(Z[ 1

2d
]).

We will end this section speculating about other possible moduli spaces and functors
of polarized K3 surfaces. Note first that one could have started with a moduli functor
F ′2d of (primitively) polarized K3 schemes of degree 2d. The problem we came up with
restricting only to schemes was proving effectiveness of descent for K3 schemes. For this
reason one takes the “étale sheafification” of F ′2d considering (primitively) polarized K3
spaces. This makes the descent obstruction essentially trivial.

Next, one can consider deformations of polarized K3 surfaces as in Section 1.4.1 by
algebraic spaces and not only schemes. For a polarized K3 surface (X0, λ0) over an
algebraically closed field k define

DefAlgSp(X0, λ0) : A→ Sets

to be the functor sending an object A of A to the isomorphism classes of triples (X , λ, φ0)
where (X → Spec(A), λ) is a polarized K3 space and φ0 is an isomorphism φ0 : (X ,L)⊗A
k ∼= (X0,L0). Combining Theorem 1.4.7, Lemma 1.4.15 and [LMB00, Cor. 10.11] we
conclude that DefAlgSp is pro-representable, formally smooth and of dimension 19.

1.5 Level Structures of Polarized K3 Surfaces

1.5.1 Level Structures

Recall that for an abelian scheme (A, λ) over a base scheme S and a natural number n
which is invertible in S one defines a (Jacobi) level n-structure on A to be an isomorphism
θ : A[n] → (Z/nZ)S of étale sheaves on S satisfying some further properties. In other
words, one uses the Tate module of an abelian variety in order to define level structures.
For a K3 surface X we will use the same idea applied to H2

et(Xk̄,Zl(1)). More precisely,
we will introduce the notion of level structures on primitively polarized K3 surfaces of
degree 2d corresponding to open compact subgroups of SO(V2d, ψ2d)(Af ) (see below) and
define moduli spaces of primitively polarized K3 surfaces with level structures. We set
up some notations first.

• All schemes in this section will be assumed to be locally noetherian.

• For a finite set of primes B = {p1, . . . , pr} we denote by ZB the product
∏

p∈B Zp

and by NB the product of the primes in B.

• We fix a natural number d. We shall use the notations L2d,B and L0,B for the
quadratic lattices L2d ⊗ ZB and L0 ⊗ ZB (cf. Section 1.2.1).
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1.5. Level Structures of Polarized K3 Surfaces

• Let K ⊂ SO(V2d)(Ẑ) be a subgroup of finite index and let B = {p1, . . . , pr} be the
set of prime divisors of 2d and primes p for which Kp 6= SO(V2d)(Zp). We denote
by KB the product

∏
p∈B Kp.

Level Structures. Let S be a connected scheme over Z[ 1
p1...pr

] and suppose given a

polarized K3 space (π : X → S, λ) of degree 2d. Let P 2
etπ∗ZB(1) be the sheaf of primitive

cohomology i.e., the orthogonal complement of c1(λ) in R2
etπ∗ZB(1). Take a geometric

point b̄ of S and let b̄ : Spec(k(b̄)) → S be the corresponding morphism of schemes.
Consider the free ZB-module of rank 21

P 2(b̄) := b̄∗P 2
etπ∗ZB(1)

i.e., the fiber of P 2
etπ∗ZB(1) at b̄ with its action of πalg

1 (S, b̄) and the bilinear form ψλ,ZB
.

Suppose given an class αb̄ in the set{
KB\Isometry

(
L2d,ZB

, P 2(b̄)
)}πalg

1 (S,b̄)

where KB acts on Isometry
(
L2d,ZB

, P 2(b̄)
)

on the right via its action on L2d,ZB
and

πalg
1 (S, b̄) acts on the left via its action on P 2(b̄). Let b̄′ be another geometric point in S.

The αb̄ determines uniquely a class in{
KB\Isometry

(
L2d,ZB

, P 2(b̄′)
)}πalg

1 (S,b̄′)

in the following way: One can find an isomorphism

δπ : πalg
1 (S, b̄) ∼= πalg

1 (S, b̄′) (1.7)

and an isometry

δet : H
2
et(Xb̄,ZB(1))→ H2

et(Xb̄′ ,ZB(1))

determined uniquely by δπ, mapping c1(λb̄) to c1(λb̄′), such that δet(γ ·x) = δπ(γ) · δet(x)
for every x ∈ H2

et(Xb̄,ZB(1)) and γ ∈ πalg
1 (S, b̄). The isometry δet defines an isometry

between P 2(b̄) and P 2(b̄′) which we will denote again by δet. Let α̃ be a representative
of the class αb̄. Then the class αb̄′ of δet ◦ α̃ in KB\Isometry

(
L2d,B, P

2(b̄′)
)

is πalg
1 (S, b̄′)-

invariant. Any other representative α̃1 of αb̄ differs by an element in KB and hence gives
rise to the same class αb̄′ in KB\Isometry

(
L2d,B, P

2(b̄′)
)
.

Any two isomorphisms (1.7) differ by an inner automorphism of πalg
1 (S, b̄) and there-

fore we see that that class of δet ◦ α̃ is independent of the choice of an isomorphism (1.7).
This remark allows us to make the following definition.
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

Definition 1.5.1. A level K-structure on a primitively polarized K3 space (π : X → S, λ)
over a connected scheme S ∈ (Sch /Z[1/p1 . . . pr]) is an element of the set{

KB\Isometry
(
L2d,ZB

, P 2(b̄)
)}πalg

1 (S,b̄)

.

The group KB acts on Isometry
(
L2d,ZB

, P 2(b̄)
)

on the right via its action on L2d,ZB
and

πalg
1 (S, b̄) acts on the left via its action on P 2(b̄). In general, a level K-structure on

(π : X → S, λ) is a level K-structure on each connected component of S.

If α̃ : L2d,B → P 2
et(b̄) is a representative of the class α, then via the isomorphism

α̃ad : O(V2d)(ZB) ∼= O(P 2(b̄))(ZB)

the monodromy action
ρ : πalg

1 (S, b̄)→ O(P 2(b̄))(ZB)

factorizes through α̃ad(KB).

Remark 1.5.2. If all residue fields of the points in S in Definition 1.5.1 are zero, then
one can define a level K-structure to be an element of set{

K\Isometry
(
L2d,Ẑ, P

2(b̄)
)}πalg

1 (S,b̄)

where P 2(b̄) := b̄∗P 2
etπ∗Ẑ(1).

We will consider two important examples of level structures on primitively polarized
K3 spaces.

Example 1.5.3. Fix a natural number n and consider the group

Kn =
{
γ ∈ SO(V2d)(Ẑ)| γ ≡ 1 (mod n)

}
.

Then the set B consists of the prime divisors of 2dn. We will give a direct interpretation
of level Kn-structures.

Let S be a scheme over Z[1/2dn] and consider a primitively polarized K3 space
(π : X → S, λ) of degree 2d. As usual we denote by P 2

etπ∗(Z/nZ)(1) the orthogonal
complement of c1(λ) inR2

etπ∗(Z/nZ)(1) with respect to the bilinear form ψn = ψ⊗ZZ/nZ.
Then a level Kn-structure amounts to giving an isomorphism

αN :
(
P 2

etπ∗(Z/nZ)(1), ψL,n
)
→ (L2d,Z/nZ, ψ2d,Z/nZ)S

of étale sheaves on S, where (L2d,Z/nZ, ψ2d,Z/nZ)S is the constant polarized étale sheaf
over S with fibers (L2d, ψ2d)⊗ Z/nZ.

We will call level a Kn-structure on X simply a level n-structure.
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1.5. Level Structures of Polarized K3 Surfaces

Example 1.5.4. Let G be the algebraic group SO(V2d) over Q. Consider the even
Clifford algebra C+(V2d, ψ2d) over Q and let G1 be the even Clifford group over Q (see
[Lam73, Ch. V] and [Sch85, Ch. 9]). In other words we set

G1 = CSpin(V2d) =
{
g ∈ C+(V2d)

∗ | gV2dg
−1 = V2d

}
.

The natural homomorphism of linear algebraic groups G1 → G given by g 7→ (v 7→
gvg−1) fits into an exact sequence (see [Del72, §3.2])

0→ Gm → G1 → G→ 0.

Set G1(Z) to be G1(Q) ∩ C+(L2d)
∗. We have an exact sequence (see [And96a, §4.4])

0→ Z/2Z→ G1(Z)→ G(Z). (1.8)

For a natural number n denote

Γn =
{
γ ∈ G(Z) | γ ≡ 1 (mod n)

}
and

Γsp
n =

{
γ ∈ G1(Z) | γ ≡ 1 (mod n) in C+(L2d)

}
.

If n > 2, then Γn and Γsp
n are torsion free. Hence one sees from the exact sequence (1.8)

that Γsp
n is isomorphic with its image Γa

n in G(Q). Note that, in general, Γa
n is not a

congruence subgroup of G(Z) (cf. footnote 10 in [And96a]).
Consider the group

Ksp
n =

{
γ ∈ G1(Ẑ) |γ ≡ 1 (mod n) in C+(L2d,Ẑ)

}
.

We have that Ksp
n ∩ G1(Q) = Γsp

n . Moreover the image Ka
n of Ksp

n in G(Ẑ) is of finite
index. Indeed, for every l not dividing 2nd, the l-component of Ka

n is G(Zl) as shown in
[And96a, §4.4]. Hence the set B for Ka

n is the set of prime divisors of 2dn.
We consider polarized K3 surfaces with level Ka

n-structure. Note that this level
structure is in general finer than level Kn-structure as Ka

n ⊂ Kn is of finite index. We
will call it spin level n-structure.

Motivation. We will pause here and give a motivation for the rest of the definitions we
make in this section. So far we have defined level K-structures using the primitive second
étale cohomology group of a polarized K3 surface. Using these level structures one can
define moduli stacks F2d,K,C of primitively polarized K3 surfaces of degree 2d with a
level K-structure and show that they are algebraic spaces (cf. Theorem 1.5.11 below).
We will see in Chapter 3 that, over C, we can relate those spaces to the orthogonal
Shimura variety associated to the group SO(2, 19). More precisely we will define a
period morphism

jd,K,C : F2d,K,C → ShK(SO(2, 19),Ω±)C
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

which is étale. This is similar to the case of moduli of abelian varieties where one can
identify Ag,1,n⊗C with ShΛn(CSp2g,H

±
g )C. In general, due to the fact that the injective

homomorphism (1.2)

iad : {g ∈ SO(V0)(Z) | g(e1 − df1) = e1 − df1} ↪→ SO(V2d)(Z)

defined in Section 1.2.1 is not surjective, the period map jd,K,C need not be injective
(cf. Remark 3.2.12). In order to construct an injective period morphism we will define
level structures using the “full” second étale cohomology group of a K3 surface. We
will use those full level structures in Chapter 3 to show that every complex K3 surface
with complex multiplication by a CM-field E is defined over an abelian extension of E
(Corollary 3.2.12).

Full Level Structures. The inclusion of lattices i : L2d ↪→ L0 (see Section 1.2.1)
defines injective homomorphisms of groups

iad : {g ∈ O(V0)(Ẑ) | g(e1 − df1) = e1 − df1} ↪→ O(V2d)(Ẑ)

and

iad : {g ∈ SO(V0)(Ẑ) | g(e1 − df1) = e1 − df1} ↪→ SO(V2d)(Ẑ).

Definition 1.5.5. A subgroup K ⊂ SO(V2d)(Ẑ) of finite index is called admissible if it
is contained in the image

iad
(
{g ∈ SO(V0)(Ẑ) | g(e1 − df1) = e1 − df1}

)
⊂ SO(V2d)(Ẑ).

If K is an admissible subgroup of SO(V2d)(Ẑ) then all its subgroups of finite index
K′ ⊂ K are also admissible.

Example 1.5.6. The group K2d is admissible. Hence all its subgroups of finite index
are admissible, as well.

Example 1.5.7. If d = 1 then Kn is admissible for any n ≥ 2.

Let K be an admissible subgroup of SO(V2d)(Ẑ) and let B be the set, consisting of
all prime divisors of 2d and, of the primes p for which Kp 6= SO(V2d)(Zp). Using the
notations introduced before Definition 1.5.1 we set

H2(b̄) := b̄∗R2
etπ∗ZB(1).

In order to simplify the notations we will identify a subgroup of {g ∈ SO(V0)(Ẑ) | g(e1−
df1) = e1 − df1} with its image in SO(V2d)(Ẑ) under the injective homomorphism iad.
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1.5. Level Structures of Polarized K3 Surfaces

Definition 1.5.8. A full level K-structure on a primitively polarized K3 space (π : X →
S, λ) over a connected scheme S ∈ (Sch /Z[1/p1 . . . pr]) is an element of the set{

KB\
{
g ∈ Isometry

(
L0,ZB

, H2(b̄)
)
| g(e1 − df1) = c1(λb̄)

}}πalg
1 (S,b̄)

.

The group KB acts on
{
g ∈ Isometry

(
L0,ZB

, H2(b̄)
)
| g(e1 − df1) = c1(λb̄)

}
on the right

via its action on L0,ZB
and πalg

1 (S, b̄) acts on the left via its action on H2(b̄). A full level
K-structure on (π : X → S, λ) over a general base S is a full level K-structure on each
connected component of S.

Again, a class αb̄ for a geometric point b̄ as above determines uniquely a class αb̄′ for
any other geometric point b̄′. If α̃ : L0,B → H2(b̄) is a representative of the class α, then
via the isomorphism

α̃ad : O(V0)(ZB) ∼= O(H2(b̄))(ZB)

the monodromy action ρ : πalg
1 (S, b̄)→ O(H2(b̄))(ZB) factorizes through α̃ad(KB).

Example 1.5.9. Let n ≥ 3 be an integer. Define the group

Kfull
n =

{
g ∈ SO(V0)(Ẑ)| g(e1 − df1) = e1 − df1 and g ≡ 1 (mod n)

}
.

By definition it is an admissible subgroup of SO(V2d)(Ẑ). Let S be a scheme over Z[1/2dn]
and consider a K3 space (π : X → S, λ) with a primitive polarization of degree 2d. Then
a full level Kfull

n -structure amounts to giving an isomorphism

αN :
(
R2

etπ∗(Z/nZ)(1), ψ
)
→ (L0,Z/nZ, ψ0,Z/nZ)S

of étale sheaves on S, where (L0,Z/nZ, ψ0,Z/nZ)S is the constant polarized étale sheaf over
S with fibers (L0, ψ0)⊗ Z/nZ.

We will call a full level Kfull
n -structure on X simply a full level n-structure.

1.5.2 Moduli Stacks of Polarized K3 Surfaces with Level Struc-
ture

In this section we will use the notion of a (full) level structure level structure to define
moduli functors of primitively polarized K3 spaces with a (full) level structure. Using
Artin’s criterion and Proposition 1.3.18 we will show that these functors are representable
by algebraic spaces over open parts of Spec(Z).

We shall be using the notations established in the beginning of Section 1.5.1. In
particular we fix a natural number d. To a subgroup K of SO(V2d)(Ẑ) we associated a
finite set of primes B and NB will denote the product of these primes.
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Chapter 1. Moduli Stacks of Polarized K3 surfaces

Moduli of K3 Surfaces with Level Structure. Let K be a subgroup of SO(Ẑ)
of finite index. We will assume further that it is contained in Kn for some n ≥ 3. Let
X1 = (π1 : X1 → S1, λ1) and X2 = (π2 : X2 → S2) be two objects of F2d. Suppose that
S1 and S2 are connected and let (f, fS) ∈ Hom(X1,X2) (in F2d). Let b̄1 and b̄2 be two
geometric points of S1 and S2 such that fS(b̄1) = b̄2. Then the morphism f defines a
homomorphism f ∗et : P

2(b̄2)→ P 2(b̄1). Hence we obtain a map

f∨ : KB\Isometry
(
L2d,Z0,B

, P 2(b̄2)
)
→ KB\Isometry

(
L2d,ZB

, P 2(b̄1)
)

given by α 7→ f ∗et ◦ α and commuting with the monodromy actions on both sides.

Definition 1.5.10. For d and K as above consider the category F2d,K defined in the
following way:

Ob: Triples (π : X → S, λ, α) of a K3 space π : X → S with a primitive polarization λ
of degree 2d and with a level K-structure α on (π : X → S, λ).

Mor: Suppose given two triples X1 = (π1 : X1 → S1, λ1, α1) and X2 = (π2 : X2 →
S2, λ2, α2). Let fS : S1 → S2 be a morphism of schemes. Choose base geomet-
ric points b̄′1 and b̄′2 on any two connected components S ′1 and S ′2 of S1 and S2 for
which f : S ′1 → S ′2 such that fS(b̄

′
1) = b̄′2. Define the morphisms between X1 and

X2 in the following way

Hom(X1,X2) =
{
pairs (fS, f) |fS : S1 → S2 is a morph. of spaces,

f : X1 → X2 ×S2,fS
S1 is an isom. of

S1 − spaces with f ∗λ2 = λ1 and

f∨(α1) = α2 on any conn. cmpt. of S1

}
.

Next we define three projection functors.

1. Consider the following forgetful functor

prF2d,K : F2d,K → (Sch /Z[1/NB])

sending a triple (π : X → S, λ, α) to S. It makes F2d,K into a category over
(Sch /Z[1/NB]).

2. For any K, satisfying the assumptions of the beginning of the section, one has a
projection functor

prK : F2d,K → F2d,Z[1/NB] (1.9)

sending a triple (π : X → S, λ, α) to (π : X → S, λ) and an element (f, fS) ∈
Hom(X ,Y) of F2d,K to (f, fS).
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3. For any two subgroups K1 ⊂ K2 of finite index in SO(V2d)(Ẑ) (contained in some
Kn for n ≥ 3) one has a projection functor

pr(K1,K2) : F2d,K1,Z[1/NB1∪B2
] → F2d,K2,Z[1/NB1∪B2

]. (1.10)

It sends an object (X → S, λ, αK1) to (X → S, λ, αK2) where αK2 is the class of
αK1 in K2,B\Isometry

(
L2d,ZB

, P 2(b̄)
)
. Morphism of F2d,K1,Z[1/NB1∪B2

] are mapped
to morphism of F2d,K2,Z[1/NB1∪B2

] in the obvious way.

From the definitions of the functors we see that prK1 = pr(K1,K2) ◦prK2 over Z[1/NB1∪B2 ].

Theorem 1.5.11. The category F2d,K is a separated algebraic space over Z[1/NB]. It is
smooth of relative dimension 19 and the forgetful morphism (1.9)

prK : F2d,K → F2d,Z[1/NB]

is finite and étale.

Proof. We divide the proof into several steps.
Step 1: The category F2d,K is a stack. The proof goes exactly in the same lines as the
one of Lemma 1.4.11. We will use Artin’s criterion (cf. [LMB00, Cor. 10.11]) to show
that F2d,K is an algebraic space.

We claim that the diagonal morphism ∆: F2d,K → F2d,K ×Z[1/NB] F2d,K is repre-
sentable, separated and of finite type. By Remark 4.1.2 in [LMB00] it is equivalent to
showing that for any two objects X = (X → S, λX , αX) and Y = (Y → S, λY , αY ) the
functor IsomS(X ,Y) has these properties. We will prove first the following result.

Lemma 1.5.12. For any object X of F2d,K we have that AutS(X ) = {idX}.

Proof. By assumption the group K is contained in Kn for some n ≥ 3. Hence a level
K-structure on a primitively polarized K3 space (X → S, λ) defines in a natural way
(using the functor pr(K,Kn)) a level n-structure αn on X. We have that

AutS
(
(X → S, λ, α)

)
(U) ⊂ AutS

(
(X → S, λ, αn)

)
(U)

for an S-scheme U hence it is enough to prove the lemma assuming that K = Kn.
Let X = (X → S, λ, α) be an object in F2d,K, let f ∈ AutS(X )(U) and assume

that U is connected. Take a geometric point b̄ : Spec(Ω) → U . Then for the finite set
B = {the prime divisors of n} the morphism f induces an automorphism

f ∗et : H
2
et(Xb̄,ZB(1))→ H2

et(Xb̄,ZB(1))

fixing c1(λb̄) and such that

f ∗et : P
2
et(Xb̄,Z/nZ(1))→ P 2

et(Xb̄,Z/nZ(1))
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is the identity (cf. Example 1.5.3). As the automorphism f is of finite order we have
that f ∗et ∈ O

(
P 2

et(Xb̄,ZB(1))
)

is semi-simple and its eigenvalues are roots of unity. We
have further that f ∗et ≡ 1 (mod n) so we conclude by [Mum74, Ch. IV, Application II,
p. 207, Lemma] that f ∗et is the identity automorphism of P 2

et(Xb̄,ZB(1)). As it fixes
c1(λb̄) we see that it acts as the identity on H2

et(Xb̄,ZB(1)). Therefore by Proposition
1.3.18 we that f = idXb̄

. As the geometric point b̄ can be chosen arbitrary we have that
f = idXU

.

We see from the lemma that for a S-scheme U the set IsomS(X ,Y)(U) is either empty
or it consists of one element. Indeed, suppose that fi ∈ IsomS(X ,Y)(U) for i = 1, 2.
Then the composition f−1

2 ◦ f1 belongs to AutS(X )(U) and hence it is the identity. This
shows that IsomS(X ,Y) is representable and of finite type. The fact that it is unramified
and separated over S follows from Lemma 1.4.12 as one has that

IsomS(X ,Y)(U) ⊂ IsomS

(
(X → S, λX), (Y → S, λY )

)
(U).

Next we claim that the stack F2d,K is locally of finite presentation. This follows from
[AGV71, Exposé IX, 2.7.4] and the fact that F2d is locally of finite presentation. Con-
ditions (iii) and (iv) of [LMB00, Cor. 10.11] follow from the corresponding properties
of F2d and the fact that for any small surjection of rings R → R′ the category of étale
schemes over R is equivalent to the category of étale schemes over R′ ([GD67, EGA IV,
18.1.2]).

Thus F2d,K is an algebraic stack. As AutS(X ) = {idX} for any object we have that
F2d,K is an algebraic space ([LMB00, Cor. 8.1.1]).

Step 2: We will show that the morphism of algebraic stacks prK : F2d,K → F2d,Z[1/NB] is
representable and étale. Indeed, let S be a connected scheme and suppose given a mor-
phism S → F2d i.e., a polarized K3 space (π : X → S, λ) over S. Let b̄ : Spec(Ω)→ S be
a geometric point of S. Let ρ : πalg(S, b̄)→ O(P 2(b̄)) be the monodromy representation
and let ã : L2d,B → P 2(b̄) be an isometry. Then the preimage ρ−1 ◦ αad(KB) is an open

subgroup of πalg
1 (S, b̄) (of finite index) and hence it defines an étale cover Sα̃ of S. One

has that the class α of α̃ in KB\Isometry
(
L2d,ZB

, P 2(b̄)
)

is πalg
1 (Sα̃, b̄)-invariant by con-

struction (for a fixed geometric point b̄ ∈ Sα̃ over b̄). Therefore we obtain a primitively
polarized K3 space (XSα̃

→ Sα̃, λSα̃
, α) with a level K-structure α. For two markings α̃1

and α̃2 we have that α̃ad
1 (KB) = α̃ad

2 (KB) if and only if α̃−1
2 ◦ α̃1 is an element of the

normalizer NO(V2d)(ZB)(KB) of KB in O(V2d)(ZB).
Denote by S ′ the disjoint union of Sα̃ where α̃ runs over all (finitely many) classes

in O(V2d)(ZB)/NO(V2d)(ZB)(KB). Let (X ′ → S ′, λS′ , α) be the primitively polarized K3
space with a level K-structure given by the triple (XSα̃

→ Sα̃, λSα̃
, α) on the α̃-th con-

nected component Sα̃ of S ′. Then by construction we have a morphism of algebraic
spaces

π : S ′ → S ×F2d,Z[1/NB]
F2d,K
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1.5. Level Structures of Polarized K3 Surfaces

over S. This morphism is surjective. Indeed, by [LMB00, Prop. 5.4] this condition can
be checked on points, in which case it is obvious by construction. The morphism S ′ → S
is étale and therefore we conclude that prK,S : S ×F2d,Z[1/NB]

F2d,K → S and π are also
étale. Hence prK is étale.

Step 3: By Step 2 and Theorem 1.4.7 the algebraic space F2d,K is smooth and of
relative dimension 19 over Z[1/NB].

Remark 1.5.13. Let K1 ⊂ K2 ⊂ Kn be subgroups of finite index in SO(V2d)(Ẑ) and
suppose that n ≥ 3. Then the morphism (1.10) of algebraic spaces

pr(K1,K2) : F2d,K1,Z[1/NB1∪B2
] → F2d,K2,Z[1/NB1∪B2

]

is finite and étale. This follows from the theorem above and the relation prK1 = prK2 ◦
pr(K1,K2).

Example 1.5.14. Let n ≥ 3 be a natural number. Consider the group Kn defined in
Example 1.5.3. We define F2d,n = F2d,Kn to be the moduli space of primitively polarized
K3 surfaces with level n-structure over Z[1/2dn].

Example 1.5.15. Fix a natural number n ≥ 3 and consider the group Ka
n defined in

Example 1.5.4. We define F2d,nsp = F2d,Ka
n

to be the moduli space of polarized K3 surfaces
with spin level n-structure over Z[1/2dn].

Moduli K3 Spaces with Full Level Structures. Suppose that K ⊂ Kn for some
n ≥ 3 is an admissible subgroup of SO(V2d)(Ẑ). Let X1 = (π1 : X1 → S1, λ1) and
X2 = (π2 : X2 → S2) be two objects of F2d. Suppose that S1 and S2 are connected and let
(f, fS) ∈ Hom(X1,X2) (in F2d). Let b̄1 and b̄2 be two geometric points of S1 and S2 such
that fS(b̄1) = b̄2. Then the morphism f defines a homomorphism f ∗et : H

2(b̄2)→ H2(b̄1)
sending the class of λb̄2 to the class of λb̄1 . Hence we obtain a map

f∨ : KB\
{
g ∈ Isometry

(
L0,ZB

, H2(b̄2)
)
| g(e1 − df1) = c1(λ2,b̄2)

}
→

→ KB\
{
g ∈ Isometry

(
L0,ZB

, P 2(b̄1)
)
| g(e1 − df1) = c1(λ1,b̄1)

}
given by α 7→ f ∗et ◦ α and commuting with the monodromy actions on both sides.

Definition 1.5.16. For a natural number d and an admissible subgroup K of SO(V2d)(Ẑ)
as above consider the category F full

2d,K defined in the following way:

Ob: Triples (π : X → S, λ, α) of a K3 space π : X → S over S with a primitive polar-
ization λ of degree 2d and with a full level K-structure α on (π : X → S, λ).
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Mor: Suppose given two triples X1 = (π1 : X1 → S1, λ1, α1) and X2 = (π2 : X2 →
S2, λ2, α2). Let fS : S1 → S2 be a morphism of schemes. Choose base geomet-
ric points b̄′1 and b̄′2 on any two connected components S ′1 and S ′2 of S1 and S2 for
which f : S ′1 → S ′2 such that fS(b̄

′
1) = b̄′2. Define the morphisms between X1 and

X2 in the following way

Hom(X1,X2) =
{
pairs (fS, f) |fS : S1 → S2 is a morph. of spaces,

f : X1 → X2 ×S2,fS
S1 is an isom. of

S1 − spaces with f ∗λ2 = λ1 and

f∨(α1) = α2 on any conn. cmpt. of S1

}
.

A full level K-structure α on a primitively polarized K3 space (X → S, λ) defines in a
natural way a level K-structure via the injective morphism

i∨ZB
: KB\

{
g ∈ Isometry

(
L0,ZB

, H2(b̄)
)
| g(e1 − df1) = c1(λb̄)

}
↪→

↪→ KB\Isometry
(
L2d,ZB

, P 2(b̄)
)

commuting with the monodromy action. This morphism is defined by the embedding of
lattices i : L2d ↪→ L0 (see (1.1) in Section 1.2.1). Using this, just like in the case of moduli
of primitively polarized K3 surfaces with a level structure, we define natural functors.

4. Define a functor
iK : F full

2d,K → F2d,K

sending (X → S, λ, α) to (X,→ S, λ, i∨(α)) which makes F full
2d,K into a full subcat-

egory of F2d,K over (Sch /Z[1/NB]).

5. One has the forgetful functor

prK : F full
2d,K → F2d,Z[1/NB] (1.11)

sending a triple (π : X → S, λ, α) to (π : X → S, λ) and an element (f, fS) ∈
Hom(X ,Y) of F full

2d,K to (f, fS).

6. For any two admissible subgroups K1 ⊂ K2 of SO(V2d)(Ẑ), contained in some Kn

for n ≥ 3, one has a projection functor

pr(K1,K2) : F full
2d,K1,Z[1/NB1∪B2

] → F full
2d,K2,Z[1/NB1∪B2

] (1.12)

defined in a similar way as the corresponding morphism (1.10) in 3.

The functors prK and pr(K1,K2) defined above are the restrictions of the corresponding
functors (1.9) and (1.10) to the category of primitively polarized K3 surfaces with full
level Kj-structures via iKj

for j = 1, 2.
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Theorem 1.5.17. Let K be an admissible subgroup of SO(V2d)(Ẑ) contained in Kn for
some n ≥ 3. The category F full

2d,K is a separated, smooth algebraic space of relative di-

mension 19 over Z[1/NB]. The morphism p2d,K : F full
2d,K → F2d,Z[1/NB] is étale and the

morphism iK : F full
2d,K ↪→ F2d,K is an open immersion.

Proof. To prove that F full
2d,K is representable by an algebraic space of finite type over

Z[1/NB] one follows the steps of the proof of Theorem 1.5.11. In this way we also see
that the projection morphism p2d,K : F full

2d,K → F2d,Z[1/NB] is finite and étale. Therefore we
have a commutative diagram

F full
2d,K

p2d,K

%%KKKKKKKKKK

iK // F2d,K

p2d,Kyyssssssssss

F2d,Z[1/NB]

where the two morphisms p2d,K are étale and surjective. Hence iK is also étale and
therefore it is open.

Remark 1.5.18. Let K1 ⊂ K2 be two admissible subgroups of SO(V2d)(Ẑ). Then the
morphism of algebraic spaces

pr(K1,K2) : F full
2d,K1,Z[1/NB1∪B2

] → F full
2d,K2,Z[1/NB1∪B2

]

is finite and étale. This follows from the theorem above and the relation prK1 = prK2 ◦
pr(K1,K2).

Example 1.5.19. Let n ≥ 3 be a natural number. Consider the group Kfull
n defined in

Example 1.5.9. We define F full
2d,n = F full

2d,Kfull
n

to be the moduli space of primitively polarized

K3 surfaces with full level n-structure over Z[1/2dn].
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Chapter 2

Non-Emptiness of the Height Strata
of M2d,Fp

In this chapter we will consider the following problem: For a given natural number d
and a prime number p determine all Newton polygons of K3 surfaces with a polarization
of degree 2d over a field of characteristic p. This is an analogue of the Manin problem
for Newton polygons of abelian varieties (cf. [Man63, Conjecture 2, p. 76]).

One can formulate this problem in terms of the height (Newton polygon) strata of
M2d,Fp . Determine the non-empty strata ofM2d,Fp . Constructing ample line bundles of
appropriate degree on Kummer surfaces we will show that for any large enough d and
any p, prime to 2d, the height strata ofM2d,Fp are non-empty. The proof is constructive
and gives a bound for d. Thus we partially solve the following problem.

Question. Are the height strata of M2d,Fp non-empty for any d and any p not divid-
ing 2d?

The organization of this chapter is the following. In Section 2.1 we recall some
definitions and give an overview of some results on the height stratification of M2d,Fp .
Section 2.2 is devoted to Kummer surfaces. Starting with an ample line bundle on an
abelian surface we describe a way of constructing ample line bundles on its associated
Kummer surfaces. This allows us to find points in M2d,Fp(F̄p) which belong to certain
height strata of M2d,Fp . In Section 2.3 we take this idea one step further and construct
Kummer morphisms from moduli stacks of polarized abelian surfaces to moduli stacks
of polarized K3 surfaces. We use these morphisms to give an affirmative answer to the
question posed above in case d is large enough.
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2.1 The Height Stratification of M2d,Fp

Let k be a perfect field of characteristic p > 0 and consider a K3 surface X over k.
Consider the contravariant functor

Φ2 : Art→ Ab

from the category of local artinian schemes to abelian groups defined by

Φ2(S) = ker
(
H2

et(X × S,Gm)→ H2
et(X,Gm)

)
.

This functor is representable by a formal Lie group, denoted by B̂r(X) and called the
formal Brauer group of X.

Proposition 2.1.1. The formal group B̂r(X) is 1-dimensional and one has the following
two possibilities for it:

(a) The height of B̂r(X) is infinite and then B̂r(X) ∼= Ĝa.

(b) The height is finite. Then B̂r(X) is a p-divisible group. Moreover, its height

satisfies 1 ≤ h
(
B̂r(X)

)
≤ 10.

For proofs we refer to [AM77]. From now on we will call the height of the formal
Brauer group of X simply the height of X and denote it as h(X).

The Newton polygon of X is the Newton polygon of the F -crystal H2
cris(X/W ) where

W is the ring of Witt vectors W (k) (see [Ill95, §1.3 (c)]). It is the lower convex polygon
starting at (0, 0) and ending at (22, 22). The height of a K3 surface X can be read off
from its Newton polygon. If α is the smallest slope of the Newton polygon of X, then
h(X) = 1/(1 − α) if α 6= 1 and infinity otherwise. This follows from Corollary 3.3 in
[AM77, III].

The Hodge polygon in degree m of a non-singular projective variety X over k is
defined as the increasing convex polygon starting at (0, 0), having slope i with multiplicity
hi,m−i = dimkH

m−i(X,Ωi
X). For a K3 surface X the Hodge polygon in degree 2 will be

called the Hodge polygon of X. The Newton polygon of a K3 surface lies on or above
its Hodge polygon ([Ill95, Thm. 1.3.9]).

Definition 2.1.2. A K3 surface X over k is called ordinary if any of the following
equivalent conditions is satisfied:

(i) h(X) = 1.

(ii) The Newton and the Hodge polygon of X coincide i.e., the Newton slopes of X
are 0 and 2 with multiplicity one, 1 with multiplicity 20.
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Definition 2.1.3. A K3 surface X over k is called supersingular if any of the following
equivalent conditions is satisfied:

(i) The height of X is infinite.

(ii) The Newton polygon is a straight line i.e., all Newton slopes of X are 1.

The fact that the two possible ways of defining ordinary and supersingular K3 surfaces
are equivalent follows from [AM77, III, Cor. 3.3].

Definition 2.1.4. A K3 surface X over k is called supersingular in the sense of Shioda
if the rank of NS(X) is 22.

One easily sees that if a K3 surface is supersingular in the sense of Shioda, then it is
supersingular. It is a conjecture of M. Artin that, conversely, a supersingular K3 surface
has Néron-Severi rank 22.

Example 2.1.5. Let p ≡ 3 (mod 4) be a prime number. Then the Fermat K3 surface

x4 + y4 + z4 + w4 = 0

in P3
Fp

is supersingular in the sense of Shioda (see [Shi75, Thm. 1]).

Let d be an integer and assume further that p does not divide 2d. Consider the
moduli stackM2d,Fp =M2d⊗Z Fp of K3 surfaces with a polarization of degree 2d over a
basis in characteristic p. Define the height stratification ofM2d,Fp as follows: For h ≥ 1

letM(h)
2d,Fp

be the full subcategory ofM2d,Fp

M(h)
2d,Fp

(S) =
{
(X → S, λ) ∈M2d,Fp(S) | h(Xs̄) ≥ h for every geometric point s̄ ∈ S

}
.

It is known that M(h)
2d,Fp

is a closed substack of M2d,Fp of codimension at most h − 1.

One defines a stratification of M(11)
2d,Fp

by the Artin invariant (see [Art74]). Let X be

a supersingular K3 surface and let ∆(NS(X)) be the discriminant of the intersection
pairing on NS(X)

(·, ·) : NS(X)× NS(X)→ Z.
One can show that ordp(∆) = 2σ0 where σ0 takes values 1, . . . , 10. It is called the Artin

invariant of X. Let Σi be the full subcategory ofM(11)
2d,Fp

defined by

Σi(S) =
{
(X → S, λ) ∈M2d,Fp(S)| h(Xs̄) =∞ and σ0(Xs̄) ≤ 11− i

for every geometric point s̄ ∈ S
}
.

In this way we obtain a filtration of the moduli space

M2d,Fp =M(1)
2d,Fp

⊃M(2)
2d,Fp

⊃ · · · ⊃ M(11)
2d,Fp

= Σ1 ⊃ · · · ⊃ Σ10. (2.1)

This is a chain of 20 closed substacks and the dimension drops with at least one at each
step.
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Theorem 2.1.6. For h = 1, . . . , 10, 11 the locusM(h)
2d,Fp

, if non-empty, is of codimension
h− 1 and for h 6= 11 is a local complete intersection.

Proof. We refer to [vdGK00, sect. 13,14 & 15]. The statement presented above is
Theorem 15.1.

Remark 2.1.7. B. Moonen and T. Wedhorn ([MW04]) have a theory of F -zips which
gives a scheme-theoretic and uniform definition of the filtration (2.1). For details we
refer to Example 7.4 in loc. cit..

2.2 Kummer Surfaces

As we mentioned in the beginning of this chapter we will use Kummer surfaces to show
that the height strata ofM2d,Fp are non-empty for large enough d, prime to p. In Section
2.2.1 we will recall some basic facts about Kummer surfaces which we will need in the
sequel. In the next section, starting with a polarized abelian surface (A, λ) we describe
a way for constructing polarizations on its associated Kummer surface X. For this we
make use of Seshadri constants.

2.2.1 Kummer Surfaces

Recall that to an abelian surface A over a field k of characteristic different from 2 we
associated a K3 surface X, called the Kummer surface of A. Assume further that all
points in A[2](k̄) are k-rational. Using the notations established in Example 1.1.4 we see
that the exceptional divisor Ẽ on Ã consists of 16 irreducible curves E ′

j, j = 1, . . . , 16,
each corresponding to a point in A[2](k̄). We have that (E ′

j, E
′
l)Ã = δj,l where δj,l is the

Kronecker δ-function. Let us make the following notations:

E ′j := OÃ(E ′
j) a line bundle on Ã,

Ej := ι(E ′
j) a divisor on X,

Ej := OX(E ′
j) the corresponding line bundle on X.

Then one has that
ι∗Ej ∼= E ′j

⊗2
and (Ej, El)X = 2δj,l.

Moreover the line bundle
⊗16

j=1 Ej is divisible by 2 in Pic(Xk̄).
We turn next to some p-adic discrete invariants of Kummer surfaces. From now on

we will assume that k is a field of positive characteristic different from 2. Then X is
supersingular in the sense of Shioda if and only if A is supersingular. Indeed, as we
have seen in Example 1.3.8 one has that NS(Xk̄)Q = NS(Ak̄)

[−1]A
Q

⊕16
j=1 Q. Hence we

have that rkZ NS(X) = 22 if and only if rkZ NS(A) = 6 which is equivalent to A being
supersingular. We will determine the Newton polygon of X in term of the Newton
polygon of A. To do that we shall need the following auxiliary result.
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Lemma 2.2.1. Let A be an abelian surface and X the associated Kummer surface over
k. Then there is a natural isomorphism

H2
et(Xk̄,Ql) ∼= H2

et(Ak̄,Ql)
[−1]A ⊕16

1 Ql(−1)

where H2
et(Ak̄,Ql)

[−1]A is the subspace of the elements invariant under [−1]A.

Proof. This is a consequence of the following two lemmas.

Lemma 2.2.2. Let π : Z → X be the blowing up of a non-singular variety X along a
non-singular subvariety Y of codimension d in X. Then there is a natural isomorphism

H i
et(Zk̄,Ql) ∼= H i

et(Xk̄,Ql)⊕
d−1∑
j=1

H i−2j
et (Yk̄,Ql(−j))

Lemma 2.2.3. Suppose that G is a finite group of automorphisms of a non-singular
variety X and Y = X/G is non-singular. Then H i

et(Yk̄,Ql) is isomorphic to the subspace
of G-invariants in H i

et(Xk̄,Ql) i.e.,

H i
et(Yk̄,Ql) ∼= H i

et(Xk̄,Ql)
G.

The proofs of those lemmas can be found in [HM78], [Ill77, Exp. VII] and [Gro57,
Ch. V].

Lemma 2.2.4. Let k be a finite field of characteristic different from 2. Then one has
that

(i) If A is ordinary, then the Newton polygon slopes of X are µ1 = 0; µ2 = · · · = µ5 =
1; µ6 = 2; µj = 1 for j = 7, . . . 22. In this case X is ordinary i.e., its height is 1.

(ii) If the p-rank of A is 1, then the Newton polygon slopes of X are µ1 = µ2 =
1/2; µ3 = µ4 = 1; µ5 = µ6 = 3/4; µj = 1 for j = 7, . . . 22. In this case X has
height is 2.

(iii) If A is supersingular, then X is supersingular and all its Newton polygon slopes
are 1. In this case ∆(NS(A)) and ∆(NS(X)) differ only by a power of 2, hence
the Artin invariant of X is 1 or 2. It is 1 if and only if A is a superspecial abelian
surface.

Proof. As k is a finite field and X and A are projective varieties one can compute the
Newton polygons of A and X using étale cohomology instead of crystalline cohomology.
We refer to [Ill95, 1.3, Equality (1.3.5)] for an explanation and details. We will use the
relation between the étale cohomology groups of A and X given in Lemma 2.2.1.

If the Newton polygon slopes of A are λj for j = 1, . . . , 4, then those of X satisfy
µ1 = λ1+λ2; µ2 = λ1+λ3; µ3 = λ1+λ4; µ4 = λ2+λ3; µ5 = λ2+λ4; µ6 = λ3+λ4; µi = 1
for i = 7, . . . , 22. The last statement follows from [Shi79, §3, Prop. 3.1].
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2.2.2 Ample Line Bundles on Kummer Surfaces

Let k be an algebraically closed field of characteristic different from 2 and consider an
abelian surface A over k. Denote by X the associated Kummer surface. In this section
we will show how to construct ample line bundles on X starting with an ample bundle
on A. This will allow us to give explicitly points inM2d,Fp for some d.

Let L be an ample line bundle on A with χ(L) = d′. Then by Riemann-Roch we
have that (L,L)A = 2d′. Let n ∈ N and fix 16 positive integers nj. Consider the line
bundle N on Ã given by

N = π∗
(
Ln ⊗ [−1]∗ALn

)
⊗

( 16⊗
j=1

E ′j
−2nj

)
.

We will compute its self-intersection and show that N is the pull-back of a line bundle
on X.

Lemma 2.2.5. With the notations as above one has:

(a) (N ,N )Ã = 8n2d′ − 4
∑16

j=1 n
2
j ;

(b) There exists a line bundle M on X such that ι∗M ∼= N . The line bundle M is
ample iff N is ample. Moreover if 2d = (M,M)X , then we have that

d = 2n2d′ −
16∑
j=1

n2
j .

Proof. (a) Combining [Har77, Ch. V, §3, Prop. 3.2] and the fact that [−1]∗AL and L are
algebraically equivalent we get

(N ,N )Ã = 2n2(L,L)A + 2n2(L, [−1]∗AL)A − 4
∑
j=1

16n2
j

= 8n2d′ − 4
∑
j=1

16n2
j .

(b) Take a divisor D ⊂ A\A[2] such that OA(D) = L. If U := Ã \
⋃16
j=1E

′
j and

V = X −
⋃16
j=1Ej, then the map ι : U → V is étale. Consider the divisor

D1 := ι
(
nπ∗(D) + nπ∗([−1]∗AD)

)
on X. As D1 ⊂ V we see that ι∗D1 = nπ∗(D) + nπ∗([−1]∗AD). Hence if we set

P := OX(D1)
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then we have that ι∗P ∼= π∗
(
Ln ⊗ [−1]∗ALn

)
on Ã. Using the fact that ι∗Ej ∼= E ′j

⊗2 one
sees that the line bundle

M = P ⊗
16⊗
j=1

E⊗−nj

j

satisfies ι∗M∼= N on Ã. Since ι is a finite morphismM is ample on X if and only if N
is ample on Ã ([Har77, Ch. III, Exercise 5.7 (d)]).

For the self-intersection number computation one has

2n2(L,L)A + 2n2(L, [−1]∗AL)− 4
16∑
j=1

n2
j =

= (N ,N )Ã = (ι∗M, ι∗M)Ã = deg(ι)(M,M)X = 4d

which gives the formula from (b).

Remark 2.2.6. Note that the line bundle Ln⊗ [−1]∗ALn comes with a natural action of
[−1]A. Hence its pull-back π∗

(
Ln ⊗ [−1]∗ALn

)
comes equipped with an action of [−1]Ã.

Therefore one can apply [Mum74, Ch. III §10, Thm. 1(B)] to the morphism ι : Ã→ X

and conclude that P = ι∗
(
π∗(Ln ⊗ [−1]∗ALn)

)[−1]Ã is the line bundle described in the
proof of part (b).

Lemma 2.2.5 suggests a way to construct ample line bundles on the Kummer surface
X. We will give sufficient conditions under which N is ample on Ã. To do this we will
make use of multiple Seshadri constants. We will recall the definition below. For details
we refer to [Bau99].

Seshadri constants. Let D be an ample line bundle on A and let x1, . . . , x16 be the
points in A[2](k) (recall that k = k̄ and char(k) 6= 2). We make this change of notations
here to avoid any possible confusion as later we will compute Seshadri constants for the
ample line bundle D = L⊗ [−1]∗AL−1. Let NS(Ã)R denote NS(Ã)⊗Z R and let (·, ·)Ã,R be

the induced bilinear form. We will call an element R of NS(Ã)R numerically effective, or
shortly nef, if for any irreducible curve Γ in Ã we have that (R,OÃ(Γ))Ã,R ≥ 0. Further,

for an element R ∈ NS(Ã)R and a real number ε we will denote by Rε the element
ε · R ∈ NS(Ã)R.

One shows that

εD = sup

{
ε ∈ R

∣∣∣∣ π∗D ⊗ 16⊗
i=1

E ′i
−ε

is nef in NS(Ã)R

}
exists. It is called the multiple Seshadri constant on A for x1, . . . , x16. An equivalent
definition of the Seshadri constant ε can be given in the following way:

εD = inf
(D,OA(C))A∑16
i=1 multxi

C
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where multxi
C is the multiplicity of C at xi and the infimum is taken over all irreducible

curves C in A which pass through at least one xi.

Remark 2.2.7. (1) If 0 < δ < εD, then the line bundle π∗D ⊗
⊗16

i=1 E ′i
−δ is nef.

Moreover, one has the strict inequality

(
π∗D ⊗

16⊗
i=1

E ′i
−δ
,OÃ(Γ)

)
Ã,R > 0

for any irreducible curve Γ on Ã.

(2) If 0 < ni < εD, then π∗D⊗
⊗16

i=1 E ′i
−ni is nef. Moreover, one has the strict inequality

(
π∗D ⊗

16⊗
i=1

E ′i
−ni ,OÃ(Γ)

)
Ã
> 0

for any irreducible curve Γ on Ã.
These facts are clear from the second definition of ε.

Numerical estimates. We will apply the general results on Seshadri constants to our
particular situation. To avoid confusion let us make the following convention: If A is an
abelian surface, then by an elliptic curve E in A we shall mean an abelian subvariety E
of A of dimension one.

Proposition 2.2.8. Let A be an abelian surface over an algebraically closed field k of
characteristic different from 2. Let {x1, . . . , x16} be the set of two-torsion points on A.
Then for an ample line bundle D on A we are in one of the following cases:

(a) The Seshadri constant satisfies the inequality

εD ≥
√

2(D,D)A
16

.

(b) The abelian surface A contains a curve E of genus 1 such that

εD =
(D,OA(E))A

#{i|xi ∈ E(k)}
. (2.2)

Proof. See [Bau99, Prop. 8.3]. Note that in this paper the assumption k = C is made.
However, the proof of the above proposition uses only the Hodge index theorem, the
Riemann-Roch theorem and some facts about blow-ups of curves. These results are
valid over any algebraically closed field.
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Remark 2.2.9. Note that in (b) we may assume that E is an elliptic curve in A. Indeed,
we have that E is a translate of an elliptic curve E ′ ⊂ A by a point a ∈ A. Since D is
ample, the line bundles t∗aD and D are numerically equivalent. Therefore we have that

(D,OA(E)) = (t∗aD, t∗aOA(E)) = (D, t∗aOA(E)) = (D,OA(E ′)).

We have further that #{i|xi ∈ E(k)} ≤ 4. Indeed, all these points correspond to points
pi = xi − a ∈ E ′(k) for which [2]pi = [−2]a is a fixed point in E ′(k). As the isogeny [2]
is of degree 4 (on E ′) there are at most four such points. So we have that

εD =
(D,OA(E))A∑16
i=1 multxi

E
=

(D,OA(E))A
#{i|xi ∈ E(k)}

=

=
(D,OA(E ′))A

#{i|xi ∈ E(k)}
≥ (D,OA(E ′))A

4
=

(D,OA(E ′))A∑16
i=1 multxi

E ′
≥ εD.

Therefore we have equalities and we conclude that #{i|xi ∈ E(k)} = 4. We also see
that a ∈ A[2](k).

In what follows we will try to avoid case (b) of Proposition 2.2.8 as much as possible.
The reason is that one has little control over the intersection (D,OA(E))A in terms of
the degree of D. The bound in (a) increases with (D,D)A, but A can contain curves of
genus 1 of any given intersection index (D,OA(E))A, no matter how large (D,D)A is.

We will need the following auxiliary result which we shall apply to a line bundle L
defining the polarization λ on A (cf. the beginning of this section).

Lemma 2.2.10. Let L be an ample line bundle on an abelian surface A and let E ⊂ A
be an elliptic curve.

(a) Suppose that (L,OA(E))A = 1. Then there exists an elliptic curve E ′ ⊂ A such
that A ∼= E × E ′. Moreover, if π1 : E × E ′ → E and π2 : E × E ′ → E ′ are the two
projections, then there exists a point P ∈ E and a line bundle G on E ′ such that

L ∼= π∗1OE(P )⊗ π∗2G.

(b) Suppose that (L,OA(E))A = m for some m ∈ N. Then there exist an elliptic curve
E ′ ⊂ A and an isogeny f : E × E ′ → A of degree at most m.

Proof. (a): The proof can be found in [Nak96, Lemma 2.6].
(b): Consider the homomorphism

φ : A
ϕL // At // Et

where ϕL is the map a 7→ t∗aL ⊗ L−1 and the second map is the dual of the inclusion
E → A. Let E ′ be the reduced subscheme of the zero component of ker(φ). Then E ′ is
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an elliptic curve in A. Note that L|E is an invertible sheaf of degree at most m hence
(E,E ′)A ≤ m. Define the homomorphism E × E ′ → A to be (P, P ′) 7→ P + P ′. It is
surjective and its kernel is a finite group scheme hence it is an isogeny. Moreover its
degree is exactly (E,E ′)A ≤ m.

To get explicit conditions under which N is ample on Ã, one has to give some explicit
estimates for εD for the ample line bundle D = Ln ⊗ [−1]∗ALn.

Lemma 2.2.11. With the notations of Lemma 2.2.5 one has that

(a) If d′, n, n1, . . . n16 satisfy the following three inequalities

2n2d′ −
16∑
i=1

ni > 0 (2.3)

ni <
n

4
(2.4)

ni <

√
n2d′

8
, (2.5)

then the line bundle N is ample on Ã.

(b) Assume further that (A,L) is not isomorphic to a polarized product of elliptic
curves, as in Lemma 2.2.10 (a). Then for the ampleness of N on Ã it is enough
to require ni < n/2 instead of (2.4) along with the other two inequalities (2.3)
and (2.5).

Proof. (a): Suppose that the inequalities (2.3), (2.4) and (2.5) are fulfilled. The first one
simply says that (N ,N )Ã > 0. The second two are exactly the ones obtained from the
explicit estimates for εD.

Assume first that εD is computed by an elliptic curve E. Since L is ample on A one
has that (L,OA(E))A ≥ 1. Hence by Proposition 2.2.8 we have that

εD =

(
Ln ⊗ [−1]∗ALn,OA(E)

)
A

4
=

2n
(
L,OA(E)

)
A

4
≥ n

2
≥ 2ni

for every i = 1, . . . , 16.
If εD is not computed by by an elliptic curve, then case (a) of Proposition 2.2.8 and

the fact that (D,D)A = 8n2d′ give the estimate

εD ≥
√
n2d′

4
≥ 2ni.

for every i = 1, . . . , 16.
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Thus if we impose these numerical conditions (2.3), (2.4) and (2.5) on n, d′ and ni,
then by Proposition 2.2.8 we have that 2ni < εD. Hence by Remark 2.2.7 one has that
(N ,OÃ(Γ))Ã > 0 for any irreducible curve Γ on Ã. Therefore by the Nakai-Moishezon
criterion ([Har77, Ch. V, §1, Thm. 1.10]) the line bundle N is ample.

(b): Suppose that (A,L) is not isomorphic to a polarized product of elliptic curves,
then (L,OA(E))A ≥ 2. If εD is computed by an elliptic curve E we have that

εD ≥ n ≥ 2ni

for all i = 1, . . . , 16. Otherwise, just like in (a) one has that

εD ≥
√
n2d′

4
≥ 2ni

for all i. Hence by the argument given in the proof of part (a) the line bundle N is
ample.

2.3 Kummer Maps and Non-Emptiness of the Height

Strata

In the preceding section we gave a way to construct points in M2d(F̄p) starting with
points in A2,d′(F̄p) for some well-chosen integers d and d′. Here we will show that this
actually gives rise to morphisms between the stacks A2,d′,2,Fp andM2d,Fp . We call these
maps Kummer morphisms and we give their construction in detail in Section 2.3.1. We
will use them in Section 2.3.2 to produce supersingular points inM2d,Fp(F̄p) for d large
enough. In this way we will conclude that the height strata ofM2d,Fp are non-empty for
these d.

2.3.1 The Kummer Morphisms

We already saw that starting with an ample line bundle L on A with χ(L) = d′ and
fixing integers n, n1, . . . , n16 > 0 one produces a K3 surface X and a line bundleM on it.
This bundle is ample if further the numerical conditions from Lemma 2.2.11 are satisfied
by d′, n, n1, . . . , n16. It turns out that the resulting line bundle M depends only on the
class of L in NS(A). In other words, it depends only on the polarization λL defined by
L. Indeed, the construction

L 7→ ι∗
(
π∗(L ⊗ [−1]∗AL)

)[−1]Ã

gives a homomorphism of group schemes h : PicA/k → PicX/k and since Pic0
X/k is trivial

we see that h vanishes on Pic0
A/k.

53



Chapter 2. Non-Emptiness of the Height Strata ofM2d,Fp

Suppose given numbers n, d′ and n1, . . . , n16 satisfying the inequalities from Lemma
2.2.11 (a). Then using the remark made above one shows that starting with a polarized
abelian surface (A, λ) over an algebraically closed field k one gets a polarized K3 surface
(X,M). We will generalize this construction to a general base S. To do so let us first
try to find a more intrinsic way of constructing the line bundleM.

Let L be an ample line bundle on A and let λ = ϕL. The polarization defined by
L⊗ [−1]∗AL is 2λ. Let P be the Poincaré sheaf on A×At, where At is the dual abelian
surface. One has an isomorphism [−1]∗AP ∼= P . Then D = (idA×λ)∗P is a symmetric
ample line bundle on A coming with an action of the group {idA, [−1]A}. Moreover, the
polarization ϕD is exactly 2λ.

The line bundles D and L⊗ [−1]∗AL are isomorphic. Indeed, consider the composition

A
∆ // A× A idA×ϕL // A× At.

where ∆: A → A × A is the diagonal. By construction, (idA×ϕL)∗P is the Mumford
bundle Λ(L) on A × A, which pulls-back to [2]∗L ⊗ L−2 under ∆. By Corollary 3 in
[Mum74, Ch. II §6] we have that

[2]∗L = L3 ⊗ [−1]∗AL.

So we conclude that

L ⊗ [−1]∗AL = (idA×ϕL)∗P .

We will use the bundle D to generalize the construction given in Section 2.2.2 in relative
settings.

We need to make another observation in order to be able to define Kummer mor-
phisms. In the previous section we worked over an algebraically closed field k. Then
we made use of points in A[2](k) which give rise to some exceptional divisors on the
blow-up surface Ã. We will carry out the same idea in the relative case. In order to be
able to consider these exceptional divisors in general, for instance if the field k is not
algebraically closed, we will be working with abelian surface with level 2-structure.

Let (A → S, λ, α) ∈ A2,d′,2(S) be a polarized abelian scheme over a base scheme
S with a Jacobi level 2-structure α. Let P be the Poincaré bundle on A ×S At where
At is the dual abelian scheme of A. Denote by D the symmetric relatively ample line
bundle (idA×λ)∗P on A (see [FC90, Ch. 1, §1, 1.6]). Consider the blow-up Ã of A at
A[2]. Then the automorphism [−1]A extends to an involution [−1]Ã on Ã. One forms
the quotient X of Ã by the finite automorphism group {idÃ, [−1]Ã}. Further we use the
sheaf D to construct a polarization on X . We consider the sheaf

N = π∗Dn ⊗
( 16⊗
j=1

E ′j
−2nj

)
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on Ã where E ′j are the 16 exceptional sheaves. One uses then [Mum74, Ch. III §10, Thm.
1(B)] to conclude thatN comes from a sheafM onX as in Proposition 2.2.5 and Remark
2.2.6. Clearly this generalizes the construction we considered over an algebraically closed
field k. The sheafM is then fiberwise ample and hence S-ample by Lemma 1.1.10. This
S-ample line bundle gives rise to a polarization of X. Isomorphisms of polarized abelian
schemes with a Jacobi level 2-structure are sent to isomorphisms of polarized K3 schemes
in a natural way. In this way we get a morphism of stacks

Kn,n1,...,n16 : A2,d′,2 →M2d,Z[1/2]

sending an object (A → S, λ, α) ∈ A2,d′,2 to the object (X,M) ∈ M2d,Z[1/2]. We sum-
marize this in the theorem below.

Theorem 2.3.1. Let n, d′, n1, . . . , n16 ∈ N and assume that they satisfy the numerical
conditions (2.3), (2.4) and (2.5) of Lemma 2.2.11. Then there exists a morphism of
algebraic stacks

Kn,n1,...,n16 : A2,d′,2 →M2d,Z[1/2]

where d = 2n2d′ −
∑16

j=1 n
2
j . The morphism sends a polarized abelian surface, to its

associated Kummer surface with an ample line bundle.

Definition 2.3.2. For any set of numbers n, d′, n1, . . . , n16 satisfying the inequalities
(2.3), (2.4) and (2.5) we will call the morphism Kn,n1,...,n16 : A2,d′,2 → M2d,Z[1/2] con-
structed in Proposition 2.3.1 the Kummer morphism (or Kummer map) defined by
n, d′, n1, . . . , n16.

Recall that there are some weaker conditions (Lemma 2.2.11 (b)) under which a
polarized abelian surface, which is not isomorphic to a polarized product of elliptic
curves, gives a polarized Kummer surface. We will deal with this case now. One has a
natural map

p : A1,1,2 ×A1,d′,2 → A2,d′,2

sending a pair of polarized elliptic curves to their polarized product as in Lemma 2.2.10.
Consider the open substack

U2,d′,2 = A2,d′,2 \ p(A1,1,2 ×A1,d′,2)

As we saw above one can construct a polarized Kummer surface out of any such abelian
surface. In the same lines one gets

Proposition 2.3.3. Let n, d′, n1, . . . , n16 ∈ N satisfy the conditions of Lemma 2.2.11
(b). Then there exists a morphism of stacks

Kn,n1,...,n16 : U2,d′,2 →M2d,Z[1/2]

as constructed in Theorem 2.3.1 where d = 2n2d′ −
∑16

j=1 n
2
j .
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Proof. Kn,n1,...,n16 maps a polarized abelian surface to the polarized Kummer surface and
this time one has to impose the milder conditions of Lemma 2.2.11 due to the fact that
the polarized products of elliptic curves are excluded.

Remark 2.3.4. Let (A, λ, α) be an a polarized abelian surface over a finite field k of
characteristic p > 2. Then using Lemma 2.2.4 we see that the point Kn,n1,...,n16((A, λ, α))
inM2d,Fp(k) belongs to

(i) M(1)
2d,Fp
\M(2)

2d,Fp
if A is ordinary;

(ii) M(2)
2d,Fp
\M(3)

2d,Fp
if the p rank of A is 1;

(iii) Σ9 \ Σ10 if A is supersingular but not superspecial;

(iv) Σ10 if A is superspecial.

2.3.2 Non-Emptiness of the Height Strata

Fix a prime number p > 2. We will prove here that the height strata of M2d,Fp are
non-empty for every large enough d prime to p. The idea is to use the Kummer maps
and show thatM2d,Fp contains a supersingular Kummer surface. Then by Theorem 2.1.6
all strata are non-empty and so one has the claimed dimensions.

Theorem 2.3.5. For every large enough d prime to p the height strata of M2d,Fp are
non-empty.

We will need the following result first.

Lemma 2.3.6. Every residue class modulo 2 × 92 can be represented by an integer of
the form

∑16
j=1 n

2
j with 1 ≤ nj ≤ 4 for all j.

Proof. Explicit calculation.

Remark 2.3.7. We believe that the statement of the preceding lemma remains valid
for all n ≥ 9. In other words, all residues modulo 2n2 can be represented by an integer
of the form

∑16
j=1 n

2
j with 1 ≤ nj <

n
2
. This is true for n ∈ [9, 45].

Proof of Theorem 2.3.5. First note that if for a given d there exist numbers d′ and
n1, . . . , n16 giving a Kummer map

Kd′,n1,...,n16 : U2,d′,2,Fp →M2d,Fp ,

as in Proposition 2.3.3, then the height strata of M2d,Fp are non-empty. This follows
from Remark 2.3.4 as one can find a supersingular point in U2,d′,2,Fp .
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Take n = 9 and let d′ ≥ 26 so that the conditions of Lemma 2.2.11 (b) give nj ∈ [1, 4].
By Lemma 2.3.6 we can pick up 162 sets of numbers (n1, . . . , n16), 1 ≤ nj ≤ 4 which
define Kummer maps as above and such that F (n1, . . . , n16) =

∑16
j=1 n

2
j gives all pos-

sible resides modulo 2 × 92. Hence the images of U2,d′,2,Fp under those Kummer maps

land in M2d,Fp where d = 2 × 92d′ −
∑16

j=1 n
2
j . Using this set of 162 sixteen-uples

(n1, . . . , n16) and letting d′ ≥ 26 vary we can construct Kummer maps for F2d,Fp for all
d ≥ 2× 92× 26− 16 = 4196. Therefore by the remark we started with the height strata
of these moduli stacks are non-empty. This proves the assertion.

Using Kummer maps we saw that the height strata ofM2d,Fp are non-empty if d ≥ 4196.
On the other hand one has that the Fermat K3 surface

x4 + y4 + z4 + w4 = 0

in P3, which is a Kummer surface by [Shi75, Thm. 1], is supersingular if p ≡ 3 (mod 4).
Hence using explicit Kummer surfaces one can show the non-emptiness of the height
strata in lower polarization degrees. Using the same ideas as above we will “cut some
more moduli points” of abelian surfaces in order to improve the estimates in Lemma
2.2.11. In this way we will lower the bound for d.

First we will settle the case when d is even. Let as before A be an abelian surface and
let X be the associated Kummer surface. The invertible sheaf

∑16
j=1 Ej is divisible by 2

in Pic(X). Hence
∑16

j=1 E ′j comes from a line bundle on X modulo 2 torsion in Pic(Ã).

Note that this torsion has to come from Pic0(A). So it does not change neither our
constructions nor the intersection indexes we were dealing with. Consider the following
subset of A2,d′(F̄p)

U3
2,d′ =

{
(A, λ) ∈ A2,d′(F̄p)|there does not exist an isogeny

E × E → A of degree < 3
}
.

For any d′ the supersingular locus of A2,d′,Fp remains non-empty because we exclude only
finitely many points of it. Let (A, λ) ∈ U3

2,d′ and let L be any ample line bundle on A
defining the polarization λ. Then by Lemma 2.2.10 we have that (L,OA(E))A ≥ 3 for
every elliptic curve E in A. Taking this into account and following the proofs of Lemma
2.2.11 and Theorem 2.3.1 one constructs a Kummer map of sets

Kd′ : U
3
2,d′ →M2d,Fp(F̄p)

where n = n1 = · · · = n16 = 1, d′ ≥ 32 and d = 2d′− 16. Hence by Remark 2.3.4 we can
conclude that

Corollary 2.3.8. For all even d ≥ 48 prime to p the height strata of M2d,Fp are non-
empty.
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For the odd case we will construct Kummer maps with n1 = 1, n2 = · · · = n16 = 2.
Define as before the set

U8
2,d′ =

{
(A, λ) ∈ A2,d′(F̄p)|there does not exist an isogeny

E × E → A of degree < 8
}

Take a point (A, λ) ∈ U8
2,d′ and let L be any ample line bundle on A defining the

polarization λ. Then according to Lemma 2.2.10 (b) we have that (L,OA(E))A ≥ 9 for
all elliptic curves E in A. Just as above one constructs a Kummer map of sets

Kd′ : U
8
2,d′ →M2d,Fp(F̄p)

where n = 1, n1 = 1, n2 = . . . n16 = 2, d′ ≥ 512 and d = 2d′ − 15 × 4 − 1 = 2d′ − 61.
Using these maps we obtain the following result.

Corollary 2.3.9. For every odd d ≥ 963 prime to p the height strata of M2d,Fp are
non-empty.
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Chapter 3

Complex Multiplication for K3
Surfaces

The main theorem for complex multiplication of Shimura and Taniyama describes the
action of the automorphisms in Gal(Qab/Q), on the torsion points of an abelian variety
A with complex multiplication. In [Del71] Deligne uses this description to define canon-
ical models of Shimura varieties and proves that lim←−Ag,1,n,Q is the canonical model of
Sh(CSp2g,H

±)C. See Théorème 4.21 in loc. cit..

In this chapter we prove a similar result for moduli spaces of primitively polar-
ized K3 surfaces. More precisely, for a certain class of compact open subgroups K of
SO(V2d, ψ2d)(Af ) we define a period morphism

jd,K,C : F2d,K,C → ShK(SO(V2d, ψ2d),Ω
±)C.

We study the field of definition of this period map. Our main result is that jd,K,C is
defined over Q. The proof of this result consists of two parts. We first prove a version
of the main theorem of complex multiplication [Mil04, Thm. 11.2] for exceptional K3
surfaces. The proof is based on a construction due to Shioda and Inose. It occupies most
of Sections 3.3.4-3.3.7. Then we show that the set of points in F2d,K,C corresponding to
exceptional K3 surfaces with a given reflex field is dense for the Zariski topology. The
proof of the fact that the field of definition of the period morphism jd,K,C is Q is a formal
consequence of those two results. As a corollary we obtain an analogue of the theorem of
Shimura and Taniyama for all complex K3 surfaces with complex multiplication. Further,
we prove that any such K3 surface can be defined over an abelian extension of its reflex
field.
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3.1 Hodge Structures of K3 Surfaces

3.1.1 Notations and Conventions

Let S = ResC/R(Gm,C) be the Deligne torus over R. Consider the weight character
w : R× = Gm(R) ↪→ S(R) = C× given by r 7→ r−1. The norm character Nm: S→ Gm,R
is defined by Nm(z) = zz̄. The kernel of Nm is the circle group U1 = {z ∈ C∗ | |z| = 1}.

Definition 3.1.1. A Q-Hodge structure, or shortly Q-HS, is a finite dimensional vector
space V over Q plus a homomorphism of algebraic groups

h : S→ GL(V )R

such that h ◦w is defined over Q. A Z-Hodge structure is a free Z-module of finite rank
V plus a homomorphism as above. We say that a Q-HS (Z-HS) V is pure of weight n
for some n ∈ Z if

h ◦ w : Gm → GL(V )R

is multiplication by r−n.

Example 3.1.2. For a compact Kähler manifold X the groups H i
B(X,Q) carry a natural

Q-HS of weight i.

Example 3.1.3. Consider the free Z-module Z(n) of rank 1 and the homomorphism
hZ(n) : S → GL(Z(n)R) such that hZ(n)(z) acts as multiplication by (zz̄)n. Then Z(n) is
a pure Z-HS of weight −2n and type {−n,−n}.

If a vector space V carries a Q-HS then one has a decomposition of C vector spaces

VC =
⊕

V p,q

such that hC(z1, z2)(v) = z−p1 z−q2 v for every v ∈ V p,q. This decomposition defines a Hodge
filtration

FhV : · · · ⊃ F pV ⊃ F p+1V ⊃ · · ·

where F pV = ⊕r≥pV r,s.
We define µh to be the cocharacter of GL(V ) given by

µh(z) = hC(z, 1)

For a Q-HS V we will denote by C the Weil operator h(i).

Example 3.1.4. For the cocharacter µZ(n) associated to Z(n) we have that µZ(n)(z) acts
as multiplication by zn.
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Example 3.1.5. Let V be a Z-HS of type {(1,−1), (0, 0), (−1, 1)}. Then we have a
decomposition VC = V 1,−1 ⊕ V 0,0 ⊕ V −1,1 of C vector spaces. Then µ(z) acts on V 1,−1

as multiplication by z−1, on V −1,1 as multiplication by z and it acts as the identity on
V 1,1.

For a Q-HS V we will denote by MT(V ) the Mumford-Tate group of V . Recall that it
is the smallest algebraic subgroup of GL(V ) defined over Q such that the homomorphism
h defining the Q-HS on V factorizes as h : S → MT(V )R ⊂ GL(V )R. We will denote
by Hg(V ) the Hodge group of the Q-HS V . By definition it is the smallest algebraic
subgroup Hg(V ) ⊂ GL(V ) such that h|U1 → GL(VR) factorizes through Hg(V )R.

Definition 3.1.6. Let V be a Q-HS of weight n. A polarization ψ of V is a homomor-
phism of Q-HS

ψ : V × V → Q(−n)

such that (2πi)nψ(x,Cy) is a positive definite symmetric form on VR.

One defines a polarization of Z-HS using the same definition replacing Q by Z.

3.1.2 Hodge Structures of K3-Type

In this section we will recall some facts concerning Hodge structures coming form coho-
mology of K3 surfaces. We also set up some notations.

LetX be a K3 surface or an abelian surface over C. ThenH2
B(X,Z) is a free Z-module

of rank either 22 or 6. It carries a Z-HS

h : S→ GL(H2
B(X,R))

of weight 2 with Hodge numbers h2,0 = h0,2 = 1 and h1,1 = 20 or 4 respectively. Denote
by hX the morphism h⊗ hZ(1) defining the Z-HS on H2

B(X,Z(1)).
Assume now that X is a K3 surface and let λ be a primitive quasi-polarization on X

(cf. Section 1.3.2). The orthogonal complement

P 2
B(X,Z(1)) = c1(λ)⊥ ⊂ H2

B(X,Z(1))

with respect to the Poincaré duality pairing (see Section 1.2.3 for details) carries a
polarized Z-HS. We have that H2

B(X,Q(1)) = c1(λ) ⊕ P 2
B(X,Q(1)) as polarized Q-

HS. If we consider SO
(
P 2
B(X,Q(1))

)
embedded in to SO

(
H2
B(X,Q(1))

)
by letting g ∈

SO
(
P 2
B(X,Q(1))

)
act as the identity on the direct summand c1(λ) of H2

B(X,Q(1)), then
we have that

hX : S→ SO
(
P 2
B(X,R(1))

)
↪→ SO

(
H2
B(X,R(1))

)
.

Hence the Mumford-Tate group MT
(
H2
B(X,Q(1))

)
is contained in SO(P 2

B(X,Q(1))).
The corresponding cocharacter µX , given by µX(z) = hX,C(z, 1), acts as multiplication
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by z−1 on the {1,−1} part of P 2
B(X,C(1)), as the identity on the {0, 0} part and as

multiplication by z on the {−1, 1} part.
Let X be a non-singular projective surface over C and let AX be the image

AX := c1(Pic(X)) ⊂ H2
B(X,Z(1)).

It is a polarized Z-Hodge substructure of H2
B(X,Z(1)) of type {(0, 0)}. Denote by TX

its complement
TX := c1(Pic(X))⊥ ⊂ H2

B(X,Z(1))

with respect to the Poincaré duality pairing ψX . The bilinear form ψX restricts to a
bilinear form on TX .

Definition 3.1.7. For a non-singular complex projective surface X the lattice TX to-
gether with the form ψX |TX

is called the transcendental lattice of X.

The lattice TX carries a polarized Z-HS (Hodge substructure of H2(X,Z(1))) of
type {(−1, 1), (0, 0), (1,−1)} and we have that H2

B(X,Q(1)) = AX,Q ⊕ TX,Q as polar-
ized Q-HS (see [Zar83, §1] for more details). If we consider SO(TX,Q) embedded into
SO

(
H2
B(X,Q(1))

)
by acting as the identity on the summand AX,Q we see that

hX : S→ SO(TX,R) ↪→ SO
(
H2
B(X,R(1))

)
.

Hence we have that MT
(
H2
B(X,Q(1))

)
⊂ SO(TX,Q). The cocharacter µX acts in the

way described above.
We fix similar notations for étale cohomology groups. Denote by AX,Ẑ the image

c1(Pic(X))Ẑ ⊂ H2
et(X, Ẑ(1)) and let AX,Af

be AX,Ẑ⊗Af . We consider the transcendental
lattice

TX,Ẑ := A⊥
X,Ẑ ⊂ H2

et(X, Ẑ(1))

and let TX,Af
be TX,Ẑ ⊗ Af . Then by the comparison theorem between Betti and étale

cohomology we have a natural isomorphism TX,Ẑ
∼= TX ⊗Z Ẑ.

Let X1 and X2 be two non-singular complex projective surfaces and let f : X1 → X2

be a morphism. Then the induced homomorphism on Betti cohomology

f ∗B : H2
B(X2,Z(1))→ H2

B(X1,Z(1))

restricts to a morphism of the corresponding transcendental lattices f ∗B : TX2 → TX1

(or respectively with Q-coefficients). Similarly, we have an induced homomorphism
f ∗f : TX2,Ẑ → TX1,Ẑ (or respectively with Af -coefficients) on étale cohomology. By the

comparison theorem we know that f ∗f = f ∗B ⊗Z Ẑ.
For any homomorphism α : TX1 → TX2 of Z-HS (or α : TX1,Q → TX2,Q of Q-HS

respectively) we will denote by αf the induced homomorphism

αf := α⊗ Ẑ : TX1,Ẑ → TX2,Ẑ

(or αf := α⊗ Af : TX1,Af
→ TX2,Af

, respectively).
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Definition 3.1.8. Let d ∈ N and consider the vector space (V2d, ψ2d) defined in Sec-
tion 1.2.1. A polarized Q-HS of K3-type of degree 2d is a triple (V, ψ, h) where h is a
homomorphism

h : S→ SO(V, ψ)R

such that

(a) h defines a Q-HS of type {(−1, 1), (0, 0), (1,−1)} on V and ψ is a polarization for
h,

(b) The Hodge numbers of VC are h−1,1 = h1,−1 = 1 and h0,0 = 19,

(c) (V, ψ), as an orthogonal space, is equivalent to (V2d, ψ2d).

Giving such h amounts to giving a 2-dimensional subspace V −
R of VR on which ψ is

negative definite and an orientation of V −
R : For z = τeiθ ∈ S(R) = C×, we have that

h(z) acts as the identity on the orthogonal complement V −,⊥
R and as rotation on angle

2θ on V −
R (see [Del72, §5.4 and 5.5]).

Note that as above one can see that for a polarized Q-HS of K3-type h the corre-
sponding cocharacter µh acts as in Example 3.1.5.

3.1.3 Hodge Groups of K3 Surfaces

We will give a short exposition of some results of Zarhin [Zar83] on Hodge groups of K3
surfaces which we will use in this chapter. Let X be a complex K3 surface and denote by
Hg(X) and MT(X) the Hodge and the Mumford-Tate groups (which in our case are the
same) of X associated to the Z-HS on H2

B(X,Z(1)). We know that the homomorphism

hX : S→ SO
(
H2
B(X,R(1))

)
defining the Z-HS on H2

B(X,Z(1)) factorizes thorough SO(TX,R) and hence we have that
Hg(X) ⊂ SO(TX,Q).

Theorem 3.1.9. The vector space TX,Q is a simple Hg(X)-module.

Proof. See Theorem 1.4.1 in [Zar83].

Definition 3.1.10. For a K3 surface X we define the Hodge endomorphism algebra of
X to be

EX := EndHg(X)(TX,Q) = EndHS(TX,Q).

The Hodge endomorphism algebra of X is an analogue of the endomorphism algebra
of an abelian surface.

Theorem 3.1.11. The algebra EX is a field which is either a totally real field or an
imaginary quadratic extension of a totally real field i.e., a CM-field.
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Proof. For the first part of the theorem we refer to Theorem 1.6 in [Zar83]. It actually
follows from the fact that one has a natural embedding

εX : EX ↪→ EndCH
2,0(X) ∼= C.

For the second part see [Zar83, Thm. 1.5.1].

We shall now determine Hg(X) explicitly. For this purpose define

φ : TX,Q × TX,Q → EX

by φ(x, y) = α where α is the unique element of EX such that ψX(ex, y) = trEX/Q(αe)
for every e ∈ EX . Such α exists (see [Zar83, §2.1]).

Theorem 3.1.12. Let X be a complex K3 surface, let EX be its Hodge endomorphism
field and assume it is a CM-field. Then we have that

Hg(X) ∼= U(TX,Q, φ)

i.e., the Hodge group of X is as big as possible.

Here U(TX,Q, φ) is the unitary group of elements preserving the bilinear form φ viewed
as a group over Q.

Proof. See [Zar83, Thm 2.3.1].

If X is a K3 surface with a Hodge endomorphism algebra EX which is a CM-field
then EX embedded via εX in C as above is the reflex field of the Mumford-Tate torus
MT(X).

Definition 3.1.13. We say that a K3 surface X has complex multiplication, shortly CM,
by EX if X has a Hodge endomorphism algebra EX which is a CM-field.

Definition 3.1.14. A complex K3 surface X is called exceptional if rkZ Pic(X) = 20.

If X is an exceptional K3 surface, then TX,Q is a 2 dimensional Q-vector space.
From [Zar83, §2, 2.1 - 2.3] we see that the Hodge endomorphism field EX is a quadratic
imaginary field. Further, we have that Hg(X) (respectively MT(X)) is a torus and
therefore an exceptional K3 surface has CM by a quadratic imaginary field.

Definition 3.1.15. If X is an exceptional K3 surface over C we will say that it is of
CM-type (EX , εX) if E is its Hodge endomorphism field and εX : EX → C is the natural
embedding given by the action of EX on the space of holomorphic forms on X.
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3.2 The Shimura Variety Sh(SO(2, 19),Ω±)

Over C the geometry of moduli spaces of primitively polarized K3 surfaces is connected
to the geometry of the Shimura variety associated to SO(2, 19). This is achieved via
periods. In this chapter we will use this relation to prove the main theorems of com-
plex multiplication for K3 surfaces. In Sections 3.2.1 - 3.2.4 we will give the needed
preliminaries. More precisely, in Section 3.2.3 we describe a modular interpretation of
the points in Sh(SO(2, 19),Ω±)C(C) in terms of periods of K3 surfaces. In the following
section we define a period morphism jd,K,C which is a slight modification of the period
morphisms used in [PSS72], [Fri84], [BBD85] and others.

3.2.1 Special Orthogonal Groups

Let V be a 21 dimensional Q vector space and let ψ be a non-degenerate form on it of
signature (2−, 19+). Then ψ is equivalent to the form

Qd : − x2
1 − x2

2 + x2
3 + · · ·+ x2

20 + dx2
21

for some square free integer d. In general, if d > 1 the two forms Qd and Q1 need not be
equivalent over Q. But the forms dQ1 and Qd are equivalent over Q. One sees this using
Theorem and the Corollary in [Ser73, Ch. IV, §3.3]. Therefore we have the following
result.

Lemma 3.2.1. The groups SO(V,Q1) and SO(V,Qd) are isomorphic over Q.

Notation 3.2.2. From now on we will denote by G or by SO(2, 19) the algebraic group
SO(V, ψ) over Q.

3.2.2 The Shimura Datum (G,Ω±)

Let V be a 21 dimensional vector space over Q and let ψ be a non-degenerate bilinear form
on V of signature (2−, 19+). Define Ω± to be the collection of all Q-HS h : S → GR =
SO(VR) for which ±ψ is a polarization and the Hodge numbers are h−1,1 = h1,−1 = 1 and
h0,0 = 19. Let h0 : S→ GR be an element of Ω±. Then Ω± is equal to the G(R)-conjugacy
class of the homomorphism h0.

For an element h ∈ Ω± let Fh be the associated Hodge filtration. Then the map
h 7→ F 1

h identifies Ω± with the space

{ω ∈ P(V ⊗ C)| ψ(ω, ω) = 0 and ψ(ω, ω̄) > 0}.

This gives Ω± a complex structure for which the Hodge filtration Fh varies holomorphi-
cally with h. We also see that Ω± consists of two connected components Ω+ and Ω−
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corresponding to the two possible orientations one can give to the space V −
R correspond-

ing to a morphism h. Further Ω±, being the G(R)-conjugacy class of a homomorphism
h0 : S→ GR as above, can be identified with the space

SO(2, 19)(R)/
(
SO(2)(R)× SO(19)(R)

)
.

We choose Ω+ to be connected component corresponding to

SO(2, 19)(R)+/
(
SO(2)(R)× SO(19)(R)

)
,

where SO(2, 19)(R)+ is the connected component of SO(2, 19)(R) containing the identity.
This choice is non-canonical as it depends on the choice of h0.

The pair (G,Ω±) is a Shimura datum with reflex field Q. The last claim follows from
[Del71, Prop. 3.8] and [And96a, Appendix 1, Lemma].

3.2.3 Modular Interpretation: Part I

Let d ∈ N and consider the quadratic space (V2d, ψ2d) (see Section 1.2.1). As before we
will denote by G the group SO(V2d, ψ2d). Let K ⊂ G(Af ) be an compact open subgroup
and consider the variety

ShK(G,Ω±) = G(Q)\Ω± ×G(Af )/K

where q(x, a)k = (qx, qak) for q ∈ G(Q), x ∈ Ω±, a ∈ G(Af ) and k ∈ K.
Define HK to be the set of 4-tuples(

(W,h), s, αK
)

where:

(i)
(
(W,h), s

)
is a polarized Q-HS of K3 type (see Def. 3.1.8),

(ii) αK is the K-orbit of an Af -linear isomorphism

α : V2d ⊗ Af → W ⊗ Af

such that ψ2d(v1, v2) = ms · s(α(v1), α(v2)) for all v1, v2 ∈ V ⊗Af , where ms ∈ Q+.

An isomorphism between
(
(W,h), s, αK

)
and

(
(W ′, h′), s′, α′K

)
in HK is an iso-

morphism b : (W,h) → (W ′, h′) of Q-HS such that there exists c ∈ Q× for which
s = c · s′ ◦ (b× b) and b ◦α ≡ α′ (mod K). From this we see that c = ms/ms′ ∈ Q×/Q×2.

Let
(
(W,h), s, αK

)
be an element ofHK. From (ii) and the fact that the signature of s

is (2−, 19+) we conclude by the Hasse principle that there is an isomorphism a : W → V2d
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with s = m−1
s · ψ2d ◦ (a × a). Further, the homomorphism a · h : S → GR defined by

z 7→ a ◦ h(z) ◦ a−1 belongs to Ω± and the composition

V2d,Af

α //WAf

a // V2d,Af

is an element of G(Af ). Indeed, we have that

ψ2d ◦ (a× a) ◦ (α× α) = ms · s ◦ (α× α) = msm
−1
s · ψ2d = ψ2d.

Another isomorphism a′ : W → V2d, for which s = m−1
s · ψ2d ◦ (a′ × a′), differs from a by

an element q ∈ G(Q), say a′ = q ◦ a. Hence, replacing a by a′ will change [a · h, a ◦ α]K
with [qa ·h, qa◦α]K. Similarly, replacing α by αk for some k ∈ K will replace [a ·h, a◦α]K
with [a · h, a ◦ αk]K. Therefore one has a well defined map

HK → G(Q)\Ω± ×G(Af )/K

given by (
(W,h), s, αK

)
7→ [a · h, a ◦ α]K (3.1)

where [a · h, a ◦ α]K denotes the class of (a · h, a ◦ α).

Proposition 3.2.3. The map defined by (3.1) gives a bijection between HK/{isom.} and
ShK(G,Ω±)(C).

Proof. Suppose that b : (W,h) → (W ′, h′) is an isomorphism of Q-HS giving an iso-
morphism of the triples

(
(W,h), s, αK

)
and

(
(W ′, h′), s′, α′K

)
in HK. Then we have

that s = ms/ms′ · s′ ◦ (b × b). Choose an isomorphism a′ : W ′ → V2d such that
ψ2d = ms′ · s′ ◦ (a′ × a′). Then for the isomorphism a : W → V2d defined by a = a′ ◦ b we
see that ψ2d = ms · s ◦ (a× a). Hence we have that (a · h, a ◦ α) = (a′ · h′, a′ ◦ α′k) where
b ◦ α = α′k.

Assume that
(
(W,h), s, αK

)
and

(
(W ′, h′), s′, α′K

)
are mapped to the same point in

ShK(G,Ω±)(C). Choose two isomorphisms a : W → V2d such that ψ2d = ms · s ◦ (a× a)
and α′ : W ′ → V2d for which ψ2d = ms′ · s′ ◦ (a′ × a′). We know that

(a · h, a ◦ α) = (qa′ · h′, qa′ ◦ α′k)

for some q ∈ G(Q) and k ∈ K. After replacing a′ by qa′ we may suppose that (a·h, a◦α) =
(a′ · h′, a′ ◦ αk). Then b = a′ ◦ a−1 is an isomorphism of the triples

(
(W,h), s, αK

)
and(

(W ′, h′), s′, α′K
)
. This shows that the map is injective. The surjectivity follows easily

as any element [h, g]K is the image of
(
(V2d, h), ψ2d, gK

)
.

Remark 3.2.4. With this modular interpretation of ShK(G,Ω±)(C) we may think of
it as the set parameterizing ‘isogeny’ classes of polarized K3 surfaces with certain level
structure up to an isomorphism. This is similar to the case of abelian varieties. See
[Del71, §4, 4.11].
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3.2.4 Modular Interpretation: Part II

Let d be a natural number and let K ⊂ SO(V2d)(Ẑ) be a subgroup of finite index which
is contained in some Kn for some n ≥ 3. Our goal in this section is to construct a
morphism

jd,K,C : F2d,K,C → ShK(G,Ω±)C

mapping every primitively polarized complex K3 surface its periods (cf. Step 1 of the
proof of Proposition 3.2.5 and Definition 3.2.8 below). We will use the notations estab-
lished in Section 1.2.1.

Proposition 3.2.5. For a natural number d and a group K as above one has an étale
morphism of algebraic spaces

jd,K,C : F2d,K,C → ShK(G,Ω±)C.

Proof. We will divide the proof into several steps.
Step 1: We begin with a naive pointwise definition. Let (X,λ, α) be a complex K3 sur-
face with a primitive polarization of degree 2d and a level K-structure α. Let α̃ : L2d,Ẑ →
P 2

et(X, Ẑ(1)) be a representative of the class α. Choose an isometry a : H2
B(X,Z(1))→ L0

such that a(c1(λ)) = e1 − df1 and a ◦ α̃ : L2d,Ẑ → L2d,Ẑ is an element in SO(V2d)(Ẑ). Let

hX : S→ SO(P 2
B(X,R(1))) be the morphism defining the polarized Z-HS on P 2

B(X,Z(1)).

Claim 3.2.6. The class [a ◦ hX ◦ a−1, a ◦ α̃]K of the pair (a ◦ hX ◦ a−1, a ◦ α̃) in
ShK(G,Ω±)C(C) is independent of a choice of the marking a and the lifting α̃ of α.

Proof. Indeed, any representative of the class of α is of the form α̃◦κ for some κ ∈ K and
any isometry a′ : H2

B(X,Z(1))→ L0 such that a(c1(λ)) = e1−df1 (cf. Remark 1.2.6) and
a′ ◦ α̃◦κ : L2d,Ẑ → L2d,Ẑ is equal to g ◦a for some g ∈ O(V0)(Z) with g(e1−df1) = e1−df1

and such that g ∈ SO(V2d)(Z). Hence we have that the new data produce a pair

(g ◦ a ◦ hX ◦ a−1 ◦ g−1, g ◦ a ◦ α̃ ◦ κ) =
(
g · (a ◦ hX ◦ a−1), g ◦ a ◦ α̃ ◦ κ

)
whose class in ShK(G,Ω±)C(C) is exactly [a ◦ hX ◦ a−1, a ◦ α̃]K.

We will use this pointwise construction to define an algebraic morphism as claimed
in the proposition.

Step 2: Let U → F2d,K,C be a (smooth) atlas of F2d,K,C such that the pull-back of
the universal family over F2d,K,C to U is a K3 scheme. Let V be a connected component
of U and let (π : X → V, λ, α) be the pull-back of the universal family to V . Define a
map

jd,K,V : V an → ShK(G,Ω±)C
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by sending a point s ∈ V an to the point associated to (Xs, λs, αs) in Step 1. We will
show that it is an algebraic morphism.

Step 3: We will show that jd,K,V is holomorphic and a local isomorphism. According
to [Mil04, Lemma 5.13] the decomposition of ShK(G,Ω±)C into connected components
is given in the following way:

ShK(G,Ω±)C =
∐
[g]∈C

Γ[g]\Ω+,

where C := G(Q)+\G(Af )/K and Γ[g] = G(Q)+ ∩ gKg−1 for some representative g of
[g] ∈ C. We will first show that jd,K,V maps V an into one connected component.

Suppose given two points s1 and s2 of V an. One can find an isomorphism

δπ : π1(V
an, s1) ∼= π1(V

an, s2)

and an isometry
δB : H2

B(Xs1 ,Z(1))→ H2
B(Xs2 ,Z(1))

mapping c1(λs1) to c1(λs2), such that δB(γ ·x) = δπ(γ)·δB(x) for every x ∈ H2
B(Xs1 ,Z(1))

and γ ∈ π1(V
an, s1). The isometry δB defines thus an isometry between P 2

B(Xs1 ,Z(1))
and P 2

B(Xs2 ,Z(1)) which we will denote again by δB. If the level K-structure on π : X →
V is given by the class α in {K\Isometry

(
L2d, P

2(s1)
)
}π

alg
1 (V,s1) with respect to the ge-

ometric point s1 and α̃ is a representative of this class, then it is given at the point
s2 by the class of δB ◦ α̃ in K\Isometry

(
L2d, P

2(s2)
)

which is πalg
1 (V, s2)-invariant (see

the discussion before Definition 1.5.1 in Section 1.5.1). Hence if we take a marking
a : H2

B(Xs1 ,Z(1))→ L0 such that a(c1(λs1)) = e1 − df1 then we can take a marking

a ◦ δ−1
B : H2

B(Xs2 ,Z(1))→ L0

for which we have that a(c1(λs2)) = e1 − df1. So we see that

jd,K,V (s1) = [a ◦ hs1 ◦ a−1, a ◦ α̃]K (3.2)

jd,K,V (s2) = [a ◦ δ−1
B ◦ hs2 ◦ δB ◦ a

−1, a ◦ δ−1
B ◦ δB ◦ α̃]K. (3.3)

The sheaf R2
Bπ∗Z(1) is a local system on V an for every point s ∈ V an one can find an

open neighborhood Vs of s in V an such that the system R2
Bπ∗Z(1)|Vs is constant. We

can find a marking a : R2
Bπ∗Z(1)|Vs → (L0)Vs mapping c1(λ) to e1 − df1. According to

[BBD85, §5, Theorem] (or [Gri71, 9.7]) the map

j : Vs → Ω±

defined by j(s) = a ◦ hXan
s
◦ a−1 is holomorphic. As Vs is connected we may assume

that its image in Ω± under the morphism j is contained in Ω+. Then we see from (3.2)
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and (3.3) that jd,K,V (Vs) ⊂ Γ[g]\Ω+ where g = as ◦ α̃s. Further, pr : Ω+ → Γ[g]\Ω+ is
holomorphic and we have that jd,K,V |Vs = pr ◦ j. Hence jd,K,V |Vs is holomorphic.

According to [And96a, §3.3, Prop. 3.3.1] applied to Xan
Vs
→ Vs, the holomorphic map

j is a local isomorphism and therefore the same holds for jd,K,C|Vs as Ω+ is the universal
covering space of Γ[g]\Ω+. Those conclusions are valid for a neighborhood of any point
s in V an hence we see that jd,K,V : V an → Ω+\Γ is holomorphic and it is a local isomor-
phism.

Step 4: For every connected component V of U we defined a holomorphic morphism
jd,K,V : V an → ShK(G,Ω±)C which is a local isomorphism. By Step 3 it factorizes though
a connected component Γ[g]\Ω+ of ShK(G,Ω±)C for some g ∈ G(Af ) so using a result
of A. Borel ([Del72, §5, Thm. 5.1]) we conclude that jd,K,V is an algebraic morphism.
Indeed, we can apply Theorem 5.1 in loc. cit. because the group Γ[g] is torsion free as
K ⊂ Kn for some n ≥ 3. We also have that jd,K,V , being an analytic local isomorphism,
is étale. Gluing the morphisms jd,K,V for all connected components V of U we obtain a
morphism of C-schemes

j2d,K,U : U → ShK(G,Ω±)C

which is étale.

Step 5: We will show that jd,K,U descends to a morphism of algebraic spaces

jd,K,C : F2d,K,C → ShK(G,Ω±)C.

We have to show that the two projection maps

jd,K,U ◦ pri : U ×F2d,K,C U → ShK(G,Ω±)C

for i = 1, 2 coincide (see [Knu71, Ch. II, §1, Prop. 1.4]). As F2d,K,C is a reduced algebraic
space over C we have that U ×F2d,K,C U is a reduced C-scheme ([Knu71, Ch. II, §1, Def.
1.1]). Hence we can check the equality of the two morphisms on C-valued points.

Any C-valued point on U ×F2d,K,C U is a pair
(
(X1, λ1, α1), (X2, λ2, α2), f

)
where f is

an isomorphism of the objects (X1, λ1, α1) and (X2, λ2, α2) in F2d,K,C. Hence from the
very definition of the morphism jd,K,U we easily see (just like in the proof of Proposition
3.2.3) that

jd,K,U ◦ pr1
(
(X1, λ1, α1), (X2, λ2, α2)

)
= jd,K,U ◦ pr2

(
(X1, λ1, α1), (X2, λ2, α2)

)
.

Thus we have that jd,K,U ◦ pr1 = jd,K,U ◦ pr2 and therefore jd,K,U descends to a morphism
jd,K,C : F2d,K,C → ShK(G,Ω±)C. It is étale as jd,K,U is étale ([Knu71, Ch. II, §2, Def.
2.1]).

Corollary 3.2.7. The algebraic space F2d,K,Q is a scheme.
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Proof. Combining the above proposition and [Knu71, Ch. II, §6, Cor. 6.17] we conclude
that F2d,K,C is a scheme. Therefore F2d,K,Q is a scheme, as well.

Definition 3.2.8. The map jd,K,C is called the period morphism (or the period map)
associated to d and K. For every primitively polarized complex K3 surface (X,λ, α) of
degree 2d and a level K-structure α, the point jd,K,C

(
(X,λ, α)

)
∈ ShK(G,Ω±)C is called

the period point of (X,λ, α).

Remark 3.2.9. The period map jd,K,C defined in the proof of Proposition 3.2.5 is a slight
modification of the period maps used in [BBD85] to construct coarse moduli spaces of
primitively polarized complex K3 surfaces. We consider moduli spaces over Q and these
have more than one geometric connected component. The morphism constructed above
takes this information in to account. We will see later that this is essential for having
the period morphism defined over Q.

In Section 3.3.10 we show that the image jd,K,C(F2d,K,C) is dense in ShK(G,Ω±)C and
that its complement is a divisor.

Suppose that K is an admissible subgroup of SO(V2d)(Ẑ) (see Definition 1.5.5). Then
one can consider the moduli space F full

2d,K,C which is an open subspace of F2d,K,C. Hence
we have a period map

jd,K,C : F full
2d,K,C → ShK(G,Ω±)C

given by the restriction of jd,K,C : F2d,K,C → ShK(G,Ω±)C to F full
2d,K,C. We will show below

that this period morphism is injective. This result is a direct consequence of the global
Torelli theorem for K3 surfaces .

Theorem 3.2.10 (Piatetskij-Sapiro and Shafarevich). Let X and X ′ be two K3
surfaces and let φ : H2

B(X,Z) → H2
B(X ′,Z) be a Hodge-effective isometry. Then there

exists a unique isomorphism u : X ′ → X such that u∗B = φ.

Proof. See [BBD85, Exp. VIII & IX] for the proof. Note that the statement of the the-
orem in [BBD85, Exposé VII, §3] is for Kähler K3 surfaces. Here we assume all surfaces
to be algebraic so we have omitted this in the statement above. See also Corollary 11.2
in [BPvdV84]

Proposition 3.2.11. For an admissible subgroup K of SO(V2d)(Ẑ) the period map

jd,K,C : F full
2d,K,C → ShK(G,Ω±)C

is an open immersion.

Proof. Note first that the algebraic space F full
2d,K,C is a scheme as we have an open im-

mersion iK : F full
2d,K ↪→ F2d,K into a scheme (cf. Theorem 1.5.17). Further, by Proposition

3.2.5 the map jd,K,C : F full
2d,K,C → ShK(G,Ω±)C is étale hence it is open. We have to show
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that it is an immersion. As both schemes are reduced it is enough to show that the
morphism is injective on C-valued points.

Suppose that (Xi, λi, αi) ∈ F full
2d,K,C(C) for i = 1, 2 are two points such that

jd,K,C
(
(X1, λ1, α1)

)
= jd,K,C

(
(X2, λ2, α2)

)
in ShK(G,Ω±)C. Let α̃i be two representatives of the classes αi and let

ai : H
2
B(Xi,Z(1))→ L0

be two isometries as in the definition of the map jd,K,C. Then we have that

[a1 ◦ hX1 ◦ a−1
1 , a1 ◦ α̃1]K = [a2 ◦ hX2 ◦ a−1

2 , a2 ◦ α̃2]K.

Hence there are two elements q ∈ G(Q) and κ ∈ K such that we have an equality(
q · (a1 ◦ hX1 ◦ a−1

1 ), q ◦ a1 ◦ α̃1 ◦ κ
)

=
(
a2 ◦ hX1 ◦ a−1

2 , a2 ◦ α̃2

)
. (3.4)

From the equality between the second elements in (3.4) we see that q = a2 ◦ α̃2 ◦
κ ◦ α̃−1

1 ◦ a−1
1 . Hence it belongs to {g ∈ SO(V2d)(Ẑ) | g(e1 − df1) = e1 − df1}, by

the very definition of a full level K-structure, and being in G(Q) we conclude that
q ∈ {g ∈ SO(V2d)(Z) | g(e1 − df1) = e1 − df1}. The equality between the first elements
in (3.4) shows that

a−1
2 ◦ q ◦ a1 : H2

B(X2,Z(1))→ H2
B(X1,Z(1))

is a Hodge isometry, mapping the class of λ2 to the class of λ1 and preserving the level
structures. By the global Torelli theorem for K3 surfaces one concludes that it comes
from an isomorphism of the triples (X1, λ1, α1) and (X2, λ2, α2). Therefore the morphism
jd,K,C is an immersion.

Remark 3.2.12. In general, the morphism jd,K,C : F2d,K,C → ShK(G,Ω±)C need not be
injective. We cannot apply the arguments of the proof of Proposition 3.2.11 as we only
get a Hodge isometry

a−1
2 ◦ q ◦ a1 : P 2

B(X2,Z(1))→ P 2
B(X1,Z(1)).

As not every such isometry is induced by an isometry between the cohomology groups
H2
B(X2,Z(1)) and H2

B(X1,Z(1)), mapping c1(λ2) to c1(λ1), we cannot conclude that
(X1, λ1) and (X2, λ2) are isomorphic.
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3.3 Complex Multiplication for K3 Surfaces

Here we will prove that the field of definition of jd,K,C is Q. This is an analogue of
Theorem 4.21 in [Del71, §4] concerning periods of abelian varieties. We will do this first
by proving a variant of the main theorem of complex multiplication for abelian varieties
[Mil90, Ch. I, Thm. 5.3] in the case of exceptional K3 surfaces and then applying a
density result for those surfaces. We will carry out this strategy in Sections 3.3.4-3.3.9.
Before that we give a short review of some results from class field theory and canonical
models of Shimura varieties.

We begin by making the following notation which will be used from now on.

Let X/C be a non-singular projective variety and consider an automorphism σ ∈
Aut(C). The conjugate Xσ of X by σ is given by the Cartesian diagram

Xσ
β //

��

X

��
Spec(C)

Spec(σ)// Spec(C)

and for any n ∈ Z we will denote by

σX,f : H i
et(X,Af (n))→ H i

et(X
σ,Af (n))

or simply σf , the morphism on étale cohomology induced by β.

For a non-singular projective surface X the morphism β induces a morphism

β∗ : Pic(X)→ Pic(Xσ)

and we will denote it by σPic. Recall that we have a decomposition

H2
et(X,Af (1)) = AX,Af

⊕ TX,Af

where AX,Af
= c1(Pic(X))⊗ Af ⊂ H2

et(X,Af (1)) and similarly for étale cohomology

H2
et(X

σ,Af (1)) = AXσ ,Af
⊕ TXσ ,Af

.

We have that

σX,f = σPic,Af
⊕ σX,f |TX,Af

where σPic,Af
is the morphism sending c1(λ) to c1(λ

σ) for any λ ∈ Pic(X). In the sequel
we shall use the notation σX,f for the morphism σX,f |TXAf

: TX,Af
→ TXσ ,f .
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3.3.1 Class Field Theory

Let E be a number field and denote by Eab the maximal abelian extension of E. Class
field theory provides us with a description of Gal(Eab/E). There exists a surjective
homomorphism

recE : A×
E → Gal(Eab/E)

such that E× is in its kernel and for every finite abelian extension L of E the following
diagram

E×\A×
E

��

recE

onto
// Gal(Eab/E)

σ 7→σ|L
��

E×\A×
E/NmL/E(A×

L)
recL/E

∼=
// Gal(L/E)

is commutative. We refer to [Neu86, Ch. 3] and [CF67, Ch. VII] for proofs and some
properties of this homomorphism. If E is a quadratic imaginary field then recE gives
rise to an isomorphism

recE : E×\A×
E,f → Gal(Eab/E).

Indeed, one can use the description of the kernel of recE given in [CF67, Ch. VII, §5,
5.6] to see that.

To make notations easier when considering canonical models of Shimura varieties we
define the map

artE : A×
E → Gal(Eab/E)

by artE(α) = recE(α)−1.

3.3.2 The Homomorphism rh

Let V be a finite dimensional Q-vector space and let

h : S→ GL(V )R

be a Q-HS on V . Let T ⊂ GL(V ) be a Q-torus and suppose that the homomorphism
h factorizes thought TR. Then the same holds for the cocharacter µh (cf. Section 3.1.1)
and we have that

µh : Gm,C → TC

is defined over Q̄. Let E(h) be the field of definition of µh i.e., the reflex field of the pair
(T, h). It is a number field. Composing µh : Gm,E(h) → TE(h) with he norm morphism we
obtain a homomorphism

r(T, h) : ResE(h)/Q(Gm,E(h))→ T.

74



3.3. Complex Multiplication for K3 Surfaces

Explicitly, for an element e ∈ E(h)× = ResE(h)/Q(Gm,E(h))(Q) we have

r(T, h)(e) =
∏

ρ : E(h)→Q̄

ρ(µh(e))

where the sum runs over all different embeddings ρ : E(h)→ Q̄.

Definition 3.3.1. With notations as above define the homomorphism rh : A×
E(h) →

T (Af ) as being the composition

rh : A×
E(h) ResE(h)/Q(Gm,E(h))(A)

r(T,h) // T (A)
proj // T (Af ).

We see that if a ∈ A×
E(h) and a = (a∞, af ) ∈ (E(h)⊗ R)⊕ A×

E(h),f , then one has

rh(a) =
∏

ρ : E(h)→Q̄

ρ(µh(af )).

3.3.3 The Canonical Model of ShK(G,Ω±)C

Let K be a compact open subgroup of G(Af ). The canonical model ShK(G,Ω±) of
ShK(G,Ω±)C is scheme over Q (which is the reflex field of the Shimura datum (G,Ω±))
such that:

(i) one has an isomorphism ShK(G,Ω±)⊗Q C→ ShK(G,Ω±)C;

(ii) Aut(C) acts on ShK(G,Ω±)C via the isomorphism given by (i) as follows: For every
special pair (T, x) of (G,Ω±) one has that

σ[x, a]K = [x, rx(s)a]K

for all σ ∈ Aut(C/E(x)) and s ∈ A×
E(x) such that artE(x)(s) = σ|E(x)ab . Here

the morphism rx : A×
E(x) → T (Af ) is the one associated to the pair (T, x) as in

Definition 3.3.1.

These two properties determine the scheme ShK(G,Ω±) uniquely up to a unique isomor-
phism. For details concerning canonical models of Shimura varieties and their properties
we refer to [Moo98, §2].
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3.3.4 The Main Theorem of Complex Multiplication for Ex-
ceptional K3 Surfaces. Statement

Let X be an exceptional K3 surface of CM-type (EX , εX) over C. As in the case of
abelian varieties with complex multiplication we are interested in a relation between the
various cohomology groups of X and its conjugate Xσ by an automorphism σ of C. In
this section we will state the main results of complex multiplication for exceptional K3
surfaces. To make notations easier we will denote by

E := εX(EX) ⊂ C

the reflex field of Hg(X).
Recall that the Hodge structure homomorphism hX : S→ SO(P 2

B(X,R(1))) factorizes

hX : S→ Hg(X)R ⊂ SO(TX,R) ↪→ SO(P 2
B(X,R(1))).

Let µX : Gm,E → Hg(X)E be the corresponding cocharacter and let

rX : A×
E → Hg(X)(Af ) ⊂ SO(TX,Q)(Af )

be the morphism associated to (Hg(X), hX) as in Definition 3.3.1.

Lemma 3.3.2. Suppose given an exceptional K3 surface X of CM-type (EX , εX). If
σ ∈ Aut(C/E), then Xσ is an exceptional K3 surface and the reflex field of Hg(Xσ)
is E.

One can give a proof of the lemma using a ‘a Hodge cycle is an absolute Hodge cycle’
argument. We will give a proof in Section 3.3.7 using abelian surfaces.

Let X be an exceptional K3 surface of CM-type (EX , εX) and let σ ∈ Aut(C/E).
Then by a EX-linear isometry η : TX,Q → TXσ ,Q we shall mean an isometry η such that

η(e · t) = (ε−1
Xσ ◦ εX)(e) · η(t)

for every t ∈ TX,Q and e ∈ EX .

Theorem 3.3.3 (Complex multiplication for exceptional K3 surfaces). Let X
be an exceptional K3 surface of CM-type (EX , εX). Let E = eX(EX) ⊂ C be its reflex
field and let σ ∈ Aut(C/E). Then for any idèle s ∈ A×

E with artE(s) = σ|Eab there is a
unique EX-linear isomorphism of polarized Q-HS

ηX : TX,Q → TXσ ,Q

such that ηX,f (rX(s)t) = σX,f (t) for every t ∈ TX,Af
.
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3.3. Complex Multiplication for K3 Surfaces

If such ηX exists, then it is necessarily unique. Indeed, the condition imposed on
ηX,f determines it uniquely and hence η is also determined uniquely via the natural
isomorphism TX,Af

∼= TX,Q ⊗ Af .
We will give a proof of the theorem in Section 3.3.7. We will use first a geometric

construction due to Shioda and Inose to reduce the problem to a similar statement
for abelian surfaces. Then we will show that the corresponding statement for abelian
surfaces follows from the main theorem of complex multiplication for abelian varieties.
We present these results in the next two sections.

Remark 3.3.4. We wonder if one could give a ‘direct’ proof of Theorem 3.3.3 similar to
the proof of Theorem 11.2 in [Mil04] using, for instance, arguments of the type ‘a Hodge
cycle is an absolute Hodge cycle’ on a K3 surface. This can be done in the case (X,λ)
is defined over an intermediate field E ⊂ K ⊂ C and σ ∈ Aut(C/K).

3.3.5 The Results of Shioda and Inose

We shall describe a geometrical way for constructing exceptional K3 surfaces with given
transcendental lattice using product abelian surfaces. We will follow the exposition of
Shioda and Inose in their paper [SI77] with some notational differences.

Let A = C1×C2 be a product of two elliptic curves over C and let Y be the Kummer
surface associated to A. Let π : Ã→ A be the the blowing up of the 2-torsion of A and
let ι : Ã→ Y be the morphism of degree 2 as in Example 1.1.4. Then we have a diagram

Ã
π

����
��

��
�

ι

��?
??

??
??

?

A Y.

One has morphisms induced on Betti cohomology with Z-coefficients and hence on the
corresponding transcendental lattices

π∗ : TA → TÃ and ι∗ : TY → TÃ.

We know that π∗ is an isomorphism of polarized Z-HS and ι∗ is an isomorphism of Z-HS
multiplying the intersection form by 2 i.e., (ι∗x, ι∗y)Ã = 2(x, y)Y .

Let {ui}4i=1, {vj}4j=1 be the four 2-torsion points on C1 and C2 respectively. Denote
by Eij the sixteen non-singular rational curves on Y corresponding to the points (ui, vj)
on A. In other words we have that Eij = ι

(
π−1(ui, vj)

)
. Following the notations of

[SI77] we denote by Fi and Gj the non-singular rational curves ι
(
π−1(ui × C2)

)
and

ι
(
π−1(C1 × vj)

)
on Y .

Consider the divisor

D = E21 + 2F2 + 3E23 + 4G3 + 5E13 + 6F1 + 3E12 + 4E14 + 2G4
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on Y . By Lemma 1.1 in [SI77] the linear system |D| gives a morphism Φ: Y → P1 of
which D is a singular fiber, say D = Φ−1(t0) for some t0 ∈ P1. We look further at two
divisors

B1 = F3 + E31 + E32 and B2 = F4 + E41 + E42

on Y . One can see that they do not meet D and their supports are connected. Hence
we conclude that the image Φ(Bi) is a point ti in P1 and Bi is contained in the singular
fiber Φ−1(ti) for i = 1, 2 (see the figure on page 122 of [SI77] and the comments following
it). Let f : P1 → P1 be the finite morphism of degree 2 branched only at t1 and t2 and
consider the fiber product Y ×Φ,P1,f P1.

Lemma 3.3.5. The surface Y ×P1 P1 has a minimal model X which is a K3 surface
(hence it is unique).

Proof. See Lemma 3.1 in [SI77].

The elliptic pencil Φ: Y → P1 on Y induces an elliptic pencil Ψ: X → P1 on X
([SI77, §3, p. 124]). The morphism f : P1 → P1 induces an involution of the surface
Y ×Φ,P1,f P1. Therefore it induces an involutive birational transformation of X, hence
by the minimality of a K3 surface an automorphism a of X. It has 8 fixed points {pi}8i=1

and Y is the minimal model of the quotient surface X/a. For details see [Kod63, §8, pp.
585-586, 591-592, 600-602] and the remarks after the proof of Lemma 3.1 on page 125 in
[SI77].

Let β : X̃ → X be the blow-up of the 8 points pi, i = 1, . . . , 8, on X. Then the
involution a on X induces an involution ã on X̃. If we denote the quotient morphism
X̃ → X̃/ã by γ then we have the following commutative diagram

X̃
γ

yytttttttttt
β

!!B
BB

BB
BB

BB

Y = X̃/ã

$$J
JJJJJJJJ

X.

}}||
||

||
||

|

X/a

The degree of the morphism γ is 2. The map β induces an isomorphism of polarized
Z-HS β∗ : TX → TX̃ . The main result of Section 2 of [SI77] is that γ∗ : TY → TX̃ is
an isomorphism of Z-HS such that (γ∗x, γ∗y)X̃ = 2(x, y)Y . Putting the preceding two
diagrams together we obtain

Ã
π

����
��

��
�

ι

��?
??

??
??

? X̃
γ

����
��

��
� β

  A
AA

AA
AA

A

A Y X.

(3.5)
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Shioda and Inose describe the relation between the transcendental lattices of A and X
using those morphisms.

Theorem 3.3.6 (Shioda-Inose). With the notations as above one has that the mor-
phism

φ : TX → TA.

defined as φ = π∗−1 ◦ ι∗ ◦ γ∗−1 ◦ β∗ induces an isomorphism of polarized Z-HS.

Proof. The main difficulty is to prove that the map γ∗ is an isomorphism. We refer to
the proof of Theorem 2 in [SI77]. Note that Shioda and Inose use homology groups and
we use cohomology groups. But in our case all those groups are free and we obtain the
result using duality.

Remark 3.3.7. Note that a priori the whole construction depends on choosing a num-
bering of A[2](C). We shall be interested in constructing exceptional K3 surfaces. As
we will see below for these surfaces the choices involved change only the morphisms β
and γ but not the surface X itself.

Remark 3.3.8. Note that by the comparison theorem between Betti and étale coho-
mology the map φf = π∗−1

f ◦ ι∗f ◦ γ∗−1
f ◦ β∗f induces an isomorphism

φf : TX,Af
→ TA,Af

.

Indeed, we have that φf = φ⊗Z Af and we know that φ is an isomorphism.

In order to explain the construction in the proof of the main result of [SI77] we
will follow their notations working with homology instead of cohomology. If X is a non-
singular projective surface over C we will denote by T hom

X the homological transcendental
lattice. In other words we define T hom

X = (Pic(X))⊥ ⊂ H2(X,Z(−1)).
Let X be an exceptional K3 surface over C. Denote by pX the period on T hom

X i.e.,
the linear functional, determined up to a constant by

pX(t) =

∫
t

ωX

for t ∈ T hom
X and ωX a non-vanishing holomorphic 2-form on X. We say that a basis

{y1, y2} is oriented if the imaginary part of pX(y1)/pX(y2) is positive.
Let {y1, y2} be an oriented basis of T hom

X . In it the bilinear form on T hom
X is given by

a matrix

Q =

(
〈y1, y1〉 〈y1, y2〉
〈y2, y1〉 〈y2, y2〉

)
=

(
2a b
b 2c

)
(3.6)

for some a, b, c ∈ Z with a, c > 0 and ∆ = b2 − 4ac < 0. Then we have that EX =
EndHS(TX,Q) = EndHS(T

hom
X,Q ) is isomorphic to Q(

√
∆) ⊂ C. In our notations from

Section 3.3.4 we have that eX(E) = E = Q(
√

∆).
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Let τ1 = (−b +
√

∆)/2a and τ2 = (b +
√

∆)/2 and consider the elliptic curve Ci =
C/Λτi where Λτi = Z + Zτi. These elliptic curves are isogenous and have complex
multiplication by E.

Theorem 3.3.9 (Shioda-Inose). Let X be an exceptional K3 surface over C and con-
sider the product abelian surface A = C1 × C2 where Ci for i = 1, 2 are the CM elliptic
curves defined above. Then the K3 surface XA constructed in Theorem 3.3.6 is isomor-
phic to X.

Proof. We refer to the proof of [SI77, Thm. 4]. The idea is to compare the lattices T hom
X

and T hom
XA

. Using Theorem 3.3.6 one sees that those two lattices are isometric. A result
of Piatetskij-Shapiro and Shafarevich says that an exceptional K3 surface is uniquely
determined by its transcendental lattice (see [PSS72, §8] and also the remarks made in
[SM74]). Hence one concludes that X is isomorphic to XA.

Remark 3.3.10. Note that if X is an exceptional K3 surface then the construction
described in Theorem 3.3.9 is independent of the numbering of A[2](C). Indeed, starting
with a numbering of A[2](C) one can constructs an exceptional K3 surface X1 and an
isomorphism of polarized Z-HS φ1 : TX1 → TA. Starting with a different numbering and
different f one constructs an exceptional K3 surface X2 with an isomorphism of polarized
Z-HS φ2 : TX2 → TA. Hence TX1 and TX2 are isometric and by the result of Piatetskij-
Shapiro and Shafarevich X1 and X2 are isomorphic. Note that the morphisms involved
in the construction might change.

3.3.6 Complex Multiplication for Product Abelian Surfaces

Let A be a complex abelian surface of CM type (E,Φ) and denote by E∗ its reflex field.
Let σ be an element of Aut(C/E∗). The main theorem of complex multiplication gives a
relation between Betti and étale cohomology of A and Aσ. We will need this in a special
case. Before stating the result we introduce some notations.

Let E ⊂ C be a quadratic imaginary field and let C1 and C2 be two elliptic curves
with CM by E. One should keep in mind here the data of Theorem 3.3.9. Then Ci is of
CM-type E ⊂ C. Let A be the product abelian surface C1 × C2. Then the reflex field
of the torus MT(A) is E ⊂ C (see [Shi98, Ch. IV, §18.7]). Consider the transcendental
space TA,Q and define

EA := EndHS(TA,Q).

Then EA is a quadratic imaginary field. The reflex field of the torus MT(TA,Q) is E ⊂ C.
On the other hand if εA : EA → EndC(H2,0(A)) ∼= C denote the action of EA on the
space of holomorphic two-forms on A, then just like in the case of K3 surfaces the field
εA(EA) ⊂ C is the reflex field of MT(TA,Q). Hence we have an isomorphism εA : EA → E.

We have natural isomorphisms of cohomology groups

H1
B(A,Z) ∼= H1

B(C1,Z)⊕H1
B(C2,Z) and H1

et(A, Ẑ) ∼= H1
et(C1, Ẑ)⊕H1

et(C2, Ẑ). (3.7)
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If h : S→ GL(H1
B(A,R)) and hi : S→ GL(H1

B(Ci,R)), for i = 1, 2 are the corresponding
homomorphisms defining the three Z-HS, then we have that h = h1 ⊕ h2. Hence we
have that µh = µh1 ⊕µh2 where µh and µhi

are the cocharacters defined in Section 3.1.1.
Further we know that

H2
B(A,Z(1)) ∼=

(
∧2H1

B(A,Z)
)
⊗Z(1) and H2

et(A, Ẑ(1)) ∼=
(
∧2H1

et(A, Ẑ)
)
⊗ Ẑ(1) (3.8)

and therefore combining (3.7) and (3.8) we have natural isomorphisms

H2
B(A,Z(1)) ∼=(

∧2H1
B(C1,Z)⊗ Z(1)

)
⊕

(
∧2H1

B(C2,Z)⊗ Z(1)

)
⊕

(
H1
B(C1,Z)⊗H1

B(C2,Z)⊗ Z(1)

)
(3.9)

and

H2
et(A, Ẑ(1)) ∼=(

∧2H1
et(C1, Ẑ)⊗ Ẑ(1)

)
⊕

(
∧2H1

et(C2, Ẑ)⊗ Ẑ(1)

)
⊕

(
H1

et(C1, Ẑ)⊗H1
et(C2, Ẑ)⊗ Ẑ(1)

)
.

(3.10)
The spaces

(
∧2H1

B(C1,Q)
)
⊗ Q(1) and

(
∧2H1

B(C1,Q)
)
⊗ Q(1) (respectively with Af -

coefficients) consist of algebraic classes. Hence for the homomorphism

hA : S→ GL(H2
B(A,R(1)))

giving the Z-HS on H2
B(A,Z(1)) we have

hA = (∧2h)⊗ hZ(1) =
(
∧2h1 ⊗ hZ(1)

)
⊕

(
∧2h2 ⊗ hZ(1)

)
⊕

(
h1 ⊗ h2 ⊗ hZ(1)

)
. (3.11)

Then for the corresponding cocharacters one has

µA = (∧2µh)⊗ µZ(1) =
(
∧2µ1 ⊗ µZ(1)

)
⊕

(
∧2mu2 ⊗ µZ(1)

)
⊕

(
µ1 ⊗ µ2 ⊗ µZ(1)

)
. (3.12)

As we explained in Section 3.1.1 the homomorphism hA and the cocharacter µA factor
trough SO(TA,Q). The Mumford-Tate group MT

(
H2
B(A,Q(1))

)
is a torus and we have

homomorphisms of algebraic groups

hA : S→ MT
(
H2
B(A,Q(1))

)
R ⊂ SO(TA,R)

and
µA : Gm,C → MT

(
H2
B(A,Q(1))

)
C ⊂ SO(TA,C).

We have that MT(H2
B(A,Q(1))) = MT(TX,Q). The field of definition of µA is E ⊂ C.

Let
rA : A×

E,f → MT(TX,Q)(Af ) ⊂ SO(TA,Q)(Af )
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be the morphism associated to (MT(TX,Q), hA) as in Definition 3.3.1.
Let σ ∈ Aut(C/E). Then by a EA-linear isometry η : TA,Q → TAσ ,Q we shall mean

an isometry η such that
η(e · t) = (ε−1

Aσ ◦ εA)(e) · η(t)

for every t ∈ TA,Q and e ∈ EX . Note that this definition is correct as the reflex fields of
MT(A) and MT(Aσ) are E ⊂ C.

Proposition 3.3.11. Let A = C1 × C2 be a product of two elliptic curves with CM
by a quadratic imaginary field E. Let σ be in Aut(C/E) and let s ∈ A×

E be an idèle
such that artE(s) = σ|Eab. Then there exists an isogeny η : Aσ → A such that for
the isometry η∗f : TA,Af

→ TAσ ,Af
induced by η acting on étale cohomology we have that

η∗f (rA(s)t) = σf (t) for every t ∈ TA,Af
.

Proof. This formulation is in the spirit of [Mil04, Ch. 11, Thm. 11.2]. By Theorem 11.2
in loc. cit. we can find two isogenies ηi : C

σ
i → Ci for i = 1, 2 such that for the maps

η∗i,f : H1
et(Ci,Q)→ H1

et(C
σ
i ,Q)

we have that η∗i,f (ri(s)t) = σCi,f (t) for every t ∈ H1
et(Ci,Af ), for i = 1, 2. Here

ri : A×
E → MT(Ci)(Af ) ↪→ GL(H1

B(Ci,Q))(Af )

is the homomorphism associated to (MT(Ci), hi).
Let η : Aσ → A be the product isogeny (η1, η2). It defines an EA-linear isometry

η∗Q : TA,Q → TAσ ,Q. Using the decompositions

H2
et(A,Af (1)) = TA,Af

⊕ AA,Af
and H2

et(A
σ,Af (1)) = TAσ ,Af

⊕ AAσ ,Af

we see that η∗f |AA,Af
: AA,Af

→ AAσ ,Af
sends a class c1(λ) for λ ∈ Pic(A) to c1(λ

σ).

Further, using the natural isomorphisms (3.7), (3.8), (3.9) and (3.10) we see that for

η∗f : TA,Af
→ TAσ ,Af

we have that η∗f (r(s)t) = σf (t). Here r : A×
E → MT(TX,Q)(Af ) is the morphism obtained

as in Definition 3.3.1 using the cocharacter
(
∧2(µ1 ⊕ µ2)

)
⊗ µQ(1) which is exactly µA.

So we have that r = rA which finishes the proof.

3.3.7 Proof of the Main Theorem of Complex Multiplication
for Exceptional K3 Surfaces

In this section we will give a proof of the claims announced in §3.3.4. We begin by
putting together the results of the previous two sections.
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3.3. Complex Multiplication for K3 Surfaces

Let X be an exceptional K3 surface over C of CM-type (EX , εX). Let

E = εX(EX) = Q(
√

∆)

be the quadratic imaginary field defined by the discriminant of the form (3.6) in Sec-
tion 3.3.5. Let A be the product abelian surface as in Theorem 3.3.9 associated to X.
Let us further set EA = EndHS(TA,Q). The two fields EX and EA are isomorphic as
abstract fields. With the notations of the previous section (EA, εA) is the reflex field of
MT(TA,Q). We have an isomorphism of polarized Z-HS φ : TX → TA. We also look at
the corresponding isomorphisms

φQ : TX,Q → TA,Q and φf : TX,Af
→ TA,Af

induced by the actions of π, ι, γ and β on Betti cohomology with Q coefficients and on
étale cohomology. We have that φQ = φ⊗Z Q and φf = φ⊗Z Af .

The morphism φQ gives an isomorphism

φad
Q : EX = EndHS(TX,Q)→ EndHS(TA,Q) = EA.

We have further the two inclusions εX : EX → EndC(H2,0(X)) ∼= C and εA : EA →
EndC(H2,0(A)) ∼= C. The map φQ is defined as a composition of algebraic morphisms
and hence we have a commutative diagram

EX

εX
��

φad
Q // EA

εA
��

EndC(H2,0(X))
(π∗−1

DR ◦ι∗DR◦γ
∗−1
DR ◦β∗DR)ad

// EndC(H2,0(A)).

(3.13)

In other words φad
Q gives an isomorphism of the CM-types (EX , εX) and (EA, εA). There-

fore, with these identifications, φQ commutes with the action of E on the two vector
spaces TX,Q and TA,Q via the isomorphisms e−1

X : E → EX and ε−1
A : E → EA. Similarly

φf is an AE,f -equivariant isomorphism via these actions. Further, via the isomorphism
φQ, one can identify the cocharacters µX and µA and thus also the morphism rX and rA.
Taking all these remarks in to account we see that for any idèle s ∈ A×

E the following
diagram

TA,Af

rA(s) //

φf

��

TA,Af

φf

��
TX,Af

rX(s) // TX,Af

(3.14)

is commutative.
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Chapter 3. Complex Multiplication for K3 Surfaces

Let σ be an element of Aut(C/E). Making a base change Spec(σ) : Spec(C) →
Spec(C) of Diagram (3.5) we obtain a diagram

Ãσ

πσ

}}||
||

||
|| ισ

!!C
CC

CC
CC

C X̃σ

γσ

}}{{
{{

{{
{{ βσ

""E
EE

EE
EE

E

Aσ Y σ Xσ.

(3.15)

Denote by φσ : TXσ → TAσ the isomorphism of polarized Z-HS, defined as in Theorem
3.3.6, by (πσ)∗−1 ◦ (ισ)∗ ◦ (γσ)∗−1 ◦ (βσ)∗. Consider the isomorphisms induced on Betti
cohomology with Q coefficients and étale cohomology

φσQ : TXσ ,Q → TAσ ,Q and φσf : TXσ ,Af
→ TAσ ,Af

These isomorphism are defined by algebraic morphisms and hence just as above we con-
clude that φσQ defines an isomorphism of the reflex fields (EXσ , εXσ) and (EAσ , εAσ).

Proof of Lemma 3.3.2. For an element σ ∈ Aut(C/E) the reflex fields of Hg(TA,Q)
and Hg(TAσ ,Q) are E. Hence we have an isomorphism eAσ ◦ (φσQ)ad : EXσ → E and
therefore the reflex field of Hg(Xσ) is E ⊂ C.

Before giving the proof of Theorem 3.3.3 we shall make a final remark. The map φf
is defined as a composition of the algebraic maps π, ι, γ, β and their inverses acting on
étale cohomology. The isomorphism φσf is defined in the same way using the conjugates
πσ, ισ, γσ, βσ. Hence we see that we have the following commutative diagram of étale
transcendental spaces:

TX,Af

φf

��

σX,f // TXσ ,Af

φσ
f

��
TA,Af

σA,f // TAσ ,Af
.

(3.16)

Proof of Theorem 3.3.3. Let s ∈ A×
E be an idèle such that artE(s) = σ|Eab . By Proposi-

tion 3.3.11 we have an isogeny
η : Aσ → A

such that for the induced isomorphism η∗f : TA,Af
→ TAσ ,Af

on étale cohomology with
Af -coefficients we have η∗f (rA(s)t) = σA,f (t) for every t ∈ TA,Af

.
Using the isomorphisms of Q-HS φQ and φσQ we obtain an isomorphism of Q-HS

ηX : TX,Q → TXσ ,Q

defined as ηX = φσQ ◦ η∗Q ◦ φ−1
Q . In other words we define ηX by completing the diagram

TX,Q

φQ
��

ηX //___ TXσ ,Q

φσ
Q
��

TA,Q
η∗Q // TAσ ,Q

(3.17)
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3.3. Complex Multiplication for K3 Surfaces

where η∗Q is the Q-HS morphism induced by η on Betti cohomology. Note that from
the remarks made above the isomorphism ηX is EX-equivariant. We get an AE,f -linear
isomorphism ηX,f : TX,Af

→ TXσ ,Af
by tensoring ηX with Af . By the commutativity

Diagrams (3.14) and (3.16), and using the fact that φf = φQ⊗Af and φσf = φσQ⊗Af we
see that the following diagram is commutative:

TA,Af

φf

��

rA(s)

##G
GG

GG
GG

GG σA,f

**VVVVVVVVVVVVVVVVVVVVVVVV

TA,Af

φf

��

η∗f // TAσ ,Af

φσ
f

��

TX,Af

rX(s)

##G
GG

GG
GG

GG σX,f

**VVVVVVVVVVVVVVVVVVVVVVVV

TX,Af

ηX,f // TXσ ,Af
.

(3.18)

Hence we have a Q-HS isomorphism ηX : TX,Q → TXσ ,Q such that ηX,f (rX(s)t) = σX,f (t)
for every t ∈ TX,Af

.

Remark 3.3.12. Note that the morphisms ηX and ηX,f are induced by a cycle inXσ×X.
Indeed, if Γη ⊂ Aσ × A is the graph of η, then the isomorphisms ηX and ηX,f are given
by the cycle

Z =
(
(βσ, β) ◦ (γσ, γ)−1 ◦ (ισ, ι) ◦ (πσ, π)−1

)
(Γη) ⊂ Xσ ×X

as in [Kle95, §3].

3.3.8 Some Special Points on ShK(G,Ω±)C

Let d ∈ N and let K ⊂ SO(V2d)(Ẑ) be a subgroup of finite index such that K ⊂ Kn

for some n ≥ 3. In order to carry out our strategy for proving that the morphism
jd,K,C : F2d,K,C → ShK(G,Ω±)C is defined over Q we need to find enough special points
on ShK(G,Ω±)C for which we can control the Galois action.

Proposition 3.3.13. Let E ⊂ C be a quadratic imaginary field. Then the set of special
points [x, a]K ∈ ShK(G,Ω±)C(C) with reflex field E is dense for the Zariski topology.

Proof. Let C be an elliptic curve over C with CM by E and consider the product abelian
surface A = C × C. Let P be a point of infinite order in C and consider the divisor

D1 = P × C + C × P
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Chapter 3. Complex Multiplication for K3 Surfaces

on A. As D1 = pr∗1P +pr∗2P , where pri : A→ C is the projection morphism onto the i-th
factor, we have that it is an ample divisor on A. Its self-intersection number (D1, D1)A
is 2.

Let X be the Kummer surface associated to A. Then X is an exceptional K3 surface
and the reflex field of MT(X) is exactly E. Let π : Ã → A be the blowing-up of A[2]
and ι : Ã→ X be the morphism of degree 2 (cf. Example 1.1.4). Then the line bundle

L := OX
(
ι(π∗(D1))

)
defines a quasi-polarization on X and one easily computes that (L,L)X = 2. Hence L is
primitive.

Let P 2
B(X,Z(1)) be the primitive Betti cohomology group with respect to c1(L). Fix

an isometry a : P 2
B(X,Z(1))→ L2. Then we have a point x := a ◦ hX ◦ a−1 in Ω±. The

Mumford-Tate group of the Q-HS x induced on V2 is aad(MT(X)) and hence its reflex
field is E. By the strong approximation theorem the orbit G(Q) ·x is dense in Ω± hence
the set of points {[x, a]K| a ∈ G(Af )} is dense in

ShK(G,Ω±)C = G(Q)\Ω± ×G(Af )/K.

Remark 3.3.14. Similar density results appear in various papers on the Torelli theorem
for K3 surfaces. The difference with our situation is that in those papers one mainly
works with the full period domain of dimension 20. We also mention Lemma 7.1.2 in
[And96b] which almost gives the result we need.

Corollary 3.3.15. Let d ∈ N and let E ⊂ C be a quadratic imaginary field. The set of
points x ∈ F2d,K,C corresponding to exceptional K3 surfaces X of CM-type (EX , εX) such
that εX(EX) = E is dense for the Zariski topology in F2d,K,C.

Proof. We have an étale morphism jd,K,C : F2d,K,C → ShK(G,Ω±)C. According to the
preceding proposition the set of points [x, a]K ∈ ShK(G,Ω±)C(C) with reflex field E is
dense in ShK(G,Ω±)C. Therefore the preimage of this set under jd,K,C in F2d,K,C is also
dense. It consists exactly of the exceptional K3 surfaces X of CM-type (EX , εX) such
that εX(EX) = E, with a polarization of degree 2d and a level K-structure.

3.3.9 Complex Multiplication for K3 Surfaces

We will prove here that the field of definition of the morphism jd,K,C is Q. To do that
we will use the density result for exceptional polarized K3 surfaces and Theorem 3.3.3
which establishes a relation between the Galois action on such a surface and its periods.
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3.3. Complex Multiplication for K3 Surfaces

Theorem 3.3.16. Let d ∈ N and let K ⊂ SO(V2d)(Ẑ) be a subgroup of finite index such
that K ⊂ Kn for some n ≥ 3. Then the morphism jd,K,C : F2d,K,C → ShK(G,Ω±)C is
defined over Q. In other words one has an étale morphism

jd,K : F2d,K,Q → ShK(G,Ω±)

such that jd,K ⊗ C = jd,K,C.

Proof. We will divide the proof into three steps.
Step 1. Let x ∈ F2d,K,C be a point corresponding to an exceptional K3 surface with CM
by E. We will show first that for every σ ∈ Aut(C/E) we have jd,K,C(σ(x)) = σ(jd,K,C(x)).

Let E ⊂ C be a quadratic imaginary field, let (X,λ, α) be a polarized exceptional K3
surface of CM-type (EX , εX) with a level K-structure α such that eX(EX) = E. Then
we have the triple (

(P 2
B(X,Z(1)), hX), ψX , α̃K

)
where α̃ is a representative of the class α.

Let α̃ be a representative of the class α and let aX : P 2
B(X,Z(1))→ L2d be an isometry

as in the definition of the morphism jd,K,C (see Step 1 of the proof of Proposition 3.2.5).
Via this isometry we have an inclusion of algebraic groups aad

X : MT(X) ↪→ G. By the
modular description of ShK(G,Ω±)C and the definition of jd,K,C we have

jd,K,C
(
(X,λ, α)

)
= [aX ◦ hX ◦ a−1

X , aX ◦ α̃]K.

We have that P 2
B(X,Q(1)) = TX,Q ⊕ AλX where

AλX := c1(λ)⊥ ⊂ AX,Q ⊂ H2
B(X,Q(1))

as polarized Q-HS. By definition the action of EX on AλX is trivial. The same decompo-
sition holds for étale cohomology P 2

et(X,Af (1)) = TX,Af
⊕ AλX,Af

where

AλX,Af
:= c1(λ)⊥ ⊂ AX,Af

⊂ H2
et(X,Af (1)).

By the comparison theorem between Betti and étale cohomology these two decomposi-
tions are compatible with tensoring with Af .

Let σ ∈ Aut(C/E) and consider the conjugate σ(X,λ, α) = (Xσ, λσ, ασ) defined by
the base change Spec(σ) : Spec(C) → Spec(C). The surface Xσ is also exceptional and
for it we have similar decompositions of P 2

B(Xσ,Q(1)) and P 2
et(X

σ,Af (1)). The base
change morphism Spec(σ) induces a morphism σPic : Pic(X)→ Pic(Xσ), preserving the
intersection forms on both spaces and sending λ to λσ. Hence we obtain an isomorphism
of polarized Q-HS σPic,Q : AλX,Q → AλXσ ,Q and an isomorphism σPic,f : : AλX,Af

→ AλXσ ,Af

such that σPic,Q ⊗ Af = σPic,f . Note that by its very definition σPic,f is nothing else but
σf restricted to AλX,Af

.
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By Theorem 3.3.3 there exists an isomorphism of polarized Q-HS ηX : TX,Q → TXσ ,Q
such that η−1

X ◦σf (t) = rX(s)(t) for every t ∈ TX,Af
. Define the isomorphism of polarized

Q-HS
η = ηX ⊕ σPic,Q : P 2

B(X,Q(1))→ P 2
B(Xσ,Q(1)).

Then we obtain an isomorphism of primitive étale cohomology

ηf := η ⊗ Af : P 2
et(X,Af (1))→ P 2

et(X
σ,Af (1))

for which, by the remarks made above, we have η−1 ◦ σf (t) = rX(s)(t) for every t ∈
P 2

et(X,Af (1)).
Consider the isometry

aXσ = aX ◦ η−1 : P 2
B(Xσ,Q(1))→ V2d.

We have that α̃σ = σf ◦ α̃ and we will see that aXσ ◦ α̃σ ∈ G(Af ) i.e., that we can use
the marking aXσ to compute the periods of (Xσ, λσ, ασ). We compute

aXσ ◦ α̃σ = aX ◦ η−1 ◦ α̃ = aX ◦ rX(s) ◦ α̃
= aX ◦ a−1

X ◦ r(aX◦hX◦a−1
X )(s) ◦ aX ◦ α̃

= r(aX◦hX◦a−1
X )(s) ◦ aX ◦ α̃

(3.19)

and hence aXσ ◦ α̃σ belongs to G(Af ). Here the morphism

r(aX◦hX◦a−1
X ) : A×

E,f → aad
X (MT(X))(Af )

is the homomorphism associated to the special pair (aad
X (MT(X)), aX ◦ hX ◦ a−1

X ) of
(G,Ω±) as in Definition 3.3.1. From the modular description of ShK(G,Ω±)C(C) given
in Proposition 3.2.3 we see that

jd,K,C
(
(Xσ, λσ, ασ)

)
= [aXσ ◦ hXσ ◦ a−1

Xσ , aXσ ◦ α̃σ]K.

Then using (3.19) we compute

jd,K,C
(
σ(X,λ, α)

)
= [aXσ ◦ hXσ ◦ a−1

Xσ , aXσ ◦ α̃σ]K
= [aX ◦ (η−1 ◦ hXσ ◦ η) ◦ a−1

X , aX ◦ α−1 ◦ σf ◦ α̃]K

= [aX ◦ hX ◦ a−1
X , r(aX◦hX◦a−1

X )(s) ◦ aX ◦ α̃]K

= σ
(
jd,K,C((X,λ, α))

)
.

Hence the action of Aut(C/E) on the point (X,λ, α) commutes with jd,K,C.

Step 2. For a fixed quadratic field E ⊂ C the set of polarized exceptional K3 sur-
faces X of CM-type (EX , εX) with εX(EX) = E is Zariski dense in Fd,K,C (see Corollary
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3.3.15). According to Step 1 the action of Aut(C/E) commutes with jd,K,C on that set.
Hence it commutes with jd,K,C and by Proposition 13.1 in [Mil04] we conclude that jd,K,C
is defined over E.

Step 3. Choose two quadratic imaginary fields E1 ⊂ C and E2 ⊂ C such that
E1 ∩ E2 = Q. By the previous step we know that jd,K,C is defined over E1 and E2.
Hence it is defined over their intersection Q which is the reflex field of Sh(G,Ω±)C.

As a corollary of the preceding theorem one can obtain an analogue of the main
theorem for complex multiplication for abelian varieties [Mil04, Ch. 11, Thm. 11.2] for
CM K3 surfaces. Let X be a K3 surface over C with CM by E = εX(EX). We denote
by rX : A×

E → MT(X)(Af ) the morphism associated to the pair (MT(X), hX).

Corollary 3.3.17 (Complex multiplication for K3 surfaces). Let X be a polarized
K3 surface over C of degree 2d with CM by a field E. Recall that we consider E embedded
in to C via εX . For every σ ∈ Aut(C/E) and an idèle s ∈ A×

E such that artE(s) = σ|Eab

there is an isomorphism of polarized Q-HS

η : P 2
B(X,Q(1))→ P 2

B(Xσ,Q(1))

such that for ηf = η ⊗ Af : P 2
et(X,Af (1)) → P 2

et(X
σ,Af (1)) we have ηf (rX(s)t) = σf (t)

for every t ∈ P 2
et(X,Af (1)).

Proof. Let λ be the polarization on X. We can introduce a level 3-structure α on (X,λ)
so that (X,λ, α) ∈ F2d,3,C(C). Let

aX : P 2
B(X,Z(1))→ L2d

and

aXσ : P 2
B(Xσ,Z(1))→ L2d

be two markings as in the construction of the morphism jd,K3,C (cf. Step 1 of the proof
of Proposition 3.2.5). Then we have that

jd,K3,C
(
(X,λ, α)

)
= [aX ◦ hX ◦ a−1

X , aX ◦ α̃]K3

and

jd,K3,C
(
(X,λ, α)

)
= [aXσ ◦ hXσ ◦ a−1

Xσ , aXσ ◦ α̃σ]K3 .

Using Theorem 3.3.16 and the definition of a canonical model (cf. Section 3.3.3) we see
that (

q · (aX ◦ hX ◦ a−1
X ), qaX ◦ rX(s) ◦ α̃

)
= (aXσ ◦ hXσ ◦ a−1

Xσ , aXσ ◦ σf ◦ α̃) (3.20)
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for some q ∈ G(Q). Hence comparing the first terms in (3.20) we see that

η := a−1
Xσ ◦ q ◦ aX : : P 2

B(X,Q(1))→ P 2
B(Xσ,Q(1))

defines an isometry of Q-HS. Form the equality between the second terms we see that
qaX ◦ rX(s) = aXσ ◦ σf i.e., that ηf ◦ rX(s) = σf .

Before stating our final result we will point out a difference between the approach to
the theory of complex multiplication for abelian varieties given, for instance, in [Mil04,
Ch. 10, 11 and 12] and the one for K3 surfaces given in this chapter. In the case of
abelian varieties one first proves an analogue of Corollary 3.3.17 and then derives an
analogue of Theorem 3.3.16 from it (cf. [Del71, §4]). Here we do the opposite as we do
not see a way to prove directly Corollary 3.3.17. The reason is the following: For a K3
surface X with CM by EX and an automorphism σ ∈ Aut(C/EX) one has little control
over the transcendental lattice TXσ of Xσ, unless X is exceptional.

Remark 3.3.18. The statement in Corollary 3.3.17 can be given in a form not including
any polarizations. With the notations as above for a K3 surface with CM by E one
simply gets a Q-HS isometry α : H2

B(X,Q(1))→ H2
B(Xσ,Q(1)) such that for the induced

isomorphism ηf : H2
et(X,Af (1)) → H2

et(X
σ,Af (1)) on étale cohomology one has that

ηf (rX(s)t) = σf (t) for any t ∈ H2
et(X,Af (1)).

Corollary 3.3.19. Every complex K3 surface with CM can be defined over a number
field which is an abelian extension of its Hodge endomorphism field.

Proof. Let (X,λ) be a polarized K3 surface of degree 2d with CM by EX and choose a
full level 3-structure α on (X,λ). We have an open embedding

jd,Kfull
3

: F full
2d,3,Q ↪→ ShKfull

3
(G,Ω±)

of schemes over Q. The point (X,λ, α) maps to a special point in ShKfull
3

(G,Ω±)C which
according to [Del71, §3, 3.15] can be defined over an abelian extension of its reflex field
eX(EX). Therefore X can be defined over an abelian extension of EX . Note that one
can give a description of the corresponding extension in terms of the reciprocity law as
explained in loc. cit..

Remark 3.3.20. Let us mention that a similar result can be found in the literature.
Shioda and Inose ([SI77, Thm. 6]) prove that any exceptional K3 surface can be defined
over a number field. As we shall see below one can actually give such a number field
explicitly and conclude that it is an abelian extension of the Hodge endomorphism field
of the exceptional K3 surface. Piatetskij-Shapiro and Shafarevich prove, using the Torelli
theorem for K3 surfaces, that every K3 surface with CM can be defined over a number
field. We refer to Theorem 4 in [PSS75]
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Example 3.3.21. Let X be an exceptional K3 surface with CM by E. Let C1 and C2 be
the two elliptic curves from Theorem 3.3.9 and denote by j1 and j2 their j-invariants. By
the theory of complex multiplication for elliptic curves we know that K1 = E(j1, C1[2])
and K2 = E(j2, C2[2]) are abelian extensions of E. We can see that all morphisms and
surfaces involved in the construction described in Theorems 3.3.6 and 3.3.9 are defined
over the composite K1K2. Hence X is defined over K1K2 which is an abelian extension
of E.

3.3.10 Final Comments

Complex multiplication. Corollaries 3.3.17 and 3.3.19 are analogues to two of the
main theorems of the theory of complex multiplication for abelian varieties ([Mil90, Ch.
I, §5, Cor. 5.5]). Another important result of that theory is that every abelian variety
with CM defined over a number field K has potentially good reduction at every prime
ideal of K. We wonder if a similar result holds for K3 surfaces with CM.

Question. Let K be a number field and suppose given a K3 surface with CM over K.
Does X have potentially good reduction at every prime ideal of K?

One could follow the line of thoughts of [Mil04, Ch. 10, Prop. 10.5]. In this way we
can see that for a prime p of K the inertia action of Ip on H2

et(XQ̄,Ql) factorizes through
a finite group. To finish “the proof” we need a Néron-Ogg-Shafarevich-type criterion for
potentially good reduction of K3 surfaces. To our knowledge, in general, this is an open
problem. Such a criterion exists for discrete valuation rings of characteristic zero. This
follows form the degeneration result of Kulikov ([Kul77, Thm. II and Thm. 2.7] and
[PP81]).

The period morphism. One knows that the period morphisms used in [BBD85]
and [Fri84] are dominant. Further, the complement of their images are divisors. We will
show here that the same holds for jd,K,C.

Recall that we have a decomposition

ShK(G,Ω±)C =
∐
[g]∈C

Γ[g]\Ω+,

where C := G(Q)+\G(Af )/K and Γ[g] = G(Q)+ ∩ gKg−1 for some representative g of
[g] ∈ C. Let X denote the geometric connected component of the canonical model
ShK(G,Ω±) corresponding to Γ[1]\Ω+. Denote by EX ⊂ C its field of definition. It is an
abelian extension of Q and one can see that

ShK(G,Ω±) =
∐

σ∈Gal(EX/Q)

Xσ. (3.21)
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According to Propositions 7 and 8 in [BBD85, Exp. XIII, p. 150] we have that
jd,K,C(F2d,K,C) ∩ X is dense in X and its complement in X is a divisor. The points in
the complement correspond to quasi-polarized K3 surfaces. Hence using Theorem 3.3.16
and (3.21) we conclude that jd,K,C(F2d,K,C) is dense in ShK(G,Ω±)C and its complement
is a divisor.
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Chapter 4

Kuga-Satake Morphisms

In [KS67] M. Kuga and I. Satake associate to every complex polarized K3 surface (X,L)
an abelian variety A using a transcendental construction involving the second primitive
Betti cohomology group of X. This construction gives a relation between the Betti
cohomology groups of X and of A. P. Deligne ([Del72]) shows, among other things,
that a similar relation holds for étale cohomology groups and uses it to prove the Weil
conjecture for K3 surfaces. In [And96a] Y. André studies the rationality properties of
the Kuga-Satake construction, describing the motive of a K3 surface and computing the
motivic Galois group.

We see that, using the Kuga-Satake construction, one can deduce some properties
of K3 surfaces, mostly of motivic nature, from the corresponding properties of abelian
varieties. Those results concern mainly K3 surfaces in characteristic zero as we possess a
transcendental way for constructing Kuga-Satake varieties. We come across the following
problem.

Question. Is there a geometric Kuga-Satake construction?

Of course, we have to explain what we mean by a ‘geometric’ construction. We are
interested in any construction of a well-defined Kuga-Satake abelian variety, giving rise
to the étale cohomology relation in [Del72, (6.6.1)] and in [And96a, Def. 4.5.1]. We
also require that this construction can be carried out over any base field of characteristic
p ≥ 0, possibly excluding some finite number of primes p.

In this chapter we suggest a partial solution to the question taking up a zig-zag way.
Our strategy is to give an interpretation of the Kuga-Satake construction in characteristic
zero as a morphism between F2d,K,K and Ag,d′,n,K for some compact open subgroup
K ⊂ G(Af ) and a number field K. Then we extend this morphism over an open part of
Spec(OK), where OK is the ring of integers in K. We explain this in more detail below.

Here is the organization of the chapter. In the first few sections we give some back-
ground material which will be used in the sequel and we outline the Kuga-Satake con-
struction. In Section 4.2.5, using the results of Chapter 3, we give two constructions
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of Kuga-Satake morphisms depending on some choices. For any n ≥ 3 we construct a
Kuga-Satake morphism

fksd,a,n,Q : F2d,nsp,Q → Ag,d′,Q
mapping every primitively polarized complex K3 surface (X,λ, ν) with a spin level n-
structure ν to its associated Kuga-Satake abelian variety A with a certain polarization
of degree d′2. Making some further choices we define a Kuga-Satake morphism

fksd,a,n,γ,En
: F2d,nsp,En → Ag,d′,n,En

over a finite abelian extension En of Q having the same property.
Section 4.3.1 is the core of the matter discussed here. Suppose given two numbers

d, n with n ≥ 3 and a smooth scheme U over a discrete valuation ring R, of mixed
characteristic (0, p). Denote by K the field of fractions of R. Assume further that p does
not divide dn. We give sufficient conditions under which one can extend a morphism
fK : U ⊗K → Ag,d′,n,K over Spec(R). Using this result we show that the Kuga-Satake
morphism fksd,a,n,γ,En

extends over an open part of Spec(OEn), where OEn is the ring of
integers in En. We end the chapter with some applications of the existence of Kuga-
Satake morphisms in mixed characteristic to canonical lifts of ordinary K3 surfaces and
abelian varieties.

4.1 Extension of Polarizations of Abelian Schemes

In this section we give some results on extension of polarizations of abelian schemes.
We will use them to extend Kuga-Satake morphisms in positive characteristic. We fix a
discrete valuation ring R with field of fractions K and residue field k.

Lemma 4.1.1. Let A be an abelian scheme over a discrete valuation ring R and let λK
be a polarization of the generic fiber AK of A. Then λK extends uniquely to a polarization
of A.

Proof. By [FC90, Ch. 1, Prop. 2.7] λK extends uniquely to a homomorphism λ : A→ At

over R. It suffices to show that 2 · λ is a polarization. But 2 · λ = ϕM where M =
(idA, λ)∗PA and PA is the Poincaré bundle on A×At. We conclude by [Ray70, Cor. VIII
7] thatM is relatively ample, hence 2 · λ is a polarization.

Lemma 4.1.2. Suppose given a locally noetherian, regular scheme U and a dense open
subscheme V ⊂ U such that the codimension of U \ V in U is at least 2. Let A→ U be
an abelian scheme and let λV be a polarization of AV → V . Then λV extends uniquely
to a polarization λ of A→ U .

Proof. Applying [FC90, Ch. 1, Prop. 2.7] as in the proof of the previous lemma we see
that λV extends uniquely to an isogeny λ : A→ At over U .
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4.2. Kuga-Satake Morphisms Over Fields of Characteristic Zero

By assumption there is an étale covering πV : Ṽ → V such that the pull-back
λṼ : AṼ → At

Ṽ
of λV is equal to ϕLṼ

for an ample line bundle LṼ on AṼ . By the
Zariski-Nagata purity theorem (see [Gro71, Exp. X, Cor. 3.3]), the morphism πV ex-
tends to an étale covering π : Ũ → U . Let j : Ṽ → Ũ be the inclusion. Then the sheaf
L := j∗LṼ is a line bundle (cf. [FC90, Ch. V, Lemma 6.2]). The isogenies λṼ and ϕLṼ

coincide so by the unicity part of [FC90, Ch. 1, Prop. 2.7] we see that λŨ = ϕL.
To show that λŨ is a polarization we apply Corollary VIII 7 of [Ray70] as in the

proof of the preceding lemma.

4.2 Kuga-Satake Morphisms Over Fields of Charac-

teristic Zero

In the following sections we will recall the construction of Kuga-Satake abelian varieties
associated to polarized K3 surfaces. In our exposition we will follow [Del72] and [And96a].
In Section 4.2.5 we will use these ideas and the results of Chapter 3 to define Kuga-Satake
morphisms over number fields.

4.2.1 Clifford Groups

Clifford groups will play an essential rôle in the construction of the Kuga-Satake mor-
phisms and in this section we will give a short review of the results we will use later on.
For details we refer to [Lam73, Ch. V] and [Sch85, Ch. 9].

Let d be a natural number. For simplification we change the notations of Section
1.2.1 by setting (L, ψ) to be the lattice (L2d, ψ2d) and (V, ψ) to be the quadratic space
(L2d, ψ2d)⊗Q.

Denote by G the algebraic group SO(V, ψ) ∼= SO(2, 19) over Q (cf Section 3.2.1).
Further, following the notations of Example 1.5.4 we consider the even Clifford alge-
bra C+(V ) and the Clifford group G1 := CSpin(V ) of (V, ψ). Recall that one has a
homomorphism of algebraic groups

α : CSpin(V )→ SO(V, ψ) (4.1)

defined by
α(g) = (v 7→ gvg−1)

which is called the adjoint representation of CSpin(V ) on V . The kernel of the adjoint
representation of CSpin(V ) is Gm and one has a short exact sequence

1→ Gm → G1 → G→ 1. (4.2)

Then G = Gad
1 and we have that the center Z(G1) of G1 is Gm.
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Chapter 4. Kuga-Satake Morphisms

There is a canonical involution

ι : C+(L)→ C+(L)

which acts trivially on the constants Gm ↪→ G1. We define the spinorial norm

N: G1 → Gm (4.3)

by setting
N(g) = ι(g)g.

It is a surjective homomorphism and we denote its kernel by Spin(V ). The spinorial
norm gives rise to a short exact sequence

1→ Spin(V )→ G1 → Gm → 1.

One has that Gder
1 = Spin(V ) is the derived group of G and N: G1 → Gm = Gab

1 is the
maximal abelian quotient of G1. The group Spin(V ) is simply connected.

Further, we dispose of an embedding CSpin(V ) ↪→ C+(V )∗ and left multiplication
by elements of CSpin(V ) on C+(V ) gives an inclusion of algebraic groups

β : CSpin(V ) ↪→ GL(C+(V )). (4.4)

See [Del72, §3.2]. It is called the spin representation of CSpin(V ) on C+(V ).

4.2.2 Kuga-Satake Abelian Varieties Associated to Polarized
K3 Surfaces

In this section we recall the construction of Kuga-Satake abelian varieties. We will follow
closely [Del72] and [And96a].

Let (X,L) be a primitively polarized complex K3 surface of degree 2d. Fix a marking
m : H2

B(X,Z(1)) → L0 such that m(c1(L)) = e1 − df1 (cf. Section 1.2.1 and Remark
1.2.6). Then we obtain an isometry m : P 2

B(X,Z(1))→ L and hence the homomorphism
hX : S→ SO

(
P 2
B(X,Z(1))

)
defines an element

hm := m ◦ hX ◦m−1 : S→ SO(VR)

of Ω±. There is a unique homomorphism

h̃m : S→ G1,R

such that hm = α ◦ h̃m, where α : G1 → G is the adjoint representation homomor-
phism (see [Del72, §4.2]). Let W denote the Z-module C+(L). The composition of the
homomorphism h̃m with the spin representation β : G1 ↪→ GL(WR)

β ◦ h̃m : S→ GL(WR)
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4.2. Kuga-Satake Morphisms Over Fields of Characteristic Zero

gives rise to a polarizable Z-HS of type {(1, 0), (0, 1)} on W . We refer to [Del72, Prop.
4.5] for a proof. Hence β ◦ h̃m defines a complex abelian variety A = A(L, h), given by
the condition that H1

B(A,Z) = W as Z-HS. Its dimension is g = 219.
If we take a different marking m′ : H2

B(X,Z(1)) → L0 with m′(c1(λ)) = e1 − df1,
then we have that m′ ◦ m−1 ◦ hm(z) = hm′(z) ◦ m′ ◦ m−1 for all z ∈ S. Therefore
C+(m′ ◦ m) : W → W defines an isomorphism between the Z-HS on W induced by
β ◦ h̃m and β ◦ h̃m′ . Hence we obtain an isomorphism between the abelian varieties
associated to (W,β ◦ h̃m) and (W,β ◦ h̃m′). Thus we see that the construction described
above associates to a polarized K3 surface (X,L) an abelian variety A, which does not
depend on the choice of a marking m.

Definition 4.2.1. The abelian variety A is called the Kuga-Satake abelian variety as-
sociated to (X,L).

We will see in Section 4.2.4 how to give explicitly polarizations of A.

Example 4.2.2. We shall describe explicitly how to obtain the Hodge structure on
C+(V ) in terms of the one on V . Choose an orthonormal basis (e1, e2) of V+ = VR ∩
(V −1,1 ⊕ V 1,−1) and let e+ = e1e2. Choose an orientation of (e1, e2) such that e1 − ie2
spans V 1,−1. Then multiplication by e+

x 7→ e+x

defines a complex structure on C+(VR) which corresponds to the morphism h̃ : S →
GL(C+(VR)) defined above. The Kuga-Satake abelian variety A associated to (X,L)
is exactly the complex torus C+(VR)/C+(L) where C+(VR) is considered as a complex
vector space via the complex structure given by multiplication by e+. For further details
we refer to the articles of Satake [Sat66], Kuga and Satake [KS67] and van Geemen
[vG00].

Example 4.2.3. As beforeX will be a complex K3 surface. Instead of taking the orthog-
onal complement of an ample line bundle one can consider a subgroup N ⊂ c1(Pic(X)) ⊂
H2
B(X,Z(1)) and its complement

LN = N⊥ ⊂ H2
B(X,Z(1))

with respect to the bilinear form ψ. Then LN carries a natural polarized Z-HS of type
{(1,−1), (0, 0), (−1, 1)} and one can consider again C+(LN) and give it a polarized Z-HS
of type {(1, 0), (0, 1)} as above. It gives rise to a complex abelian variety AN associated
to the pair (X,N). We refer to [Mor85, §4.1] for further comments.

For two subgroups N ⊂ N ′ ⊂ NS(X) with d = dimQ(N ′
Q/NQ) one has that AN is

isogenous to a product of 2d copies of AN ′ . For a proof see [Mor85, §4.4].
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Example 4.2.4. Let X be an exceptional K3 surface. Then the transcendental space
TX,Q = c1(Pic(X)Q)⊥ is of dimension 2 over Q. By the preceding remarks we conclude
that A is isogenous to a product of 219 copies of an elliptic curve E which has complex
multiplication. See also [KS67, pp. 241-242].

Remark 4.2.5. Note that from the very construction of A we have that the Mumford-
Tate group MT(A) is contained in G1 viewed as a subgroup of GL(C+(V )) via the
spin representation (4.4). Moreover, from the short exact sequence (4.2) we see that
Gm = ker(α) is contained in MT(A) for weight reasons and hence we have an exact
sequence

1→ Gm → MT(A)→ MT(X)→ 1.

We also conclude that Hg(A) is an extension of Hg(X) by Z/2Z.

4.2.3 Endomorphisms

Denote by C+ the opposite ring C+(L)op. It is non-canonically isomorphic to C+(L).
Let (X,L) be a primitively polarized K3 surface. Fix a marking m : P 2

B(X,Z(1))→ L as
in Section 4.2.2 and let hm := m◦hX ◦m−1 : S→ GR be the homomorphism defining the
Z-HS on L. The right action of C+ on W := C+(L) commutes with the morphism β ◦ h̃m
so the Kuga-Satake abelian variety A has complex multiplication by C+ (cf. [And96a,
§4.2] and [Del72, §3.3]). In other words there is an injection

γ : C+ ↪→ End(A). (4.5)

In fact one can see that there is an isomorphism of Z-HS of type {(−1, 1), (0, 0), (1,−1)}

φZ : C+(L)ad → EndC+(W )

where C+(L)ad is the Z-HS obtained from (L, h) using the tensor construction C+( ).

4.2.4 Polarizations

Let (X,L) be a complex K3 surface with a primitive polarization λ of degree 2d and let
m : H2

B(X,Z(1))→ L0 be a marking such that m(c1(L)) = e1−df1. Let hm : S→ SO(VR)
be the Z-HS induced on L by hX and let let A be its associated Kuga-Satake abelian
variety. We will show how to give explicitly a polarization of the Z-HS W (= C+(L) =
H1
B(A,Z)).

Let ι : C+(L)→ C+(L) be the canonical involution of the even Clifford algebra. Fix
a non-zero element a ∈ C+ such that ι(a) = −a. Then the skew-symmetric form

ϕa : W ⊗W → Z(−1) (4.6)
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given by

ϕa(x, y) = tr(ι(x)ya)

defines a polarization for the Z-HS on W if and only if the symmetric bilinear form
iϕa(x, h̃m(i)y) is positive definite (here i =

√
−1). Lemma 4.3 in [Del72] (see also

Example 4.2.6) guarantees the existence of an element a ∈ C+ for which ±ϕa is a
polarization.

Example 4.2.6. Let e1, . . . , e21 be an orthogonal basis of (V, ϕ) such that ψ(ei, ei) < 0
for i = 1, 2. Let m 6= 0 be an integer such that me1e2 ∈ C+(L). One has that ι(me1e2) =
−me1e2 and if h ∈ Ω±, then either ϕme1e2 or −ϕme1e2 is a polarization for h̃. For a proof
we refer to [vG00, Prop. 5.9].

Remark 4.2.7. Note that the degree of the polarization ϕa depends only on a and d
and can be computed explicitly.

Remark 4.2.8. Let a ∈ C+ be an element such that ι(a) = −a and, say ϕa is a
polarization the Z-HS on W induced by h̃. Then ϕa defines a polarization µ : A → At

which gives rise to a Rosati involution † on End0(A) = End(A) ⊗ Q. One can see that
the restriction of the Rosati involution to C+ ⊗Q ↪→ End0(A) (cf. (4.5)) is given by

f † = a−1ι(f)a

for all f ∈ C+(V ). Hence C+(V ) is stable under †.

Remark 4.2.9. Note that we make some non-canonical choices to define a polarization
on A. For instance, it is not clear if two different markings mi : H

2
B(X,Z(1)) → L0 for

which mi(c1(λ)) = e1− df1 give rise to two isomorphic polarized abelian varieties (A, µ1)
and (A, µ2).

4.2.5 Kuga-Satake Morphisms over Fields of Characteristic Zero

Recall that we associated to every polarized complex K3 surface a complex abelian
variety. We will explain here how to do this in families. Following the line of thoughts
in [Del72] and [And96a] we define Kuga-Satake morphisms from the moduli spaces of
polarized K3 surfaces with certain level structures to moduli stacks of polarized abelian
varieties. We shall keep the notations from the previous sections.

Consider the Shimura datum (G,Ω±) (cf. Section 3.2.2) and let h0 : S → GR be an
element of Ω±. Let h̃0 : S → G1,R be the unique homomorphism such that h0 = α ◦ h̃0

(cf. Section 4.2.2). Define Ω±
1 to be the G1(R)-conjugacy class of h̃0. The pair (G1,Ω

±
1 )

defines a Shimura datum with reflex field Q. We refer to [And96a, Appendix 1] for a
proof.
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Chapter 4. Kuga-Satake Morphisms

The adjoint representation (4.1) defines a morphism of Shimura data

α : (G1,Ω
±
1 )→ (G,Ω±)

in the following way: αgr : G1 → G is the adjoint representation homomorphism and
αHS : Ω±

1 → Ω± the the morphism sending h̃ to α◦ h̃. The morphism αHS is well-defined
as h = g ◦ h̃0 ◦ g−1 for some g ∈ G1(R) and hence α ◦ h̃ = α(g) ◦ h0 ◦ α(g)−1 ∈ Ω±.
Moreover αHS : Ω±

1 → Ω± is an analytic isomorphism ([Del72, §4.2] or [Mil92, Lemma
4.11]).

Fix a natural number n ≥ 3. Let Ksp ⊂ G1(Af ) be a subgroup of finite index in Ksp
n

and denote by Ka the image α(Ksp) ⊂ G(Af ) which is a subgroup of finite index in Ka
n

(cf. Example 1.5.4). Then one has a morphism of quasi-projective Q-schemes

α(Ksp,Ka) : ShKsp(G1,Ω
±
1 )→ ShKa(G,Ω±). (4.7)

Consider the group C = Gm(Q)\α−1(Ka)/Ksp. We have that

C = Gm(Q)\α−1(Ka)/Ksp = Gm(Q)\Gm(Af )Ksp/Ksp

= Gm(Q)\Gm(Q)Gm(Ẑ)Ksp/Ksp ∼= Gm(Ẑ)/(Gm(Ẑ) ∩Ksp).
(4.8)

The group C acts on ShKsp(G1,Ω
±
1 )C via right multiplication. We have that Z(G1) = Gm

and G = G1/Z(G1). Further, by Hilbert’s Theorem 90, H1(k,Gm) = 0 for all fields
of characteristic zero, hence we can apply Lemma 4.13 in [Mil92] and conclude that
the morphism α(Ksp,Ka) ⊗ C is a Galois cover with a Galois group C. As C acts on
ShKsp(G1,Ω

±
1 )C via Hecke correspondences we see that these automorphisms are defined

over Q. Therefore the morphism (4.7) is a Galois cover with a Galois group C.
We will describe more explicitly the relation between these two Shimura varieties over

C. Consider the finite sets CG1 := G1(Q)+\G1(Af )/Ksp and CG := G(Q)+\G(Af )/Ka.
The homomorphism α defines a surjective map of sets α : CG1 → CG (cf. (4.2)). Note
that C naturally acts on CG1 from the right. With this action the map α makes CG1 into
a C-torsor over CG (in the sense of sets); in other words, if [g] ∈ CG and g1 ∈ G1(Af )
is an element with α([g1]) = [g], then the map c → α−1([g]) given by u 7→ [g1u] is a
bijection.

One has that the decomposition of ShKsp(G1,Ω
±
1 )C into connected components is

ShKsp(G1,Ω
±
1 )C =

∐
[g]∈CG1

Γ′[g]\Ω+
1

where Γ′[g] = G1(Q)+ ∩ gKspg−1, for some representative g of the class [g] (see [Mil04,
§5, Lemma 5.13]. Similarly, we have that

ShKa(G,Ω±)C =
∐

[g]∈CG

Γ[g]\Ω+
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where Γ[g] = G(Q)+ ∩ gKag−1 for some representative g of [g].
The morphism α(Ksp,Ka) maps the connected component Γ′[g]\Ω+

1 to Γ[α(g)]\Ω+ sending

the class [h̃] to the class [h] (cf. §4.2.2). The restriction

α(Ksp,Ka) : Γ′[g]\Ω+
1 → Γ[α(g)]\Ω+ (4.9)

is an isomorphism of complex quasi-projective varieties. Indeed, α maps Γ′[g] surjectively
onto Γ[α(g)] and as −1 6∈ Γ′[g] (because −1 6∈ gKsp

n g
−1 ⊃ gKspg−1) one concludes from

(1.8) that Γ′[g] is mapped isomorphically onto Γ[α(g)]. The morphism αHS : Ω+
1 → Ω+ is

an isomorphism so we see that (4.9) is an isomorphism as well. Further, we have that

α−1
(Ksp,Ka)(Γ[g]\Ω+) =

∐
u∈C

Γ′[g1u]\Ω+
1 (4.10)

where g1 ∈ G(Af ) with α(g1) = g.
Denote by W the Z-module C+(L) and choose an element a ∈ C+ such that ι(a) =

−a. Recall that for such an element we have defined a bilinear form ϕa : W⊗W → Z(−1)
(see (4.6)). The image of G1 under the spin representation β : G1 ↪→ GL(WQ) is actually
contained in CSp(WQ, ϕa). Indeed, for any element γ ∈ G1 we have that

ϕa(γx, γy) = tr(ι(γx)γya) = tr(ι(x)ι(γ)γya)

= tr
(
ι(x)N(γ)ya

)
= N(γ)tr(ι(x)ya)

= N(γ)ϕa(x, y)

hence β(γ) ∈ CSp(WQ, ϕa). Further, if the bilinear form ϕa defines a polarization for
a Hodge structure β ◦ h̃1 on W , then it defines a polarization for all Hodge structures
β ◦ h̃ on W , for which h̃ belongs to the connected component of Ω±

1 of h̃. If ϕa is a
polarization for those h̃ coming from the elements in Ω+, then −ϕa is a polarization for
the h̃ coming from the elements in Ω−.

Assumption 4.2.10. We assume that a ∈ C+ is such that ι(a) = −a and that ϕa or
−ϕa defines a polarization for the Z-Hodge structures induced on W by β ◦ h̃ for any
h̃ ∈ Ω±

1 .

Define the inclusion of Shimura data

β : (G1,Ω
±) ↪→ (CSp(WQ, ϕa),H

±).

as βgr : G1 ↪→ CSp(WQ, ϕa) being the spin representation (4.4) and βHS : Ω±
1 ↪→ H±

mapping h̃ to β ◦ h̃.
Let Λn be the congruence level n-subgroup of CSp(WQ, ϕa)(Af ) corresponding to the

lattice W of WQ. In other words we take

Λn = {g ∈ CSp(WQ, ϕa)(Af ) | gWẐ = WẐ and g ≡ 1 (mod n)}.
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It is clear from the definitions that β(Ksp) ⊂ β(Ksp
n ) ⊂ Λn hence we obtain a morphism

of quasi-projective Q-schemes

β(Ksp,Λn) : ShKsp(G1,Ω
±)→ ShKsp

n
(G1,Ω

±)→ ShΛn(CSp(WQ, ϕa),H
±).

Note that fixing the lattice W , respectively the arithmetic group Λn, one has an immer-
sion ShΛn(CSp(WQ, ϕa),H

±) ↪→ Ag,d′,n,Q where d′ is explicitly computed in terms of d
and a (cf. Remark 4.2.7). It is given by the identification of ShΛn(CSp(WQ, ϕa),H

±)
with a some component Ag,δ,n,Q of Ag,d′,n,Q corresponding to an elementary divisor se-
quence δ = (d1, . . . , dr), uniquely determined by ϕa, with d1 · · · dr = d′ (cf. Definition
1.3 in [dJ93]). We can put all morphisms considered so far in the following diagram

ShKsp(G1,Ω
±
1 )

α(Ksp,Ka)

��

β(Ksp,Λn) // Ag,d′,n,Q
prn

��
ShKa(G,Ω±) Ag,d′,Q.

(4.11)

First Construction of Kuga-Satake morphisms. Both morphisms α(Ksp,Ka) and
prn are quotient morphisms as Ag,d′,Z[1/n] is the quotient stack [Ag,d′,n/GL(WQ)(Z/nZ)]
(cf. [MB85, Ch VII, 4.3.4]). Moreover, as C acts freely on ShKsp(G1,Ω

±) we have
that the stack [ShKsp(G1,Ω

±
1 )/C] is represented by the quotient scheme ShKa(G1,Ω

±) ∼=
ShKsp(G1,Ω

±
1 )/C. The spin representation defines a homomorphism (see (4.8))

β : C = Gm(Ẑ)Ksp/Ksp → GL(WQ)(Z/nZ). (4.12)

We will show that β(Ksp,Λn) descends to a morphism βKa : ShKa(G,Ω±)→ Ag,d′,Q. To do
this we have to check that β(Ksp,Λn) is equivariant with respect to the homomorphism
(4.12). Both ShKa(G,Ω±) and Ag,d′,n,Q are reduced schemes over Q so we can check the
statement on C-valued points. In other words we have to show that

β(Ksp,Λn)

(
g · [h̃, r]Ksp

)
= β(g) · β(Ksp,Λn)

(
[h̃, r]Ksp

)
for any g ∈ C, h̃ ∈ Ω± and r ∈ G1(Af ). But this is tautology as from the definitions we
see that

β(Ksp,Λn)

(
g · [h̃, r]Ksp

)
= β(Ksp,Λn)

(
[h̃, rg]Ksp

)
= [β ◦ h̃, β(rg)]Λn

= β(g) · [β ◦ h̃, β(r)]Λn = β(g) · β(Ksp,Λn)

(
[h̃, r]Ksp

)
.

Hence β(Ksp,Λn) descends to a morphism of algebraic stacks

βKa : ShKa(G,Ω±)→ Ag,d′,Q.

Recall that we have a period morphism jd,Ka : F2d,Ka,Q → ShKa(G,Ω±) which sends
any complex polarized K3 surface with level Ka-structure to its period point (cf. Propo-
sition 3.2.5 and Theorem 3.3.16).
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4.2. Kuga-Satake Morphisms Over Fields of Characteristic Zero

Definition 4.2.11. Define the Kuga-Satake morphism associated to d, a and Ka

fksd,a,Ka,Q : F2d,Ka,Q → Ag,d′,Q

to be the composite fksd,a,Ka,Q = βKa ◦ jd,Ka .

Thus we have proved the following statement.

Proposition 4.2.12. Let d, n ∈ N with n ≥ 3 and let Ksp ⊂ Ksp
n be a subgroup of finite

index. Fix a non-zero element a ∈ C+ which satisfies Assumption 4.2.10. Then one has
a Kuga-Satake morphism

fksd,a,Ka,Q : F2d,Ka,Q → Ag,d′,Q
where g = 219 and d′ depends explicitly on a and d. It maps every primitively polarized
complex K3 surface (X,λ, ν) with a level Ka-structure ν to its associated Kuga-Satake
abelian variety A with a certain polarization of degree d′2.

Remark 4.2.13. Note that if K1 is a subgroup of G1(Ẑ) of finite index contained in Ksp
n

and such that α(K1) = Ka, then the morphism β(K1,Λn) : ShK1(G1,Ω
±
1 ) → Ag,d′,n,Q also

descends to the morphism βKa : ShKa(G,Ω±)→ Ag,d′,Q.

Example 4.2.14. Take Ksp to be the group Ksp
n . Then Ka = Ka

n and we obtain a
Kuga-Satake morphism

fksd,a,n,Q : F2d,nsp,Q → Ag,d′,Q.

Remark 4.2.15. If Ka is an admissible subgroup of SO(V )(Ẑ) (see Definition 1.5.5),
then we have an open immersion jd,Ka : F full

2d,Ka,Q ↪→ ShKa(G,Ω±) and therefore we obtain
a Kuga-Satake morphism

fksd,a,Ka,Q : F full
2d,Ka,Q → Ag,d′,Q

defined by fksd,a,Ka,Q = βKa ◦ jd,Ka .

Remark 4.2.16. One might want to descend the Kuga-Satake morphism defined in
Proposition 4.2.12 to a morphism F2d,Q → Ag,d′,Q. The essence of the problem is that the
Kuga-Satake construction described above requires a non-canonical choice of an element
a ∈ C+ to define a polarization. One can show that the obstruction for descending the
Kuga-Satake morphism to a map F2d,Q → Ag,d′,Q is equivalent to the problem posed in
Remark 4.2.9.

Our main goal in this chapter is to define Kuga-Satake morphisms in mixed charac-
teristic. As we will see later (Remark 4.3.8) there are problems extending the morphism
fksd,a,n : F2d,nsp,Q → Ag,d′,Q due to the fact that Ag,d′ is an algebraic stack. We will give a
second construction of Kuga-Satake morphisms below to which we can apply the exten-
sion result of Section 4.3.1.
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Chapter 4. Kuga-Satake Morphisms

Second Construction of Kuga-Satake Morphisms. We will construct a morphism
fksd,a,γ,n,E : F2d,nsp,E → Ag,d′,n,E for a number field E which can be determined via class
field theory from the data d, a, γ, n (see below). To do that we will first determine
the fields of definition of the geometric connected components of ShKsp

n
(G1,Ω

±
1 ) and

ShKa
n
(G,Ω±).

We have that

π0

(
ShKsp

n
(G1,Ω

±
1 )C

) ∼= G1(Q)+\G1(Af )/Ksp
n
∼= Gm(A)/

(
Q×R>0N(Ksp

n )
)

where N: G1 → Gab
1 = Gm is the spinorial norm homomorphism (see (4.3)). Denote by

En the subfield of Qab corresponding to the group Q×R>0N(Ksp
n ) via class field theory

(cf. Section 3.3.1). Then we have an isomorphism

artEn/Q : Gm(A)/
(
Q×R>0N(Ksp

n )
)
→ Gal(En/Q).

The Galois action on the geometric connected components of ShKsp
n

(G1,Ω
±
1 ) is given

as follows: Let Y be the connected component Ω+
1 /Γ

′
[1]. It is defined over En and if

σ ∈ Gal(En/Q) is an automorphism such that artEn/Q(σ) = N(g) for some g ∈ G1(Af ),
then Y σ = Ω+

1 /Γ
′
[g]. We have that

ShKsp
n

(G1,Ω
±
1 ) =

⋃
σ∈Gal(En/Q)

Y σ. (4.13)

For details see [Kud97, §2]. Further, if we denote by X the connected component Ω+/Γ[1]

of ShKa
n
(G,Ω±)C, then its field of definition EX is a subfield of En and hence it is an

abelian extension of Q. We have that [En : EX ] = #C = ϕ(n) (cf. (4.8)) and

ShKa
n
(G,Ω±) =

⋃
σ∈Gal(EX/Q)

Xσ. (4.14)

In order to define a Kuga-Satake morphism fksd,a,n,γ,E : F2d,nsp,E → Ag,d′,n,E we will give
a a section of α(Ksp

n ,Ka
n) and use (4.11). We see from (4.9), (4.10), (4.13) and (4.14),

that giving such a section is equivalent to giving a set-theoretic section of the homomor-
phism Gal(En/Q)→ Gal(EX/Q). For any such (set-theoretic) section γ : Gal(EX/Q)→
Gal(En/Q) one has a morphism

δγ : ShKa
n
(G,Ω±) =

⋃
σ∈Gal(EX/Q)

Xσ ∼=
⋃

σ∈Gal(EX/Q)

Y γ(σ) ⊂ ShKsp
n

(G1,Ω
±
1 ) (4.15)

which is defined over En.

Definition 4.2.17. Define the Kuga-Satake morphism associated to d, a, n and γ

fksd,a,n,γ,En
: F2d,nsp,En → Ag,d′,n,En

to be the composite fksd,a,n,γ,En
= β(Ksp

n ,Λn) ◦ δγ ◦ jd,Ka
n,En defined over En.
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4.2. Kuga-Satake Morphisms Over Fields of Characteristic Zero

Thus we have proved the following statement.

Proposition 4.2.18. Let d, n ∈ N with n ≥ 3. Let En and EX be as above and suppose
given a set-theoretic section γ of the homomorphism Gal(En/Q) → Gal(EX/Q). Fix
a non-zero element a ∈ C+ which satisfies Assumption 4.2.10. Then one has a Kuga-
Satake morphism

fksd,a,n,γ,En
: F2d,nsp,En → Ag,d′,n,En

where g = 219 and d′ depends explicitly on a and d. It maps every primitively polarized
complex K3 surface (X,λ, ν) with a spin level n-structure ν to its associated Kuga-Satake
abelian variety A with a certain polarization of degree d′2 and a certain level n-structure.
Further, by construction, for any choice of a section γ we have that fksd,a,n ⊗ En = prn ◦
fksd,a,n,γ,En

.

As we have seen, there are many possible ways of defining Kuga-Satake morphisms.
In general, one has to make non-canonical choices in order to find a section of α(Ksp

n ,Ka
n)

in (4.11) and define a morphism F2d,nsp,C → Ag,d′,n,C.
Below we will explain the relative Kuga-Satake construction of Deligne ([Del72, §5])

in our framework. Consider the diagram

Γ′[1]\Ω
+
1

∼= α
(Ksp

n ,Ka
n)

��

β
(Ksp

n ,Λn) // Ag,d′,n,C

Γ[1]\Ω+.

Over C one can define a morphism F2d,nsp,C → Γ[1]\Ω+ by mapping all connected com-
ponents of F2d,nsp,C to Γ[1]\Ω+. See the proof of Proposition 5.7 in [Del72]. Composing
these two maps we obtain a morphism

fn : F2d,nsp,C → Γ[1]\Ω+ ∼= Γ′[1]\Ω+
1 → Ag,d′,n,C

which is the relative Kuga-Satake construction described in [Del72, §5] and [And96a,
§5]. One can show that this morphism is defined over a number field. Suppose further,
that n = 3 or 4. Here is a possible way to study the field of definition of fn. Combining
Proposition 8.3.5 and Theorem 8.4.3 in [And96a] one can see that fn is defined over the
composite of En with any field K ⊂ C for which F2d,nsp,Q has a K-valued point. Then
by Theorem 7 in [Riz04] the morphism fn is defined over the composite of En with the
fields of definition of the geometric connected components of F2d,nsp,Q. In general, this
field can be a non-trivial extension of En.

Remark 4.2.19. The construction of Kuga-Satake morphisms described in this section
and the one given in [Del72] and [And96a] differ in the choice of a period morphism. We
use the “modified” period map jd,K,C in order to be able to apply the results of Chapter
3. In this way we can control explicitly the fields of definition of the morphisms involved
in the relative Kuga-Satake construction and therefore the field of definition of fksd,a,n,γ,C.
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Chapter 4. Kuga-Satake Morphisms

We will end this section with a result comparing the étale cohomology of a K3 surface
and its associated Kuga-Satake abelian variety. Let U i be a geometric connected com-
ponent of F2d,nsp,En which is defined over a field i : K ↪→ C. Let (πXi : X i → U i, λi, νi)
be the pull-back of the universal family to U i. Denote by (πAi : Ai → U i, µi, εi) the
polarized abelian scheme with level n-structure fksd,a,n,γ,En

((πXi : X i → U i, λi, νi)).
Taking a base change i : K → C we have an abelian scheme (AiC → U i

C, µ
i
C, ε

i
C) which

is exactly fksd,a,n,γ,C
(
(X i

C → U i
C, λ

i
C, ν

i
C)

)
and which, by construction, has multiplication

by C+. Further, we know that EndU i
C
(AiC) = C+ (see the beginning of §8 in [And96a])

and one has further that EndU i(Ai) = C+.

Lemma 4.2.20. There is a unique isomorphism of Zl-sheaves

C+(P 2
etπXi,∗Zl(1)) ∼= EndC+(R1

etπAi,∗Zl).

Proof. One repeats step by step the proof of Lemma 6.5.13 in [Del72].

Corollary 4.2.21. Let K be a field of characteristic zero and suppose given a K-valued
point (X,λ, ν) ∈ F2d,nsp,En(K). If (A, µ, ε) is the corresponding Kuga-Satake abelian
variety fksd,a,n,γ,En

(
(X,λ, ν)

)
, then one has an isomorphism of Gal(K̄/K)-modules

C+
(
P 2

et(XK̄ ,Zl(1))
) ∼= EndC+

(
H1

et(AK̄ ,Zl)
)

for any prime number l.

Proof. It follows from the preceding lemma.

Remark 4.2.22. Note that if R is a discrete valuation ring with a maximal ideal p and
field of fractions K of characteristic zero, containing En. Suppose given a polarized K3
surface (X,λ, α) with spin level n-structure over K and let (A, µ, β) be the corresponding
Kuga-Satake abelian variety. Suppose further that X has good reduction modulo p.
Then the inertia subgroup Ip acts trivially on P 2

et(XK̄ ,Zl(1)) for every l different from
the characteristic of R/p. As shown in [Del72, 6.6] and [And96a, §9, Lemma 9.3.1] this
implies that Ip acts via a finite group on H1

et(AK̄ ,Zl) i.e., that A has potentially good
reduction at p. Since the n-torsion is rational over K we conclude (as in [And96a, Lemma
9.3.1]) that A has good reduction at p.

4.3 Extension of the Kuga-Satake Morphisms in Pos-

itive Characteristic

The following two sections contain the main results of Chapter 4. We show that the
Kuga-Satake morphism from Definition 4.2.17 extends in positive characteristic. In this
way we give a partial answer to the question posed in the beginning of the chapter.

In Section 4.3.1 we prove an abstract extension result concerning morphisms from
smooth schemes into Ag,d′,n. Then we use this in the next section to show that fksd,a,n,γ,En

extends over an open part of Spec(OEn).
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4.3. Extension of the Kuga-Satake Morphisms in Positive Characteristic

4.3.1 The Extension Result

Let us fix the following notations we will use in this section:

• R will be a discrete valuation ring of mixed characteristic (0, p) where p > 2.
Denote by η and s the generic and the special points of Spec(R), respectively.
Further, let K be the fraction field of R and k will denote the residue field of R;

• U will be a smooth scheme over R;

• We fix three natural numbers g, d′ and n ≥ 3 and denote by A the moduli stack
Ag,d′,n,R of g-dimensional abelian varieties with polarization of degree d′2 and Jacobi
level n-structure over R. We will assume that p does not divide d′n.

• Assume given a morphism fη : Uη → Aη.

We are interested in extending the morphism fη over R. Of course, in general one cannot
expect to be able to do this without further assumptions on fη and U . We will list some
conditions below which, if satisfied, will guarantee the existence of an extension of fη.

Assumption 4.3.1. Let x be a point on the special fiber Us of U , let OU,x be its local ring
and denote by L the field of fractions of OU,x. Then the morphism fη : Spec(L) → Aη
extends to a morphism f̃ : Spec(OU,x)→ A.

We will show that if this assumption is fulfilled for certain points of U then the
morphism does extend over R. More precisely we have

Proposition 4.3.2. Let U be a smooth scheme over R and let fη : Uη → Aη be a
morphism. Assume that the total ramification index e of R satisfies e < p − 1 and
that all generic points of the special fiber Us of U satisfy Assumption 4.3.1. Then fη
extends uniquely to a morphism f : U → A over R.

Proof. We will divide the proof into several steps.

Step 1: We will prove first that if the morphism extends then the extension is unique.

Lemma 4.3.3. Let V be a scheme over R and suppose given a morphism fη : Vη → Aη.
Assume that it extends to a morphism fV ′ : V

′ → A over a dense open subscheme V ′ of
V . Then this extension is unique.

Proof. This boils down to the fact that A is separated over R. Assume that there
exist two morphisms, say F1 and F2 extending fη over V . Consider the morphism
(F1, F2) : V → A×R A. The locus where F1 = F2 is the pull-back (F1, F2)

−1∆A of the
diagonal ∆A ⊂ A ×R A which is closed as A is separated over R. Hence we conclude
that F1 = F2 on V ′.
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Chapter 4. Kuga-Satake Morphisms

In particular, we conclude that if f extends over U , then this extension is unique.

Step 2: There exists a maximal open subscheme V of U such that fη extends to a
morphism fV : V → A. Indeed, if f extends over two open subschemes V1 and V2 of U ,
then by Lemma 4.3.3 above those two extensions agree on V1∩V2. Hence we can glue the
two morphism and get a morphism fV1∪V2 : V1 ∪ V2 → A. This shows that one can take
V to be the union of all open subschemes V ′ of U such that fη extends to a morphism
fV ′ : V

′ → A.

Step 3: Consider the graph Γη of fη : Uη → Aη in Uη × Aη. Take the flat extension Γ̄
of Γη over R i.e., the closure of Γη in U ×A. We have the projection map pr1 : Γ̄→ U .
Let {U i

s}{i∈I} be the set of connected components of the special fiber Us and for each i
let U (i) be the open subscheme U \

(
∪j 6=iU j

s

)
. We look at the set

U
(i)
ft := {p ∈ U (i) | pr1 is flat at all points of pr1(p)}.

which is open in U (i) ([GD67, EGA IV, §8, Prop. 8.9.4]). We will call this set, with its
induced scheme structure the maximal subscheme of U (i) over which this projection map
is flat. Let Vft be the open subscheme

⋃
i U

(i)
ft of U .

Lemma 4.3.4. The maximal open subscheme V given in Step 2 over which fη extends
is equal the open subscheme Vft of U over which the morphism pr1 : Γ̄→ U is flat.

Proof. Note first that scheme V from Step 2 is contained in Vft. Indeed, the morphism
pr1 : pr−1

1 (V ) → V is an isomorphism, as pr−1
1 (V ) ⊂ U × A is the graph of fV , and

therefore it is flat.
Since pr1 : pr−1

1 (Vft) → Vft is flat the dimension of the fibers is constant. It is zero
on the generic fiber hence this morphism is quasi-finite. Using Zariski’s Main Theorem
([GD67, EGA IV, §8, Thm. 8.12.6]) one can factor pr1|Vft

as an open immersion and a
finite morphism pr−1

1 (Vft) → Ṽ → Vft. But generically, one every connected component
of Vft, the degree of the finite morphism is 1, hence it is 1 everywhere. This means that
pr1 : pr−1

1 (Vft)→ Vft is an isomorphism. Hence one can extend fη on Vft using the second
projection map pr2 : Γ̄→ A. Therefore we get the other inclusion Vft ⊂ V .

Step 4: We will show that the open subscheme V given is Step 2 contains all generic
points of Us. We need some auxiliary results.

Lemma 4.3.5. If x ∈ U satisfies Assumption 4.3.1, then x ∈ V .

Proof. According to Step 3 we have to show that pr1 : Γ̄→ U is flat at x.

Claim 4.3.6. Let X be a scheme over R and let Γη ⊂ Xη be a closed subscheme. Take
the flat extension Γ̄ of Γη. Let i : Y → X be a flat morphism over R and set ∆η : = i∗Γη.
Let ∆̄ be the flat extension of ∆η in Y . Then one has that ∆̄ = i∗Γ̄.
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Proof. Since flatness is stable under base change we have that i∗Γ̄ → Γ̄ is flat. Hence
i∗Γ̄ → R being the composite i∗Γ̄ → Γ̄ → R of two flat maps is also flat. Moreover, by
the very definitions we have that (i∗Γ̄)η = i∗Γη = ∆η. Therefore by uniqueness of the
flat extension (see [GD67, EGA IV, §2, Prop. 2.8.5]) we conclude that ∆̄ = i∗Γ̄.

For a scheme X denote by |X| its underlying topological space.

Claim 4.3.7. Let X and T be two schemes and h : T → X be a morphism. Take a point
x ∈ |X|, let i : Spec(OX,x) → X be the morphism associated to x and let i∗h : i∗T →
Spec(OX,x) be the pull-back map. If i∗h is flat, then h is flat above x i.e., it is flat at all
points t ∈ h−1(x).

Proof. If t ∈ h−1(x), then OT,t ∼= Oi∗T,t as OX,x-algebras and hence we obtain the result
in the claim.

Let us go back to the proof of the Lemma 4.3.5. We have the following diagram:

i∗Γ̄ //

��

Γ

��
Spec(OU,x)×A

��

flat // U ×A

��
Spec(OU,x)

flat ((PPPPPPPPPPPP
flat // U

smoothyyrrrrrrrrrrr

Spec(R).

Let α = Spec(L) where L is the field of fractions of OU,x. Consider the point ∆η =
(α, fη(α)) on Uη ×Aη. Then by Claim 4.3.6 applied to

X = Spec(OU,x)×A
Y = U ×A over R

Γη = the graph of fη

we conclude that i∗Γ̄ = ∆̄, where ∆̄ is the flat closure over R.

Since Assumption 4.3.1 holds for the point x the map fη : Spec(L)→ Aη extends to
a morphism f̃ : Spec(OU,x) → A and we see that ∆̄ is the graph of f̃ . In particular we
have that ∆̄ ∼= Spec(OU,x) hence it is flat over Spec(OU,x). If we apply Claim 4.3.7 with
T = Γ̄ and X = U we get that pr1 : Γ̄→ U is flat at x. Therefore by Step 3 we conclude
that x ∈ V . This finishes the proof of the Lemma.
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Chapter 4. Kuga-Satake Morphisms

Since all generic points of the special fiber Us satisfy Assumption 4.3.1 we conclude
that they are contained in V .

Step 5: By Step 4 there exists an open dense subscheme V of U , containing the generic
points of the connected components of the special fiber Us over which the morphism
fη : Uη → Aη extends to a morphism fV : V → A over R. It corresponds to a polarized
abelian scheme with level n-structure (AV , λV , αV ) over V .

As V contains strictly the generic fiber Uη and all generic points of the special fiber Us
we have that codimU U \ V ≥ 2. Since U is smooth over R and by assumption e < p− 1
then by a result of Faltings (Lemma 3.6 in [Moo98]) one concludes that AV → V extends
to an abelian scheme A→ U .

Further, by Lemma 4.1.2 the polarization λV extends to a polarization λ : A → At.
Since p does not divide n, the level n-structure αV extends uniquely to a level n-structure
α on (A, λ). Hence we get a polarized abelian scheme (A, λ, α) extending (AV , λV , αV ).
This corresponds to a morphism f : U → A extending fη.

Remark 4.3.8. We will apply Proposition 4.3.2 to show that the Kuga-Satake morphism
constructed in Proposition 4.2.18 extends over an open part of Spec(OEn), where OEn

is the ring of integers in En. One might want to use the same line of thoughts and
try to extend the Kuga-Satake morphism fksd,a,Ka,Q defined in Proposition 4.2.12 over an
open part of Spec(Z). The problem which one comes up with is to carry on Step 3
in this situation. One can define an equivalence of the closure Γ̄ of Γ. In general, the
morphism Γ̄ft := pr−1(Vft)→ Vft might not be representable so one cannot use Zariski’s
Main Theorem ([LMB00, Thm. 16.5]).

4.3.2 Extension of the Kuga-Satake Morphisms

In this section we will use the notations established in §4.2.5. In particular, we fix two
natural numbers d and n and let us suppose that n ≥ 3. Let γ be a set-theoretic section
of the homomorphism Gal(En/Q) → Gal(EX/Q). We will show below that the Kuga-
Satake morphism fksd,a,n,γ,En

extends over an open part of Spec(OE) where OEn the ring
of integers in En.

Theorem 4.3.9. Let d, n ∈ N, n ≥ 3 and suppose that a ∈ C+ satisfies Assump-
tion 4.2.10. Then the Kuga-Satake morphism fksd,n,a,γ,En

: F2d,nsp,En → Ag,d′,n,En extends
uniquely to a morphism

fksd,a,n,γ : F2d,nsp,OEn [1/N ] → Ag,d′,n,OEn [1/N ]

where N = 2dd′nl and l is the product of the prime numbers p whose ramification index
ep in En is ≥ p− 1.
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4.3. Extension of the Kuga-Satake Morphisms in Positive Characteristic

Proof. Let us first shorten the notations a bit by setting F to be F2d,nsp,OEn [1/N ] and
A to be Ag,d′,n,OEn [1/N ]. Let π : U → F be an atlas of F (i.e., an étale surjective mor-
phism) over OEn [1/N ]. We may assume that the pull-back of the universal family of
polarized K3 surfaces to U is a K3 scheme. The map fksd,a,n,γ,En

: FEn → AEn defines a

morphism fEn = fksd,a,n,γ,En
◦ πEn : UEn → AEn . We will fist extend fEn to a morphism

over OEn [1/N ] and then using a descent argument show that it comes from a morphism
fksd,a,n,γ : Fd,nsp,OEn [1/N ] → Ag,d′,n,OEn [1/N ].

Let p be a prime ideal of En not dividing N and let R = OEn,(p) be the localization
of OEn at p. As before {s, η} will be the special and the generic points of Spec(R). In
order to apply Proposition 4.3.2 to fEn and UR, which we will denote by U p, we have to
show that all generic points of the special fiber U p

s of U p satisfy Assumption 4.3.1.
Let x ∈ |U p

s | be a generic point. Then OUp,x is a discrete valuation ring with a
maximal ideal mx. Let us denote its field of fractions by L. Taking the pull-back of the
universal family of polarized K3 surfaces with spin level n-structures via the canonical
morphism Spec(OUp,x) → U p we obtain a K3 scheme (X → Spec(OUp,x), λ, ν). Then
fEn gives a morphism Spec(L) → AEn and let (A, µ, ε) be the corresponding abelian
variety over L. It is the Kuga-Satake abelian variety associated to the generic fiber of
(X → Spec(OUp,x), λ, ν). We can apply Remark 4.2.22 (or alternatively by Lemma 9.3.1
in [And96a] we conclude that A has potentially good reduction and as the n-torsion
points are L-rational, then A has good reduction) to see that the abelian variety A has
good reduction at mx. In other words the Néron model of A over OUp,x is an abelian
scheme. By Lemma 4.1.1, the polarization λ extends uniquely over OUp,x and as p

does not divide n, the level n-structure extends uniquely, as well. Hence the morphism
Spec(L) → AEn extends to a morphism Spec(OUp,x) → AR. Therefore, by Proposition
4.3.2 applied to U p, fEn and R = OEn,(p) one can extend fEn : UEn → AEn to a morphism
fp : U p → AR.

The morphism fEn can be extended uniquely over OEn,(p) for any p not dividing N .
Hence we conclude that it extends uniquely to a morphism f : U → A over Z[1/N ].

We are left to show that f descends to F2d,nsp,OEn [1/N ]. By [Knu71, Ch. II, §1, Prop.
1.4] one has the following exact sequence

0 // HomS(F ,A) α∗ // HomS(U,A)
pr∗1 //
pr∗2

// HomS(U
′,A)

where U ′ = U ×F U . Note that both pr∗1(f) and pr∗2(f) are extensions of the morphism
pr∗1◦π∗(fksd,a,n,γ,En

) = pr∗2◦π∗(fksd,a,n,γ,En
) over OEn [1/N ]. Since U ′ is a smooth scheme over

OEn [1/N ] ([Knu71, Def. 1.1]) and A is separated just like in Lemma 4.3.3 we conclude
that such an extension is unique. Hence we one has that pr∗1(f) = pr∗2(f) and therefore
by the above exact sequence f comes from a morphism

fksd,a,n,γ : F2d,nsp,OEn [1/N ] → Ag,d′,n,OEn [1/N ]

over OEn [1/N ].
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We end this section with a few remarks concerning the Kuga-Satake morphism in
mixed characteristic.

Remark 4.3.10. In the proof of Proposition 4.3.2 we used a result of Faltings to show
that certain morphisms extend in positive characteristic. This is really an essential step
of our strategy for defining Kuga-Satake abelian varieties in positive characteristic. In
Theorem 4.3.9 we have to exclude the primes p for which the ramification index ep is
≥ p − 1, as Lemma 3.6 in [Moo98] does not hold for these primes. See Section 6 in
[dJO97] and Section 3.4 in [Moo98].

Remark 4.3.11. We use the notations of Theorem 4.3.9. Suppose k is a field of charac-
teristic p such that p does not divide N and let R be a discrete valuation ring of mixed
characteristic (0, p) with field of fractions k. Then to every primitively polarized K3
surface with a spin level n-structure (X,λ, ν) over k we associate via fksd,a,n,γ a polarized
abelian variety with level n-structure (A, µ, ε) over k. We will call A the Kuga-Satake
abelian variety associated to (X,λ, ν). Further, if (X1, λ1, ν1) and (X2, λ2, ν2) are two
lifts of (X,λ, ν) over R, then the special fibers of (Ai, µi, εi) := fksd,a,n,γ

(
(Xi, λi, νi)

)
, for

i = 1, 2 are the same.

Remark 4.3.12. In characteristic zero one can show that the image fksd,n,a,γ,En
(F2d,nsp,En)

in Ag,d′,n,En is locally closed. Indeed, as we saw in Proposition 3.2.5 the period map
is open and the morphisms β(Ksp

n ,Λn) and δγ involved in the construction of fksd,n,a,γ,En

are finite (see Definition 4.2.17). It is interesting to know if the same holds in mixed
characteristic. This question is directly connected to the existence of an analogue of the
Néron-Ogg-Shafarevich criterion for potentially good reduction of K3 surfaces. As we
already mentioned in Section 3.3.10, in general, this is still an open problem.

4.4 Applications

We end Chapter 4 with some applications of the existence of Kuga-Satake morphisms
in mixed characteristic. In Section 4.4.1 we show that the étale cohomology relations
[Del72, (6.6.1)] and in [And96a, Def. 4.5.1] hold for the Kuga-Satake abelian varieties
defined in §4.3.2. Then, in Section 4.4.2, we study the behavior of fksd,a,n,γ at ordinary
points. Suppose that k is a finite field of characteristic p where p does not divide N (cf.
Theorem 4.3.9) and let (X,L, ν) ∈ F2d,nsp,Fp(k) be an ordinary point. We will prove that
the canonical lift (Xcan,L, ν) over W (k) is mapped to the canonical lift (Acan, µ, ε) of
(A, µ, ε) = fksd,a,n,γ

(
(X,L, ν)

)
.

4.4.1 Cohomology Groups

Let d and n be two natural numbers and suppose further that n ≥ 3. With the notations
as in Sections 4.2.5 and 4.3.2 let a ∈ C+ be an element satisfying Assumption 4.2.10 and
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let γ be a set-theoretic section of the homomorphism Gal(En/Q) → Gal(EX ,Q). Then
we have a Kuga-Satake morphism

fksd,a,n,γ : F2d,nsp,OEn [1/N ] → Ag,d′,n,OEn [1/N ]

where N = 2dd′nl and l is the product of the prime numbers p whose ramification index
ep in En is ≥ p− 1.

Let k be a field of characteristic p and suppose given a k-valued point (X,λ, ν) ∈
F2d,nsp,OEn [1/N ]. Denote by (A, µ, βn) the polarized Kuga-Satake abelian variety with
level n-structure fksd,a,n,γ((X,λ, ν)).

Lemma 4.4.1. With the notations as above one has and isomorphism of Gal(k̄/k)-
modules

C+
(
P 2

et(Xk̄,Zl(1))
) ∼= EndC+(H1

et(Ak̄,Zl))

for any l 6= p.

Proof. Let (X , λ, ν) be a lift of (X,λ, ν) over W (k) (which exists because F2d,nsp,OEn [1/N ]

is smooth over OEn [1/N ]) and let (A, µ, ε) be the Kuga-Satake variety fksd,a,n,γ
(
(X , λ, ν)

)
.

By Corollary 4.2.21 we have an isomorphism of Gal(K̄/K)-modules

C+
(
P 2

et(XK̄ ,Zl(1))
) ∼= EndC+(H1

et(AK̄ ,Zl))

for any l. Hence if l 6= p one can apply the smooth base change theorem for étale
cohomology to prove the claimed isomorphism.

Remark 4.4.2. Note that one can use this isomorphism in case k = Fq to compute the
Newton polygon of A in terms of the Newton polygon of X. For instance one can see
that if X is ordinary then A is also ordinary. We refer to [Nyg83, Prop. 2.5] for a proof.

4.4.2 Canonical Lifts of Ordinary K3 Surfaces

Let k be a perfect field of characteristic p > 0 and let W (k) be the ring of Witt vec-
tors. Suppose given an ordinary K3 surface X0 over k. Denote by X/S the universal
deformation of X0 over W (k). We know that S is formally smooth of dimension 20 (cf.
Proposition 1.4.1).

In [AM77, IV] Artin and Mazur define the enlarged formal Brauer group ΨX0 of X0

which is a p-divisible group over k and such that its connected component Ψ0
X0

is B̂r(X0).
With the notations of Section 1.4.1 let R ∈ A be a local artinian ring with residue field
k and let (X → Spec(R), φ) be a deformation of X0 over R. Then the enlarged formal
Brauer group ΨX over Spec(R) exists. It is a p-divisible group over Spec(R) and the
isomorphism φ induces an isomorphism of p-divisible groups over Spec(k)

φBr : ΨX ⊗R k → ΨX0 .
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In other words ΨX is a lifting of ΨX0 over R. Let

DefSch(X0) : A→ Sets

be the covariant deformation functor defined in Section 1.4.1 and let

DefBrX0 : A→ Sets

be the covariant functor

DefBrX0(R) =
{
isomorphism classes of pairs (G, φ) where G is a

p− divisible group over R and φ : G⊗R k ∼= ΨX0

}
.

We have the following Serre-Tate theory for ordinary K3 surfaces:

Theorem 4.4.3 (Nygaard). For any R ∈ A the map

DefSch(X0)(R)→ DefBrX0(R)

defined by

(X → Spec(R), φ) 7→ (ΨX , φBr)

is a bijection.

Proof. For a proof we refer to [Nyg83, Thm 1.1].

Let G be a lifting of ΨX0 over R. Since height one groups are rigid, we have precisely
one lifting G0

R of B̂r(X0) = Ψ0
X0

to Spec(R). Similarly, étale groups are also rigid so
there is a unique lift Get

R of Ψet
X0

to Spec(R). So we for any lifting G of ΨX0 to Spec(R)
we have en exact sequence

0→ G0
R → G→ Get

R → 0

lifting

0→ B̂r(X0)→ ΨX0 → Ψet
X0
→ 0

over Spec(R).

If we consider the trivial extension G = G0
R×Get

R , then by Theorem 4.4.3 above there
is a unique lifting Xcan

R of X0 over Spec(R) such that ΨXcan
R

= G0
R×Get

R . For any n ∈ N
taking R = Wn we obtain a lifting Xn = Xcan

Wn
. The projective system {Xn} defines a

proper flat formal scheme {Xn} over Spf(W ). It is algebrizable and defines a K3 scheme
Xcan over Spec(W ) which we will call the canonical lift of X0. Every line bundle of X0

lifts uniquely to a line bundle on Xcan. For a proof of these facts we refer to [Nyg83,
Prop. 1.8].
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With the notations established in Section 4.2.5 let d and n ≥ 3 be two natural
numbers, and let a ∈ C+ be an element satisfying Assumption 4.2.10. Choose a set-
theoretic section γ of the homomorphism Gal(En/Q) → Gal(EX/Q) so that we have a
Kuga-Satake morphism

fksd,a,n,γ : F2d,nsp,OEn [1/N ] → Ag,d′,n,OEn [1/N ]

where N = 2dd′nl and l is the product of the prime numbers p whose ramification index
ep in En is ≥ p − 1. Let k = Fq be a finite field and suppose given an ordinary point
(X0,L0, ν0) ∈ F2d,nsp,OEn [1/N ](k) (in particular p does not divide N). Denote by (Xcan,L)
the canonical lift of X0 to W . The spin level n-structure ν0 also lifts uniquely to a spin
level n-structure on Xcan as p does not divide N . Denote by (Aks, µ, ε) the abelian
scheme fksd,a,n,γ

(
(Xcan,L, ν)

)
over Spec(W ) and let (A0, µ0, ε0) be the triple (Aks, µ, ε)⊗k

over k.

The following result was suggested to us by B. Moonen.

Proposition 4.4.4. The abelian scheme Aks is the canonical lift of A0 over Spec(W ).

Proof. By Theorem 2.7 in [Nyg83] we know that, after a base change R′ → R, the abelian
scheme Aks is isogenous to the canonical lift Acan of A0. Hence we conclude that Aks is
a quasi-canonical lift.

Let

Def(A0,µ0) : A→ Sets

be the covariant functor

Def(A0,µ0)(R) = {isom. classes of polarized abelian schemes (A, µ, φ) over R
and an isomorphism φ : (A, µ)⊗R k → (A0, µ0)}.

This functor is representable by a formal smooth scheme A(A0,µ0) which has a structure
of a formal torus. For details we refer to [Kat81, Thm. 1.2.1 and Thm. 2.1] and [Moo95,
Ch. III, §1].

The lift Aks/W defines a point s ∈ A(A0,µ0)(W ). Just like in Lemma 1.5 in [Moo95,
Ch. III, §1] we conclude that since Aks is a quasi-canonical lift then s is a torsion point.
As A(A0,µ0)(W ) is l-divisible for all l 6= p we have that sp

m
= 1 ∈ A(A0,µ0)(W ). But s

is defined over W which is unramified and any pm torsion point is defined over ramified
rings unless m = 0. Hence s = 1 which corresponds to the canonical lift in the Serre-Tate
coordinates . Therefore Aks is the canonical lift of its special fiber.

Let p be a prime ideal of OEn which does not divide N and let k := OEn/p be its
residue field. It is a finite field and let p be its characteristic. Let R be the localization
of OEn at p. It is a discrete valuation ring with a residue field k. Following the notations
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of Section 2.1 we set F (2)
2d,nsp,k to be the non-ordinary locus of F2d,nsp,k. It is a closed

subspace of F2d,nsp,k and we consider

Ford
2d,nsp,R := F2d,nsp,R \ F (2)

2d,nsp,k

which is an open subspace of F2d,nsp,R.

Corollary 4.4.5. The restriction of the Kuga-Satake morphism

fksd,a,n,γ,R : Ford
2d,nsp,R → Ag,d′,n,R

is quasi-finite.

Proof. Note first that fksd,a,n,γ,En
is a quasi-finite morphism. Indeed, by construction (see

Definition 4.2.17) we have that fksd,a,n,γ,En
= β(Ksp

n ,Λn) ◦ δγ ◦ jd,Ka,En where

jd,Ka
n,En : F2d,nsp,En → ShKsp

n
(G,Ω±)En

is an étale morphism of noetherian schemes and

β(Ksp
n ,Λn) ◦ δγ : ShKsp

n
(G,Ω±)En → Ag,d′,n,En

is a quasi-finite morphism. Therefore fksd,a,n,γ,En
is a quasi-finite morphism. To finish the

proof we have to show that for any k̄-valued point y ∈ Ag,d′,n,k(k̄) there are only finitely
may k̄-valued points x ∈ Ford

2d,nsp,k(k̄) such that fksd,a,n,γ,k(x) = y.
Suppose that (X1, λ1, ν1) and (X2, λ2, ν2) are two ordinary K3 surfaces over a finite

field L ⊂ k in F2d,nsp,k(L) such that

fksd,a,n,γ,k
(
(X1, λ1, ν1)

)
= fksd,a,n,γ,k

(
(X2, λ2, ν2)

)
= (A, µ, ε).

Taking a finite extension of L, if needed, we may assume that λ1 and λ2 are classes
of ample line bundles L1 and L2 on X1 and X2, respectively. Let (Xcan

1 ,L1, ν1) and
(Xcan

2 ,L2, ν2) be the two canonical lifts over W (L). Denote the field of fractions of
W (L) by K. We have that (X1,L1, ν1) ∼= (X2,L2, ν2) if and only if (Xcan

1 ,L1, ν1)⊗K ∼=
(Xcan

2 ,L2, ν2)⊗K. By Proposition 4.4.4 we have that

fksd,a,n,γ,En

(
(Xcan

1 ,L1, ν1)⊗K
)

= fksd,a,n,γ,k
(
(Xcan

2 ,L2, ν2)⊗K
)

= (Acan, µ, ε)⊗K

hence we conclude the fksd,a,n,γ,k is quasi-finite from the fact that fksd,a,n,γ,En
is quasi-finite.

Combining Théorème 16.5 in [LMB00] and Corollary 6.16 in [Knu71, Ch. II, §6] with
the preceding corollary we obtain the following result.

Corollary 4.4.6. There exists a scheme Z over R, a finite morphism π : Z → Ag,d′,n,R
and an open immersion i : Ford

2d,nsp,R ↪→ Z such that fksd,a,n,γ,R = π ◦ i. Therefore the

algebraic space Ford
2d,nsp,R is a scheme.
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[And96a] Y. André, On the Shafarevich and Tate Conjectures for Hyperkähler Vari-
eties, Mathematische Annalen 305 (1996), 205–248.
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[Del81b] , Relèvement des Surfaces K3 en Caractétistique Nulle, in Surfaces
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Samenvatting

Een K3 oppervlak X is een algebräısch oppervlak (variëteit van dimensie twee) zodanig
dat:

X is niet-singulier en projectief,

de kanonieke divisor is triviaal, Ω2
X
∼= OX , en

en de irregulariteit is nul, H1(X,OX) = 0.

Om een klasse van algebräısche variëteiten te bestuderen construeren we moduliruimtes.
Een punt van een dergelijke ruimte correspondeert met een isomorfieklasse van de variëtei-
ten die we bestuderen: we “parametrizeren zulke isomorfieklassen”. Eigenschappen van
een moduliruimte geven informatie over de manier waarop zulke variëteiten onder defor-
maties in elkaar kunnen overgaan. Zulke ruimtes werden klassiek over C geconstrueerd,
maar in de moderne algebräısche meetkunde geven we de voorkeur aan moduliruimtes
over een willekeurige basis, bij voorbeeld over Z.

We beschouwen de moduliruimte van K3 oppervlakken met een polarizatie. Over
een algebräısch gesloten lichaam k, definiëren we een polarizatie op X als een ampele
lijnbundel L op X. De zelf-intersectie index noemen we de polarisatiegraad van L.

Over C construeren we moduliruimtes met behulp van periode-afbeeldingen. Voor
gepolarizeerde K3 oppervlakken met een niveau structuur geeft deze transcendente me-
thode een moduliruimte die een open deelruimte is van de Shimura variëteit geassocieerd
met de groep SO(2, 19) (zie Hoofdstuk 1, p. 28 en Hoofdstuk 3, §3.2.4). Over Z gebruiken
we algebräısch-meetkundige methoden zoals ontwikkeld door Artin (§§1.4.3 en 1.5.2).

Als we algebräısche krommen bestuderen, in plaats van K3 oppervlakken, dan con-
strueren we een abelse variëteit, genaamd de Jacobiaan van de kromme. De meetkunde
van die abelse variëteit beschrijft eigenschappen van die kromme. In dit proefschrift
gebruiken we een analoge constructie voor K3 oppervlakken. Met elke gepolariseerd K3
oppervlak associëren we een abelse variëteit.

1. Kuga-Satake morfismen in karakteristiek nul.
In [KS67] construeren M. Kuga en I. Satake bij elk complex, gepolariseerd K3
oppervlak (X,L) een complexe abelse variëteit A. Ze maken gebruik van een
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transcendente constructie. De variëteit A heet de Kuga-Satake abelse variëteit van
(X,L). Met behulp van deze constructie definiëren we een morfisme van een mo-
duliruimte van K3 oppervlakken naar een moduliruimte van gepolarizeerde abelse
variëteiten over C. Vervolgens bewijzen we dat deze afbeelding gedefiniëerd is over
een eindige uitbreiding van Q (zie §4.2.5).

2. Kuga-Satake abelse variëteiten over een willekeurige basis.
We bewijzen dat de Kuga-Satake morfismen gedefiniëerd in punt 1 uitgebreid kun-
nen worden over de ring van gehelen in het betreffende getallenlichaam. Op deze
manier krijgen we een definitie van een Kuga-Satake morfisme over een willekeurige
basis, en dus een “constructie” van Kuga-Satake abelse variëteiten in positieve
karakteristiek.

3. Kan deze constructie van Kuga-Satake abelse variëteiten gegeven worden met me-
thoden uit de algebräısche meetkunde ?
Dit is de voornaamste motivatie van dit werk. De methode van punten 1 en 2
is een algebräısch-meetkundige uitbreiding van een transcendente constructie. De
constructie van Kuga-Satake abelse variëteiten in het algemeen is in zekere zin
indirect. Een antwoord op de interessante vraag in punt 3 hebben we (nog) niet
kunnen geven.

Moduliruimtes.
In Hoofdstuk 1 definiëren we moduliruimtesM2d (resp. F2d) van K3 oppervlakken met
een (primitieve) polarizatie van graad 2d. We definiëren een niveau structuur op K3
oppervlakken over een willekeurige basis en we construeren moduliruimten F2d,K van
gepolarizeerde K3 oppervlakken met een niveau structuur.

Strata.
In positieve karakteristiek vinden we interessante deelvariëteiten van moduliruimtes van
gepolarizeerde abelse variëteiten en van krommen. Een dergelijke locus kan worden
gegeven door het vastleggen van een discrete invariant, zoals bijvoorbeeld een filtratie
op BT1-groepen of een Newton polygoon ([Oor01a] en [Oor01b]). Een analoge methode
kan gevolgd worden voor K3 oppervlakken.

Voor de moduliruimteM2d⊗Fp van gepolarizeerde K3 oppervlakken in karakteristiek

p bestuderen we in Hoofdstuk 2 de deelruimtes M(h)
2d,Fp

als de verzamelingen van de K3

oppervlakken met hoogte ten minst h voor h ∈ [1, 11]. De verzameling van deze 11
ruimtes heet “de hoogte stratificatie” van deze moduliruimte. Een interessante vraag
is of voor een gegeven d en p de deelruimtes M(h)

2d,Fp
niet leeg zijn. Dit is het analogon

voor K3 oppervlakken van het vermoeden van Manin voor Newton polygonen van abelse
variëteiten ([Man63, Conj. 2, p. 76]). In Hoofdstuk 2 geven we een gedeeltelijk antwo-
ord op deze vraag. We bewijzen, dat als d groot genoeg is en p niet 2d deelt, dan is elk
stratum in de “hoogte stratificatie” vanM2d⊗Fp niet leeg. We geven ook een expliciete
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grens voor d aan (zie §2.3.2).

Complexe vermenigvuldiging voor K3 oppervlakken.
Zij A een abelse variëteit met complexe vermenigvuldiging. De hoofdstelling voor com-
plexe vermeningvuldiging van Shimura en Taniyama beschrijft de actie op de torsiepun-
ten van A van de automorfismen in Gal(Qab/Q) die het reflexlichaam van A invariant
laten. Deligne ([Del71]) gebruikt deze theorie als startpunt voor de definitie van cano-
nieke modellen van Shimura variëteiten.

In Hoofdstuk 3 doen we iets dergelijks voor moduliruimtes van K3 oppervlakken.
We bewijzen dat Q het lichaam is van definitie van de periode-afbeeldingen jd,K,C.
Deze stelling noemen we “de hoofdstelling van de theorie van complexe vermeningvuldi-
ging voor K3 oppervlakken” (zie §3.3.9). Als een gevolg bewijzen we voor K3 opper-
vlakken met complexe vermeningvuldiging het analogon van de stelling van Shimura en
Taniyama.

Uitbreiden van het Kuga-Satake morfisme.
In Hoofdstuk 4 construeren we de Kuga-Satake abelse variëteit van een K3 oppervlak over
een willekeurige basis: voor elke d ∈ N en n ∈ N, n ≥ 3 definiëren we een Kuga-Satake
afbeelding fksd,a,n,γ,En

over een abelse uitbreiding En van Q (zie §4.2.5). Dit morfisme as-
sociëert aan een complex K3 oppervlak met “spin niveau n-structuur” een abelse variëteit
met extra structuur (een polarizatie en een niveau n-structuur). We bewijzen dat het
Kuga-Satake morfisme uitbreidt tot een morfisme over een open deel Spec(OEn [1/N ])
van Spec(OEn), waar OEn is de ring van gehelen in En en N ∈ N een natuurlijk getal
dat op een expliciete manier afhangt van d, d′, n en En.

Verder bestuderen we een paar eigenschappen van de Kuga-Satake morfismen. Stel
dat p een priemgetal is dat N niet deelt en dat k een eindig lichaam van karakteristiek
p is. Als x een punt is in de moduliruimte van gepolariseerde K3 oppervlakken corres-
ponderend met een gewoon K3 oppervlak over k, dan is het punt y := fksd,a,n,γ(x) ook
gewoon. We bewijzen dat het Kuga-Satake morfisme aan de canonieke lift xcan van x
over W (k) toevoegt de canonieke lift ycan van y (§4.4.2). Als een gevolg zien we dat
de restrictie van fksd,a,n,γ tot de gewone locus van de moduliruimte van gepolarizeerde K3
oppervlakken over Fp een quasi-eindig morfisme is.
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