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MODULI OF MATHEMATICAL INSTANTON VECTOR BUNDLES WITH

ODD c2 ON PROJECTIVE SPACE

ALEXANDER S. TIKHOMIROV

Abstract. We study the problem of irreducibility of the moduli space In of rank-2 mathe-
matical instanton vector bundles with second Chern class n ≥ 1 on the projective space P3.
The irreducibility of In was known for small values of n: for n = 1 it was proved by Barth
(1977), for n = 2 by Hartshorne (1978), for n = 3 by Ellingsrud and Strømme (1981), for n = 4
by Barth (1981), for n = 5 by Coanda, Tikhomirov and Trautmann (2003). In this paper we
prove the irreducibility of In for an arbitrary odd n ≥ 1.
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1. Introduction

By a mathematical n-instanton vector bundle (shortly, a n-instanton) on 3-dimensional pro-
jective space P3 we understand a rank-2 algebraic vector bundle E on P3 with Chern classes

(1) c1(E) = 0, c2(E) = n, n ≥ 1,

satisfying the vanishing conditions

(2) h0(E) = h1(E(−2)) = 0.

Denote by In the set of isomorphism classes of n-instantons. This space is nonempty for any
n ≥ 1 - see, e.g., [BT], [NT]. The condition h0(E) = 0 for a n-instanton E implies that
E is stable in the sense of Gieseker-Maruyama. Hence In is a subset of the moduli scheme
MP3(2; 0, 2, 0) of semistable rank-2 torsion-free sheaves on P3 with Chern classes c1 = 0, c2 =
n, c3 = 0. The condition h1(E(−2)) = 0 for [E] ∈ In (called the instanton condition) implies
by semicontinuity that In is a Zariski open subset of MP3(2; 0, 2, 0), i.e. In is a quasiprojective
scheme. It is called the moduli scheme of mathematical n-instantons.

In this paper we study the problem of the irreducibility of the scheme In. This problem has
an affirmative solution for small values of n, up to n = 5. Namely, the cases n = 1, 3, 3, 4 and
5 were settled in papers [B1], [H], [ES], [B3] and [CTT], respectively. The aim of this paper is
to prove the following result.

Theorem 1.1. For each n = 2m + 1, m ≥ 0, the moduli scheme In of mathematical n-
instantons is an integral scheme of dimension 8n− 3.

A guide to the paper is as follows. In section 3 we recall a well-known relation between
mathematical n-instantons and nets of quadrics in a fixed n-dimensional vector space Hn over
k. The nets of quadrics are considered as vectors of the space Sn = S2H∨

n ⊗ ∧
2V ∨, where

V = H0(OP3(1))∨, and those nets which correspond to n-instantons (we call them n-instanton
nets) satisfy the so-called Barth’s conditions - see definition (14). These nets constitute a locally
closed subset MIn ⊂ of Sn which has a structure of a GL(n)/{±1}-bundle over In. Thus the
irreducibility of the moduli space In of n-instantons reduces to the irreducibility of the space
MIn of n-instanton nets of quadrics.

Section 4 is a study of some linear algebra related to a direct sum decomposition ξ : Hm+1⊕
Hm

∼
→ H2m+1 giving the above embedding Hm+1 →֒ H2m+1. Using one result of section 11 we

obtain here the relation (30) which is a key instrument for our further considerations. Also, the
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decomposition ξ enables us to relate (2m+1)-instantons E to rank-(2m+2) symplectic vector
bundles E2m+2 on P3 satisfying the vanishing conditions h0(E2m+2) = h2(E2m+2(−2)) = 0.

In section 6 we introduce a new set Xm as a locally closed subset of the vector space Sm+1⊕
Σm+1, where Σm+1 = Hom(Hm, H

∨
m+1 ⊗ ∧

2V ∨), defined by linear algebraic data somewhat
similar to Barth’s conditions. We prove that Xm, is isomorphic to a certain dense open subset
MI2m+1(ξ) ofMI2m+1 determined by the choice of the direct sum decomposition ξ above, where
both Xm and MI2m+1(ξ) are understood as reduced schemes. This reduces the problem of the
irreducibility of I2m+1 to that of Xm.

The last ingredient in the proof of Theorem 1.1 is a scheme Zm introduced in section 7 as
a locally closed subscheme of the affine space S∨

m × Hom(Hm, H
∨
m ⊗ ∧

2V ∨) defined by explicit
equations (see (76)). In section 7 we reduce the proof of Theorem 1.1 to the fact that Zm is an
integral locally complete intersection subscheme of the above mentioned affine space. This and
other properties of Zm are formulated in Theorem 7.2. The rest of the paper is devoted to the
proof of Theorem 7.2.

In section 8 we start the proof of this Theorem by induction on m and prove a part of the
induction step - see Proposition 8.1. The proof of it contains explicit computations in linear
algebra. These computations seem to be somewhat cumbersome, and Remark 8.3 at the end
of this section gives an explanation why these computations could not be essentially simplified.

Proposition 8.1 enables us then in section 9.1 to relate Zm to the so-called t’Hooft instantons.
As a result, in section 10 we finish the induction step in the proof of Theorem 7.2.

In Appendix (section 11) we prove two results of general position for nets of quadrics, which
are used in the text.

Acknowledgement. The author acknowledges the support and hospitality of the Max
Planck Institute for Mathematics in Bonn where this paper was started during the author’s
stay there in Winter 2008.

2. Notation and conventions

Our notations are mostly standard. The base field k is assumed to be algebraically closed
of characteristic 0. We identify vector bundles with locally free sheaves. If F is a sheaf of
OX -modules on an algebraic variety or scheme X , then nF denotes a direct sum of n copies
of the sheaf F , H i(F) denotes the ith cohomology group of F , hi(F) := dimH i(F), and F∨

denotes the dual to F sheaf, i.e. the sheaf F∨ := HomOX
(F ,OX). If Z is a subscheme of X , by

IZ,X we denote the ideal sheaf corresponding to a subscheme Z. If X = Pr and t is an integer,
then by F(t) we denote the sheaf F ⊗OPr(t). [F ] will denote the isomorphism class of a sheaf
F . For any morphism of OX -sheaves f : F → F ′ and any k-vector space U (respectively, for
any homomorphism f : U → U ′ of k-vector spaces) we will denote, for short, by the same
letter f the induced morphism of sheaves id ⊗ f : U ⊗ F → U ⊗ F ′ (respectively, the induced
morphism f ⊗ id : U ⊗ F → U ′ ⊗F).

Everywhere in the paper V will denote a fixed vector space of dimension 4 over k and we set
P
3 := P (V ). Also everywhere below we will reserve the letters u and v for denoting the two

morphisms in the Euler exact sequence 0 → OP3(−1)
u
→ V ∨ ⊗ OP3

v
→ TP3(−1) → 0. For any

k-vector spaces U and W and any vector φ ∈ Hom(U,W ⊗ ∧2V ∨) ⊂ Hom(U ⊗ V,W ⊗ V ∨)
understood as a homomorphism φ : U⊗V →W ⊗V ∨ or, equivalently, as a homomorphism ♯φ :

U → W⊗∧2V ∨, we will denote by φ̃ the composition U⊗OP3

♯φ
→ W⊗∧2V ∨⊗OP3

ǫ
→W⊗ΩP3(2),

where ǫ is the induced morphism in the exact triple 0→ ∧2ΩP3(2)
∧2v∨
→ ∧2V ∨⊗OP3

ǫ
→ ΩP3(2)→

0 obtained by passing to the second wedge power in the dual Euler exact sequence. Also,
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shortening the notation, we will omit sometimes the subscript P3 in the notation of sheaves on
P3, e.g., write O, Ω etc., instead of OP3 , ΩP3 etc., respectively.

Next, as above, for any integer n ≥ 1 by Hn we understand a fixed n-dimensional vector
space over k. (E. g., one can take kn for Hn.)

Everywhere in the paper for m ≥ 1 we denote by Sm the vector space S2H∨
m⊗∧

2V ∨, respec-
tively, by Σm+1 the vector space Hom(Hm, H

∨
m+1 ⊗ ∧

2V ∨). For a given k-vector space U (re-
spectively, a direct sum U⊕U ′ of two k-vector spaces) we will, abusing notations, denote by the
same letter U (respectively, by U⊕U ′) the corresponding affine space V(U∨) = Spec(Sym∗U∨)
(respectively, the direct product of affine spaces V(U∨)×V(U ′∨)).

All the schemes considered in the paper are Noetherian. By an irreducible scheme we un-
derstand a scheme whose underlying topological space is irreducible. By an integral scheme we
understand an irreducible reduced scheme. Also, by the dimension of a given scheme we un-
derstand below the maximum of dimensions of its irreducible components. By a general point
of an irreducible (but not necessarily reduced) scheme X we mean any closed point belonging
to some dense open subset of X . An irreducible scheme is called generically reduced if it is
reduced at a general point.

3. Some generalities on instantons. Set MIn

In this Section we recall some well known facts about mathematical instanton bundles - see,
e.g., [CTT].

For a given n-instanton E, the conditions (1), (2), Riemann-Roch and Serre duality imply

(3) h1(E(−1)) = h2(E(−3)) = n, h1(E ⊗ Ω1
P3) = h2(E ⊗ Ω2

P3) = 2n + 2,

h1(E) = h2(E(−4)) = 2n− 2.

(4) hi(E) = hi(E(−1)) = h3−i(E(−3)) = h3−i(E(−4)) = 0, i 6= 1, hi(E(−2)) = 0, i ≥ 0.

Furthermore, the condition c1(E) = 0 yields an isomorphism ∧2E
≃
→ OP3 , hence a symplectic

isomorphism j : E
≃
→ E∨ defined uniquely up to a scalar. Consider a triple (E, f, j) where

E is an n-instanton, f is an isomorphism Hn
≃
→ H2(E(−3)) and j : E

≃
→ E∨ is a symplectic

structure on E. Note that, since E as a stable rank-2 bundle, it is a simple bundle, i. e. any
automorphism ϕ of E has the form ϕ = λid for some λ ∈ k∗. Imposing the condition that
ϕ is compatible with the symplectic structure j, i. e. ϕ∨ ◦ j ◦ ϕ = j, we obtain λ = ±1.
This leads to the following definition of equivalence of triples (E, f, j). We call two such triples

(E, f, j) and (E ′f ′, j′) equivalent if there is an isomorphism g : E
≃
→ E ′ such that g∗ ◦ f = λf ′

with λ ∈ {1,−1} and j = g∨ ◦ j′ ◦ g, where g∗ : H2(E(−3))
≃
→ H2(E ′(−3)) is the induced

isomorphism. We denote by [E, f, j] the equivalence class of a triple (E, f, j). From this
definition one easily deduces that the set F[E] of all equivalence classes [E, f, j] with given [E]
is a homogeneous space of the group GL(Hn)/{±id}.

Each class [E, f, j] defines a point

(5) A = A([E, f, j]) ∈ S2H∨
n ⊗ ∧

2V ∨

in the following way. Consider the exact sequences

(6) 0→ Ω1
P3

i1→ V ∨ ⊗OP3(−1)→ OP3 → 0,

0→ Ω2
P3 → ∧2V ∨⊗OP3(−2)→ Ω1

P3 → 0, 0→ ∧4V ∨⊗OP3(−4)→ ∧3V ∨⊗OP3(−3)
i2→ Ω2

P3 → 0,
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induced by the Koszul complex of V ∨ ⊗ OP3(−1)
ev
։ OP3 . Twisting these sequences by E and

passing to cohomology in view of (2)-(4) gives the equalities 0 = h0(E ⊗ΩP3) = h3(E ⊗Ω2
P3) =

h2(E ⊗ ΩP3) and the diagram with exact rows

(7) 0 // H2(E(−4))⊗ ∧4V ∨ // H2(E(−3))⊗ ∧3V ∨ i2 //

A′

��

H2(E ⊗ Ω2
P3) // 0

0 H1(E))oo H1(E(−1))⊗ V ∨oo H1(E ⊗ ΩP3)
i1oo

∼= ∂

OO

0,oo

where A′ := i1 ◦ ∂−1 ◦ i2. The Euler exact sequence (6) yields a canonical isomorphism ωP3
≃
→

∧4V ∨⊗OP3(−4), and fixing an isomorphism τ : k
≃
→ ∧4V ∨ induces isomorphisms τ̃ : V

≃
→ ∧3V ∨

and τ̂ : ωP3
≃
→ OP3(−4). Now the point A in (5) is defined as the composition

(8) A : Hn ⊗ V
τ̃
≃
→ Hn ⊗ ∧

3V ∨
f
≃
→ H2(E(−3))⊗ ∧3V ∨ A′

→ H1(E(−1))⊗ V ∨
j
≃
→

j
≃
→ H1(E∨(−1))⊗ V ∨

SD
≃
→ H2(E(1)⊗ ωP3)∨ ⊗ V ∨

τ̂
≃
→ H2(E(−3))∨ ⊗ V ∨

f∨

≃
→ H∨

n ⊗ V
∨,

where SD is the Serre duality isomorphism. One checks that A is a skew symmetric map
depending only on the class [E, f, j] and not depending on the choice of τ , and that this point
A ∈ ∧2(H∨

n⊗V
∨) lies in the direct summand Sn = S2H∨

n⊗∧
2V ∨ of the canonical decomposition

(9) ∧2 (H∨
n ⊗ V

∨) = S2H∨
n ⊗ ∧

2V ∨ ⊕ ∧2H∨
n ⊗ S

2V ∨.

Here Sn is the space of nets of quadrics in Hn. Following [B3], [T1] and [T2] we call A the
n-instanton net of quadrics corresponding to the data [E, f, j].

Denote WA := Hn ⊗ V/ kerA. Using the above chain of isomorphisms we can rewrite the
diagram (7) as

(10) 0 // kerA // Hn ⊗ V
cA //

A
��

WA
//

∼= qA
��

0

0 kerA∨oo H∨
n ⊗ V

∨oo W∨
A

c∨Aoo 0.oo

Here in view of (3) dimWA = 2n + 2 and qA : WA
≃
→ W∨

A is the induced skew-symmetric
isomorphism. An important property of A = A([E, f, j]) is that the induced morphism of
sheaves

(11) a∨A :W∨
A ⊗OP3

c∨A→ H∨
n ⊗ V

∨ ⊗OP3
ev
→ H∨

n ⊗OP3(1)

is an epimorphism such that the composition Hn ⊗ OP3(−1)
aA→ WA ⊗ OP3

qA→ W∨
A ⊗ OP3

a∨A→
H∨
n ⊗OP3(1) is zero, and E = ker(a∨A ◦ qA)/ Im aA. Thus A defines a monad

(12) MA : 0→ Hn ⊗OP3(−1)
aA→WA ⊗OP3

a∨A◦qA
→ H∨

n ⊗OP3(1)→ 0

with the cohomology sheaf E,

(13) E = E(A) := ker(a∨A ◦ qA)/ Im aA.

Note that passing to cohomology in the monadMA twisted by OP3(−3) and using (13) yields

the isomorphism f : Hn
≃
→ H2(E(−3)). Furthermore, the simplecticity of the form qA in the

monad MA implies that there is a canonical isomorphism of MA with its dual monad, and

this isomorphism induces the symplectic isomorphism j : E
≃
→ E∨. Thus, the data [E, f, j]
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are recovered from the net A. This leads to the following description of the moduli space In.
Consider the set of n-instanton nets of quadrics

(14) MIn :=





A ∈ Sn

∣∣∣∣∣∣∣∣∣∣∣∣

(i) rk(A : Hn ⊗ V → H∨
n ⊗ V

∨) = 2n+ 2,
(ii) the morphism a∨A : W∨

A ⊗OP3 → H∨
n ⊗OP3(1)

defined by A in (11) is surjective,
(iii) h0(E2(A)) = 0, where E2(A) := ker(a∨A ◦ qA)/ Im aA

and qA : WA
≃
→ W∨

A is a symplectic isomorphism
defined by A in (10)





The conditions (i)-(iii) here are called Barth’s coditions. These conditions show that MIn
is naturally endowed with a structure of a locally closed subscheme of the vector space Sn.
Moreover, the above description shows that there is a morphism πn :MIn → In : A 7→ [E(A)],
and it is known that this morphism is a principal GL(Hn)/{±id}-bundle in the étale topology
- cf. [CTT]. Here by construction the fibre π−1

n ([E]) over an arbitrary point [E] ∈ In coincides
with the homogeneous space F[E] of the group GL(Hn)/{±id} described above. Hence the
irreducibility of (In)red is equivalent to the irreducibility of the scheme (MIn)red.

The definition (14) yields the following.

Theorem 3.1. For each n ≥ 1, the space of n-instanton nets of quadrics MIn is a locally
closed subscheme of the vector space Sn given locally at any point A ∈MIn by

(15)

(
2n− 2

2

)
= 2n2 − 5n+ 3

equations obtained as the rank condition (i) in (14).

Note that from (15) it follows that

(16) dim[A]MIn ≥ dimSn − (2n2 − 5n+ 3) = n2 + 8n− 3

at any point A ∈MIn. On the other hand, by deformation theory for any n-instanton E we have
dim[E] In ≥ 8n−3. This agrees with (16), sinceMIn → In is a principal GL(Hn)/{±id}-bundle
in the étale topology.

Let Sn = {[E] ∈ In| there exists a line l ∈ P3 of maximal jump for E, i.e. such a line l that
h0(E(−n)|l) 6= 0}. It is known [S] that Sn is a closed subset of In of dimension 6n + 2, and In
is smooth along Sn. Thus, since dim[E] In ≥ 8n− 3 at any [E] ∈ In, it follows that

(17) I ′n := In r Sn

is an open subset of In and (I ′n)red is dense open in (In)red; respectively,

(18) MI ′n := π−1
n (I ′n)

is an open subset of MIn and we have a dense open embedding

(19) (MI ′n)red
� � dense open // (MIn)red .

For technical reasons we will below restrict ourselves to MI ′n instead of MIn.

Remark 3.2. There exist smooth points of In - see, e.g., [NT]. Hence, there exist smooth
points in MIn.
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4. Decomposition H2m+1 ≃ Hm+1 ⊕Hm and related constructions

4.1. One result of general position for (2m+ 1)-instanton nets.

Fix a positive integer m ≥ 3 and, for a given (2m+ 1)-instanton vector bundle [E] ∈ I ′2m+1,

fix an isomorphism f : H2m+1
≃
→ H2(E(−3)) and set

(20) H4m := H2(E(−4)), W4m+4 := H1(E ⊗ ΩP3)∨.

(Here we keep in mind the equalities (3) for n = 2m + 1.) In this notation, the lower exact
triple in (7) can be rewritten as:

(21) 0→ W∨
4m+4 → H∨

2m+1 ⊗ V
∨ mult
→ H∨

4m → 0

We formulate now the following result of general position for (2m + 1)-instanton nets of
quadrics which will be important for further study.

Theorem 4.1. Let m ≥ 3 and let E be a (2m + 1)-instanton, [E] ∈ I ′2m+1, supplied with an

isomorphism f : H2m+1
≃
→ H2(E(−3)) and set W4m+4 = H1(E ⊗ ΩP3)∨, so that there is the

injection W∨
4m+4 →֒ H∨

2m+1 ⊗ V
∨ defined in (21). Then for a generic m-dimensional subspace

Vm of H∨
2m+1 one has

W∨
4m+4 ∩ Vm ⊗ V

∨ = {0}.

The proof of this Theorem has rather technical character, and we leave it to the end of the
paper - see Appendix (section 11).

4.2. Decomposition H2m+1 ≃ Hm+1 ⊕Hm.

Fix an isomorphism

(22) ξ : Hm+1 ⊕Hm
≃
→ H2m+1

and let

(23) Hm+1

im+1

→֒ Hm+1 ⊕Hm
im
←֓ Hm

be the injections of direct summands. For a given (2m+ 1)-instanton vector bundle E, [E] ∈

I ′2m+1, fix an isomorphism f : H2m+1
≃
→ H2(E(−3)) and a symplectic structure j : E

≃
→ E∨.

The data [E, f, j] define a net of quadrics A ∈MI ′2m+1 (see section 3), and the exact triple (21)
is naturally identified with the dual to the triple 0→ kerA→ H2m+1 ⊗ V → WA → 0 and fits
in diagram (10) for n = 2m+ 1

(24) 0 // kerA // H2m+1 ⊗ V
cA //

A
��

WA
//

∼= qA
��

0

0 kerA∨oo H∨
2m+1 ⊗ V

∨oo W∨
A

c∨Aoo 0.oo

Consider the composition

(25) jξ,A : Hm+1 ⊗ V
im+1

→֒ Hm+1 ⊗ V ⊕Hm ⊗ V
ξ
≃
→ H2m+1 ⊗ V

cA→WA.

Under these notations Theorem 4.1 can be reformulated in the following way:

(*) Assume m ≥ 3 and let A be an arbitrary (2m+1)-net from MI ′2m+1. Then for a generic

isomorphism ξ : H2m+1
≃
→ Hm+1 ⊕Hm one has

(26) kerA ∩ (ξ ◦ im+1)(Hm+1 ⊗ V ) = {0}.

Equivalently, jξ,A : Hm+1 ⊗ V →WA is an isomorphism.



MODULI OF MATHEMATICAL INSTANTON VECTOR BUNDLES WITH ODD c2 ON PROJECTIVE SPACE7

Consider the direct sum decomposition corresponding to the isomorphism (22)

(27) ξ̃ : Sm+1 ⊕ Σm+1 ⊕ Sm
∼
→ S2m+1

and let

(28) S2m+1 ։ Sm+1 : A 7→ A1(ξ), S2m+1 ։ Σm+1 : A 7→ A2(ξ), S2m+1 ։ Sm : A 7→ A3(ξ)

be the projections onto direct summands. By definition, A1(ξ) considered as a skew-symmetric
homomorphism Hm+1 ⊗ V → H∨

m+1 ⊗ V
∨ coincides with the composition

(29) A1(ξ) : Hm+1 ⊗ V
jξ,A
→ WA

qA→
≃
W∨
A

j∨ξ,A
→ H∨

m+1 ⊗ V
∨.

This means that assertion (*) can be reformulated as:

(**) Assume m ≥ 3 and let A be an arbitrary (2m+1)-net from MI ′2m+1. Then for a generic
isomorphism ξ in (22) the skew-symmetric homomorphism A1(ξ) : Hm+1 ⊗ V → H∨

m+1 ⊗ V
∨

is invertible.

Now, using the notation (28), we can represent the net A ∈ S2m+1 considered as a homomor-
phism A : Hm+1 ⊗ V ⊕Hm ⊗ V → H∨

m+1 ⊗ V
∨ ⊕H∨

m ⊗ V
∨ by the (8m+ 4)× (8m+ 4)-matrix

of homomorphisms

A =

(
A1(ξ) A2(ξ)
−A2(ξ)

∨ A3(ξ)

)
.

This matrix is of rank 4m + 4 according to Barth’s condition (i) in (14). On the other hand,
by (**) we have rkA1(ξ) = 4m + 4, i.e. ranks of A and of its submatrix A1(ξ) coincide. This
yields, after multiplying the matrix A by the invertible matrix of homomorphisms

(
A1(ξ)

−1 0

A2(ξ)
∨ ◦ A1(ξ)

−1 idH∨
m⊗V ∨

)

from the left, the following relation between the matrices A1(ξ), A2(ξ) and A3(ξ):

(30) A3(ξ) = −A2(ξ)
∨ ◦ A1(ξ)

−1 ◦ A2(ξ),

Remark 4.2. This relation means that A3(ξ) is uniquely determined by A1(ξ) and A2(ξ). We
will use this important observation systematically in the sequel.

For m ≥ 1 let Isom2m+1 be the set of all isomorphisms ξ in (22) and set

(31) MI2m+1(ξ) := {A ∈MI ′2m+1 | the skew − symmetric homomorphism A1(ξ) in (29)

is invertible}, ξ ∈ Isom2m+1.

In these notations we have the following result.

Theorem 4.3. For m ≥ 3 the following statements hold.
(i) There exists a dense subset Isom0

2m+1 of Isom2m+1 such that the sets MI2m+1(ξ), ξ ∈
Isom0

2m+1, constitute an open cover of MI ′2m+1 .
(ii) There exists a dense open subset Isom00

2m+1 of Isom2m+1 contained in Isom0
2m+1 such that

the sets MI2m+1(ξ), ξ ∈ Isom00
2m+1, are dense open subsets of MI ′2m+1.

(iii) For any ξ ∈ Isom0
2m+1 and any A ∈MI2m+1(ξ) the relation (30) is true.

Proof. (i)-(ii) Let MI ′2m+1 = M1 ∪ ... ∪ Ms be a decomposition of MI ′2m+1 into irreducible
components. Consider the set U := {(A, ξ) ∈ MI ′2m+1 × Isom2m+1 | A1(ξ) : Hm+1 ⊗ V →

H∨
m+1 ⊗ V ∨ is invertible } with projections MI ′2m+1

p
← U

q
→ Isom2m+1, and let Ui := U ∩

Mi × Isom2m+1 with the induced projections Mi
pi← Ui

qi→ Isom2m+1, i = 1, ..., s. By definition,
U is open in MI ′2m+1 × Isom2m+1, hence each Ui is open in Mi × Isom2m+1. Moreover, the
property (**) implies that pi(Ui) =Mi, so that Ui is nonempty, hence dense in Mi × Isom2m+1
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since both Mi and Isom2m+1 are irreducible. (Note that Isom2m+1 is irreducible as a principal
homogeneous space of the group GL(2m+1).) Hence qi(Ui) contains a dense open subset, say,
Wi of Isom2m+1. Set Isom0

2m+1 := ∪
1≤i≤s

qi(Ui) and Isom00
2m+1 := ∩

1≤i≤s
Wi. By construction, the

sets MI2m+1(ξ) ≃ q−1(ξ), ξ ∈ Isom0
2m+1, constitute an open cover ofMI ′2m+1. Respectively, for

any ξ ∈ Isom00
2m+1 and each i, 1 ≤ i ≤ s, the set q−1

i (ξ) is nonempty open, hence dense subset
in Mi. This yields that, for ξ ∈ Isom00

2m+1, the set MI ′2m+1(ξ)) ≃ q−1(ξ) = ∪
1≤i≤s

q−1
i (ξ) is dense

open in MI ′2m+1.
(iii) This follows from (30) and (**). �

We will need below the following lemma.

Lemma 4.4. For ξ ∈ Isom0
2m+1 and A ∈MI2m+1(ξ), set

(32) B := A1(ξ), C := A2(ξ).

Then the following statements hold.
(i) Consider a subbundle morphism

(33) αξ,A := j−1
ξ,A ◦ aA ◦ ξ : (Hm+1 ⊕Hm)⊗OP3(−1)→ Hm+1 ⊗ V ⊗OP3 .

Then there exists an epimorphism

(34) λξ,A : coker(B ◦ αξ,A)։ H∨
m+1 ⊗OP3(1).

making commutative the diagram

(35) H∨
m+1 ⊗ V

∨ ⊗OP3
can //

u∨ ))SSSSSSSSSSSSSS
coker(B ◦ αξ,A)

λξ,A
��

H∨
m+1 ⊗OP3(1),

where can is the canonical surjection.
(ii) Consider the commutative diagram

(36) Hm ⊗OP3(−1)

0 // (Hm+1 ⊕Hm)⊗OP3(−1)
B◦αξ,A//

OOOO

H∨
m+1 ⊗ V

∨ ⊗OP3
can // coker(B ◦ αξ,A) // 0

0 // Hm+1 ⊗OP3(−1)
B◦u //

OO
im+1

OO

H∨
m+1 ⊗ V

∨ ⊗OP3
v◦B−1

// Hm+1 ⊗ TP3(−1) //

ǫξ,A

OOOO

0

Hm ⊗OP3(−1),
OO
τξ,A

OO

where τξ,A and ǫξ,A are the induced morphisms. Then the morphism τξ,A is a subbundle mor-
phism fitting in a commutative diagram

(37) H∨
m+1 ⊗ V

∨ ⊗OP3
v◦B−1

// Hm+1 ⊗ TP3(−1)

Hm ⊗OP3(−1)

C◦u

OO

Hm ⊗OP3(−1).
OO
τξ,A

OO
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Proof. (i) Consider the commutative diagram
(38)

H2m+1 ⊗O(−1) // aA // WA ⊗O
qA

≃
// W∨

A ⊗O
a∨A // //

j∨ξ,A≃

��

H∨
2m+1 ⊗O(1)

ξ∨≃

��
(Hm+1 ⊕Hm)⊗O(−1) //

αξ,A //

ξ ≃

OO

Hm+1 ⊗ V ⊗O
B

≃
//

jξ,A ≃

OO

H∨
m+1 ⊗ V

∨ ⊗O
α∨
ξ,A// //

u∨ **TTTTTTTTTTTTTTTT
(Hm+1 ⊕Hm)

∨ ⊗O(1)

i∨m+1����
Hm+1 ⊗O(−1)

OO
im+1

OO

u

44jjjjjjjjjjjjjjjjj

H∨
m+1 ⊗O(1)

Here the upper triple is the monad (12) for n = 2m+ 1. Whence the statement (i) follows.
(ii) Standard diagram chasing using (30), (32) and diagram (36). �

4.3. Remarks on t’Hooft instantons.

Consider the set
I tH2m+1 := {[E] ∈ I2m+1 | h

0(E(1)) 6= 0},

of t’Hooft instanton bundles and the corresponding set of t’Hooft instanton nets

MI tH2m+1 := π−1
n (I tH2m+1).

We collect some well-known facts about I tH2m+1 in the following Lemma - see [BT], [NT], [T2,
Prop. 2.2].

Lemma 4.5. Let m ≥ 1. Then the following statements hold.
(i) I tH2m+1 is an irreducible (10m+ 9)-dimensional subvariety of I2m+1. Respectively, MI tH2m+1

is an irreducible (4m2 + 14m+ 10)-dimensional subvariety of I2m+1.
(ii) I tH∗

2m+1 := I tH2m+1 ∩ I
′
2m+1 is a smooth dense open subset of I tH2m+1 and

(39) h0(E(1)) = 1, [E] ∈ I tH∗
2m+1.

(iii) MI tH∗
2m+1 is a smooth dense open subset of the set

TH2m+1 := {A ∈ S2m+1|A =

2m+2∑

i=1

h2 ⊗ w, where h ∈ H∨
2m+1, w ∈ ∧

2V ∨, w ∧ w = 0}.

We are going to extend the statement of Theorem 4.3 to the cases m = 1 and 2. To this end,
for m = 1, 2 and ξ ∈ Isom2m+1 consider the sets MI2m+1(ξ) defined in (31) and set

(40) MI ′′2m+1 := ∪
ξ∈Isom2m+1

MI2m+1(ξ), m = 1, 2.

For m = 1, 2, fix an isomorphism ξ0 ∈ Isom2m+1, ξ
0 : Hm+1 ⊕ Hm

∼
−→ H2m+1 and fix a

basis {h1, ..., h2m+1} in H∨
2m+1 such that {h1, ..., hm} in H∨

2m+1 and {hm+2, ..., h2m+1} in H∨
2m+1;

respectively, let e1, ..., e4 be some fixed basis in V ∨. Consider the nets A(m) ∈ TH2m+1, m =
1, 2, defined as follows

(41) A(1) = h21 ⊗ (e1 ∧ e2 + e3 ∧ e4) + h22 ⊗ (e1 ∧ e3 + e4 ∧ e2),

A(2) = h21 ⊗ (e1 ∧ e2 + e3 ∧ e4) + h22 ⊗ (e1 ∧ e3 + e4 ∧ e2) + h23 ⊗ (e1 ∧ e4 + e2 ∧ e3).

It is an exercise to show that, in the notation of (28), the homomorphisms

A
(m)
1 (ξ0) : Hm+1 ⊗ V → H∨

m+1 ⊗ V
∨, m = 1, 2,

are invertible. On the other hand, for a given ξ ∈ Isom2m+1, the condition that a homomorphism
A1(ξ) : Hm+1 ⊗ V → H∨

m+1 ⊗ V
∨ is invertible is an open condition on the net A ∈ TH2m+1,

respectively, on the net A ∈ S2m+1. Since the sets MI ′2m+1, m = 1, 2, are irreducible (see
[CTT]), this together with Lemma 4.5 yields the following corollary.
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Corollary 4.6. (i) For m = 1, 2 the set MI ′′2m+1 is a dense open subset of MI ′2m+1 and of
MI2m+1, and the statement of Theorem 4.3 extends to the cases m = 1 and 2, if we substitute
MI ′2m+1 by MI ′′2m+1 and take for Isom0

2m+1 = Isom00
2m+1 any nonempty open subset of Isom2m+1

contained in the set {ξ ∈ Isom2m+1 | MI2m+1(ξ) 6= ∅}.
(ii) Let m ≥ 1. The set

MI tH∗∗
2m+1 :=

{
MI ′′2m+1 ∩MI tH∗

2m+1, m = 1, 2,
MI tH∗

2m+1, m ≥ 3,

is a dense open subset of MI tH∗
2m+1, respectively, of MI tH2m+1.

(iii) For m ≥ 1 let

MI tH2m+1(ξ) :=MI tH∗∗
2m+1 ∩MI2m+1(ξ), ξ ∈ Isom2m+1.

The set

(42) IsomtH
2m+1 := {ξ ∈ Isom2m+1 | MI tH2m+1(ξ) 6= ∅}

is a dense open subset of Isom2m+1 such that MI tH∗∗
2m+1 is covered by dense open subsets

MI tH2m+1(ξ), ξ ∈ IsomtH
2m+1.

Remark 4.7. From the definition of the sets Isom0
2m+1, MI tH2m+1(ξ) and IsomtH

2m+1 it follows

immediately that IsomtH
2m+1 ⊂ Isom0

2m+1 and MI tH2m+1(ξ) ⊂MI2m+1(ξ) for ξ ∈ IsomtH
2m+1.

Now (19), Theorem 4.3 and Corollary 4.6 yield

Corollary 4.8. Let m ≥ 1. Then for any ξ ∈ Isom0
2m+1 (respectively, for any ξ ∈ Isom00

2m+1)
the scheme (MI2m+1(ξ))red is open (respectively, dense open) in (MI2m+1)red. In particular,

(43) dimAMI2m+1(ξ) = dimAMI2m+1, A ∈MI2m+1(ξ), ξ ∈ Isom00
2m+1.

5. Invertible nets of quadrics from Sm+1 and symplectic rank-(2m+ 2) bundles

5.1. Construction of symplectic rank-(2m + 2) bundles from invertible nets of

quadrics from Sm+1.

In this subsection we show that each invertible net of quadrics B ∈ Sm+1 naturally leads to
a construction of a symplectic rank-(2m+ 2) vector bundle E2m+2(B) on P3. Let us introduce
more notation. Set

(44) S0
m+1 := {B ∈ Sm+1 | B : Hm+1 ⊗ V → H∨

m+1 ⊗ V
∨ is an invertible homomorphism}.

The set S0
m+1 is a dense open subset of the vector space Sm+1, and it is easy to see that for any

B ∈ S0
m+1 the following conditions are satisfied.

(1) The morphism B̃ : Hm+1 ⊗ OP3(−1) → H∨
m+1 ⊗ ΩP3(1) induced by the homomorphism

B : Hm+1 ⊗ V → H∨
m+1 ⊗ V

∨ is a subbundle morphism, i.e.

(45) E2m+2(B) := coker(B̃)



MODULI OF MATHEMATICAL INSTANTON VECTOR BUNDLES WITH ODD c2 ON PROJECTIVE SPACE11

is a vector bundle of rank 2m+ 2 on P3. This follows from the diagram
(46)

0

��

0

��

0 // Hm+1 ⊗OP3(−1)
B̃ //

u

��

H∨
m+1 ⊗ ΩP3(1)

e //

v∨

��

E2m+2(B) // 0

Hm+1 ⊗ V ⊗OP3
B

≃
//

v

��

H∨
m+1 ⊗ V

∨ ⊗OP3

u∨

��
0→ E2m+2(B)∨ // Hm+1 ⊗ TP3(−1)

B̃∨

//

��

H∨
m+1 ⊗OP3(1) //

��

0

0 0

(2) The homomorphism ♯B : Hm+1 → H∨
m+1 ⊗ ∧

2V ∨ induced by B : Hm+1 ⊗ V → H∨
m+1 ⊗ V

∨

is injective. This follows from the commutative diagram extending the upper horizontal triple
in (46)

(47) 0

��

0

��
H∨
m+1 ⊗ TP3(−2)

��

H∨
m+1 ⊗ TP3(−2)

��

0 // Hm+1 ⊗OP3

♯B // H∨
m+1 ⊗ ∧

2V ∨ ⊗OP3
can //

w

��

H0(E2m+2(B)(1))⊗OP3
//

ev

��

0

0 // Hm+1 ⊗OP3
B̃ // H∨

m+1 ⊗ ΩP3(2)
e //

��

E2m+2(B)(1) //

��

0

0 0,

where w is the morphism induced by the morphism v from the Euler exact sequence in (46).
From this diagram we obtain an isomorphism

(48) coker(♯B) ≃ H0(E2m+2(B)(1)).

(3) Diagram (46) and the Five-Lemma yield an isomorphism

(49) θ : E2m+2(B)
∼
→ E2m+2(B)∨

which is in fact symplectic,

θ∨ = −θ,
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since the homomorphism B : Hm+1 ⊗ V → H∨
m+1 ⊗ V

∨ is skew-symmetric. The isomorphism θ
together with the upper triple from (46) and its dual fits in the commutative diagram

(50) 0

��

0

��

0 // Hm+1 ⊗OP3(−1)
B̃ // H∨

m+1 ⊗ ΩP3(1)
e //

v∨

��

E2m+2(B) //

e∨◦θ
��

0

0 // Hm+1 ⊗OP3(−1)
B◦u // H∨

m+1 ⊗ V
∨ ⊗OP3

v◦B−1
//

u∨

��

Hm+1 ⊗ TP3(−1) //

B̃∨

��

0

H∨
m+1 ⊗OP3(1)

��

H∨
m+1 ⊗OP3(1)

��
0 0.

Note that the upper horizontal triple in (46) immediately implies

(51) h0(E2m+2(B)) = hi(E2m+2(B)(−2)) = 0, i ≥ 0.

5.2. Relation between instantons and rank-(2m+ 2) symplectic bundles.

For m ≥ 1 let ξ ∈ Isom0
2m+1 and A ∈ MI2m+1(ξ). In this subsection we relate an instanton

vector bundle E(A) to a symplectic rank-(2m+2) vector bundle E2m+2(B) for B = A1(ξ). We
will show that E(A) is a cohomology sheaf of the monad (55) defined by the data (ξ, A) with
E2m+2(B) in the middle - see Lemma 5.1.

In fact, since ξ ∈ Isom0
2m+1, the homomorphism B : Hm+1 ⊗ V → H∨

m+1 ⊗ V
∨ by definition

lies in S0
m+1. Hence by Lemma 4.4 the diagram (37) holds. This diagram together with (50)

implies B̃∨ ◦ τξ,A = 0 (note that in (37) im(C ◦ u) ⊂ H∨
m+1 ⊗ ΩP3(1) since C ∈ Σm+1), so that

there exists a morphism

(52) ρξ,A : Hm ⊗O(−1)→ E2m+2(B)

such that τξ,A = e∨ ◦ θ ◦ ρξ,A. Since τξ,A is a subbundle morphism, ρξ,A is also a subbundle
morphism. Moreover, diagrams (37) and (50) yield a commutative diagram

(53) H∨
m+1 ⊗ ΩP3(1)

e //

v∨

��

E2m+2(B)

e∨◦θ

��

Hm ⊗O(−1)
hh

♯C
hhRRRRRRRRRRRRR

vv
C̃

vvlllllllllllll

55

ρξ,A
55llllllllllllll

))
τξ,A

))RRRRRRRRRRRRRR

H∨
m+1 ⊗ V

∨ ⊗O v◦B−1
// Hm+1 ⊗ TP3(−1).

Diagrams (50) and (53) yield a commutative diagram
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(54) Hm ⊗O(−1)
C̃ //

''

ρξ,A ''PPPPPPPPPPPP ++
♯C

++XXXXXXXXXXXXXXXXXXXXXXXX

DC

��

H∨
m+1 ⊗ V

∨ ⊗O

B−1≃

��

E2m+2(B)

θ≃

��

H∨
m+1 ⊗ ΩP3(1)

e
oooo

e∨◦θ◦e
��

55

v∨
55kkkkkkkkkkkkkk

E2m+2(B)∨ // e
∨

//

ρ∨ξ,A

vvvvnnnnnnnnnnnn

Hm+1 ⊗ TP3(−1)

♯C∨
ssssfffffffffffffffffffffffff

H∨
m ⊗O(1) Hm+1 ⊗ V ⊗O,

C̃∨

oo

v
iiiiSSSSSSSSSSSSSSS

where DC := −C̃∨ ◦B−1 ◦ C̃ = −u∨ ◦ (C∨ ◦B−1 ◦ C) ◦ u is the zero map. In fact, by (30) and
(32) we have DC = p2(A3(ξ)), where p2 : ∧

2(H∨
n ⊗ V

∨)→ ∧2H∨
n ⊗ S

2V ∨ is the projection onto
the second direct summand of the decomposition (9). Since by (28) A3(ξ) lies in the first direct
summand of (9) it follows that DC = 0. We thus obtain a monad

(55) 0→ Hm ⊗O(−1)
ρξ,A
−→ E2m+2(B)

ρ∨ξ,A◦θ
−→ H∨

m ⊗O(1)→ 0

with cohomology sheaf

(56) E2(ξ, A) := ker(ρ∨ξ,A ◦ θ)/ Im ρξ,A

which is a vector bundle since ρξ,A is a subbundle morphism. Furthermore, by (51) it follows
from the monad (55) that E2(ξ, A) is a (2m+ 1)-instanton,

(57) [E2(ξ, A)] ∈ I2m+1.

Lemma 5.1. E2(ξ, A) ≃ E(A), where the sheaf E(A) is defined in (13).

Proof. Diagram chasing using (30), (36)-(38), (46)-(47) and (50). �

6. Scheme Xm. An isomorphism between Xm and an open subset of the space

(MI2m+1)red

In this section we introduce a locally closed subset Xm of the vector space Sm+1⊕Σm+1 and
prove in Theorem 6.1 below that this subset, considered as a reduced scheme, is isomorphic to
the reduced scheme (MI2m+1(ξ))red for any ξ ∈ Isom0

2m+1. The set Xm is defined as follows:
(58)

Xm :=





(B,C) ∈ S0
m+1 ×Σm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) (C∨ ◦B−1 ◦ C : Hm ⊗ V → H∨
m ⊗ V

∨) ∈ Sm,

(ii) the map (Hm+1 ⊕Hm)⊗O
(B,C)◦u
−→ H∨

m+1 ⊗ V
∨ ⊗O(1)

is a subbundle morphism,

(iii) the composition Ĉ : Hm

♯C
→ H∨

m+1 ⊗ ∧
2V ∨

can
։

H∨
m+1 ⊗ ∧

2V ∨/ Im(♯B) ≃ H0(E2m+2(B)(1)) yields
a subbundle morphism

Hm ⊗OP3(−1)
ρB,C
→ E2m+2(B),

i.e. ρ∨B,C is surjective and E2(B,C) := Ker(tρB,C)/ Im(ρB,C)
is locally free





.
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By definition Xm is a locally closed subset of S0
m+1×Σm+1. Hence it is naturally endowed with

the structure of a reduced scheme.
Note that in the condition (iii) of the definition of Xm we set tρB,C := ρ∨B,C ◦ θ, where

θ : E2m+2(B)
∼
→ E∨

2m+2(B) is the natural symplectic structure on E2m+2(B) defined in (49).

Theorem 6.1. Let m ≥ 1 and let ξ ∈ Isom0
2m+1.

(i) There is an isomorphism of reduced schemes

(59) fm : (MI2m+1(ξ))red
≃
→ Xm : A 7→ (A1(ξ), A2(ξ)).

(ii) The inverse isomorphism is given by the formula

(60) gm : Xm
≃
→ (MI2m+1(ξ))red : (B,C) 7→ ξ̃(B, C, −C∨ ◦B−1 ◦ C).1

Proof. (i) We first show that the image of the map fm : (MI2m+1(ξ))red → S0
m+1×Σinm,m+1 lies

in Xm, i.e. satisfies the conditions (i)-(iii) in the definition of Xm. Indeed, the condition (i) is
automatically satisfied, since (28) and (30) give −C∨ ◦B−1 ◦C = −A2(ξ)

∨ ◦A1(ξ)
−1 ◦A2(ξ) =

A3(ξ) ∈ S2H∨
m ⊗ ∧

2V ∨. Next, the morphism ρB,C defined in (58.iii) above coincides by its
definition with the morphism ρξ,A defined in (52). In fact, the upper triangle of the diagram
(53) twisted by O(1) and the lower part of the diagram (47) fit in the diagram
(61)

0→ Hm+1 ⊗O
♯B // H∨

m+1 ⊗ ∧
2V ∨ ⊗O

can //

w

��

H0(E2m+2(B)(1))⊗O //

ev

��

0

Hm ⊗O
hh

♯C
hhQQQQQQQQQQQQQ 55

Ĉ
55kkkkkkkkkkkkkk

))
ρξ,A

))SSSSSSSSSSSSSSvv
C̃

vvmmmmmmmmmmmmm

0→ Hm+1 ⊗O
B̃ // H∨

m+1 ⊗ Ω(2)
e // E2m+2(B)(1) // 0,

where the composition Ĉ = can ◦ C is defined in the condition (iii) of the definition of Xm.
Whence

(62) ρB,C = ρξ,A.

Since ρξ,A is a subbundle morphism, the condition (iii) is satisfied and, moreover, Ĉ is a sub-
bundle morphism as well. Thus, the lower part of the diagram (61) shows that the morphism

(B̃, C̃) : (Hm+1 ⊕Hm) ⊗ O → H∨
m+1 ⊗ Ω(2) is a subbundle morphism. Hence its composition

with the subbundle morphism v∨ : H∨
m+1⊗Ω(2) →֒ H∨

m+1⊗V ⊗O(1) is a subbundle morphism
as well. By definition, this composition coincides with (B,C) ◦ u. Hence the condition (ii) in
the definition of Xm is satisfied.

This shows that fm((MI2m+1(ξ))red) lies in Xm. Finally, the equality gm ◦ fm = id follows
directly from (28) and (30).

(ii) We first prove that the image of the map

(63) gm : Xm → S2m+1 : (B,C) 7→ (B, C, C∨ ◦B−1 ◦ C) 2

lies in (MI2m+1(ξ))red. In fact, the subbundle morphism A := (B,C)◦u : (Hm+1⊕Hm)⊗O →
H∨
m+1 ⊗ V

∨ ⊗O(1) and its dual extend to the right and left exact sequence

(64) 0→ (Hm+1 ⊕Hm)⊗O(−1)
A
→ H∨

m+1 ⊗ V
∨ ⊗O

A∨◦B−1

→ (Hm+1 ⊕Hm)
∨ ⊗O(1)→ 0.

1Here we use the decomposition (27) fixed by the choice of ξ.
2 We identify here the triple (B, C, C∨ ◦B−1 ◦C) with a point in S2H∨

2m+1 ⊗∧
2V ∨ via the decomposition

(27).
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Furthermore, by definition A∨ ◦ B−1 ◦ A = u∨ ◦ A ◦ u, where A is the matrix(
B C
−C∨ −C∨ ◦B−1 ◦ C

)
. Since the condition (i) of (58) is satisfied, under the direct sum

decomposition (27) this matrix A can be treated as an element of S2m+1. Hence u
∨ ◦A ◦u = 0,

i.e. (64) is a monad. We will show that its cohomology bundle

E(B,C) := ker(A∨ ◦B−1)/ ImA

is an (2m+ 1)-instanton, and this will give the desired inclusion g(Xm) ⊂ (MI2m+1(ξ))red. For
this, consider the diagram (36) in which we substitute B ◦αξ,A by A, denote G := cokerA, and
change the notation for τξ,A and ǫξ,A, respectively, to τB,C and ǫB,C :

(65) Hm ⊗OP3(−1)

0 // (Hm+1 ⊕Hm)⊗OP3(−1)
A //

OOOO

H∨
m+1 ⊗ V

∨ ⊗OP3
can // G // 0

0 // Hm+1 ⊗OP3(−1)
B◦u //

OO
im+1

OO

H∨
m+1 ⊗ V

∨ ⊗OP3
v◦B−1

// Hm+1 ⊗ TP3(−1) //

ǫB,C

OOOO

0

Hm ⊗OP3(−1).
OO
τB,C

OO

In these notations the diagram (50) becomes the display of the antiselfdual monad

(66) 0→ Hm+1 ⊗O(−1)
B◦u
→ H∨

m+1 ⊗ V
∨ ⊗O

u∨
→ H∨

m+1 ⊗O(1)→ 0

with the symplectic cohomology sheaf E2m+2(B):

(67) E2m+2(B) = ker(u∨)/ Im(B ◦ u).

Moreover, as in (52) and (53) we obtain a subbundle morphism

(68) ρB,C : Hm ⊗O(−1)→ E2m+2(B)

such that

(69) τB,C = e∨ ◦ θ ◦ ρB,C ,

where θ : E2m+2(B)
≃
→ E2m+2(B) is a symplectic structure on E2m+2(B). In addition, as in

(51) we have

(70) h0(E2m+2(B)) = hi(E2m+2(B)(−2)) = 0, i ≥ 0.

Furthermore, the antiselfdual monads (64) and (66) recover the antiselfdual monad (55) which
in view of (62) becomes

(71) 0→ Hm ⊗O(−1)
ρB,C
−→ E2m+2(B)

ρ∨B,C◦θ
−→ H∨

m ⊗O(1)→ 0.

with the cohomology sheaf E(B,C),

(72) E(B,C) = ker(ρ∨B,C ◦ θ)/ Im(ρB,C).

Now (70) and (71) yield h0(E(B,C)) = hi(E(B,C)(−2)) = 0, i ≥ 0, i.e. E(B,C) is an
(2m+ 1)-instanton.

Thus Im gm ⊂ I2m+1(ξ). The fact that fm ◦ gm = id follows directly from (59) and (60). �
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Remark 6.2. Note that, since the morphism Ĉ in the diagram (61) is injective, it follows from
this diagram that, for any m ≥ 1, ξ ∈ Isom0

2m+1 and any A ∈MI2m+1(ξ), the monomorphisms

Hm+1

♯A1(ξ)
→֒ H∨

m+1 ⊗ ∧
2V ∨

♯A2(ξ)
←֓ Hm satisfy the condition Im(♯A1(ξ)) ∩ Im(♯A2(ξ)) = {0}, i. e.

dimSpan(Im(♯A1(ξ)), Im(♯A2(ξ))) = 2m+ 1.

7. Scheme Zm. Reduction of the irreducibility of Xm to the irreducibility of

Zm. Proof of main theorem

7.1. Scheme Ẑm and its open subset Zm. In this subsection we introduce a new set Zm as
a locally closed subset of a certain vector space (see (77)) and endow it with a natural scheme
structure. We then formulate Theorem 7.2 on the irreducibility of Zm. This Theorem plays a
key role in the proof of irreducibility of I2m+1 which we give in subsection 7.2. The proof of
Theorem 7.2 will be given in the next section.

Set

(73) Λm := ∧2H∨
m ⊗ S

2V ∨, Φm := Hom(Hm, H
∨
m ⊗ ∧

2V ∨),

and

(74) (S∨
m)

0 := {D ∈ S∨
m | D : H∨

m ⊗ V
∨ → Hm ⊗ V is invertible}.

Note that (S∨
m)

0 is a dense open subset of S∨
m and there is a canonical isomorphism

(75) S0
m

≃
→ (S∨

m)
0 : A 7→ A−1.

Consider the sets

(76) Ẑm :=



(D, φ) ∈ S∨

m ×Φm

∣∣∣∣∣∣

Θ(D, φ) := φ∨ ◦D ◦ φ : Hm ⊗ V →
→ H∨

m ⊗ V
∨ satisfies the condition
Θ(D, φ) ∈ Sm



 .

and

(77) Zm := Ẑm ∩ (S∨
m)

0 ×Φm

(here we understand a point D ∈ S∨
m as a homomorphism H∨

m ⊗ V
∨ → Hm ⊗ V ) and let Zm

be the closure of Zm in S∨
m × Φm. By definition, Zm is an open subset of Ẑm, respectively, a

dense open subset of Zm.
Note that there is a standard decomposition

∧2(H∨
m ⊗ V

∨) = Sm ⊕Λm

with induced projection onto the second summand

(78) qm : ∧2(H∨
m ⊗ V

∨)→ Λm

and the morphism

h : S∨
m ⊕Φm → Λm : (D, φ) 7→ qm(Θ(D, φ)).

By the definition of Ẑm we obtain

(79) Ẑm = h−1(0).

Clearly, the point (0, 0) belongs to Ẑm, i. e. Ẑm is nonempty.

Convention: We endow Ẑm with the structure of a scheme-theoretic fibre h−1(0) of the

morphism h. Respectively, Zm inherits the structure of an open subscheme of Ẑm.
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Remark 7.1. From (79) it follows that Ẑm may be considered as the zero-scheme (h∗staut)0
of the section h∗staut of the trivial vector bundle Λm ⊗OSm⊕Φm, where staut is the tautological
section of the trivial vector bundle Λm⊗OΛm of rank dimΛm = 5m(m− 1) over Λm. We thus

obtain the following estimate for the dimension of Ẑm at each point z ∈ Ẑm,

(80) dimz Ẑm = dim h−1(0) ≥ dim(S∨
m ×Φm)− dimΛm = 3m(m+ 1) + 6m2 − 5m(m− 1)

= 4m(m+ 2).

In particular, if Zm is nonempty, then

(81) dimz Zm ≥ 4m(m+ 2), z ∈ Zm.

In the next subsection we will use the following result about Zm.

Theorem 7.2. (i) Zm is an integral locally complete intersection scheme of dimension 4m(m+
2).

(ii) The natural morphism pm : Zm → (S∨
m)

0 : (D, φ) 7→ D is surjective.

We begin the proof of this theorem in section 8 and finish in section 10.

7.2. Proof of the main theorem.

In this subsection we give the proof of Theorem 1.1. Set

(82) X̃m := {(D,C) ∈ (S∨
m+1)

0 ×Σm+1 | (C∨ ◦D ◦ C : Hm ⊗ V → H∨
m ⊗ V

∨) ∈ Sm}.

The set X̃m has a natural structure of a closed subscheme of (S∨
m+1)

0 × Σm+1 defined by the
equations

(83) C∨ ◦D ◦ C ∈ Sm.

Since the conditions (ii) and (iii) in the definition (58) of Xm are open and Xm is nonempty
(see Theorem 6.1), it follows immediately in view of (75) that Xm is a nonempty open subset

of (X̃m)red,

(84) ∅ 6= Xm

open
→֒ (X̃m)red.

Fix a direct sum decomposition

Hm+1
∼
→ Hm ⊕ k.

Under this isomorphism any homomorphism

(85) C ∈ Σm+1 = Hom(Hm, H
∨
m+1)⊗ ∧

2V ∨, C : Hm ⊗ V → H∨
m+1 ⊗ V

∨,

can be represented as a homomorphism

(86) C : Hm ⊗ V → H∨
m ⊗ V

∨ ⊕ k∨ ⊗ V ∨,

i.e. as a matrix of homomorphisms

(87) C =

(
φ
ψ

)
,

where

(88) φ ∈ Hom(Hm, H
∨
m)⊗ ∧

2V ∨ = Φm, ψ ∈ Ψm := Hom(Hm, (k)
∨)⊗ ∧2V ∨.

Respectively, any homomorphism D ∈ (S∨
m+1)

0 ⊂ S∨
m+1 = S2Hm+1 ⊗ ∧

2V ⊂ Hom(H∨
m+1 ⊗

V ∨, Hm+1 ⊗ V ) can be represented as a matrix of homomorphisms

(89) D =

(
D1 λ
−λ∨ µ

)
,
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where

(90) D1 ∈ S∨
m ⊂ Hom(H∨

m ⊗ V
∨, Hm ⊗ V ),

λ ∈ Lm := Hom(k∨, Hm)⊗ ∧
2V, µ ∈Mm := Hom(k∨,k)⊗ ∧2V.

From (87) and (89) it follows that the homomorphism

C∨ ◦D ◦ C : Hm ⊗ V → H∨
m ⊗ V

∨, C∨ ◦D ◦ C ∈ ∧2(H∨
m ⊗ V

∨),

can be represented as

(91) C∨ ◦D ◦ C = φ∨ ◦D1 ◦ φ+ φ∨ ◦ λ ◦ ψ − ψ∨ ◦ λ∨ ◦ φ+ ψ∨ ◦ µ ◦ ψ.

By (87)-(90) we have

S∨
m+1 ×Σm+1 = S∨

m ×Φm ×Ψm × Lm ×Mm,

and there are well-defined morphisms

p̃m : X̃m → Lm ⊕Mm : (D1, φ, ψ, λ, µ) 7→ (λ, µ).

and

pm := p̃m|Xm : Xm → Lm ⊕Mm,

where Xm is the closure of Xm in (S∨
m+1)

0 ×Σm+1. We now invoke the following proposition,
the proof of which is postponed to Section 11.

Proposition 7.3. Let m ≥ 1. Then, for any point D ∈ (S∨
m+1)

0 and a general choice of the de-

composition Hm+1
∼
→ Hm⊕k, the induced homomorphism D1 in the matrix of homomorphisms

D in (89) is nondegenerate.

According to this proposition, we fix such a decomposition Hm+1
∼
→ Hm ⊕ k for which the

homomorphism D1 : H
∨
m ⊗ V

∨ → Hm ⊗ V in (89) is nondegenerate, i.e. D1 ∈ (S∨
m)

0.
Let X be any irreducible component of Xm and let X be its closure in Xm. Fix a point

z = (D1, φ, ψ, λ, µ) ∈ X not lying in the components of Xm different from X . Consider the
morphism

(92) f : A
1 → X : t 7→ (D1, t

2φ, tψ, tλ, t2µ), f(1) = z.

(This morphism is well-defined by (91).) By definition, the point f(0) = (D1, 0, 0, 0, 0) lies in
the fibre p−1

m (0, 0). Hence, p−1
m (0, 0) ∩ X 6= ∅. In other words,

(93) ρ−1(0, 0) 6= ∅, where ρ := pm|X .

Now from (91) and the definition of X̃m it follows that

(94) p̃−1
m (0, 0) = {(D1, φ, ψ) ∈ (S∨

m)
0 ×Φm ×Ψm | φ

∨ ◦D1 ◦ φ ∈ Sm}.

Comparing this with the definition (77) of Zm we see that, set-theoretically, p̃−1
m (0, 0) = Zm ×

Ψm, so that

(95) ρ−1(0, 0)
sets
⊂ p−1

m (0, 0)
sets
= p̃−1

m (0, 0)
sets
= Zm ×Ψm.

Respectively, scheme-theoretically we have embeddings of schemes

(96) ρ−1(0, 0)
schemes
⊂ p−1

m (0, 0)
schemes
⊂ p̃−1

m (0, 0)
schemes
= Zm ×Ψm.

From (95) and Theorem 7.2 it follows, in particular, that

(97) dim ρ−1(0, 0) ≤ dim p−1
m (0, 0) ≤ dimZm + dimΨm = 4m(m+ 2) + 6m = 4m2 + 14m.

Hence in view of (93)

(98) dimX ≤ dim ρ−1(0, 0) + dimLm + dimMm ≤ 4m2 + 14m+ 6m+ 6 = 4m2 + 20m+ 6.
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On the other hand, formula (16) for n = 2m+ 1, equality (43) and Theorem 6.1(ii) show that,
for any point x ∈ X such that A := gm(x) ∈MI2m+1(ξ),

(99) 4m2 + 20m+ 6 = (2m+ 1)2 + 8(2m+ 1)− 3 ≤ dimAMI2m+1(ξ) = dimX .

Comparing (98) with (99) we see that all inequalities in (97)-(99) are equalities. In particular,

(100) dim ρ−1(0, 0) = dim(Zm ×Ψm) = dimX − dim(Lm ×Mm).

Since by Theorem 7.2 the scheme Zm is integral and so Zm ×Ψm is integral as well, (96) and
(100) yield isomorphisms of integral schemes

(101) ρ−1(0, 0)
schemes
= p−1

m (0, 0)
schemes
= p̃−1

m (0, 0)
schemes
= Zm ×Ψm.

Now we formulate the following Lemma, the proof of which we leave to the reader.

Lemma 7.4. Let f : X → Y be a morphism of reduced schemes, where Y is a smooth integral
scheme. Assume that there exists a closed point y ∈ Y such that for any irreducible component
X ′ of X the following conditions are satisfied:

(a) dim f−1(y) = dimX ′ − dim Y ,
(b) the scheme-theoretic embedding of fibres (f |X′)−1(y) ⊂ f−1(y) is an isomorphism of

integral schemes.
Then

(i) there exists an open subset U of Y containing the point y such that the morphism f |f−1(U) :
f−1(U)→ U is flat,

(ii) X is integral and
(iii) X is smooth at any smooth point of f−1(y).

Applying the assertions (i)-(ii) of this lemma to X = Xm, X
′ = X , Y = Lm ×Mm, y =

(0, 0), f = pm, and using (100) and (101), we obtain that Xm is an integral scheme of dimension
4m2 + 20m+ 6.

It follows now from Corollary 4.8 and Theorem 6.1 that (MI2m+1)red is irreducible of dimen-
sion 4m2 + 20m+ 6 = n2 + 8n− 3 for n = 2m+ 1, i.e. the inequality (16) becomes the strict
equality. This together with Theorem 3.1 implies thatMI2m+1 is a locally complete intersection
subscheme of the vector space S2m+1. We use now the following easy lemma, the proof of which
is left to the reader.

Lemma 7.5. Let X be an irreducible locally complete intersection subscheme of a smooth
integral scheme Y such that X is smooth at some point. Then X is integral.

Applying this Lemma to X = MI2m+1, Y = S2m+1 and using Remark 3.2, we obtain
that MI2m+1 is integral. Since π2m+1 : MI2m+1 → I2m+1 : A 7→ [E(A)] is a principal
GL(H2m+1)/{±id}-bundle in the étale topology (see section 3), it follows that I2m+1 is in-
tegral of dimension 16m + 5 = 8n − 3 for n = 2m + 1. This finishs the proof of Theorem
1.1.

Remark 7.6. Consider the natural projections pI : Xm → Lm ×Mm × Ψm, pII : Xm →
Sm × Lm ×Mm × Ψm ≃ Sm+1 × Ψm and p : Xm

pII→ Sm+1 × Ψm
pr1
→ Sm+1. From (101) it

follows that p−1
I (0, 0, 0) ≃ Zm. On the other hand, Theorem 7.2 shows that the projection

p′ : Zm
pm
→ (S∨

m)
0 ≃ S0

m

open
→֒ Sm is dominant, hence, for a general point D1 ∈ Sm, the fibre

p′−1(D1) is an integral scheme of dimension dimZm − dimSm = m(m + 5). This fibre in
view of the equality p−1

I (0, 0, 0) ≃ Zm coincides with the fibre p−1
II (D1, 0, 0, 0), and we thus

have dim p−1
II (D1, 0, 0, 0) = 5m(m + 1) = 4m2 + 20m + 6 − (3(m + 1)(m + 2)/2 + 6m) =

dimXm − dim(Sm ×Ψm). Thus, applying Lemma 7.4 to X = X ′ = Xm, Y = Lm ×Mm, y =
(D1, 0, 0, 0), f = pII , we obtain that pII is a dominant morphism. A fortiori,

p : Xm → Sm+1 : (D, φ)→ D
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is a dominant morphism.

8. Study of Zm. Beginning of the proof of Theorem 7.2

In this section we begin proving Theorem 7.2 on the irreducibility of Zm. In subsection
8.1 we first treat the case m = 1. Next, we obtain explicit equations of Zm under a fixed
decompomposition of Hm into a direct sum of Hm−1 and k. In subsection 8.2 we formulate the
main result of this section - Proposition 8.1 - which is a part of the induction step in the proof
of Theorem 7.2. (The rest of the proof of Theorem 7.2 will be given in the last subsection of
Section 10.) In subsections 8.3-8.5 we study in detail the explicit equations of Zm and as a
result obtain the proof of Proposition 8.1.

8.1. Explicit equations of Zm in (S∨
m)

0×Φm. We proceed to the proof of the irreducibility
of Zm by increasing induction on m. For m = 1 clearly Λm = 0, so that the equations
{Θ1(D1, φ1) ∈ S1} of Z1 in (∧2(k∨ ⊗ V ∨))0 are empty, i.e. scheme-theoretically we have

Z1 = (∧2(k∨ ⊗ V ∨))0 ×Φ1

open
→֒ A

12.

Thus Z1 is integral as a dense open subset of A12.
Now fix an isomorphism

(102) Hm−1 ⊕ k
∼
→ Hm : ((a1, ..., am−1), am) 7→ (a1, ..., am).

Under this isomorphism any homomorphism

(103) φ : Hm ⊗ V → H∨
m ⊗ V

∨, φ ∈ Φm = Hom(Hm, H
∨
m ⊗ ∧

2V ∨).

can be represented as a homomorphism

(104) φ : Hm−1 ⊗ V ⊕ k⊗ V → H∨
m−1 ⊗ V

∨ ⊕ k∨ ⊗ V ∨,

i.e. as a matrix of homomorphisms

(105) φ =

(
φm−1 χ
ψ θ

)
,

where

(106) φm−1 ∈ Φm−1 = Hom(Hm−1, H
∨
m−1 ⊗ ∧

2V ∨), ψ ∈ Ψm−1 := Hom(Hm−1,k
∨ ⊗ ∧2V ∨),

χ ∈ Hom(k, H∨
m−1 ⊗ ∧

2V ∨) = Ψm−1, θ ∈ Bθ := Hom(k,k∨ ⊗ ∧2V ∨) = S1.

Respectively, a homomorphism

(107) D ∈ S∨
m ⊂ Hom(H∨

m ⊗ V
∨, Hm ⊗ V )

can be represented as a matrix of homomorphisms

(108) D =

(
Dm−1 a
−a∨ α

)
,

where

(109) Dm−1 ∈ S∨
m−1 ⊂ Hom(H∨

m−1 ⊗ V
∨, Hm−1 ⊗ V ),

a ∈ Hom(k∨, Hm−1 ⊗ ∧
2V ) = Ψ∨

m−1, α ∈ Bα := Hom(k∨,k⊗ ∧2V ).

Note that the data (106) and (109) yield isomorphisms

(110) S∨
m

≃
→ Bα ×Ψ∨

m−1 × S∨
m−1, Φm

≃
→ Φm−1 ×Ψm−1 ×Ψm−1 ×Bθ,

and hence an isomorphism

(111) S∨
m ×Φm

≃
→ Bθ ×Bα ×Ψ∨

m−1 × S∨
m−1 ×Φm−1 ×Ψm−1 ×Ψm−1 :
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(D, φ) 7→ (θ, α, a,Dm−1, φm−1, ψ, χ).

From (105) and (108) it follows that the homomorphism

Θ(D, φ) := φ∨ ◦D ◦ φ : Hm ⊗ V → H∨
m ⊗ V

∨, Θ(D, φ) ∈ ∧2(H∨
m ⊗ V

∨),

can be represented as a matrix of homomorphisms

(112) Θ(D, φ) =

(
Θ1(D, φ) b(D, φ)
−b(D, φ)∨ β(D, φ)

)
,

where

(113) Θ1(D, φ) := φ∨
m−1 ◦Dm−1 ◦ φm−1 + φ∨

m−1 ◦ a ◦ ψ − ψ
∨ ◦ a∨ ◦ φm−1 + ψ∨ ◦ α ◦ ψ ∈

∈ ∧2(H∨
m−1 ⊗ V

∨) ⊂ Hom(H∨
m−1 ⊗ V

∨, Hm−1 ⊗ V ),

b(D, φ) := φ∨
m−1 ◦Dm−1 ◦ χ+ φ∨

m−1 ◦ a ◦ θ − ψ
∨ ◦ a∨ ◦ χ+ ψ∨ ◦ α ◦ θ ∈

∈ Hom(Hm−1 ⊗ V,k
∨ ⊗ V ∨),

β(D, φ) := χ∨ ◦Dm−1 ◦ χ+ χ∨ ◦ a ◦ θ − θ∨ ◦ a∨ ◦ χ+ θ∨ ◦ α ◦ θ ∈ Bθ.

In these notations Zm can be described as

(114) Zm =

{
(D, φ) ∈ (S∨

m)
0 ×Φm

∣∣∣∣
(i) Θ1(D, φ) ∈ Sm−1,
(ii) b(D, φ) ∈ Ψm−1

}
.

(Note that the condition β(D, φ) ∈ S1 here is empty.)
We thus have the following explicit equations of Zm in the open subset (S∨

m)
0 × Φm of the

variety S∨
m×Φm, where we consider S

∨
m×Φm as the direct product Bθ×Bα×Ψ∨

m−1×S∨
m−1×

Φm−1 ×Ψm−1 ×Ψm−1 via (111):

(115) Θ1(D, φ) := φ∨
m−1 ◦Dm−1 ◦ φm−1 + φ∨

m−1 ◦ a ◦ ψ − ψ
∨ ◦ a∨ ◦ φm−1 + ψ∨ ◦ α ◦ ψ ∈ Sm−1,

(116) b(D, φ) := φ∨
m−1 ◦Dm−1 ◦ χ+ φ∨

m−1 ◦ a ◦ θ − ψ
∨ ◦ a∨ ◦ χ+ ψ∨ ◦ α ◦ θ ∈ Ψm−1.

These equations will be used systematically in the next subsections.

8.2. Part of induction step in the proof of Theorem 7.2.

We first introduce some more notation. Set

(∧2V )0 := {a ∈ ∧2V | a : V ∨ → V is an isomorphism},

(∧2V ∨)0 := {a ∈ ∧2V ∨ | a : V → V ∨ is an isomorphism}.

Consider the projective space P (∧2V ∨) together with the Grassmannian G = G(1, 3) ⊂
P (∧2V ∨) embedded by Plücker. Take any two points a ∈ (∧2V )0 and b ∈ (∧2V ∨)0 such
that the corresponding points < a−1 > and < b > in P (∧2V ∨) are distinct. The projective line
P 1(a, b) := Span(< a−1 >,< b >) joining these points intersects the quadric G in two points,
say, {y1, y2}, not necessarily distinct, and let P1

(i)(a, b), i = 1, 2, be the two disjoint lines in P3

corresponding to the points y1, y2. Set

(117) L(a, b) := P
1
(1)(a, b) ⊔ P

1
(2)(a, b).

Next, note that there are natural isomorphisms S∨
1 ≃ ∧

2V and Φ∨
1 ≃ ∧

2V ∨, and, for any m ≥ 2,
the induced isomorphisms

(118) US :=
m
⊕
i=1

(S∨
1 )(i) ≃

m
⊕
1
∧2 V, UΦ :=

m
⊕
i=1

(Φ1)(i) ≃,
m
⊕
i=1
∧2 V ∨,

where (S∨
1 )(i) and (Φ1)(i) are copies of S

∨
1 and Φ1, respectively. Furthermore, any isomorphism

(119) h : H1 ⊕ ...⊕H1︸ ︷︷ ︸
m

≃
→ Hm

induces embeddings US →֒ S∨
m and UΦ →֒ Φm, hence an embedding

(120) τh : US × UΦ →֒ S∨
m ×Φm.
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Note also that the set

(121) WSΦ := {((D(1), ..., D(m)), (φ(1), ..., φ(m))) ∈ US × UΦ | the subsets L(D(i), φ(i)) of P
3,

1 ≤ i ≤ m, are well defined, pairwise disjoint and not lying on a quadric}

is clearly a dense open subset of US × UΦ.
The aim of the rest of this section is to prove the following proposition which is a part of the

induction step m− 1 m in the proof of Theorem 7.2.

Proposition 8.1. Let m ≥ 2 and let Zm−1 satisfy the statement of Theorem 7.2. Then there
exists an irreducible component Z of Zm such that:

(i) let Zm = Z ∪ Y be the decomposition of Zm into components; then Z0 := Z r (Z ∩ Y ) is
an integral locally complete intersection subscheme of (S∨

m)
0 ×Φm;

(ii) dimZ = 4m(m + 2) and the natural projection pm|Z : Z → (S∨
m)

0 : (D, φ) 7→ D is
dominant;

(iii) there exists an isomorphism h in (119) such that, in the notations (120) and (121),
Z ∩ τh(WSΦ) 6= ∅.

Before proving this proposition we need some preliminary remarks.
First, consider the case m = 2. In this case Dm−1 = D1 ∈ ∧

2V, φm−1 = φ1 ∈ ∧
2V ∨ and

a, α ∈ ∧2V, ψ, χ, θ ∈ ∧2V ∨ so that the equations (115) become empty, and the equations (116)
become:

(122) (φ1 ◦D1 − ψ1 ◦ a) ◦ χ− (φ1 ◦ a− ψ1 ◦ α) ◦ θ ∈ ∧
2V ∨.

Now one can easily check that, for a general point x = (D1, φ1, ψ, a, α) ∈ (∧2V )0×(∧2V ∨)×4, the
equations (122) as a linear system on the pair (χ, θ)) ∈ (∧2V ∨)×2 has maximal rank equal 10.
Thus the space Fx of solutions of this system as a subspace of (∧2V ∨)×2 has dimension 2. This
means that there exists a component Z of Z2 with projection pZ : Z → (∧2V )0 × (∧2V ∨)×4 :
(D1, φ1, ψ, a, α, χ, θ) 7→ (D1, φ1, ψ, a, α) with a smooth fibre Fx = p−1

Z (x) of dimension 2. Hence,
in particular, Z is generically reduced and dimZ ≤ dim((∧2V )0 × (∧2V ∨)×4) + 2 = 32. On
the other hand, since (122) is a system of 10 equations of Z2 in (S∨

2 )
0 × Φ2, it follows that

Z as irreducible component of Z2 has dimension ≥ dim((S∨
2 )

0 × Φ2) − 10 = 42 − 10 = 32.
Hence dimZ = 32 and pZ is dominant. As a corollary, the projection p2|Z : Z → (S∨

2 )
0 :

(D1, φ1, ψ, a, α, χ, θ) 7→ (D1, a, α) is also dominant. Moreover, since Fx is smooth and pZ(Z) is
smooth as a dense open subset of (∧2V )0 × (∧2V ∨)×4, it follows that Z is generically reduced.
Now we use the following remark.

Remark 8.2. Let X̃ be a locally closed subscheme of an affine space AM defined locally by N
equations. Let X be an irreducible component of X̃ and let X 0 be a complement in X of its
intersection with the union of other possible components of X̃ . Let X be generically reduced
and let dimX = M − N . Then X 0 is an integral locally complete intersection subscheme of
AM .

Applying this remark to the case X = Z2, A42 = (∧2V )0 × (∧2V ∨)×6, we obtain from the
above that the statements (i)-(ii) of Proposition 8.1 are true for Z. Now an explicit computation
shows that the statement (iii) of this Proposition is also true for Z. We thus have proved
Proposition 8.1 for m = 2.

We proceed now to the proof of Proposition 8.1 for m ≥ 3. For this, note that, by the
assumption, Zm−1 is an integral subscheme of (S∨

m−1)
0 ×Φm−1 such that

dimZm−1 = 4(m2 − 1)

and the natural projection pm−1 : Zm−1 → (S∨
m−1)

0 : (Dm−1, φm−1) 7→ Dm−1 is surjective:

(123) pm−1(Zm−1) = (S∨
m−1)

0.
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Hence, since dim(S∨
m−1)

0 = 3m(m − 1) and so dimZm−1 − dim(S∨
m−1)

0 = (m − 1)(m + 4), it
follows that the set
(124)
(S∨

m−1)
int := {Dm−1 ∈ (S∨

m−1)
0 | the fibre p−1

m (Dm−1) is integral of dimension (m− 1)(m+ 4)}

is a dense open subset of (S∨
m−1)

0; respectively,

(125) Z int
m−1 := p−1

m−1((S
∨
m−1)

int)

is a dense open subset of Zm−1.
Next, using (111) and the embedding Zm →֒ S∨

m ×Φm consider the projections

(126) prm : S∨
m ×Φm → Bθ ×Bα ×Ψ∨

m−1 × S∨
m−1 : (D, φ) = (θ, α, a,Dm−1, φm−1, ψ, χ) 7→

7→ (θ, α, a,Dm−1), πm := prm|Zm : Zm → Bθ ×Bα ×Ψ∨
m−1 × S∨

m−1.

We are going now to study the fibre
π−1
m (y0)

of the projection πm over the point

(127) y0 := (θ0, α0, 0, Dm−1) ∈ Bθ ×Bα ×Ψ∨
m−1 × (S∨

m−1)
0,

where

(128) α0 = (pij) ∈ ∧
2V ∨ ≃ Bα, θ0 = (qij) ∈ ∧

2V ∨ ≃ Bθ, pij , qij ∈ k.
3

Note that, by the definition of πm, the fibre π−1
m (y0) naturally lies in Φm−1 ×Ψm−1 ×Ψm−1:

(129) π−1
m (y0) ⊂ Φm−1 ×Ψm−1 ×Ψm−1.

Thus, substituting (127) into (115) and (116), we obtain the equations of π−1
m (y0) as a subscheme

of Φm−1 ×Ψm−1 ×Ψm−1 as equations in the variables φm−1, χ and ψ:

(130) φ∨
m−1 ◦Dm−1 ◦ φm−1 + ψ∨ ◦ α0 ◦ ψ ∈ Sm−1,

(131) φ∨
m−1 ◦Dm−1 ◦ χ+ ψ∨ ◦ α0 ◦ θ0 ∈ Ψm−1.

For an arbitrary point y0 in (127), where Dm−1 ∈ (S∨
m−1)

0, consider the set

(132) F (θ0, α0, Dm−1) := π−1
m (y0) ∩ {χ = ψ = 0}.

It follows from (130) that

(133) F (θ0, α0, Dm−1) ≃ {φm−1 ∈ Φm−1 | φ
∨
m−1 ◦Dm−1 ◦ φm−1 ∈ Sm−1}.

Hence, ∪
Dm−1∈(S∨

m−1)
0
F (θ0, α0, Dm−1) = {(θ0, α0)}×Zm−1. Moreover, the definition (124) implies

that for Dm−1 ∈ (S∨
m−1)

int the set F (θ0, α0, Dm−1) is irreducible of dimension (m − 1)(m+ 4)
and, by (111), (125) and (132),

(134) ∪
Dm−1∈(S∨

m−1)
int
F (θ0, α0, Dm−1) = {(θ

0, α0, 0)} × Z int
m−1 × {(0, 0)}.

8.3. Proof of Proposition 8.1: case m odd, first computations. In this subsection we
prove Proposition 8.1 for the case of odd m,

m = 2p+ 1, p ≥ 1.

Fix decompositions

(135) Hm−1 ≃ H2 ⊕ ...⊕H2︸ ︷︷ ︸
p

, H2 ≃ H1 ⊕H1.

3Here and below we use a fixed basis e1, ..., e4 of V in order to understand points of ∧2V and ∧2V ∨ as skew
4× 4- matrices.
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Under these decompositions consider the points D∆
m−1 ∈ (S∨

m−1)
0 and φ∆

m−1 ∈ Φm−1 given by
the matrices 4

(136) D∆
m−1 := D2 ⊕ ...⊕D2︸ ︷︷ ︸

p

, φ∆
m−1 = φ∆

m−1(N, a, d, f, g) := φ2 ⊕ ...⊕ φ2︸ ︷︷ ︸
p

,

where
(137)

D2 = D′ ⊕D′′ ∈ S∨
2 , D′ =




−1
1

1
−1


 ∈ ∧

2V, D′′ =




1
1

−1
−1


 ∈ ∧

2V,

(138)

φ2 =

(
φ11 φ12

φ21 φ22

)
∈ Φ2, φ11 =




−1
1

N
−N


 , φ22 =




1
N

−1
−N


 , N ∈ k,

φ12 =




f
g

−g
−f


 , φ21 =




a f
−g d

−a g
−f −d


 ∈ ∧

2V ∨, a, d, f, g ∈ k.

One easily checks that

(139) (φ∆
m−1)

∨ ◦D∆
m−1 ◦ φ

∆
m−1 ∈ Sm−1,

hence the point (D∆
m−1, φ

∆
m−1) ∈ S∨

m−1 ×Φm−1 lies in Ẑm−1. Moreover, since D∆
m−1 ∈ (S∨

m−1)
0,

it follows that

(140) (D∆
m−1, φ

∆
m−1) ∈ Zm−1.

In addition, it follows from (139) that the equations (130) are automatically satisfied for any
ψ ∈ Ψm−1. Now, substituting the data (θ0, α0, D∆

m−1, φ
∆
m−1) into (131), we obtain the equations

on (χ, ψ):

(141) (φ∆
m−1)

∨ ◦D∆
m−1 ◦ χ + ψ∨ ◦ α0 ◦ θ0 ∈ Ψm−1.

Set

(142) W (θ0, α0, D∆
m−1, φ

∆
m−1) := {(χ, ψ) ∈ Ψm−1 ×Ψm−1 | (χ, ψ) satisfies (141)}.

Note that, since the equations (141) on (χ, ψ) are linear, it follows that W (D∆
m−1, φ

∆
m−1, α

0, θ0)
is a linear subspace of the vector space Ψm−1 ×Ψm−1 ≃ Ψ∨

m−1 ⊕Ψm−1.
Find the dimension of the vector space W (θ0, α0, D∆

m−1, φ
∆
m−1). For this, using the decompo-

sitions (135) we represent χ and ψ as p-ples

(143) χ = (χ1, ..., χp), ψ = (ψ1, ..., ψp), ψk, χk ∈ Ψ2, k = 1, ..., p,

where

(144) χk = (Xk, Yk), ψk = (Ak, Bk), Xk, Yk, Ak, Bk ∈ ∧
2V ∨,

and

(145) Xk = (x
(k)
ij ), Yk = (y

(k)
ij ), Ak = (a

(k)
ij ), Bk = (b

(k)
ij )

4Here and everywhere below the empty entries of matrices mean zeroes. Besides, we use the standard notation
A = A1⊕...⊕An for a direct sum A of matrices A1, ..., An which is a block matrix with diagonal blocks A1, ..., An

and the zero rest blocks.
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are skew-symmetric 4×4-matrices. Inserting D∆
m−1 and φ∆

m−1 from (136) into the system of
equations (141) we rewrite this system as

(146) φ∨
2 ◦D2 ◦ χk + ψ∨

k ◦ α
0 ◦ θ0 ∈ Ψ2, k = 1, ..., p.

Substituting here D2, φ2 and θ0 from (137), (138) and (128) and denoting x
(k)
1 = x

(k)
12 , x

(k)
2 =

x
(k)
34 , x

(k)
3 = x

(k)
13 , x

(k)
4 = x

(k)
14 , x

(k)
5 = x

(k)
23 , x

(k)
6 = x

(k)
24 , x

(k)
7 = y

(k)
12 , x

(k)
8 = y

(k)
34 , x

(k)
9 = y

(k)
13 , x

(k)
10 =

y
(k)
14 , x

(k)
11 = y

(k)
23 , x

(k)
12 = y

(k)
24 , x

(k)
13 = a

(k)
12 , x

(k)
14 = a

(k)
34 , x

(k)
15 = a

(k)
13 , x

(k)
16 = x

(k)
14 , x

(k)
17 = x

(k)
23 , x

(k)
18 =

x
(k)
24 , x

(k)
19 = b

(k)
12 , x

(k)
20 = b

(k)
34 , x

(k)
21 = b

(k)
13 , x

(k)
22 = b

(k)
14 , x

(k)
23 = b

(k)
23 , x

(k)
24 = b

(k)
24 , we rewrite the system

(146) as

(147)

24∑

j=1

mijx
(k)
j = 0, i = 1, ..., 20, k = 1, ..., p,

where M := (mij) is the 20× 24-matrix with entries depending on N, a, d, f, g, pij, qij.
Now a direct computation of the matrix M = (mij) for

(148) N = 101, a = 4, d = 6, f = 2, g = 5,

(149) p12 = −9, p13 = −2, p14 = −4, p23 = 6, p24 = −3, p34 = −7,

q12 = −4, q13 = −4, q14 = −2, q23 = 3, q24 = −7, q34 = 8,

shows that M is the upper left block submatrix

(150) M =

(
M11 M12 Mψ 0

M21 M22 0 Mψ

)

of the block matrix M̃ given below in (181)-(186). From (150) and (182)-(186) it follows by an
explicit computation that

(151) rkM = 20.

Hence, since the matrix of the system (147) is a direct sum of p copies of matrix M, it follows
that its rank equals

(152) p · rkM = 20p = 10(m− 1).

Next, denote by

(153) φm−1, resp., α, θ

the matrices obtained by inserting the entries (148) into the matrix φ∆
m−1 in (136), respec-

tively, the entries (149) into the matrices α0 and θ0 in (128). In this notation, denoting by
R(θ0, α0, D∆

m−1, φ
∆
m−1) the rank of the linear system (141) as a function of θ0, α0, D∆

m−1, φ
∆
m−1

we rewrite (152) as

(154) R(θ,α, D∆
m−1,φm−1) = 10(m− 1).

Note that (D∆
m−1,φm−1) ∈ Zm−1 by (140), and by (125) Z int

m−1 is irreducible and dense open
in Zm−1. In addition, since the maximal value of R(θ0, α0, Dm−1, φm−1) equals 10(m − 1), the
condition R(θ0, α0, Dm−1, φm−1) = 10(m − 1) imposed on the point (Dm−1, φm−1) ∈ Zm−1 is
open. Hence it follows from (154) that

a) the set (Z int
m−1)

0 := {(Dm−1, φm−1) ∈ Z int
m−1 | R(θ,α, Dm−1, φm−1) = 10(m − 1)} is dense

open in Z int
m−1, hence also in Zm−1. By (123) this implies that

b) there exists a dense open subset (S∨
m−1)

∗ of (S∨
m−1)

int such that, for Dm−1 ∈ (S∨
m−1)

∗, the
set

F (θ,α, Dm−1)
0 := F (θ,α, Dm−1) ∩ (Z int

m−1)
0

where F (θ0, α0, Dm−1) is defined in (132), is an integral scheme of dimension (m − 1)(m + 4)
and it is a dense open subset of F (θ,α, Dm−1).
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Now for Dm−1 ∈ (S∨
m−1)

∗ set

F := π−1
m (θ,α, 0, Dm−1), F = F (Dm−1) := F (θ,α, Dm−1) = F ∩ {χ = ψ = 0}.

From a) and b) it follows similar to (134) that ∪
Dm−1∈(S∨

m−1)
∗
F (Dm−1) is dense open in {(θ,α)}×

Z int
m−1 × {(0, 0)}, hence

(155) ∪
Dm−1∈(S∨

m−1)
∗
F (Dm−1) = {(θ,α, 0)} × Ẑm−1 × {(0, 0)},

where the closure is taken in S∨
m ×Φm and we use the isomorphism (111).

Take an arbitrary point Dm−1 ∈ (S∨
m−1)

∗. By b) F = F (Dm−1) is integral of dimension (m−
1)(m+4) and contains a dense open subset F 0 such that, for any point w = (θ,α, Dm−1, φ

′
m−1) ∈

F 0, one has R(w) := R(θ,α, Dm−1, φ
′
m−1) = 10(m − 1). Fix such a point w which is smooth

on F . We are going now to compute the dimension of the tangent space TwF.
Note that by (129) we consider F as lying in Φm−1×Ψm−1 ×Ψm−1. Hence the equations of

the tangent space
TwF

are given by differentiating at w the equations (130) and (131):

(156) dφ∨
m−1|φ′m−1

◦Dm−1 ◦ φm−1 + φ′∨
m−1 ◦Dm−1 ◦ dφm−1|φ′m−1

∈ Sm−1,

(157) φ′∨
m−1 ◦Dm−1 ◦ dχ|0 + dψ|∨0 ◦ α

0 ◦ θ0 ∈ Ψm−1.

Here the equations (156) coincide with the equations obtained by differentiating at w the
equations φ∨

m−1 ◦Dm−1 ◦φm−1 ∈ Sm−1 defining F as a subscheme of Φm−1. Since w is a smooth
point of F 0, it follows that the equations (156) define the tangent space TwF

0 = TwF as a
subspace of Tφ′m−1

Φm−1 and

(158) dimTwF = dimF = (m− 1)(m− 4).

On the other hand, the equations (157) just coincide with (131) via identifying (χ|0, dψ|0)
with (χ, ψ), i.e. they are the equations of the subspace W (w) = W (θ,α, Dm−1, φ

′
m−1) in

Ψm−1⊕Ψm−1. Hence dimW (w) = dim(Ψm−1⊕Ψm−1)−R(w) = 12(m−1)−10(m−1) = 2(m−1).
In view of (158) we have

(159) dimw F ≤ dimTwF = dimTwF +dimW (w) = (m−1)(m+4)+2(m−1) = m2+5m−6.

Note that, since Dm−1 ∈ (S∨
m−1)

0 and α ∈ S0
1 (see (128)), it follows thatD = Dm−1⊕α ∈ (S∨

m)
0,

so that

(160) w ∈ Zm.

In addition, dim(Bθ×Bα×Ψ∨
m−1×S∨

m−1) = dim(Bθ×S∨
m) = 6+ 3m(m+1) = 3m2 +3m+6.

Counting the dimension of the fibres of πm : Zm → Bθ ×Bα ×Ψ∨
m−1 × S∨

m−1 ≃ Bθ × S∨
m and

using (159) we obtain

dimw Zm ≤ dimw F+ dim(Bθ × S∨
m) ≤ (m2 + 5m− 6) + (3m2 + 3m+ 6) = 4m(m+ 2).

Comparing this with (81) we see that the above inequalities on dimensions are strict equalities.
In particular, dimw Zm = 4m(m+2) and dimw F = dimTwF = m2+5m−6 and dim πm(Zm) =
(3m2 + 3m+ 6) = dim(Bθ × S∨

m). This together with the assertion (iii) of Lemma 7.4 implies
that there exists a unique irreducible component, say, Z of Zm passing through w such that:

(i) dimZ = 4m(m + 2) and Zm, respectively, Z is smooth at w; hence, in notations of
Proposition 8.1(i), Z0 is an integral locally complete intersection subscheme of (S∨

m)
0×Φm (we

use here Remark 8.2);
(ii) πm(Z) is dense in Bθ × S∨

m; respectively, pm(Z) = prS(πm(Z)) is dense in S∨
m, where

prS : Bθ × S∨
m → S∨

m is the projection. This gives proof of the statements (i) and (ii) of
Proposition 8.1.
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Moreover, by a) and b) above, F = F (Dm−1) ⊂ Z for Dm−1 ∈ (S∨
m−1)

∗, so that (155) implies
the existence of an embedding

(161) {(θ,α, 0)} × Ẑm−1 × {(0, 0)} ⊂ Z,

where Z is the closure of Z in S∨
m × Φm. In particular, similar to (160) we have in view of

(140):

(162) w0 := (θ,α, 0, D∆
m−1, φ

∆
m−1, 0, 0) ∈ Z.

8.4. Proof of Proposition 8.1: case m odd, last computations. In this subsection we
prove the last statement (iii) of Proposition 8.1 in case of oddm. For this, consider the following
modification of the data (136)-(138):

(163) D∆
m−1(c, f , g) := D2(c, f1, g1)⊕ ...⊕D2(c, fp, gp),

φ∆
m−1(ε, f , g) := φ2(ε, f1, g1)⊕ ...⊕ φ2(ε, fp, gp),

where

(164) D2(c, fi, gi) =

(
D′(c, fi, gi)

D′′

)
∈ S∨

2 ,

D′(c, fi, gi) =




−1 cgi
1 cfi

−cfi 1
−cgi −1


 , i = 1, ..., p, D′′ =




1
1

−1
−1


 ∈ ∧

2V,

(165) φ2(ε, fi, gi) =

(
φ11 φ12(ε, fi, gi)

φ21(ε, fi, gi) φ22

)
∈ Φ2, φ11 =




−1
1

N
−N


 ,

φ22 =




1
N

−1
−N


 , φ12(ε, fi, gi) =




εfi
εgi

−εgi
−εfi


 ,

φ21(ε, fi, gi) =




εa εfi
−εgi εd

−εa εgi
−εfi −εd


 ∈ ∧

2V ∨, c, ǫ, N, a, d, fi, gi ∈ k, i = 1, ..., p,

and where f = (f1, ..., fp), g = (g1, ..., gp) ∈ kp. One easily checks that (φ∆
m−1(ε))

∨ ◦
D∆
m−1(c, f , g) ◦ φ

∆
m−1(ε) ∈ Sm−1, hence the point

(D∆
m−1(c, f , g), φ

∆
m−1(ε, f , g)) ∈ S∨

m−1 ×Φm−1

lies in Z̃m−1. Moreover, since (D∆
m−1(0, f , g) = D∆

m−1 ∈ (S∨
m−1)

0 and (S∨
m−1)

0 is open in S∨
m−1,

it follows that, for any f , g ∈ kp there exists some dense open subset U(f , g) of k such that
D∆
m−1(c, f , g) ∈ (S∨

m−1)
0, c ∈ U(f , g). Hence, (D∆

m−1(c, f , g), φ
∆
m−1(ε, f , g)) ∈ Zm−1 for c ∈

U(f , g), so that, since Zm−1 is closed in S∨
m−1 ×Φm−1,

(166) (D∆
m−1(c, f , g), φ

∆
m−1(ε, f , g)) ∈ Zm−1, c, ε ∈ k, f , g ∈ kp.

In particular, take c = 1 and ε = 0 in (163)-(165). It follows immediately that the point

w(f , g, θ0, α0) := (D∆
m−1(1, f , g)⊕ α

0, φ∆
m−1(0, f , g)⊕ θ

0), (θ0, α0) ∈ ∧2V ∨ × ∧2V,



28 TIKHOMIROV

is the image of the point

((D′(1, f1, g1), ..., D
′(1, fp, gp), D

′′, ..., D′′

︸ ︷︷ ︸
p

, α0), (φ11, ..., φ11︸ ︷︷ ︸
p

, φ22, ..., φ22︸ ︷︷ ︸
p

, θ0)) ∈ US × UΦ

under the embedding τh : US×UΦ →֒ S∨
m×Φm defined (up to a permutation of direct summands)

as in (119)-(120) via the isomorphism

(167) h : H1 ⊕ ...⊕H1︸ ︷︷ ︸
m

≃
→ Hm, m = 2p+ 1,

determined by the decompositions (135).

On the other hand, by (111) and (166) we have w(f , g, θ,α) ∈ {(θ,α, 0)}× Ẑm−1×{(0, 0)},
so that, in view of (161), w(f , g, θ,α) ∈ Z. Thus,

(168) w(f , g, θ,α) ∈ Z ∩ τh(US × UΦ), f , g ∈ kp.

Note that D∆
m−1(1, 0, 0) = D∆

m−1, hence it follows from the definition of w(f , g, θ0, α0) that the
point w(0, 0, θ,α) lies in Zm (cf. (162)). Since the condition w(f , g, θ0, α0) ∈ Zm on the point
(f , g, θ0, α0) ∈ k2p × ∧2V ∨ × ∧2V is open, we obtain from (168) that there exists a dense open
subset U ∈ k2p × ∧2V ∨ × ∧2V such that

(169) w(f , g, θ0, α0) ∈ Zm ∩ τh(US × UΦ), (f , g, θ0, α0) ∈ U .

Next, one easily sees that, for general fi, gi 6= 0 the points D′(0, fi, gi), D
′(1, fi, gi) lie in

(∧2V )0 and, moreover, the projective plane Span(< D′(0, fi, gi)
−1 >,< D′(1, fi, gi)

−1 >,<
φ11 >) in P (∧2V ∨) intersects the Grassmannian G = G(1, 3) in a smooth conic. This imme-
diately implies that, in the notation of (117), for a general choice of f1, g1, f2, g2 ∈ k, the sets
L(D′(1, f1, g1)

−1, φ11) and L(D′(1, f2, g2)
−1, φ11) are well defined and disjont. In other words,

using the notation of (118) and considering the projection onto the direct summand

prij : US × UΦ → ((S∨
1 )(i) ⊕ (S∨

1 )(j))× ((Φ1)(i) ⊕ (Φ1)(j)) ≃ (S∨
1 ⊕ S∨

1 )× (Φ1 ⊕Φ1)

for any 1 ≤ i < j ≤ m and taking the dense open subset Wij of US × UΦ defined as

Wij := pr−1
ij ({((D1, D2), (φ1, φ2)) ∈ (S∨

1⊕S
∨
1 )×(Φ1⊕Φ1) | the subsets L(D−1

1 , φ1) and L(D
−1
2 , φ2)

of P3are well defined and disjoint})

are well defined, pairwise disjoint we obtain in view of (169) that

(170) Z ∩ τh(W12) 6= ∅.

Now since the set Isomm of all isomorphisms h in (167) is a principal homogeneous space of
the group GL(Hm) which is connected, it follows from (170) that Zm ∩ τh(Wij) 6= ∅ for a
general h ∈ Isomm and any pair (i, j), 1 ≤ i < j ≤ m. Hence, since WSΦ = ∩

1≤i<j≤m
Wij by the

definition (121) ofWSΦ, we deduce that Z∩τh(WSΦ) 6= ∅. This finishes the proof of Proposition
8.1 for m odd.

8.5. Proof of Proposition 8.1: case m even.

The proof of Proposition 8.1 for the case of even m,

m = 2p+ 4, p ≥ 0.5

is completely parallel to that given above for the case of odd m. Namely, similar to (135) fix
the decompositions

(171) Hm−1 ≃ H3 ⊕H2 ⊕ ...⊕H2︸ ︷︷ ︸
p

, H2 ≃ H1 ⊕H1, H3 ≃ H1 ⊕H1 ⊕H1.

5Note that we start with m = 4 since the case m = 2 has been already treated in subsection 8.2.
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Under these decompositions, similar to (136) consider the points D∆
m−1 ∈ (S∨

m−1)
0 and φ∆

m−1 ∈
Φm−1 given by the matrices with diagonal blocks

(172) D∆
m−1 := D3 ⊕D2 ⊕ ...⊕D2︸ ︷︷ ︸

p

, φ∆
m−1 = φ∆

m−1(N, a, d, f, g, λ) := φ3 ⊕ φ2 ⊕ ...⊕ φ2︸ ︷︷ ︸
p

,

(173) D3 = D2 ⊕D
′, φ3 =




φ11 φ12 φ13

φ21 φ22 λφ21

φ31 λφ12 φ11


 ∈ Φ3, λ ∈ k,

where D2, D
′ and φ2, φi,j, i, j = 1, 2, are given by (137)-(138) and

(174) φ13 = (rij) ∈ ∧
2V ∨, φ31 = (sij) ∈ ∧

2V ∨,

where rij, sij ∈ k satisfy the additional relations

(175) ri3 + ri4 = si3 + si4, i = 1, 2.

We now proceed along the same lines as before. In particular, it follows from (138) and (172)-
(175) that the relations (139) and (140) are satisfied for the point (D∆

m−1, φ
∆
m−1). Hence, as

before, the equations (130) are automatically satisfied for any ψ ∈ Ψm−1. Now, substituting
the data (θ0, α0, D∆

m−1, φ
∆
m−1) from (128) and (172)-(174) into (131), we obtain the equations

on (χ, ψ):

(176) (φ∆
m−1)

∨ ◦D∆
m−1 ◦ χ + ψ∨ ◦ α0 ◦ θ0 ∈ Ψm−1.

Next, using the decompositions (171) we represent χ and ψ as (p+ 1)-ples (cf. (143))

(177) χ = (χ0, ..., χp), ψ = (ψ0, ..., ψp), ψ0, χ0 ∈ Ψ3, ψk, χk ∈ Ψ2, k = 1, ..., p,

where χk = (Xk, Yk), ψk = (Ak, Bk), k = 1, ..., p, are the same matrices of variables as in (144),
and χ0 = (X0, Y0, Z0), ψ0 = (A0, B0, C0), X0, Y0, Z0, A0, B0, C0 ∈ ∧2V ∨, i.e.

(178) X0 = (x
(0)
ij ), Y0 = (y

(0)
ij ), Z0 = (z

(0)
ij ), A0 = (a

(0)
ij ), B0 = (b

(0)
ij ), C0 = (c

(0)
ij ).

are skew-symmetric 4×4-matrices of variables. Using the same notation for variables

x
(k)
1 , ..., x

(k)
24 , k = 1, ..., p, as in (147) and introducing new variables x

(0)
1 , ..., x

(0)
36 as follows:

x
(0)
1 = x

(0)
12 , x

(0)
2 = x

(0)
34 , x

(0)
3 = x

(0)
13 , x

(0)
4 = x

(0)
14 , x

(0)
5 = x

(0)
23 , x

(0)
6 = x

(0)
24 , x

(0)
7 = y

(0)
12 , x

(0)
8 =

y
(0)
34 , x

(0)
9 = y

(0)
13 , x

(0)
10 = y

(0)
14 , x

(0)
11 = y

(0)
23 , x

(0)
12 = y

(0)
24 , x

(0)
13 = z

(0)
12 , x

(0)
14 = z

(0)
34 , x

(0)
15 = z

(0)
13 , x

(0)
16 =

z
(0)
14 , x

(0)
17 = z

(0)
23 , x

(0)
18 = z

(0)
24 , x

(0)
19 = a

(0)
12 , x

(0)
20 = a

(0)
34 , x

(0)
21 = a

(0)
13 , x

(0)
22 = a

(0)
14 , x

(0)
23 = a

(0)
23 , x

(0)
24 =

a
(0)
24 , x

(0)
25 = b

(0)
12 , x

(0)
26 = b

(0)
34 , x

(0)
27 = b

(0)
13 , x

(0)
28 = b

(0)
14 , x

(0)
29 = b

(0)
23 , x

(0)
30 = b

(0)
24 , x

(0)
31 = c

(0)
12 , x

(0)
32 =

c
(0)
34 , x

(0)
33 = c

(0)
13 , x

(0)
34 = c

(0)
14 , x

(0)
35 = c

(0)
23 , x

(0)
36 = c

(0)
24 , we rewrite the system (176) similar to (147) as

(179)

36∑

j=1

m̃ijx
(0)
j = 0,

24∑

j=1

mijx
(k)
j = 0, i = 1, ..., 20, k = 1, ..., p.

A direct computation of the matrices M = (mij) and M̃ = (m̃ij) for the above chosen values
(148),(149) of N, a, d, f, g, pij, qij in (138) and (172) and, respectively, for the following values
values of λ, rij, sij in (173) and (174) satisfying (175):

(180) λ = −2, r12 = 3, r13 = 7, r14 = −2, r23 = 4, r24 = −6, r34 = −8,

s12 = −8, s13 = −3, s14 = 8, s23 = −2, s24 = 0, s34 = −5,

show that M is the block matrix (150) and M̃ is the block matrix

(181) M̃ =




M11 M12 M13 Mψ 0 0

M21 M22 M23 0 Mψ 0

M31 M32 M33 0 0 Mψ
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with blocks

(182) M11 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, M12 =




2 0 0 0 0 0
0 2 0 0 0 0
0 0 0 −5 −2 0
0 0 2 2 0 −2
0 0 5 0 −2 −5
0 0 0 5 2 0
5 0 0 0 0 0
0 −5 0 0 0 0
2 0 0 0 0 0
0 −2 0 0 0 0




,

(183) M21 =




0 0 0 −5 2 0
0 0 0 −5 2 0
0 0 0 0 0 0
−2 −2 0 0 0 0
−5 −5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −5
0 0 −5 0 0 0
0 0 2 0 0 0
0 0 0 0 0 2




, M22 =




100 0 0 0 0 0
0 100 0 0 0 0
0 0 0 0 0 0
0 0 0 100 0 0
0 0 0 0 −100 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

(184)

M13 =




0 0 −6 −4 −2 −7
0 0 6 −4 −2 7
−7 −7 −5 0 0 0
2 2 0 −5 0 0
−4 −4 0 0 −5 0
6 6 0 0 0 −5
0 0 0 0 −12 −8
0 0 −8 0 14 0
0 0 −4 −14 0 0
0 0 0 12 0 −4




, M23 =




0 0 0 10 −4 0
0 0 0 10 −4 0
0 0 0 0 0 0
4 4 0 0 0 0
10 10 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 10
0 0 10 0 0 0
0 0 −4 0 0 0
0 0 0 0 0 −4




,

(185)

M31 =




0 0 0 2 8 3
0 0 0 2 8 −3
3 3 −13 0 0 0
−8 −8 0 −13 0 0
2 2 0 0 −13 0
0 0 0 0 0 −13
0 0 0 0 0 4
0 0 4 0 −6 0
0 0 16 0 −6 0
0 0 0 0 0 16




, M32 =




−4 0 0 0 0 0
0 −4 0 0 0 0
0 0 0 10 4 0
0 0 −4 −4 0 4
0 0 −10 0 4 10
0 0 0 −10 −4 0
−10 0 0 0 0 0
0 10 0 0 0 0
−4 0 0 0 0 0
0 −4 0 0 0 0




.
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(186)

M33 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, Mψ =




−20 0 20 66 −5 −47
0 3 40 −38 −37 −57
57 −47 −82 −38 −22 0
37 5 7 −79 0 −22
−38 66 −28 0 −62 −38
40 −20 0 −28 7 −59
−56 0 0 0 40 132
0 −76 −76 0 −114 0
44 0 −10 −94 0 0
0 −14 0 80 0 −74




.

Now as in (151) we have rkM = 20. Respectively, from (181)-(186) we obtain by an explicit

computation that rkM̃ = 30. Hence, since the matrix of the system (179) is a direct sum of

matrix M̃ and p copies of matrix M, it follows that its rank equals

(187) rkM̃+ p · rkM = 30 + 20p = 10(m− 1).

Denote now by R(θ0, α0, D∆
m−1, φ

∆
m−1) the rank of the linear system (176), equivalent to (179, as

a function of θ0, α0, D∆
m−1, φ

∆
m−1. It follows from (187) that, similar to (153), there exist values

φm−1,α, θ of φ∆
m−1, α

0, θ0, respectively, such that, as in (154),

(188) R(θ,α, D∆
m−1,φm−1) = 10(m− 1).

Repeating now the arguments from subsection 8.3 and using (188), we obtain the inclusions
(161) and (162) for the above chosen data θ,α, D∆

m−1, φ
∆
m−1.

Finally, using (172)-(174), we modify appropriately the matrices (163)-(165), so that, arguing
as in subsection 8.4 and using the inclusions (161) and (162), we deduce that Z ∩ τh(WSΦ) 6= ∅.
This finishes the proof of Proposition 8.1 for m even.

Remark 8.3. In perfoming the above computations of the rank of the linear system (131) one
might try to simplify the shape of the matrices φ2 in (138). E.g., in order to do computations
simultaneously for odd and even values ofm, one might set φ12 = φ21 = 0. However, under these
constraints the experiments with computations for arbitrary values of parameters N, pij , qij give
at best the value 9(m − 1) for the rank of the system (131), which is insufficient for further
arguments. Respectively, in case ofm even one might also try to simplify the shape of the matrix
φ3 in (173). E.g., one might set φ13 = φ31 = 0, and this would satisfy the equations (130).
However, experiments with computations in this case for arbitrary values of the parameters

N, pij, qij , a, d, f, g, λ give at best the value 29 for the rank of the matrix M̃ which is also
insufficient.

9. Geometric meaning of Zm. Its relation to t’Hooft instantons

9.1. One property of the component Z of the scheme Zm. In this subsection we prove
one openness property of the component Z of Zm, m ≥ 3, introduced in Proposition 8.1 - see
Lemma 9.2 below.

Take an arbitrary point

D ∈ (S∨
m)

0.

Then in the notation of (67) we obtain a symplectic rank-2m vector bundle

E2m(D
−1)
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(see (45) and (49) where we take 2m instead of 2m + 2 and put B = D−1) and a natural
epimorphism

cD : H∨
m ⊗ ∧

2V ∨
։W5m := H∨

m ⊗ ∧
2V ∨/im(♯(D−1)) ≃ H0(E2m(D

−1)(1)), dimW5m = 5m.

Now take an arbitrary point
z = (D, φ) ∈ Zm.

Here the morphism φ understood as a homomorphism ♯φ : Hm → H∨
m ⊗ ∧

2V ∨ defines the
diagram

(189) Hm

♯φ
��

s(z)

&&MMMMMMMMMMM

0 // Hm

♯(D−1)
// H∨

m ⊗ ∧
2V ∨ cD // W5m

// 0.

The lower horizontal triple in (189) yields the diagram

(190) 0 // Hm ⊗OP3

♯(D−1)
// H∨

m ⊗ ∧
2V ∨ ⊗OP3

cD //

ev
����

W5m ⊗OP3 //

ev
����

0

0 // Hm ⊗OP3
D̃−1

// H∨
m ⊗ ΩP3(2)

cD // E2m(D
−1)(1) // 0.

Moreover, the diagrams (189) and (190) define the composition

(191) sz : Hm ⊗OP3(−1)
s(z)
→ W5m ⊗OP3(−1)

ev
։ E2m(D

−1).

Note that the relation φ∨ ◦ D ◦ φ ∈ Sm following from the definition of Z can be easily
rewritten as

(192) tsz ◦ sz = 0,

where tsz := s∨z ◦ θ and θ : E2m(D
−1)

∼
→ E2m(D

−1)∨ is the symplectic structure on E2m(D
−1)

defined as in (49). We have an antiselfdual complex

(193) 0→ Hm ⊗OP3(−1)
sz→ E2m(D

−1)
tsz→ H∨

m ⊗OP3(1)→ 0.

Now, according to statement (iii) of Proposition 8.1, take a point

(194) z = (D, φ) ∈ Z ∩ τh(WSΦ),

where h is a fixed decomposition (119), and consider the induced decompositions

(195) D = D1 ⊕ ...⊕Dm, φ := φ1 ⊕ ...⊕ φm, (Di, φi) ∈ (∧2V ∨)0 × (∧2V )0,

such that

(196) L :=
m
∪
i=1
L(Di, φi) =

m
⊔
i=1
L(Di, φi).

is a disjoint union of 2m lines in P3. Moreover, for this point z we have

(197) E2m(D
−1) =

m
⊕
i=1
E2(D

−1
i ),

where E2(D
−1
i ), i = 1, ..., m, are rank-2 null-correlation bundles.

Under the decomposition (119) the diagrams (189) and (190) decompose into the direct sums
of m diagrams

(198) k��
♯φi

��

si(z)

$$HH
HH

HH
HH

HH

0 // k
♯(D−1

i )
// ∧2V ∨

cDi // W5(i) // 0,
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(199) 0 // OP3

♯(D−1
i )

// ∧2V ∨ ⊗OP3

cDi //

ev
����

W5(i) ⊗OP3 //

ev
����

0

0 // OP3

˜
D−1

i // ΩP3(2)
cDi // E2(D

−1
i )(1) // 0

, i = 1, ..., m,

in which we substitute k for H1 and set W5(i) := ∧
2V ∨/im(♯(D−1

i : k → ∧2V ∨)), dimW5(i) =
5, i = 1, ..., m.

Note that the decomposition (119) induces a decomposition of the complex (193) into a direct
sum of m comlexes

(200) 0→ OP3(−1)
si→ E2(D

−1
i )

tsi→ OP3(1)→ 0, i = 1, ..., m.

Here the sections 0 6= si ∈ H0(E2(D
−1
i )(1)) ≃ W5(i) understood as homomorphisms k →

W5(i) coincide by construction with homomorphisms si(z) in the diagram (198). Hence the
homomorphism s(z) in the diagram (189) is also injective as the direct sum of si(z)’s. This
means that im(♯φ) ∩ im(♯(D−1)) = {0} i.e.

(201) z ∈ ((S∨
m)

0×Φm)
∗ := {(D, φ) ∈ (S∨

m)
0×Φm | the homomorphism ♯φ : Hm → H∨

m⊗∧
2V ∨

is injective and im(♯φ) ∩ im(♯(D−1)) = {0} }.

Next, from the definition of L and the construction of the morphisms sz, si, i = 1, ..., m, (see
(189)–(199), (191) and (200)) it follows that these complexes are exact except in their righthand
terms and

(202) coker(tsz) = OL(1), coker(tsi) = OL(Di,φi)(1), (si)0 = L(Di, φi), i = 1, ..., m,

Remark 9.1. An arbitrary point D ∈ (S∨
m)

0 defines a point
For an arbitrary embedding

j : Hm−1 →֒ Hm

and an arbitrary point z ∈ (S∨
m)

0 ×Φm there is defined an induced morphism of sheaves

(203) sz(j) : Hm−1 ⊗OP3(−1)
j
→ Hm ⊗OP3(−1)

sz→ E2m(D
−1).

Let e1, ..., em be the basis of Hm related to the decomposition (119) and set

Hm−1 := Span(e1, ..., em−1).

Consider the monomorphism

(204) j0 : Hm−1 →֒ Hm : ei 7→ ei + ei+1, i = 1, ..., m− 1.

Since L is a disjoint union of pairs of lines L(Di, φi), i = 1, ..., m, it follows from (202) and
(204) that sz(j0) is a subbbundle morphism, i.e.

(205) coker(tsz(j0)) = 0.

Now for a given monomorphism j : Hm−1 →֒ Hm consider the following conditions on a point
z = (D, φ) ∈ Z:

(I) the composition sz(j) = sz ◦j : Hm−1⊗OP3(−1)→ E2m(D
−1) is a subbbundle morphism;

(II) sz : Hm⊗OP3(−1)→ E2m(D
−1) is an injective morphism of sheaves (but not a subbundle

morphism).
Note that the conditions (I) and (II) are open conditions on the point z ∈ Zm. The condition

(I) is satisfied for the point z from (194) and the embedding j0 by (205). The condition (II) is
satisfied for this point z in view of (202). Thus, since the set ((S∨

m)
0×Φm)

∗ defined in (201) is
dense open in (S∨

m)
0 ×Φm, we obtain the following result.
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Lemma 9.2. (i) There exists a monomorphism j : Hm−1 →֒ Hm such that the sets

Z(j) := {z = (D, φ) ∈ Z ∩ ((S∨
m)

0 ×Φm)
∗ | z satisfies the conditions (i) and (II) above},

Z(j, I) := {z = (D, φ) ∈ Z ∩ ((S∨
m)

0 ×Φm)
∗ | z satisfies the condition (I) above}

are dense open subsets of Z, and we have open embeddings Z(j) →֒ Z(j, I) →֒ Z. The same is
true for a generic monomorphism j : Hm−1 →֒ Hm.

(ii) Fix a monomorphism j : Hm−1 →֒ Hm. Then the sets

Zm(j) := {z = (D, φ) ∈ Zm ∩ ((S∨
m)

0 ×Φm)
∗ | z satisfies the conditions (I) and (II) above}

Zm(j, I) := {z = (D, φ) ∈ Zm ∩ ((S∨
m)

0 ×Φm)
∗ | z satisfies the conditions (I) and (II) above}

are open subsets of Zm. Respectively, let Z̃ be an arbitrary irreducible component of Zm. Then
the sets

(206) Z̃(j) := Z̃ ∩ Zm(j), Z̃(j, I) := Z̃ ∩ Zm(j, I)

are open subsets of Z̃.

9.2. Relation between Z and t’Hooft instantons. Morphism λ(j) : Zm → S2m−1.

In this subsection we relate the open subset Z̃(j) of Zm introduced in Lemma 9.2(ii) to
t’Hooft instantons - see Lemma 9.3.

In the notation of Lemma 9.2, assume that Z̃(j) 6= ∅ and take an arbitrary point z =

(D, φ) ∈ Z̃(j), so that the symplectic vector bundle E2m(D
−1) satisfies the diagrams (189)-

(190). Respectively, the morphism of sheaves sz defined in (191) is injective - see the definition
of condition (ii) above. In addition, sz satisfies the relation (192) which clearly implies the
relation

(207) tsz(j) ◦ sz(j) = 0

for the subbundle morphism sz(j), i.e. we obtain a monad

(208) 0→ Hm−1 ⊗OP3(−1)
sz(j)
→ E2m(D

−1)
tsz(j)
→ H∨

m−1 ⊗OP3(1)→ 0,

From the diagram (190) we deduce the equalities hi(E2m(D
−1)(−2)) = 0, i ≥ 0, hence the

cohomology sheaf of the monad (208) is an instanton bundle

(209) E2(z, j) := Ker(tsz(j))/ Im(sz(j)), [E2(z, j)] ∈ I2m−1.

Now consider the subvariety I tH2m−1 ⊂ I2m−1 of t’Hooft instanton bundles (see subsection 4.3),

I tH2m−1 = {[E] ∈ I2m−1 | h
0(E(1)) 6= 0}.

Lemma 9.3. (i) In notations of Lemma 9.2(i) let Z(j) 6= ∅ and let z = (D, φ) be an arbitrary
point of Z(j). Then the bundle E2(z, j) is a t’Hooft instanton bundle, i.e. [E2(z, j)] ∈ I tH2m−1;

(ii) In notations of Lemma 9.2(iii) let Z̃(j) 6= ∅. Take an arbitrary point z ∈ Z ′(j). Then
the monad (208) is well defined and its cohomology bundle E2(z, j) is a t’Hooft bundle;

(iii) Fix an isomorphism

(210) ξ : Hm ⊕Hm−1
≃
→ H2m−1, ξ ∈ Isom2m−1.

Then there is a well defined morphism

(211) λ(j) : Zm → S2m−1 : z = (D, φ) 7→ A = ξ̃(D−1, φ ◦ j,−(φ ◦ j)∨ ◦D ◦ (φ ◦ j)).

such that

(212) λ(j)(Zm(j)) ⊂MI tH2m−1(ξ).
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Proof. (i) Consider the complexes (193) and (208) and set

Hm−1 := Hm−1 ⊗OP3(−1), Hm := Hm ⊗OP3(−1), Km+1 := coker sz(j), Km := coker sz.

The complexes (193) and (208) are antiselfdual, hence they extend to a commutative diagram
(213)

E2(z, j)��

τ

��

OP3(−1)
yy

α

yyrrrrrrrrrr

uzoo

Hm−1
//

sz(j) //
xx

j

xxrrrrrrrrrrr

E2m(D
−1) // //

ppppppppppp

ppppppppppp

tsz(j)

����

Km+1

β

{{{{vvvvvvvvv

δ

����

Hm
// sz //

yyyyssssssssss
E2m(D

−1) // //

tsz

��

Km

γ

��

OP3(−1)

H∨
m−1 H∨

m−1

H∨
m

j∨
77 77pppppppppppp

H∨
m

j∨
;; ;;vvvvvvvvv

OP3(1)
88

88rrrrrrrrrrr

OP3(1),
99

99tttttttttt

in which α, β, γ, δ and τ are the induced morphisms. In this diagram we have β ◦ α = 0 and
j∨ ◦ γ ◦ β = δ. Hence δ ◦α = 0. This implies that α factors through the morphism τ , i.e. there
exists an injection uz : OP3(−1)→ E2(z, j) such that α = τ ◦ uz. This injection uz is a nonzero
section uz ∈ H

0(E2(z, j)(1)). Hence E2(z, j) is a t’Hooft bundle.
(ii) Repeat the above argument.
(iii) This immediately follows from Lemma 5.1 since (208)-(209) coincides with (55)-(56)

after sustituting m− 1 for m and putting B = D−1. �

Remark 9.4. From the diagram (9.3) it follows that the point z ∈ Z(j) (respectively, the point

z ∈ Z̃(j)) defines not only a t’Hooft bundle [E2(z, j)], but also a proportionality class < uz >

of a section 0 6= uz ∈ H0(E2(z, j)). Moreover, the pointwise constructions (over z ∈ Z̃(j)) of

Lemma 9.3 clearly globalize to P3 × Z̃(j). In particular, the morphism λ(j) : Z̃(j) → S2m−1

defines a subbundle morphism of sheaves

(214) ÃZ : OZ̃(j) → S2m−1 ⊗OZ̃(j),

i.e., equivalently, a family of instanton nets of quadrics

(215) AZ : H2m−1 ⊗ V ⊗OZ̃(j) → H∨
2m−1 ⊗ V

∨ ⊗OZ̃(j).

Let πZ : P3×Z̃(j)→ Z̃(j) be the projection. By construction we have a rank 4m bundle WZ :=

imAZ on Z̃(j) and the correspondig monad 0 → H2m−1 ⊗ OP3(−1) ⊗ OZ̃(j) → OP3 ⊠WZ →

H∨
2m−1 ⊗ OP3(1) ⊗ OZ̃(j) → 0 with the cohomology rank 2 bundle EZ such that EZ|P3×{z} =

E2(z, j), z ∈ Z̃(j). This monad, together with relative Serre duality for the projection πZ ,
defines in a standard way an isomorphism of locally free OZ̃(j)-sheaves

(216) fZ : H2m−1 ⊗OZ̃(j)
≃
→ GZ := (Ext1πZ(EZ(−3), ωπZ))

∨
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relativizing the pointwise isomorphisms f : H2m−1
≃
→ H2(E2(z, j)(−3)) (cf. Section 3) and

Serre duality H2(E2(z, j)(−3))
≃
→ (Ext1(E2(z, j)(−3), ωP3))∨. (Here we set EZ(k) := EZ ⊗

OP3(−1)⊠OZ̃(j), k ∈ Z.) In addition, the sections uz ∈ H0(E2(z, j)), z ∈ Z̃(j), glue up to a
section

(217) u : O
P3×Z̃(j) → EZ(1).

9.3. Description of the fibers of the morphism λ(j) : Zm(j)→ S2m−1.

In this subsection we will give a description of the fibres of the morphism λ(j) : Zm(j)→ S2m−1

and of its restriction onto Z, λj := λ(j)|Z : Z → S2m−1. The precise statement is given in Lemma
9.5 below.

To formulate the result on the fibres, note that the point z = (D, φ) ∈ Zm(j) defines the
monad (208) with the cohomology bundle E2(z, j) with [E2(z, j)] ∈ I tH2m−1 (see Lemma 9.3).
The display of this monad twisted by OP3(1) is

(218) E2(z, j)(1)��

��
Hm−1 ⊗OP3 //

sz(j) // E2m(D
−1)(1)

ǫ // //

tsz(j)

(( ((RRRRRRRRRRRRR
coker(sz(j))

����
H∨
m−1 ⊗OP3(2).

Note that from (39) and the definition of MI tH2m−1 it follows that h0(E2(z, j)(1)) ≤ 2. Hence,
passing to sections in the diagram (218) we obtain a well defined epimorphism

(219) b(z, j) := h0(tsz(j)) : H
0(E2m(D

−1)(1))
h0(ǫ)

// // H0(coker(sz(j)))
can // //

։ H0(coker(sz(j)))/H
0(E2(z, j)(1)) ≃

{
k4m, if h0(E2(z, j)(1)) = 1
k4m−1, if h0(E2(z, j)(1)) = 2

}
→֒ H∨

m−1 ⊗ S
2V ∨.

(Note that h0(E2(1)) ≤ 2 for any [E2] ∈ I tH2m−1.) In addition, as in Remark 6.2, where we take
m− 1 instead of m, it follows that

(220) im(♯D−1) ∩ im(♯φ ◦ j) = {0}, dimSpan(im(♯D−1), im(♯φ ◦ j)) = 2m− 1.

Consider the epimorphism cD : H∨
m ⊗ ∧

2V ∨
։ H0(E2m(D

−1)(1)) in this triple (see the
diagram (190)) and set

(221) V (z, j) := c−1
D (ker b(z, j)).

From (219) it follows immediately that

(222) V (z, j) ≃

{
k2m, if h0(E2(z, j)(1)) = 1,
k2m+1, if h0(E2(z, j)(1)) = 2.

Now observe that the complex (208) is well defined for any z ∈ Zm and any j : Hm−1 →֒ Hm

since the condition (207) is a closed condition satisfied for any z ∈ Zm (this complex now
might be apriori not left- and right-exact). Hence the homomorphisms b(z, j) = h0(tsz(j)) :
H0(E2m(D

−1)(1))→ H∨
m−1⊗S

2V ∨ and cD : H∨
m⊗∧

2V ∨
։ H0(E2m(D

−1)(1)) are well defined,
and we define the set V (z, j) by the same formula (221). Since Z is irreducible, from (221) it
follows by semicontinuity that

(223) dimV (z, j) ≥ 2m, z ∈ Z.
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Lemma 9.5. Let j be as in Lemma 9.2.
(i) For any point z ∈ Zm the fibre of the morphism λ(j) : Zm → S2m−1 through the point z is

a reduced scheme naturally identified with V (z, j):

(224) λ−1
(j)(λ(j)(z))

≃
→ V (z, j),

where V (z, j) is defined in (221). Hence, in particular, for any z ∈ Z, dimλ−1
(j)(λ(j)(z)) ≥ 2m.

(ii) Let Z1 be the union of all possible irreducible components of Zm distinct from Z and let
Z0(j) := Z(j)rZ1. Consider the morphism λj := λ(j)|Z : Z → S2m−1. Then for any z ∈ Z0(j)
one has a natural isomorphism

(225) λ−1
j (λj(z))

≃
→ V (z, j),

where the dimension of V (z, j) is given by (222), and, for an arbitrary z ∈ Z,

(226) λ−1
j (λj(z)) ⊂ λ−1

(j)(λj(z)) = V (z, j), dim λ−1
j (λj(z)) ≥ 2m.

If z ∈ Z(j, I), then the dimension of V (z, j) in (226) is given by (222).

(iii) Let Z̃ be an arbitrary irreducible component of Zm, let Z1 be the union of all possible ir-

reducible components of Zm distinct from Z̃ and let Z̃0(j) := Z̃(j)rZ1. Consider the morphism

λ̃j := λ(j)|Z̃ : Z̃ → S2m−1. Then for any z ∈ Z̃0(j) one has the natural isomorphism

(227) λ̃−1
j (λ̃j(z))

≃
→ V (z, j),

where the dimension of V (z, j) is given by (222), and, for an arbitrary z ∈ Z̃,

(228) λ̃−1
j (λ̃j(z)) ⊂ λ−1

(j)(λ̃j(z)) = V (z, j), dim λ̃−1
j (λ̃j(z)) ≥ 2m.

Proof. (i) Consider the spaces Λm = ∧2H∨
m⊗S

2V ∨ and Λm−1 = ∧
2H∨

m−1⊗S
2V ∨ together with

projections qm : ∧2(H∨
m ⊗ V

∨) → Λm and qm−1 : ∧2(H∨
m−1 ⊗ V

∨) → Λm−1, respectively (cf.
(73) and (78)). Fix a monomorphism jk : k →֒ Hm such that j(Hm−1)∩ k = {0}, i. e. we have
a direct sum decomposition of Hm together with embeddings of summands

(229) Hm = Hm−1 ⊕ k, Hm−1

j
→֒ Hm

jk
←֓ k.

This decomposition induces a direct sum decomposition of Λ together with projections

(230) Λm = Λm−1 ⊕ Hom(k, H∨
m−1 ⊗ S

2V ∨), Λm−1
pr′
← Λm

pr′′
→ Hom(k, H∨

m−1 ⊗ S
2V ∨).

Now the equations of Zm in (S∨
m)

0 ×Φm are

(231) A := qm(φ
∨ ◦D ◦ φ) = 0.

Next, consider the diagram (54) twisted by OP3(1), in which we substitute m − 1 for m, set

B = D−1 and put sz(j) instead of ρξ,A and φ ◦ j instead of C̃, respectively. Proceeding to
sections in this diagram and, respectively, to sections in the diagram (218) we see that the
condition

(232) 0 = pr′(A) := qm−1((φ ◦ j)
∨ ◦D ◦ (φ ◦ j)) = b(z, j) ◦ e(z)

is automatically satisfied, where e(z) is a homomorphism e(z) = h0(sz(j)) : Hm−1 →
H0(E2m(B)(1)). (Clearly, the vanishing of pr′(A) can be equivalently rewritten as the con-
dition that ♯φ ◦ j embeds Hm−1 in V (z, j).) Hence the equations (231) are equivalent to the
equations

(233) pr′′(A) = b(z, j) ◦ c(z) ◦ ♯φ ◦ jk = 0,

which in view of the definition (221) mean that

♯φ|k ⊂ V (z, j)
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Thus, since the point λ(j)(z) is given, so that the points D and φ ◦ j are determined by λ(j)(z)
(see (211)), it follows that the point (D, φ) ∈ λ(j)(z)

−1(λ(j)(z)) is determined by the data ♯φ|k.
Hence, the above inclusion implies that λ(j)(z)

−1(λ(j)(z)) ≃ V (z, j).
(ii)-(iii) follow from (i).
Note that the above argument can be illustrateded by the diagram

(234) Hm��

��

Hm��

♯B

��

Hm−1
� � j //
� v

♯φ◦j ))SSSSSSSSSSSSSSSSS
Hm

♯φ

$$JJ
JJ

JJ
JJ

JJ
k? _

jkoo

♯φ|kzzvvvv
vvv

vvv

0 // V (z, j) //

����

H∨
m ⊗ ∧

2V ∨ //

cD

����

H∨
m−1 ⊗ S

2V ∨

Hm−1 � v

))SSSSSSSSSSSSSSSS
� {

e(z)

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

0 // ker b(z, j) // H0(E2m(D
−1)(1))

b(z,j)
// H∨

m−1 ⊗ S
2V ∨.

�

Remark 9.6. Note here that, as it follows from the proof of this Lemma, for z = (D, φ) ∈ Z
the fiber V (z, j) = λ−1

(j)(λ(j)(z)) ⊂ H∨
m⊗∧

2V ∨ of the morphism λ(j) naturally lies in {D}×Φm

via the embedding j∗k : H∨
m ⊗ ∧

2V ∨ →֒ Hom(Hm, H
∨
m)⊗ ∧

2V ∨ = Φm = {D} ×Φm induced by
the embedding jk : k →֒ Hm.

Lemma 9.7. Consider the set RZ = {z = (D, φ) ∈ Z | rank s(z) ≤ m − 2} where the
homomorphism s(z) = cD ◦

♯φ : Hm → W5m is defined for z = (D, φ) in (189). Then

codimZRZ ≥ 2.

Proof. Fix a monomorphism j : Hm−1 →֒ Hm satisfying the conditions of Lemma 9.2, so
that Z(j) is nonempty, hence dense in Z. and take any point z = (D, φ) ∈ Z. From the
definition of the set V (z, j) (see (221)) it follows that, for z ∈ RZ , one has a natural inclusion
c−1
D (im s(z)) ⊂ λ−1

j (λj(z)) ⊂ V (z, j) (cf. the diagram (234), so that the diagram (189) and

the definition of RZ imply dim c−1
D (im s(z)) ≤ rank s(z) + m ≤ 2m − 2. Hence by Lemma

9.5(ii) codimλ−1
j (λj (z))

c−1
D (im s(z)) ≥ 2. Thus we have an inclusion RZ ≃ ∪

z∈Z
c−1
D (im s(z)) ⊂

∪
z∈Z

λ−1
j (λj(z)) = Z, which together with the last inequality yields the Lemma. �

10. Complete family of t’Hooft sheaves with c2 = 2m− 1. End of the proof of

Theorem 7.2

In this section we construct a complete (10m− 1)-dimensional family T of t’Hooft (2m− 1)-
instsantons and their degenerations (we call these degenerations t’Hooft sheaves). The family
T will be used to prove that the variety Z studied in the previous two sections coincides with
Zm. This finishes the proof of Theorem 7.2.

10.1. Construction of a complete family E→ T of (2m− 1)-t’Hooft sheaves.
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Consider the subvariety I tH2m−1 ⊂ I2m−1 of t’Hooft (2m − 1)-instantons. We first recall the
following two properties of an arbitrary t’Hooft instanton [E] ∈ I tH2m−1, m ≥ 1, - see [BT] and
[NT]:

(i) h0(E(1)) ≤ 2;
(ii) for any section 0 6= s ∈ H0(E(1)) the zero scheme Zs = (s)0 is locally contained in a

smooth surface;

(iii)(Zs)red is a disjoint union of lines l1, ..., lr, 1 ≤ r ≤ 2m, and OZs =
r
⊕
i=1
OZi

, where for each

i, 1 ≤ i ≤ r, the scheme Zi has a filtration by subschemes li = Z1i ⊂ Z1i ⊂ ... ⊂ Zmi,i = Zi for
some mi ≥ 1, with Supp(Zji) = li such that, if mi ≥ 2, then

(235) OZj−1,i
= OZji

/Oli, 2 ≥ j ≥ mi;

For a given integer d ≥ 1 consider the Hilbert scheme Hd := HilbdG of 0-dimensional
subschemes of length d of the Grassmannian G = G(1, 3) of lines in P3, and let ΓHd

⊂ G×Hd

be the universal family with projections G
pd← ΓHd

qd→ Hd. For a given point x ∈ Hd we denote
by Yx the corresponding 0-dimensional subscheme pd(q

−1
d (x)) of G. We call a point x ∈ Hd

curvilinear if there exists an integer b ≥ 1, a partition d = d1 + ... + db, di ≥ 1, and points
xi ∈ Hdi , 1 ≤ i ≤ b, such that
(a) for each i, 1 ≤ i ≤ b, the subscheme Yxi ⊂ G is isomorphic to Spec(k[t]/(tdi+1)), and
(b) Yx is a disjoint union Yx = Yx1 ⊔ ... ⊔ Yxb.

Set Hcurv
d := {x ∈ Hd | x is curvilinear}. It is well known (and easily seen) that Hcurv

d is an
open smooth 4d-dimensional subscheme of Hd. Next, let Γ ⊂ P3×G be the graph of incidence,

together with projections P3 p
← Γ

q
→ G. From the above properties (i)-(iii) we deduce now the

following lemma.

Lemma 10.1. For each [E] ∈ I tH2m−1 and 0 6= s ∈ H0(E(1)), there exists a curvilinear point

x = x([E], s) ∈ Hcurv
2m such that Zs

sets
= p(q−1(Yx)) and the scheme structure of Zs coincides with

that given by formula

(236) OZs = p∗q
∗OYx .

Proof. Since by (ii) the support of Zs is a disjoint union of lines; hence from the definition of
curviliear schemes we deduce that it is enough to consider the case when Zs is a single line,
say, l with a nonreduced structure, i.e. there is a filtration of Zs by subschemes

(237) l = Z1 ⊂ Z2 ⊂ ... ⊂ Z2m = Zs, m ≥ 2,

such that the following triples are exact (see (235)):

(238) 0→ Ol → OZ2 → Ol → 0 , . . . , 0→ Ol → OZ2m → OZ2m−1 → 0.

From the first triple in (238), (ii) and the Ferrand construction [BF, §1] it follows that Ol is
a factor-sheaf of the conormal sheaf Nl/P3 ≃ 2OP3 and that the surjection Nl/P3 ։ Ol gives
a double structure on l coinciding with the scheme structure of Z2. This surjection implies
that Z2 lies as a scheme on a smooth quadric, say, Q passing through l. Choose homogeneous
coordinates (x0 : x1 : x2 : x3) on P3 such that
(1) l = {x2 = x3 = 0}, Q = {x0x2 − x1x3 = 0}, and
(2) let P3 = U0 ∪ U1 be the open cover of P3 by the sets Ui = {xi 6= 0}, i = 0, 1; then the ideal
of Z2 ∩Ui in k[Ui] is generated by x2/x0 and (x3/x0)

2 for i = 0 and, respectively, by x3/x1 and
(x2/x1)

2 for i = 1.
Let S1, .., Sc be quasiprojective smooth surfaces in P3 such that the sets Z(k) := Zs∩Sk, k =

1, ..., c, constitute an open cover of Zs. (Such surfaces exist because of (ii).) Set Z(ik) :=
Z(k) ∩ Ui, i = 0, 1, k = 1, ..., c. From (1)-(iii) and (1)-(2) follows the property
(3) for k = 1, ..., c the ideal IZ(ik)

of Z(ik) in O[Ui ∩ Sk] is generated by (x3/x0)
2m+1 for i = 0

and, respectively, by (x2/x1)
2m+1 for i = 1.
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Since by (1) the elements x3/x0 ∈ O[Z(0k)] and x2/x1 ∈ O[Z(1k)] coincide in O[Z(0k)∩Z(1k)], k =
1, ..., c, it follows that there are well defined homomorphisms k[t]/(t2m+1) → O[Z(ik)] :
1mod(t2m+1) 7→ 1modIZ(ik)

and tmod(t2m+1) 7→ (x3/x0)modIZ(0k)
for i = 0, respectively,

tmod(t2m+1) 7→ (x2/x1)modIZ(1k)
for i = 1, which are compatible on Z(0k) ∩ Z(1k). This de-

fines a morphism πZ : Zs → Spec(k[t]/(t2m+1)). Set τi := Spec(k[t]/(ti+1)), i = 0, ..., 2m. From
the definition of the morphism πZ and exact triples (238) it follows that, for i = 2, .., 2m, the

(nilpotent) ideal sheaf Ii := Iτi−1,τi ⊂ Oτi satisfies the isomorphism mult : Ii ⊗Oτi
OZi

≃
→ IZi

:

a ⊗ 1̄ 7→ π∗
Z(a). Hence, by [HL, Lemma 2.13] the morphism πZ is a flat family of lines over

τ2m, so that it defines an embedding τ2m = Spec(k[t]/(t2m+1)) →֒ G, i.e. a curvilinear point

x ∈ H2m such that p : q−1(Yx)
≃
→ Zs is an isomorphism. Lemma is proved. �

Remark 10.2. One easily sees that HtH−curv
2m := {x ∈ Hcurv

2m | x = x([E], s) for some [E] ∈
I tH2m−1 and 0 6= s ∈ H0(E(1))} is a dense open subset of Hcurv

2m . We thus consider its closure

HtH−curv
2m = Hcurv

2m in Hilb2mG. Fix a desingularization H of HtH−curv
2m . H is a smooth integral

scheme, and there is thea graph of incidence ΓH ⊂ G×H with projections G
pH← ΓH

qH→H.

Consider the subcheme L̃H = ΓH ×G×H Γ×H of Γ×H and set

LH := pr1(L̃H),

where pr1 : Γ×H → P3×H is the projection. We endow LH with the structure of a subscheme
of P3 ×H via setting

OLH
:= pr1∗(OL̃H

).

Since the sheaf pr1∗(OL̃H
) is clearly flat over H, in order to prove that the above definition is

consistent, one has to check it fibrewise with respect to the projection pL : LH → H. Thus,
taking any point y ∈ H and the corresponding 0-dimensional scheme Z = Zy of G, respectively,

the subscheme L̃y = q−1(Zy) of P
3×G, we have to check that the sheaf p∗OΓy is the structure

sheaf of a certain subscheme Ly of P
3 supported at p(L̃y). Take any closed point z ∈ Zy and set

l̃ = q−1(z), respectively, l = p(l̃). Also, take an arbitrary point x̃ ∈ l̃, respectively, x = p(x̃) ∈ l.
Applying the functor p∗ to the composition of surjections OΓ ։ OLy ։ Ol̃ ։ kx̃ we obtain

a surjection OP3 = p∗OΓ ։ p∗kx̃ = kx as the composition OP3
ǫ
→ p∗OL̃y

։ kx. Hence, by
Nakayama’s lemma ǫ is an epimorphism, as stated. Note that, by construction, the scheme Ly
has a filtration by subschemes as in (237)-(238):

(239) ∅ = L0 = L1 ⊂ L2 ⊂ ... ⊂ L2m = Ly, OLi−1
= OLi

/Oli, 1 ≤ i ≤ 2m,

where l1, ..., l2m are lines in P3, not necessarily distinct, corresponding to closed points of the
scheme Zy.

Remark 10.3. Consider the set Hs := {x ∈ H
tH−curv
2m | x = x([E], s) for some [E] ∈ I tH2m−1 with

h0(E(1)) ≥ 2}. Hs is a closed subset of HtH−curv
2m and it is well known (see, e.g., [BT]) that

the condition x([E], s) ∈ Hs is equivalent to the condition that the scheme Zs = (s)0 lies on a
smooth quadric in P3. This is, in turn, equivalent to saying that the 0-dimensional subscheme
Yx of G lies one a projective plane P

2 in P
5 = Span(G) intersecting G in a smooth conic (i.e.

a general plane in P5. Whence it follows that dimHs = length(Yx) + dimG(2,P5) = 2m + 9.
Respectively,

(240) codimHHs = 8m− (2m+ 9) = 6m− 9 > 2, m ≥ 2.

Now let pr2 : P
3×H be the projection and consider the flat over H sheaf IL(1) := IL,P3×H⊗

OP3(1)⊠OH and the relative Ext-sheaf

F = Ext1pr2(IL(1),OP3(−1)⊠OH).
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A standard computation using (239) shows that the sheaf F satisfies the base change isomor-
phism

(241) by : F⊗ ky
≃
→ Ext1(ILy ,P 3(1),OP3(−1)) ≃ k2m, y ∈ H.

Hence F is a locally free OH-sheaf of rank 2m. We thus have a smooth integral (10m − 1)-
dimensional scheme T = Proj(F∨) with structure morphism pT : T→H and the Grothendieck
sheaf OT/H(1). In particular, T is a smooth variety of dimension

(242) dimT = dimH + rkF∨ − 1 = 8m+ 2m− 1 = 10m− 1.

Moreover, let pT = idP3 × pT : P3×T→ P3×H be the projection and set LT := pT
−1(L). On

P3 ×T there is a universal family of (classes of) extensions of sheaves - see, e.g., [L, Cor. 4.5]:

(243) 0→ OP3(−1)⊠OT/H(1)→ E→ ILT
(1)→ 0,

where ILT
:= ILT,P3×T. By construction, for any closed point t ∈ T the sheaf Et = E|P3×{t} is

a nontrivial extension of the form

(244) 0→ OP3(−1)→ Et → ILy(1)→ 0, y = pT (t),

hence
(i) Et is a stable rank-2 sheaf (i.e. [Et] ∈ MP3(2; 0, 2, 0)), which satisfies the condition

h0(Ey(1)) > 0; furthermore, from (244) and (239) it follows easily that
(ii) h0(Et(−2)) = 0;
(iii) there exists a dense open subset T′ of p−1

T (HtH−curv
2m ), hence also of T such that, for

t ∈ T′, Et is locally free, i.e. Et is a t’Hooft bundle;
(iv) there exists a dense open subset T′′ of T′ such that, for t ∈ T′′, h0(Et(1)) = 1; further-

more, for any two distinct points t, t′ ∈ T′′ one has Et 6≃ Et′ .
The properties (i)-(iv) mean that there is a well defined modular morphism f : T →

MP3(2; 0, 2, 0) : t 7→ [Et] such that

(245) f(T) = I tH2m−1

is the closure of I tH2m−1 in MP3(2; 0, 2, 0). Moreover, f |T0 is injective. We thus call the family
E→ T the complete (10m− 1)-dimensional family of t’Hooft sheaves.

Note also that the property (iii) above implies that

(246) SuppExt1O
P3×T

(E,OP3×T) ⊂ P
3 × ∂T, ∂T := TrT′.

Remark 10.4. Assume that we are given a vector bundle EB on P3×B such that, (i) for each
b ∈ B, Eb = EB|P3×{b} is a t’Hooft bundle, (ii) there is given a morphism uB : OP3(−1)⊗NB →
EB nonvanishing for any b ∈ B, where NB is some invertible sheaf on B. Then coker uB =
OP3(1)⊠OB⊗ILB ,P3×B where LB = ∪

b∈B
Zb is a union of subschemes Zb of P

3 described in Lemma

10.1. We thus have an extension 0 → OP3(−1) ⊠OB
uB→ EB → OP3(1) ⊠OB ⊗ ILB ,P3×B → 0.

It follows in a standard way from [L] that there exists a morphism r : B → T′ such that the
last extension is obtained via applying the functor (idP3 × r)∗ to the triple (243). In particular,
applying this remark to the bundle EZ on P3 × Z(j) and the morphism u in (217), i.e. taking
B = Z(j) and uB = u, we obtain the morphism r = rT : Z(j)→ T′ such that

(247) (idP3 × rT)
∗E = EZ , r∗TOT/H(1) = OZ(j).

10.2. A family of nets of quadrics A associated to the family E→ T.

In this subsection we construct associated to E→ T a family of nets of quadrics which will
be used below. For this we first note that, by (239) and (244), we obtain the following equalities
for a sheaf Et in (244):
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dimExt1(Et(−4), ωP3) = dimExt2(Et, ωP3) = 4m − 4, dimExt1(Et(−3), ωP3) =
dimExt2(Et(−1), ωP3) = 2m− 1, Exti(Et, ωP3) = Exti(Et(−1), ωP3) = Ext3−i(Et(−3), ωP3) =
Ext3−i(Et(−4), ωP3) = 0, i 6= 2, and Exti(Et(−2), ωP3) = 0, i ≥ 0,
where t ∈ T is an arbitrary point and ωP3 = OP3(−4). Therefore, applying the functor
Extiπ(−, ωπ) to the sheaves E(−j) := E⊗OP3(−j)⊠OT, 0 ≤ j ≤ 4, where π : P3 ×T→ T is
the projection, the sheaf E is defined in (243) and ωπ = ωP3 ⊠OT, and using base change for
relative Ext-sheaves we obtain that the sheaves

(248) Fi := Ext2π(E(−i), ωπ), Gi := Ext1π(E(i− 4), ωπ), i = 0, 1,

are locally free OT-sheaves of ranks, respectively,

(249) rkF0 = rkG0 = 4m− 4, rkF1 = rkG1 = 2m− 1,

and

(250) Extiπ(E, ωπ) = Extiπ(E(−1), ωπ) = Ext3−iπ (E(−3), ωπ) = Ext3−iπ (E(−4), ωπ) = 0, i 6= 2,

Extiπ(E(−2), ωπ) = 0, i ≥ 0,

Similarly, we obtain that H := R1π∗(E(−1)) is a locally free OT-sheaf of rank

(251) rkH = 2m− 1.

Using (244) we also see that the sheaf H duality commutes with the base change. Hence, there
is a relative Serre-Grothendieck duality isomorphism (see, e.g., [K])

(252) SD : F1
≃
→ H

∨.

Next, the local-to-relative spectral sequence Ep,q
2 = Rpπ∗Ext

q
O

P3×T

(E(−3), ωπ) ⇒

Extp+qπ (E(−3), ωπ) gives an exact sequence 0 → R1π∗(E
∨(−1)) → G1 →

π∗Ext1O
P3×T

(E(−3), ωπ), where by (246) Suppπ∗Ext1O
P3×T

(E(−3), ωπ) ⊂ ∂T. Since codimT∂T ≥

1, dualizing this sequence we obtain an injective morphism of OT-sheaves

(253) 0→ G
∨
1

α
→ (R1π∗(E

∨(−1)))∨

Next, dualizing the triple (243) and using the fact that codimP3×TLT = 2 we obtain an exact
sequence

(254) 0→ OP3(−1)⊠OT → E∨ → OP3(1)⊠OT/H(−1)→ Ext
2
O

P3×T

(OLT
(1),OP3×T)→

→ Ext1O
P3×T

(E,OP3×T)→ 0,

so that detE∨ = π∗OT/H(−1). Hence, as T is a smooth integral scheme, it follows by [H1,
Prop. 1.10] that

E∨∨ ≃ E∨ ⊗ (detE∨)−1 = E∨ ⊗ π∗OT/H(1).

Dualizing (243) twice we see that the canonical morphism can : E→ E∨∨ ≃ E∨⊗π∗OT/H(1) is

injective, and we obtain an exact sequence 0→ E(−1)
can
→ E(−1)∨⊗π∗OT/H(1)→ coker(can)→

0, where Supp coker(can) ⊂ P
3 × ∂T. Applying to this triple the functor Riπ∗ and using the

fact that H is locally free on T, we thus obtain an exact sequence 0 → H
g
→ R1π∗(E

∨(−1))⊗
OT/H(1) → coker(g) → 0, where Supp coker(g) ⊂ ∂T. Dualizing this sequence we obtain an
injective morphism of OT-sheaves β : (R1π∗(E

∨(−1)))∨ → H
∨ ⊗ OT/H(1). Composing it with

the morphism α from (253) and the inverse of the relative duality isomorphism SD from (252)
we obtain an injective morphism of locally free OT-sheaves

(255) γ = SD−1 ◦ β ◦ α : G∨
1 → F1 ⊗OT/H(1).

In view of the property (iii) above (245) one easily sees that γ is an isomorphism when restricted
onto T′:

γ|T′ : G∨
1 |T′

≃
→ F1 ⊗OT/H(1)|T′.
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(In fact, the restriction of γ onto an arbitrary point t ∈ T′ is just the Serre duality isomorphism

H2(Et(−3))
≃
→ H1(Et(−1))∨ for a t’Hooft instanton Et.)

Next, the resolution of the diagonal ∆ on P3 × P3 extends to a diagram of sheaves
(256)

0

��

0

��

0

��

OP3(−4)⊠OP3

��

OP3(−4)⊠OP3

��

0 // OP3(−3)⊠OP3(1) //

��

OP3(−3)⊠ ∧3V ∨ ⊗OP3
//

��

OP3(−3)⊠ TP3(−1) //

��

0

0 // OP3(−2)⊠ TP3(−2) //

��

OP3(−2)⊠ ∧2V ∨ ⊗OP3 //

��

OP3(−2)⊠ ΩP3(2) //

��

0

0 // OP3(−1)⊠ ΩP3(1) //

��

OP3(−1)⊠ V ∨ ⊗OP3 //

��

OP3(−1)⊠OP3(1) //

��

0

0 // I∆,P3×P3 //

��

OP3 ⊠OP3 //

��

O∆
//

��

0

0 0 0

Let ρ : P3×T×P3 → P3×P3 and π = π× idP3 : P3×T×P3 → T×P3 be the projections and
denote ωπ = ωπ ⊠ OP3 . Applying the functor Exti

π
(−, ωπ) to the diagram ρ∗(256)⊗E ⊠ OP3

and using (248), (250) and base change we obtain the commutative diagram of sheaves on
P
3 ×T ≃ T× P

3:
(257)

0 0

0 OP3 ⊠G0
oo

OO

Moo

OO

E∨oo 0oo

0 OP3(1)⊠G1
oo

OO

OP3 ⊠ V ∨ ⊗G1
eoo

OO

ΩP3(1)⊠G1
oo

OO

0oo

0 TP3(−1)⊠ F1
oo

OO

OP3 ⊠ V ⊗ F1
oo

idO⊠A
′

OO

OP3(−1)⊠ F1
ioo

a

OO

0oo

0 E∨oo Koo

OO

OP3 ⊠ F0
oo

OO

0oo

OO

0

OO

0

OO

where we denote K = Ext2
π
(ρ∗I∆,P3×P3⊗E⊠OP3, ωπ), M = coker a and where A′ is a morphism

V ⊗ F1 → V ∨ ⊗G1 given by this diagram.

Now set W := imA′ and let ǫA′ : V ⊗ F1 ։ W, iA′ : W  V ∨ ⊗ G1, g : OP3 ⊠W
idO⊠iA′−→

OP3 ⊠ V ∨ ⊗ G1
e
−→ OP3(1)⊠ G1 and f : OP3(−1) ⊠ F1

i
−→ OP3 ⊠ V ⊗ F1

idO⊠ǫA′−→ OP3 ⊠W be
the induced morphisms. From (249) and the middle vertical sequence in (257) it follows that
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W is a locally free OT-sheaf of rank 4m:

(258) rkW = 4m.

Moreover, the diagram (257) gives the monad with the cohomology sheaf E∨:

(259) 0→ OP3(−1)⊠ F1
f
→ OP3 ⊠W

g
−→ OP3(1)⊠G1 → 0, E∨ = ker g/imf .

Remark 10.5. One can, of course, obtain the monad (259) from the Beilinson spectral sequence
with E1-term Ep,q

1 = Ext3−qπ (E ⊗ Ω−p
P3 (−p) ⊠ OT, ωπ) (cf. [OSS, Ch. II, 3.1.4]). However, we

use here the diagram (257) because it will be also used below in producing the monad (266)
and Lemma 10.6.

Next, from the definition of the morphisms f , g and γ follows the diagram

(260) OP3(−1)⊠G∨
1 ⊗OT/H(−1)

e∨ //

γ

��

OP3 ⊠ V ⊗G∨
1 ⊗OT/H(−1)

γ

��
OP3(−1)⊠ F1

i // OP3 ⊠ V ⊗ F1

.

is commutative. Thus, the composition A : V ⊗G
∨
1 ⊗OT/H(−1)

γ
→ V ⊗ F1

A′

→ V ∨ ⊗G1 fits in
the (left- and right-exact) complex of sheaves

(261) 0→ OP3(−1)⊠G
∨
1 ⊗OT/H(−1)

e∨

→ OP3 ⊠ V ⊗G
∨
1 ⊗OT/H(−1)

idO⊠A→

→ OP3 ⊠ V ∨ ⊗G1
e
→ OP3(1)⊠G1 → 0

and imA ⊂W. In addition, by construction for any t ∈ T′ the homomorphism A⊗ kt in view

of Serre duality H := H2(Et(−3))
≃
→ H1(Et(−1)) coincides with the skew-symmetric middle

vertical homomorphism A : V ⊗H → V ∨⊗H∨ in (10) for E = Et and n = 2m−1. Hence, A is
skew-symmetric, A ∈ H0(∧2(V ∨⊗G1)⊗OT/H(1)). We thus obtain the induced skew-symmetric
morphism q : W∨ ⊗ OT/H(−1)) → W which yields a decomposition of A as A = iA′ ◦ q ◦ i∨

A′ .
This decomposition, being restricted onto an arbitrary point t ∈ T′, gives the rightmost square
in (10). In particular, it follows that

(262) A ∈ H0(∧2V ∨ ⊗ S2
G1)⊗OT/H(1)),

and that q|T′ is an isomorphism. We thus consider the dense open subset T0 of T containing
T′ which is defined as

(263) T0 := {t ∈ T | q|P3×{t} : W
∨ ⊗OT/H(−1)⊗ kt →W⊗ kt is an isomorphism},

T0 ⊃ T′.

Denote

(264) W := W
∨, W0 := W|T0, q0 := q|T0 , L := OT/H(−1), L0 := L|T0, E0 = E|T0,

g0 := g∨|T0, G := G
∨
1 , G0 = G|T0.

In this notation the complex (261) induces the following right- and left-exact complex

(265) 0→ OP3(−1)⊠G⊗L
g
→ OP3 ⊠W ⊗L

q
→ OP3 ⊠W∨ g∨

→ OP3(1)⊠G∨ → 0,

Standard diagram chasing with (257)-(261) shows that the restriction of the monad (259) onto
P
3 ×T0 coincides with the restriction onto P

3 ×T0 of the complex (265) and is isomorphic to
a (antiselfdual) monad

(266) 0→ OP3(−1)⊠G0 ⊗L0
g0
→ OP3 ⊠W0 ⊗L0

q0
→
≃
OP3 ⊠W∨

0

g∨
0→ OP3(1)⊠G∨

0 → 0,

E∨
0 = ker g∨

0 /im(q0 ◦ g0).

From this monad and (263) immediately follows
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Lemma 10.6. E0 is a locally free OP3×T0
-sheaf, i.e. T0 = T′.

Consider the variety Y := Proj(Hom(G, H2m−1⊗OT)) with the projection pY : Y → T and
set GY := p∗YG, LY := p∗YL⊗OY/T(−1). The universal morphism

(267) τ : H2m−1 ⊗OY ⊗OY/T(−1)→ GY

on Y together with the family p∗YA : GY ⊗ V ⊗ LY → G∨
Y ⊗ V

∨ yields a family of nets of
quadrics A : H2m−1 ⊗ V ⊗LY → H∨

2m−1 ⊗ V
∨ ⊗OY, i.e., equivalently, the morphism

(268) A : LY → S2H∨
2m−1 ⊗ ∧

2V ∨ ⊗OY = S2m−1 ⊗OY.

We call A the family of nets of quadrics associated to the family E→ T.
Now consider the principal PGL(H2m−1)-bundle pY0 : Y0 := P (Isom(H2m−1⊗OT0 ,G0))→

T0 together with the natural open embedding Y0
i0
→֒ Y such that pY0 = pY ◦ i0 and set

A0 := A|Y0 , LY0 := LY|Y0, WY0 := p∗Y0
W0. The monad p∗Y0

(266):
(269)

0→ OP3(−1)⊠H2m−1⊗LY0 → OP3⊠WY0⊗LY0

≃
→OP3⊠W∨

Y0
→ OP3(1)⊠H∨

2m−1⊗OY0 → 0,

Now pick a monomorphism j : Hm−1 →֒ Hm and let Z̃ be any irreducible component of Zm.

Assume that Z̃(j) is nonempty, hence dense in Z̃ according to Lemma 9.2 (in particular, such

j exists for Z̃ = Z by the same Lemma). Consider the morphism rT : Z̃(j) → T′ defined in
(247). Note that from the definition (248) of the locally free OT-sheaf G1 = Ext1π(E(−3), ωπ) it
follows that the formation of G∨

1 commutes with the base change. In particular, the definition
(247) of the morphism rZ and the definition (216) of the sheaf GZ imply that GZ = r∗TG

∨
1 .

Hence the isomorphism (216) gives a subbundle morphism

(270) iZ : OZ̃(j) →Hom(H2m−1 ⊗OZ̃∗(j),GZ) = r∗THom(H2m−1 ⊗OT,G
∨
1 ),

imiZ ⊂ Isom(H2m−1 ⊗OT0 ,G0).

Now the well known universal property of Proj (see [H, Ch. III, Prop. 7.12]) and the last

inclusion in (270) show that the morphism rT : Z̃(j) → T′ = T0 (here we use Lemma 10.6)

lifts to the morphism rY : Z̃(j)→ Y0 giving the factorization of rT:

(271) rT : Z̃(j)
rY→ Y0

pY0→ T0

such that

(272) ÃZ = r∗YA,

where ÃZ : OZ̃(j) → S2m−1 ⊗ OZ̃(j) is the family of nets of quadrics (214) and A is the net

(268). Moreover, consider the total space V = Spec(S ·
OY

L
−1
Y ) of the vector bundle LY and let

V0 = V r{0-section} be the complement of the 0-section inV, with the projection ρ : V0 → Y.

The morphism rY : Z̃(j)→ Y0 naturally lifts to a morphism rV : Z̃(j)→ V0, i.e. rY factorizes
as rY = ρ ◦ rV:

(273) Z̃(j)

rY
��

rV // V0

ρ

��
Y0

� � // Y.

so that, by (272),

(274) ÃZ = r∗Vρ
∗A.

Next, there is a well defined morphism µ : V0 → S2m−1 : v 7→ (ρ∗A)(s(v)) where s is the

canonical section of ρ∗LY ≃ OV0 . Now (274) means that λ̃j = µ ◦ rV:

(275) λ̃j : Z̃(j)
rV→ V0

µ
→ S2m−1
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where the morphism λ̃j : Z̃ → S2m−1 is defined in Lemma 9.5(ii).

Remark 10.7. By definition, the morphism rV considered in the diagram above is well defined
as the morphism rV : Zm(j)→ V.

10.3. Irreducibility of Zm.

Take an arbitrary point z0 = (D0, φ0) ∈ Z with φ0 6= 0. According to Lemma 9.2(i) there
exists a monomorphism j : Hm−1 →֒ Hm such that Z(j) is a dense open subset of Z. Hence
there exists a smooth affine curve C with a marked point 0 ∈ C and a morphism g : C → Z such
that g(0) = z0 and g(C∗) ⊂ Z(j) where C∗ := C r {0}. For any x ∈ C set (Dx, φx) := g(x).

Here, for all x ∈ C, by definition A1(x) := D−1
x is an isomorphism Hm⊗V

≃
→ H∨

m⊗V
∨ and also

A2(x) := φx ◦ j is a homomorphism Hm−1 ⊗ V
≃
→ H∨

m ⊗ V
∨. Hence, picking an isomorphism

ξ : Hm ⊕ Hm−1
≃
→ H2m−1, we may consider the matrix A(x) =

(
A1(x) A2(x)
−A2(x)

∨ A3(x)

)
with

A3(x) = −A2(x)
∨ ◦A1(x)

−1 ◦ A2(x) as a homomorhism (net of quadrics) A(x) : H2m−1 ⊗ V →
H∨

2m−1 ⊗ V
∨ of rank

(276) rkA(x) = rkA1(x) = 4m, x ∈ C.

We thus have a family of nets of quadrics AC = {A(x)}x∈C and its restriction AC∗ =
{A(x)}x∈C |C∗. 6

Consider the composition rY ◦ g : C∗ → Y0 →֒ Y. Since Y is projective, this morphism
extends to the morphism ψY : C → Y such that AC = ψ∗

YA. As A(0) 6= 0, it follows that
ψY lifts to the morphism ψV : C → V0 such that ψY = ρ ◦ ψV. We also have the composition
ψT = pY ◦ ψY : C → T and the commutative diagram

(277) H2m−1 ⊗ V ⊗OC

τC

��

AC // H∨
2m−1 ⊗ V

∨ ⊗OC

GC ⊗ V
ψ∗
Y
A

// G∨
C ⊗ V

∨

τ∨C

OO

where GC := ψ∗
YGY, τC := ψ∗

Yτ and τ is the universal morphism (267). Consider the OC-
sheaves WC = H2m−1 ⊗ V ⊗ OC/ kerAC and WC = GC ⊗ V/ kerAC and the morphisms
eC : H2m−1 ⊗ V ⊗ OC ։ WC , eC : GC ⊗ V ։ WC, qC : WC → W∨

C , qC : WC → W∨
C and

ǫ : WC →WC induced by the diagram (277), so that

(278) qC = ǫ∨ ◦ qC ◦ ǫ,

(279) ǫ ◦ eC = eC ◦ τC .

The condition (276) means that WC is a locally free rank-4m OC-sheaf and qC is an iso-
morphism. Hence (278) implies that WC is a locally free rank-4m OC-sheaf and qC is an
isomorphism. This together with Lemma 10.6 precisely means that

(280) ψY(C) ⊂ Y0, resp., ψT(C) ⊂ T0.

Consider the compositions aC : OP3(−1)⊠H2m−1⊗OC → V ⊗OP3⊠H2m−1⊗OC
eC→ OP3⊠WC

and aC : OP3(−1)⊠GC → V ⊗OP3 ⊠GC
eC→ OP3 ⊠WC and the diagram of induced complexes

(281) 0 // OP3(−1)⊠H2m−1 ⊗OC
aC //

τC
��

OP3 ⊠WC

taC //

ǫ≃

��

OP3(1)⊠H∨
2m−1 ⊗OC // 0

0 // OP3(−1)⊠GC
aC // OP3 ⊠WC

taC // OP3(1)⊠G∨
C

//

τ∨C

OO

0.

6Equivalently, using Lemma 9.3(iii), one can define A(x) as λj(g(x)), x ∈ C.
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From (280) it follows now that the lower complex in this diagram is a genuine monad which is by
construction obtained by applying the functor (idP3 × ψT)

∗ to the monad (266). In particular,
its cohomology sheaf EC is a rank-2 bundle. Also, by construction, these two complexes are
isomorphic over C∗. However, the upper complex is apriori not right- and left-exact when
restricted to P3×{0}. We are going to show that, in fact, it is isomorphic to the lower monad,
hence it is left- and right-exact, i.e. it is a monad.

For this, consider the monomorphism im : Hm H2m−1 given by the isomorphism ξ above,

let α : Hm ⊗ V ⊗ OC  H2m−1 ⊗ V ⊗ OC ։ WC , β : Hm ⊗ OC  H2m−1 ⊗ OC
τC→ GC

be the induced morphisms and set Gm := imβ, Gm−1 := GC/Gm. From (276) it follows
that α is an isomorphism and, respectively, the induced morphism α : Gm ⊗ V → WC is an
isomorphism. Hence by (277)-(279) β is injective, Gm is a locally free rank-m OC-sheaf, the
morphism Gm  GC is a subbundle morphism, hence Gm−1 is a locally free rank-(m − 1)
OC-sheaf. We now have the induced diagram of isomorphic monads obtained similar to (281):

(282) 0 // OP3(−1)⊠Hm ⊗OC
αC //

≃ βC
��

OP3 ⊠WC

t
αC //

ǫ≃

��

OP3(1)⊠H∨
2m−1 ⊗OC // 0

0 // OP3(−1)⊠Gm
αC // OP3 ⊠WC

tαC // OP3(1)⊠G∨
m

//

≃ β∨
C

OO

0.

with the isomorphism δ : E2m
∼
→ E2m of the rank-2m cohomology sheaves of these monads.

(Note that, by construction, E2m = ∪
x∈C

E2m(D
−1
x ).) In addition, the diagram of natural mor-

phisms

0 // Hm ⊗ V ⊗OC
im //

≃ β

��

H2m−1 ⊗ V ⊗OC //

τC
��

Hm−1 ⊗ V ⊗OC //

γ

��

0

0 // Gm ⊗ V
im // G2m−1 ⊗ V // Gm−1 ⊗ V // 0.

satisfying the relations α = eC ◦ im, α = eC ◦ im, α ◦ β = ǫ ◦ α, together with the diagrams
(281)-(282), yields a diagram of factor-complexes

(283) 0 // OP3(−1)⊠Hm−1 ⊗OC
ᾱC //

γC

��

E2m
//

δ≃

��

OP3(1)⊠H∨
m−1 ⊗OC // 0

0 // OP3(−1)⊠Gm−1
// E2m

// OP3(1)⊠G∨
m−1

//

γ∨C

OO

0

where ᾱC is the induced morphism. By the above, this diagram becomes an isomorphism of
monads when restricted onto P3 × C∗. To show that it is an isomorphism everywhere, it is
enough to show that γC ⊗ k(0) : Hm−1 → Gm−1 ⊗ k(0) is an isomorphism. Passing to sections
in the left square of the diagram (283)⊗OP3(−1)⊠OC , we see that this condition is equivalent
to the injectivity of homomorphism of sections h0(ᾱC ⊗ k(0)) : Hm−1 → H0(E2m(D

−1
0 )(1)).

But this homomorphism exactly coincides with the composition

sz0(j) : Hm−1

j
→֒ Hm

s(z0)=♯φ0
−→ H0(E2m(D

−1
0 )(1)).

Now from the definition of the subset RZ of Z defined in Lemma 9.7 it follows that the injectivity
of the map sz0(j) is true for any point z0 ∈ Z rRZ and a generic monomorphism j : Hm−1 →֒
Hm. Hence, for such point z0 = (D0, φ0) the restriction of the upper complex in (283) onto

P3 × {0} is a monad: 0 → Hm−1 ⊗ OP3(−1)
sz0(j)→ E2m(D

−1
0 )

tsz0(j)→ H∨
m−1 ⊗ OP3(1) → 0, which

by definition coincides with the monad (208) for z = z0. (As a corollary we obtain that the
diagrams (281) and (283) are the diagrams of isomorphisms of monads for this z0.) In other

words, z0 ∈ Ẑ(j) where the set Ẑ(j) was defined in Lemma 9.2(i).
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We thus have proved the following statement.

Proposition 10.8. For any point z ∈ Z r RZ there exists a monomorphism j : Hm−1 →֒ Hm

such that z ∈ Z(j, I).

Consider the morphism rV : Z̃(j)→ V0 defined in diagram (273). By (275) we have

(284) λ̃j |Z̃(j) = µ ◦ rV.

We now prove the following proposition.

Proposition 10.9. Take any irreducible component Z̃ of Zm and any monomorphism j :

Hm−1 →֒ Hm such that Z̃(j) is nonempty. Then the morphism rV : Z̃(j, I) → V0
7 is domi-

nating and, for a general point z ∈ Z̃(j, I), the fibre r−1
V (rV(z)) coincides with V (z, j) where

V (z, j) is defined in (221). Moreover, dim Z̃(j, I) = 4m(m+ 2), and there exists a dense open

subset Z ′ of Z̃(j, I) such that

(285) dimV (z, j) = 2m, z ∈ Z ′,

(286) r−1
V (rV(z)) = λ̃−1

j (λ̃j(z)) = λ−1
(j)(λj(z)) = V (z, j), z ∈ Z ′,

(287) codimZ̃(j,I)(Z̃(j, I)r Z ′) ≥ 2.

Proof. First, since by definition Z̃(j, I) is an open subset of Zm, we have by (81) dim Z̃ =

dim Z̃(j, I) ≥ 4m(m+ 2).

Next, set V00 := ρ−1(Y0). According to the diagram (273) we have rV(Z̃(j, I)) ⊂ V00.
Consider the composition of projections

p : V00
ρ
→ Y0

pY0→ T0
pT→ H0 := HtH−curv

2m ,

pj : Z̃(j, I)
rV→ V00

p
→H0.

Since the projections ρ, pY0 and pT are smooth fibrations with fibers of dimensions, respectively,
1, (2m− 1)2 − 1 and (2m− 1), and dimH0 = dimH = 8m (cf. (242)), it follows that

(288) dimV00 = dim(fibre of p) + dimH0 = 2m(2m− 1) + 8m = 4m2 + 6m.

Whence,

(289) dim{generic fibre of rV : Z̃(j, I)→ V00} ≥ dim Z̃(j, I)− dimV00 ≥

≥ 4m(m+ 2)− (4m2 + 6m) = 2m.

Now take an arbitrary point z ∈ Z̃(j, I) and set v := rV(z), A := λ̃j(z). From (284) it follows
that A = µ(v) and so by Lemma 9.5(ii)

(290) r−1
V (v) ⊂ λ̃−1

j (A) = V (z, j),

where V (z, j) is described in (221). Using Remark 10.3, we rewrite (221) as:

(291) dimV (z, j) =

{
2m, if p(z) ∈ H∗,

2m+ 1, if p(z) ∈ Hs,

where we set
H∗ := H0

rHs.

As p : V00 → H0 is a smooth fibration with fibres of dimension 2m(2m − 1) (see (288)),
formulas (240), (288), (290) and (291) yield

(292) dimp−1
j (Hs) ≤ 4m2 + 6m− 3 + (2m+ 1) = 4m(m+ 2)− 2 < dim Z̃(j, I).

7See the definition of the sets Z̃(j, I) in (206).
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Thus, pj(Z̃(j, I)) 6⊂ Hs, i.e. there is a dense open subset Z ′ of Z̃(j, I) such that pj(Z
′) ⊂ H∗.

In particular, (290) and (291) imply

(293) dim r−1
V (rV(z)) ≤ dimV (z, j) = 2m, z ∈ Z ′.

On the other hand, since Z ′ is dense in Z̃(j, I), (289) yields dim r−1
V (rV(z)) ≥ 2m, z ∈ Z ′.

Comparing this with (293), (288) and the inequality dimZ ′ ≥ 4m(m+ 2), we obtain that

(294) dim rV(Z
′) = dimV00 = 4m2 + 6m,

(295) r−1
V (rV(z)) = V (z, j), dimV (z, j) = 2m, z ∈ Z ′.

Moreover, (287) follows from (292). Now since the minimal possible dimension of V (z, j) is 2m,
the equality (286) follows from Lemma 9.5(ii-iii) (see (226) and (228)) by the semicontinuity of
dimension of fibres of a morphism of irreducible varieties. This together with (294) and (295)
yields Proposition. �

Now we are ready to finish the proof of Theorem 7.2.

End of the proof of Theorem 7.2.
(i) We prove the irreducibility of Zm, and the surjectivity of the projection pm : Z →

(S∨
m)

0 : (D, φ) 7→ D will be a by-product of this proof. First, Zm contains an irreducible
component Z introduced in Proposition 8.1. Assume that there exists another irreducible
component Z ′ of Zm. Let b : Φmr {0} → P (Φm) be the canonical projection and b := id× b :
(S∨

m)
0 × (Φm r {0}) → (S∨

m)
0 × P (Φm) be the induced projection. The equations of Zm in

(S∨
m)

0 × Φm (see (76)-(77)) are homogeneous with respect to affine coordinates in Φm, hence
there exist irreducible closed subsets Z and Z ′ and the closed subset Zm in (S∨

m)
0×P (Φm) such

that Z = b−1(Z) ∪ {0}, respectively, Z ′ = b−1(Z ′) ∪ {0}, respectively, Zm = b−1(Zm) ∪ {0}.
Moreover, by construction Z and Z ′ are irreducible components of Zm.

Take any point

(296) y = (D0, < φ >) ∈ Z ′
r Z ′ ∩ Z

and consider the projective space P = {D0}×P (Φm), dimP = 6m2− 1. By definition, the sets
Zm(D0) = Z ′ ∩ PD and Z ′(D0) = Z ′ ∩ PD are closed subsets of P such that

(297) y ∈ Z ′(D0) ⊂ Zm(D0)

and by Remark7.1 we have codimPZ
′(D0) ≤ 5m(m− 1)

(298) dimP Zm(D0) ≥ m2 + 5m− 1 ≥ 1, m ≥ 1.

By definition, Zm(D0) is given in P by 5m(m−1) global equations of the form φ∨◦D0◦φ ∈ Sm.
Hence, in view of (298) Zm(D0) is connected.

Next, by Proposition 8.1(ii) the morphism pr1 : Z → (S∨
m)

0 : (D, φ) 7→ D is dominant, so
that the induced projective morphism Z → (S∨

m)
0 : (D,< φ >) 7→ D is also dominant, hence

surjective,8 since Z is closed in (S∨
m)

0 × P (Φm). In particular, the set Z(D0) = Z ∩ P is a
nonempty closed subset of Zm(D0). In addition, by (296) y ∈ Zm(D0)r Z(D0). Hence, since
Zm(D0) is connected, it contains an irreducible component, say, Z ′′(D0) distinct from Z(D0)
and intersecting Z(D0). Let Z

′′ be an irreducible component of Zm containing Z ′′(D0), hence
distinct from Z(D0). We thus have

(299) Z ∩ Z ′′ 6= ∅.

Let Z ′′ = b−1(Z ′′) ∪ {0}. By construction Z ′′ is an irreducible component of Zm such that, in
view of (299), there exists a point

(300) z = (D, φ) ∈ Z ∩ Z ′′, φ 6= 0.

8This clearly implies the surjectivity of projection pm = pr1 : Z → (S∨

m)0.



50 TIKHOMIROV

Since Zm is given in (S∨
m)

0 × Φm by 5m(m − 1) equations (see (79)) and Z has dimension
4m(m + 2) (Proposition 8.1). Hence, outside of its intersection with other irreducible compo-
nents of Zm, Z is a locally complete intersection of codimension 5m(m − 1) in (S∨

m)
0 × Φm.

Now it follows easily from the connectedness in codimension 1 of locally complete intersec-
tions (see [H2]) that through any point of intersection of Z with other components of Zm (e.g.,

through the point z in (300)) there passes a component, say, Z̃ of Zm, distinct from Z, such

that codimZZ ∩ Z̃ = 1.
Take any irreducible component F of Z ∩ Z̃ having codimension 1 in Z. From Lemma 9.7 it

follows now that the set F ′ := F r (RZ ∩ {union of all possible components of Z ∩ Z̃ distinct
from F}) is dense open in F . Take any point z ∈ F ′. By Proposition 10.8 there exists a
monomorphism j : Hm−1 →֒ Hm such that z ∈ Z(j, I). Then by Proposition 10.9, in which we

take Z for Z̃, it follows that:
1) there exists a dense open subset Z ′ of Z(j, I) such that F ∗ := F ′ ∩ Z ′ is dense open in F

(see (287)),

2) for any point z ∈ F ∗, λ−1
j (λj(z)) = λ̃−1

j (λ̃j(z)) = V (z, j) ≃ k2m. (In fact, apply formula

(286) to Z(j, I) and to Z̃(j, I), respectively). The last equality means that

(301) z = (D, φ) ∈ V (z, j) ⊂ Z ∩ Z̃, dimV (z, j) = 2m.

Now we obtain from (301) and diagram (234) that there exists a monomorphism j′k : k →֒
V (z, j) for which the induced homomorphism ♯φ′ := (♯φ ◦ j, j′k) : Hm = Hm−1⊕ k→ V (z, j) →֒
H∨
m ⊗ ∧

2V ∨ is such that, in notations of (189), the point z′ = (D, φ′) ∈ V (z, j) satisfies the
condition:

the composition s(z′) : Hm → H∨
m ⊗ ∧

2V ∨ cD
։ H0(E2m(D

−1)(1)) is injective.

Az z ∈ Z(j, I), the composition s(z′) ◦ j : Hm−1 → H0(E2m(D
−1)(1)) is also injective. This

together with the above condition and exactly means that the point z′ ∈ V (z, j) ⊂ satisfies

both conditions (I) and (II) in the definition of Z̃(j) in Lemma 9.2. It follows now from (301)

that Z̃(j) is nonempty.
We are now in conditions of Proposition 10.9 which we apply to the irreducible sets Z(j)

and Z̃(j). Consider the morphism rV : Zm(j) → V0 and its restrictions r := rV|Z(j) and
r̃ := rV|Z̃(j). Then according to Proposition 10.9 there exist dense open subsets Z ′ of Z(j) and,

respectively, Z̃ ′ of Z̃(j), such that V′ := r(Z ′) = r̃(Z̃ ′). Now, for a general point v ∈ V′ and
an arbitrary point z ∈ r−1(v) ∩ Z ′, one has by (286):

r−1(v) = V (z, j) = λ−1
(j)(v) = r̃−1(v).

This is clearly a contradiction, since, by assumption, Z(j) and Z̃(j) are distinct varieties. Hence
Zm is irreducible.

The surjectivity of the morphism pm : Zm → (S∨
m)

0 was already mentioned in the footnote 7
above. Theorem 7.2 is proved.

11. Appendix: two results of general position

In this Appendix we prove Theorem 4.1 and Proposition 7.3.

11.1. Proof of Theorem 4.1.

We first need to recall some definitions and standard facts from theory of determinantal
varieties.
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Definition 11.1. Let U and U ′ be two vector spaces of dimensions respectively m and n, where
m ≥ n. Consider the projective space P (U ⊗U ′). We say that a point x ∈ P (U ⊗U ′) has rank
r (and denote this as rk(x) = r), if

(i) there exist unique subspaces Ur(x) ⊂ U and U ′
r(x) ⊂ U ′ of dimensions dimUr(x) =

dimU ′
r(x) = r such that x ∈ P (Ur(x)⊗ U ′

r(x)), and

(ii) there do not exist subspaces Ũ ⊂ U and Ũ ′ ⊂ U ′ of dimension dim Ũ = dim Ũ ′ < r such
that x ∈ P (Ũ ⊗ Ũ ′).

The following Lemma is a well known fact from the theory of determinantal varieties (see, e.
g., [R]).

Lemma 11.2. Each point x ∈ P (U ⊗ U ′) has a uniquely defined rank rk(x), 1 ≤ rk(x) ≤ n.
Moreover, for a given point x ∈ P (U ⊗ U ′) of rank rk(x) = r such that x ∈ W ⊗ W ′ for
some subspaces W ⊂ U and W ′ ⊂ U ′, the subspaces Ur(x) ⊂ U and U ′

r(x) ⊂ U ′ of dimensions
dimUk(x) = dimU ′

k(x) = r defined in (i) above are such that Ur(x) ⊂W and U ′
r(x) ⊂ W ′.

Proof. According to Definition 11.1 in which we put U = H∨
2m+1, U

′ = V ∨, each point x ∈
P (H∨

2m+1 ⊗ V
∨) has rank 1 ≤ rk(x) ≤ dimV ∨ = 4 9 . Thus

(302) P (W∨
4m+4) =

4
∪
r=1
Zr,

where

Zr := {x ∈ P (W
∨
4m+4) | rk(x) = r}, 1 ≤ r ≤ 4,

are locally closed subsets of P (W∨
4m+4). Consider the Grassmannian

G := G(m,H∨
2m+1)

and its locally closed subsets

(303) Σr := {Vm ∈ G | Vm ⊃ Ur(x) for some point x ∈ Zr}, 1 ≤ r ≤ 4.

In view of Lemma 11.2 the condition x ∈ Zr ∩ P (Vm ⊗ V ∨) means that x ∈ Zr ∩ P (Ur ⊗ V ∨)
for some r-dimensional subspace Ur = Ur(x) ⊂ Vm. This together with (302) and (303) shows
that

{Vm ∈ G | P (Vm ⊗ V
∨) ∩ P (W∨

4m+4) 6= ∅} =
4
∪
r=1

Σr.

Now the theorem says that
4
∪
r=1

Σr ⊂
6=
G. Thus, to prove the theorem, it is enough to show that

(304) dimΣr < dimG, 1 ≤ r ≤ 4.

We are starting now the proof of (304) for r = 4, 3, 2, 1.
(i) Case r = 4. Set Γ4 := {(x, U) ∈ P (W∨

4m+4) × G(4, H
∨
2m+1) | rk(x) = 4 and U = U4(x)}

and let P (W∨
4m+4)

p4← Γ4
q4→ G(4, H∨

2m+1) be the projections. By construction, p4(Γ4) = Z4, and
by the definition 11.1(i) the projection p4 : Γ4 → Z4 is a bijection. Hence

dim q4(Γ4) ≤ dimΓ4 = dimZ4 ≤ dimP (W∨
4m+4) = 4m+ 3.

By construction we have the graph of incidence

Π4 = {(U, Vm) ∈ q4(Γ4)× Σ4 | U ⊂ Vm}

with surjective projections q4(Γ4)
pr1← Π4

pr2→ Σ4 and a fibre

(305) pr−1
1 (U) ≃ G(m− 4, H∨

2m+1/U)

9Everywhere in this proof by the rank of a point x of a given subspace of P (H∨

2m+1⊗ V ∨) we understand its

rank as of a point in P (H∨

2m+1 ⊗ V ∨).
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over an arbitrary point U ∈ q4(Γ4). (In fact, the condition U ⊂ Vm ⊂ H∨
2m+1 means that

Vm/U ∈ G(m− 4, H∨
2m+1/U).) Hence

dimΣ4 ≤ dimΠ4 = dim q4(Γ4)+dimG(m−4, H∨
2m+1/U) ≤ 4m+3+(m−4)(m+1) = m(m+1)−1 =

= dimG− 1 < dimG, i.e. (304) is true for r = 4.

(ii) Case r = 3. Consider the projection f3 : Z3 → P (V ∨)∨ = P3 : x 7→ V3(x), where the
pair of 3-dimensional spaces (U3(x), V3(x)), U3(x) ⊂ H∨

2m+1 and V3(x) ⊂ V ∨, is determined
uniquely by the point x via the condition x ∈ P (U3(x)⊗V3(x)), since rk(x) = 3 (see Definition
11.1 and Lemma 11.2). Now for a given 3-dimensional subspace V3 ⊂ V ∨ set

(306) Σ3(V3) = {Vm ∈ G | Vm ⊃ U3(x) for some point x ∈ f−1
3 (V3)}.

Comparing this with (303) for r = 3 we obtain

(307) Σ3 = ∪
V3⊂V ∨

Σ3(V3).

Note that a priori f3 is not necessarily surjective. Hence,

(308) dimΣ3 ≤ dimΣ3(V3) + 3.

We are going to obtain an estimate for the dimension of Σ3(V3) for an arbitrary 3-dimensional
subspace V3 of V ∨. This subspace defines a commutative diagram

(309) 0

��

0

��

0

��

0 // F //

��

ΩP3 //

��

Iz(−1) //

��

0

0 // V3 ⊗OP3(−1) //

��

V ∨ ⊗OP3(−1) //

��

OP3(−1) //

��

0

0 // Iz //

��

OP3 //

��

kz //

��

0

0 0 0,

where z = P (ker : V ։ V ∨
3 ) is a point in P3 and the sheaf F has an OP3-resolution 0 →

OP3(−3)→ 3OP3(−2)→ F → 0. Twisting this resolution by the vector bundle E and passing
to cohomology we obtain the equalities H1(F ⊗ E) ≃ H2(E(−3)) = H2m+1, H

2(F ⊗ E) =
0. Respectively, passing to cohomology in diagram (309) twisted by E and using the above
equalities and evident relations H0(E ⊗ kz) ≃ k2, H1(E ⊗ kz) = 0 implies the diagram
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(310) 0

��

0

��

k2
��

��

0 // H2m+1
//

��

W∨
4m+4

//

��

H1(E ⊗ Iz(−1))

��

// 0

0 // H∨
2m+1 ⊗ V3

λ //

��

H∨
2m+1 ⊗ V

∨ //

mult
��

H∨
2m+1

��

// 0

k2 // // H1(E ⊗ Iz) //

��

H∨
4m

//

��

0

0 0.

In this diagram the composition ǫ := mult ◦ λ is surjective. Hence, setting W2m+3(V3) := ker ǫ,
where dimW2m+3(V3) = 2m+ 3, we obtain a commutative diagram

0

��

0

��

0 // W2m+3(V3) //

��

W∨
4m+4

//

��

H∨
2m+1

0 // H∨
2m+1 ⊗ V3

λ //

ǫ

��

H∨
2m+1 ⊗ V

∨ //

mult
��

H∨
2m+1

H∨
4m

��

H∨
4m

��
0 0

which yields the relation

(311) W2m+3(V3) = H∨
2m+1 ⊗ V3 ∩W

∨
4m+4,

where the intersection is taken in H∨
2m+1 ⊗ V

∨. Set

Z3(V3) := {x ∈ P (W2m+3(V3)) | rk(x) = 3}.

The relation (311) and Lemma 11.2 imply the bijection

(312) Z3(V3)
≃
→ f−1

3 (V3).

Consider the graph of incidence Γ3(V3) := {(x, U) ∈ Z3(V3) × G(3, H∨
2m+1) |U = U3(x)} with

projections Z3(V3)
p3
← Γ3(V3)

q3
→ G(3, H∨

2m+1). By Lemma 11.2, p3(Γ3(V3)) = Z3(V3) and the
projection p3 : Γ3(V3)→ Z3(V3) is a bijection. Hence

(313) dim q3(Γ3(V3)) ≤ dimΓ3(V3) = dimZ3(V3) ≤ dimP (W2m+3(V3)) = 2m+ 2.

Consider the graph of incidence

Π3(V3) = {(U, Vm) ∈ q3(Γ3(V3))× Σ3(V3) | U ⊂ Vm}

with projections q3(Γ3(V3))
pr1
← Π3(V3)

pr2
→ Σ3(V3) and a fibre

(314) pr−1
1 (U) ≃ G(m− 3, H∨

2m+1/U)
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over an arbitrary point U ∈ q3(Γ3(V3)) (cf. (305)). The projection Π3(V3)
pr2
→ Σ3(V3) is surjective

in view of (312). Hence, using (313), we obtain

dimΣ3(V3) ≤ dimΠ3(V3) = dim q3(Γ3(V3))+dimG(m−3, H∨
2m+1/U) ≤ 2m+2+(m−3)(m+1) =

= m2 − 1. This together with (308) and the assumption m ≥ 3 yields dimΣ3 ≤ m2 + 2 =
dimG+ 2−m < dimG, i.e. (304) holds for r = 3.

Before proceeding to the case r = 2 we need to make a small digression on jumping lines of
E. Introduce some more notation. For a given line l ⊂ P

3 we have E|l ≃ OP1(d) ⊕ OP1(−d)
for a well-defined nonnegative integer d called the jump of E|l and denoted also by dE(l);
respectively, the line l is called a jumping line of jump d of E. Set G2,4 := G(2, V ∨) and
Jk(E) := {l ∈ G2,4 | dE(l) ≥ k}, J∗

k (E) := Jk(E) r Jk+1(E), 0 ≤ k. From the semicontinuity
of E|l, l ∈ G2,4, it follows that Jk(E) (resp., J∗

k(E)) is a closed (resp., locally closed) subset
of G2,4, k ≥ 0. Moreover, by a well-known theorem of Grauert-Mülich, J∗

0 (E) is a dense open
subset of G2,4. Next, since E ∈ I ′2m+1, it follows that

(315) J2m+1(E) = ∅,

so that

(316) J2m−1(E) = J∗
2m−1(E) ⊔ J

∗
2m(E).

We will use below the following lemma.

Lemma 11.3. Let E ∈ I ′2m+1. Then
(1) dim J2m−1(E) ≤ 1.
(2) dim J∗

k(E) ≤ 3 for 1 ≤ k ≤ 2m− 2.

Proof. (1) Suppose the contrary, i.e. dim J2m−1(E) ≥ 2. Take any irreducible surface S ⊂
J2m−1(E) and let D be the degree of S with respect to the sheaf OG2,4(1). Fix an integer r ≥ 5

and take any irreducible curve C belonging to the linear series
∣∣OG2,4(r)|S

∣∣. Then the degree
degC w.r.t. OG2,4(1) equals to Dr, hence degC ≥ 5. Hence by [C, Lemma 6] there exist two
distinct lines, say, l1, l2 ∈ C, which intersect in P

3. Let the plane P
2 be the span of l1 and l2 in

P3. Now the exact triple 0→ E(−2)|P2 → E|P2 → E|l1∪l2 → 0 implies

(317) H0(E|P2)→ H0(E|l1∪l2)→ H1(E(−2)|P2).

Next, as [E] ∈ I2m+1, we have h0(E(−1)) = h1(E(−2)) = 0, hence the exact triple 0 →
E(−2)→ E(−1)→ E(−1)|P2 → 0 implies

(318) H0(E(−1)|P2) = 0.

Now assume h0(E|P2) > 0. Then a section 0 6= s ∈ H0(E|P2) defines an injection OP2

s
→֒ E|P2 .

This injection and (318) show that the zero-set Z of the section s is 0-dimensional and the

injection s extends to a triple 0→ OP2
s
→ E|P2 → IZ,P2 → 0. Whence

(319) h0(E|P2) ≤ 1.

Furthermore, equality (318) together with Riemann-Roch and Serre duality for the vector
bundle E(−1)|P2 shows that h1(E(−2)|P2) = 2m + 1. Whence in view of (317) and (318) we
obtain

(320) h0(E|l1∪l2) ≤ 2m+ 2.

On the other hand, let x := l1 ∩ l2. Since by construction l1, l2 ∈ J2m−1(E), it follows from
(316) that either E|li ≃ OP2(2m − 1) ⊕ OP2(1 − 2m), or E|li ≃ OP2(2m) ⊕ OP2(−2m), hence
h0(E ⊗ Ix,li) ≥ 2m − 1, i = 1, 2. This clearly implies h0(E|l1∪l2) ≥ h0(E ⊗ Ix,l1∪l2) ≥ h0(E ⊗
Ix,l1) + h0(E ⊗ Ix,l2) = 4m− 2. Comparing this with (320) we obtain the inequality 2m+ 2 ≥
4m−2, i.e. m ≤ 2. This contradicts to the assumption m ≥ 3. Hence, the assertion (1) follows.
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(2) This is an immediate corollary of the theorem of Grauert-Mülich. The lemma is proved.
�

(iii) Case r = 2. Here our notation and argument are completely parallel to those in the case
r = 3 above. Consider a morphism f2 : Z2 → G2,4 : x 7→ V2(x), where the pair of 2-dimensional
spaces (U2(x), V2(x)), U2(x) ⊂ H∨

2m+1 and V2(x) ⊂ V ∨, is determined uniquely by the point
x via the condition x ∈ P (U2(x)⊗ V2(x)), since rk(x) = 2 (see Lemma 11.2).

According to (315) we may assume that l ∈ J∗
k (E) for some 0 ≤ k ≤ 2m, i.e.

h0(E|l) = 2, h1(E|l) = 0, if l ∈ J∗
0 (E),

respectively,

(321) h0(E|l) = k + 1, h1(E|l) = k − 1, if l ∈ J∗
k (E), 1 ≤ k ≤ 2m.

Now, for 1 ≤ k ≤ 2m and a given subspace V2 ∈ J∗
k , set

(322) Σ2,k(V2) = {Vm ∈ G | Vm ⊃ U2(x) for some point x ∈ f−1
2 (V2)}.

Then similarly to (307) we have

Σ2 =
2m
∪
k=0

∪
V2∈J∗

k

Σ2,k(V2).

Hence, in view of Lemma 11.3

(323) dimΣ2 ≤ max
V2∈J∗

k
0≤k≤2m

(dimΣ2,k(V2) + dim J∗
k ).

We are going to obtain an estimate for the dimension of Σ2,k(V2) for an arbitrary 2-dimensional
subspace V2 in J∗

k , 0 ≤ k ≤ 2m. This subspace defines a commutative diagram

(324) 0

��

0

��

0

��
0 // OP3(−2)

s //

��

ΩP3 //

��

F //

��

0

0 // V2 ⊗OP3(−1) //

��

V ∨ ⊗OP3(−1) //

��

V ′
2 ⊗OP3(−1) //

��

0

0 // Il //

��

OP3 //

��

Ol //

��

0

0 0 0,

where V ′
2 := V ∨/V2, l = P ((V ′

2)
∨) is a line in P3, and F := coker s. Passing to cohomology in

the diagram (324) twisted by E, we obtain the diagram
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(325) 0

��

H0(E|l)
��

��
W∨

4m+4

��

H1(E ⊗ F )

��

0 // H∨
2m+1 ⊗ V2 // H∨

2m+1 ⊗ V
∨ //

mult
��

H∨
2m+1 ⊗ V

′
2

ǫ2
��

// 0

H0(E|l) // // H1(E ⊗ Il) // H∨
4m

ǫ1 //

��

H1(E|l)

��

// 0

0 0.

Assume first that 1 ≤ k ≤ 2m. (The case k = 0 is treated below.) In this case (321) and the
diagram (325) lead to the diagram

0

��

0

��

0

��
0 // Wk+1(V2) //

��

W∨
4m+4

//

��

ker ǫ2

��

// 0

0 // H∨
2m+1 ⊗ V2 //

��

H∨
2m+1 ⊗ V

∨ //

mult
��

H∨
2m+1 ⊗ V

′
2

ǫ2
��

// 0

0 // ker ǫ1 //

��

H∨
4m

��

ǫ1 // H1(E|l)

��

// 0

0 0 0,

where we set Wk+1(V2) := H0(E|l). Here according to (321) we have dimWk+1(V2) = k +
1, dim ker ǫ1 = 4m − k + 1, dimker ǫ2 = 4m − k + 3. This diagram yields the relation (cf.
(311))

(326) Wk+1(V2) = H∨
2m+1 ⊗ V2 ∩W

∨
4m+4,

where the intersection is taken in H∨
2m+1 ⊗ V

∨. Set

Z2,k(V2) := {x ∈ P (Wk+1(V2)) | rk(x) = 2}.

The relation (326) and Lemma 11.2 imply the bijection

(327) Z2,k(V2)
≃
→ f−1

2 (V2).

Consider the graph of incidence Γ2,k(V2) := {(x, U) ∈ Z2,k(V2) × G(2, H∨
2m+1) | U = U2(x)}

with projections Z2,k(V2)
p2← Γ2,k(V2)

q2→ G(2, H∨
2m+1). By construction, p2(Γ2,k(V2)) = Z2,k(V2)

and the projection p2 : Γ2,k(V2)→ Z2,k(V2) is a bijection. Hence

(328) dim q2(Γ2,k(V2)) ≤ dimΓ2,k(V2) = dimZ2,k(V2) ≤ dimP (Wk+1(V2)) = k.

Consider the graph of incidence

Π2,k(V2) = {(U, Vm) ∈ q2(Γ2,k(V2))× Σ2,k(V2) | U ⊂ Vm}
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with projections q2(Γ2,k(V2))
pr1
← Π2,k(V2)

pr2
→ Σ2,k(V2) and a fibre

pr−1
1 (U) ≃ G(m− 2, H∨

2m+1/U)

over an arbitrary point U ∈ q2(Γ2,k(V2)) (cf. (305) and (314)). The projection Π2,k(V2)
pr2→

Σ2,k(V2) is surjective in view of (327). Hence using (328) we obtain

(329) dimΣ2,k(V2) ≤ dimΠ2,k(V2) = dim q2(Γ2,k(V2)) + dimG(m− 2, H∨
2m+1/U) ≤

≤ k + (m− 2)(m+ 1) = m2 −m− 2 + k = dimG− (2m− k + 2), 1 ≤ k ≤ 2m.

Now consider the case k = 0. In this case one has h0(E|l) = 2 and, respectively,
dim q2(Γ2,0(V2)) ≤ dimΓ2,0(V2) = dimZ2,0(V2) ≤ dimP (W1(V2)) = 1, instead of (328). Hence,
similar to the above we obtain for k = 0:

dimΣ2,0(V2) ≤ 1 + (m− 2)(m+ 1) = m2 −m− 1 = dimG− (2m+ 1).

The last inequality together with (329), (323), Lemma 11.3 and the assumption m ≥ 3 yields
dimΣ2 < dimG, i.e. (304) is true for r = 2.

(iv) Case r = 1. Again the notation and argument goes along the same lines as in cases
r = 4, 3 and 2 above. Consider the projection f1 : Z1 → P (V ∨) = (P3)∨ : x 7→ V1(x), where the
pair of 1-dimensional spaces (U1(x), V1(x)), U1(x) ⊂ H∨

2m+1 and V1(x) ⊂ V ∨, is determined
uniquely by the point x via the condition x ∈ P (U1(x) ⊗ V1(x)), since rk(x) = 1 (see Lemma
11.2). Now for a given subspace V1 ∈ (P3)∨ set

Σ1(V1) := {Vm ∈ G | Vm ⊃ U1(x) for some point x ∈ f−1
1 (V1)}.

Then similar to (307) we have

(330) Σ1 = ∪
V1∈(P3)∨

Σ1(V1).

Hence,

(331) dimΣ1 ≤ dimΣ1(V1) + 3.

We are going to obtain an estimate for the dimension of Σ1(V1) for an arbitrary 1-dimensional
subspace V1 of V ∨. This subspace V1 defines a commutative diagram

(332) 0

��

0

��
ΩP3

��

ΩP3

��

0 // V1 ⊗OP3(−1) // V ∨ ⊗OP3(−1) //

��

V3 ⊗OP3(−1) //

��

0

0 // OP3(−1) // OP3 //

��

OP2 //

��

0

0 0.

Note that to the point V1 ∈ (P3)∨ there corresponds a projective plane P (V1) in P3 and set
B(E) := {V1 ∈ (P3)∨ | h0(E|P (V1)) 6= 0}. It is known that, for m ≥ 1, dimB(E) ≤ 2 (see [B1]).
Moreover, in view of (319),

(333) h0(E|P (V1)) = 1, V1 ∈ B(E).

Passing to cohomology in diagram (332) twisted by E and using the equality h0(E) = 0 for
[E] ∈ I2m+1 we obtain the diagram
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(334) 0

��

H0(E|P (V1))��

��
W∨

4m+4

��

W∨
4m+4

��

0 // H∨
2m+1 ⊗ V1

λ // H∨
2m+1 ⊗ V

∨ //

mult
��

H∨
2m+1 ⊗ V3

��

// 0

H0(E|P (V1)) // // H∨
2m+1

// H∨
4m

//

��

H1(E|P (V1))

��

// 0

0 0.

Let V1 ∈ B(E). SettingW1(V1) := ker(mult◦λ) = H0(E|P (V1)), where by (333) dimW1(V1) = 1,
we obtain from (334) a commutative diagram

0

��

0

��

0

��

0 // W1(V1) //

��

W∨
4m+4

//

��

W∨
4m+4/W1(V1)

��

// 0

0 // H∨
2m+1 ⊗ V1

λ //

ǫ

��

H∨
2m+1 ⊗ V

∨ //

mult
��

H∨
2m+1 ⊗ V3

��

// 0

0 // H∨
2m+1/W1(V1) //

��

H∨
4m

//

��

H1(E|P2(V1))

��

// 0

0 0 0,

hence a relation

(335) W1(V1) = H∨
2m+1 ⊗ V1 ∩W

∨
4m+4,

where the intersection is taken in H∨
2m+1 ⊗ V

∨. Set

Z1(V1) := ∅ if V1 6= B(E), respectively, Z1(V1) := P (W1(V1)) = {pt} if V1 ∈ B(E).

The relation (335) and Lemma 11.2 imply the bijection

(336) Z1(V1)
≃
→ f−1

1 (V1), V1 ∈ (P3)∨,

Consider the graph of incidence Γ1(V1) := {(x, U) ∈ Z1(V1) × P (H∨
2m+1) | U = U1(x)} with

projections Z1(V1)
p1
← Γ1(V1)

q1
→ P (H∨

2m+1). By construction, p1(Γ1(V1)) = Z1(V1) and the
projection p4 : Γ1(V1)→ Z1(V1) is a bijection. Hence

(337) dim q1(Γ1(V1)) ≤ dimΓ1(V1) = dimZ1(V1) ≤ 0.

Consider the graph of incidence

Π1(V1) = {(U, Vm) ∈ q1(Γ1(V1))× Σ1(V1) | U ⊂ Vm}

with projections q1(Γ1(V1))
pr1
← Π1(V1)

pr2
→ Σ1(V1) and a fibre

pr−1
1 (U) ≃ G(m− 1, H∨

2m+1/U)
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over an arbitrary point U ∈ q1(Γ1(V1)). The projection Π1(V1)
pr2
→ Σ1(V1) is surjective in view

of (336). Hence using (337) we have

dimΣ1(V1) ≤ dimΠ1(V1) = dim q1(Γ1(V1)) + dimG(m− 1, H∨
2m+1/U) ≤ 0 + (m− 1)(m+ 1) =

= m2 − 1. This together with (331) and the assumption m ≥ 3 yields dimΣ1 ≤ m2 + 2 =
dimG+ 2−m < dimG, i.e. (304) holds for r = 1. Theorem is proved. �

11.2. Proof of Proposition 7.3.

Before giving the proof of this Proposition, we need some preliminary arguments. For any
point B ∈ Sm+1 let B̂ : S2Hm+1 → ∧2V ∨ denote the induced homomorphism. We have a
morphism of affine varieties

(338) b : Hm+1 × Sm+1 → ∧
2V ∨ : (h,B) 7→ B̂(h⊗ h).

Fix a basis e1, e2, e3, e4 in V . Then the point B ∈ Sm+1 considered as a homomorphism
B : Hm+1 ⊗ V → H∨

m+1 ⊗ V
∨ can be represented by a skew-symmetric block matrix

(339) B =




0 A12 A13 A14

−A12 0 A23 A24

−A13 −A23 0 A34

−A14 −A24 −A34 0




where Aij ∈ S2H∨
m+1, 1 ≤ i < j ≤ 4. Here we consider Aij as the quadratic forms

(340) Hm+1 → k : x 7→ Aij(x), 1 ≤ i < j ≤ 4,

on Hm+1. Respectively, in the projective space P (Hm+1) ≃ Pm there are defined quadrics

(341) Qij(B) := {< x >∈ P (Hm+1) | Aij(x) = 0}, 1 ≤ i < j ≤ 4.

Let K ⊂ ∧2V ∨ be the cone of decomposable vectors, K = {w ∈ ∧2V ∨| rk(w : V → V ∨) ≤ 2},
and, for m ≥ 1, set

(342) Mm+1 := {B ∈ Sm+1| b(Hm+1 × {B}) ⊂ K}.

By construction, Mm+1 is a closed subset of Sm+1, and we consider it as a reduced subscheme
of Sm+1.

Consider first the cases m = 0, 1 and 2. An explicit computation shows that
(i) M1,M2 and M3 are irreducible and, moreover,

(343) M1 = K, Mm+1 ⊂ Sm+1 r (Sm+1)
0, codimSm+1Mm+1 = 2, m = 1, 2;

(ii) M∗
3 := {B ∈M3| Y3(B) := Q13(B)∩Q23(B) is a 4-ple of distinct points in the projective

plane P (H3)} is a dense open subset of M3.
Now proceed to the case m ≥ 3. In this case, set

(344) S∗
m+1 := {B ∈ Sm+1| Ym+1(B) := Q13(B) ∩Q23(B) is an integral codimension 2

subscheme of the projective space P (Hm+1)}.

Since m ≥ 3, S∗
m+1 is a dense open subset of Sm+1.

Lemma 11.4. For m ≥ 3 let B ∈ S∗
m+1 ∩Mm+1. Then B 6∈ S0

m+1.

Proof. We represent a given point B ∈ S∗
m+1∩Mm+1 by matrix (339). Then, under the notation

(340), for x ∈ Hm+1, we obtain a skew-symmetric (4× 4)-matrix with entries in k

(345) B(x) =




0 A12(x) A13(x) A14(x)
−A12(x) 0 A23(x) A24(x)
−A13(x) −A23(x) 0 A34(x)
−A14(x) −A24(x) −A34(x) 0


 .
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The condition B ∈ Mm+1 by definition means that the matrix B(x) is degenerate, i.e. its
Pfaffian vanishes identically as a polynomial function on Hm+1:

(346) A12(x)A34(x)− A13(x)A24(x) + A14(x)A23(x) ≡ 0, x ∈ Hm+1.

Since B ∈ S∗
m+1, from (341) and (344) it follows that the quadrics Q13(B) and Q23(B) are

integral and their intersection Y := Ym+1(B) is integral of codimension 2 in P (Hm+1). In this
case (346) implies that either Q12(B) ⊃ Y , or Q34(B) ⊃ Y . Let, say, Q34(B) ⊃ Ym+1(B). This
means that A34(x) ∈ H

0(IY,Pm(2)). Now, passing to sections of the exact triple

0 → OPm(−2) → 2OPm

A13(x),A23(x)
−→ IY,Pm(2) → 0, we obtain that A34(x) = αA13(x) + βA23(x)

for some α, β ∈ k. Substituting this relation into (346) we obtain a relation A13(x)(αA12(x)−
A24(x))+A23(x)(βA12(x)+A14(x)) ≡ 0. Since Q13 and Q23 are integral, the last relation implies
that either

(i) A23 = λA13, A24 − αA12 = λ(βA12 + A14) for some λ ∈ k, or
(ii) βA12 + A14 = µA13, A24 − αA12 = µA23 for some µ ∈ k.
Substituting the relations (i) into (339) and denoting γ = α + λβ, we obtain

(347) B =




0 A12 A13 A14

−A12 0 λA13 γA12 + λA14

−A13 −λA23 0 γA13

−A14 −γA12 − λA14 −γA13 0


 .

Adding the multiplied by λ first block column of this matrix to its fourth block column, and
then performing a similar operation with block rows, we obtain the matrix

(348) B′ =




0 A12 A13 A14

−A12 0 λA13 λA14

−A13 −λA13 0 0
−A14 −λA14 0 0




which is degenerate. Hence B is also degenerate. A similar computation with relations (ii) also
gives the degenerateness of B. Lemma is proved. �

From Lemma 11.4 it follows that, for any irreducible component M ′
m+1 of Mm+1,

(349) 1 ≤ codimSm+1M
′
m+1 ≤ 2, m ≥ 3.

Indeed, from this Lemma we obtain that S∗
m+1 ∩ S0

m+1 ∩ Mm+1 = ∅. Since S∗
m+1 ∩ S0

m+1 is
a dense open subset of Sm+1, it follows that Mm+1 6= Sm+1, i.e. 1 ≤ codimSm+1Mm+1. On
the other hand, K is a nonempty divisor in ∧2V ∨, hence b−1

m+1(K) is a nonempty divisor of
Hm+1 × Sm+1. Since Mm+1 is nonempty (in fact, {0} ∈ Mm+1), counting of dimensions of the
fibres of the natural projection b−1

m+1(K) → Sm+1 shows that, for any irreducible component
M ′

m+1 of Mm+1, codimSm+1M
′
m+1 ≤ 2, and (349) follows.

Lemma 11.5. For m ≥ 3 let M ′
m+1 be any irreducible component of Mm+1. Then S∗

m+1 ∩
M ′

m+1 6= ∅. Hence S∗
m+1 ∩M

′
m+1 is a dense open subset of M ′

m+1.

Proof. 1) Consider first the case m = 3. Choose coordinates x1, ..., x4 in H4 and let H1 and H3

be the subspaces of H4 given by the equations x1 = x2 = x3 = 0 and x4 = 0, respectively. The
direct sum decomposition H4 = H1⊕H3 induces the iclusion of a direct summand S1⊕S3 →֒ S4.
Considering this inclusion as an embedding of an affine subspace S1×S3 →֒ S4, we obtain from
(343) and from the definition (342) that

(350) M3 = ({0} × S3) ∩M4, K = (S1 × {0}) ∩M4.

This together with (349) and the irreducibility of M3 (see property (i) above) implies that, for
an arbitrary irreducible component M ′

4 of M4,

(351) M3 = ({0} × S3) ∩M
′
4, K = (S1 × {0}) ∩M

′
4.
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Note that (343) and (349) imply that

(352) codimS4M
′
4 = 2.

Take any point B′ ∈ M∗
3 , and let Ai3(B

′)(x1, x2, x3) be the quadratic forms on H3 corre-
sponding to the entries Ai3(B

′), i = 1, 2, of the matrix B′. Then the set Y3(B
′) is given in

the projective space P (H3) by the equations {Ai3(B′)(x1, x2, x3) = 0, i = 1, 2}. Now take an
arbitrary point B′′ ∈ S1 ≃ ∧2V ∨ and, according to (339), consider B′′ as a skew-symmetric
matrix (aij(B

′′)). Then the point B := (B′, B′′) ∈ S1 × S3 determines the scheme Y4(B) (see
(344)) which is given in the projective space P (H4) by the equations

(353) Ai3(B
′)(x1, x2, x3)− ai3(B

′′)x24 = 0, i = 1, 2.

Consider the sets U ′ = {(B′, B′′) ∈ S1 × S3|Y3(B′) = Q13(B
′) ∩ Q23(B

′) is a 4-ple of distinct
points in the plane P (H3)} and U ′′ = {(B′, B′′) ∈ S1 × S3|ai3(B′′) 6= 0, i = 1, 2}. These
sets dense open subsets of S1 × S3, and from (351) and the property (ii) above it follows that
M ′′

4 :=M ′
4 ∩ U

′ ∩ U ′′ is a dense open subset of M ′
4. Now for any point B = (B′, B′′) ∈M ′′

4 the
equations (353) can be rewritten as follows

(354) A(x1, x2, x3) := A13(B
′)(x1, x2, x3)a23(B

′′)− A23(B
′)(x1, x2, x3)a13(B

′′) = 0,

A13(B
′)(x1, x2, x3)− a13(B

′′)x24 = 0.

Consider the conic C(B) = {A(x1, x2, x3) = 0} in P2. ThenM ′′′
4 = {B ∈M ′′

4 | C(B) is integral}
is a dense open subset ofM ′′

4 . By construction, the set {A13(B
′)(x1, x2, x3) = 0}∩C(B) coincides

with the set Y3(B
′) which by definition is a 4-ple of distinct points in P

2. Therefore the equations
(354) defining Y4(B) show that Y4(B) is a double cover of C(B) ramified in Y3(B

′), hence it
is an integral elliptic quartic curve in P3. In other words, B ∈ S∗

4 ∩ M
′
4. This means that

M ′′′
4 ⊂ S∗

4 ∩M
′
4, so that S∗

4 ∩M
′
4 is dense open in M ′

4.
2) The argument in the case m ≥ 4 is similar to the above. Choose coordinates x1, ..., xm+1 in

Hm+1 and let Hm−3 and H4 be the subspaces of Hm+1 given by the equations x1 = ... = x4 = 0
and x5 = ... = xm+1 = 0, respectively. The direct sum decomposition Hm+1 = Hm−3 ⊕
H4 induces the iclusion of a direct summand S4 →֒ Sm+1. Considering this inclusion as an
embedding of an affine subspace S4 →֒ Sm+1, we obtain from the definition (342) that, similar
to (351),

(355) M4 = S4 ∩Mm+1.

Now let M ′
m+1 be any irreducible component of Mm+1. From (349), (352) and (355) it follows

that, for any irreducible component M ′
4 of S4 ∩M ′

m+1, the set M ′∗
4 = S∗

4 ∩M
′
4 is a dense open

subset of M ′
4. By definition, an arbitrary point B ∈ M ′∗

4 is such that Y4(B) is an integral
quartic curve in P

3. From the construction of the embedding S4 →֒ Sm+1 it follows now that,
for this point B considered as a point in M ′

m+1, the scheme Ym+1(B) is a cone in P (Hm+1) over
Y4(B). Hence Ym+1(B) is an integral codimension 2 subscheme of P (Hm+1), i.e. B ∈ S∗

m+1.
This means that S∗

m+1 ∩M
′
m+1 is a dense open subset of M ′

m+1. �

Corollary 11.6. For any m ≥ 0, Mm+1 ⊂ Sm+1 r S0
m+1.

Proof. Form ≤ 2 this statement follows from (343). Letm ≥ 3 and letM ′
m+1 be any irreducible

component of Mm+1. By Lemma 11.4 S∗
m+1 ∩M

′
m+1 ⊂ Sm+1 r S0

m+1. Since Sm+1 r S0
m+1 is a

closed subset of Sm+1 and by Lemma 11.5 the set S∗
m+1 ∩M

′
m+1 is a dense open subset of an

irreducible set M ′
m+1, it follows that M

′
m+1 ⊂ Sm+1 r S0

m+1. �

We are now ready to prove Proposition 7.3.
Proof of Proposition 7.3. Let D ∈ (S∨

m+1)
0, i.e. D is a nondegenerate homomorphism

D : H∨
m+1 ⊗ V

∨ → Hm+1 ⊗ V . Assume that, for any monomorphism j : H∨
m →֒ H∨

m+1, the
composition jD := j∨ ◦D ◦ j : H∨

m⊗ V
∨ → Hm⊗ V is degenerate. We will show that this leads

to a contradiction. For this, represent j dually as a monomorphism jk : k →֒ Hm+1. Consider
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the nondegenerate homomorphism B := D−1 : Hm+1 ⊗ V → H∨
m+1 ⊗ V ∨ and the induced

skew-symmetric homomorphism jB := j∨k ◦ B ◦ jk : V ≃ k ⊗ V → k∨ ⊗ V ∨ ≃ V ∨. Then the
degenerateness of jD is equivalent to the degenerateness of jB. As above, the homomorphism
B can be represented by a skew-symmetric matrix (339). In this notation, the degenerateness
of the homomorphism jB for any jk : k →֒ Hm+1 just means that, for any vector x ∈ Hm+1,
the skew-symmetric (4× 4)-matrix B(x) in (345) is degenerate, i.e., by definition, B ∈ Mm+1.
Then by Corollary 11.6 B is degenerate. This contradiction proves Proposition.
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[BT] Böhmer W., Trautmann G. Special instanton bundles and Poncelet curves, Lecture Notes in

Math., 1273 (1987), 325-336.
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