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MODULI OF REPRESENTATIONS

OF THE FUNDAMENTAL GROUP

OF A SMOOTH PROJECTIVE VARIETY I

by GARLOS T. SIMPSON

Introduction

The space of representations of the fundamental group is a natural topological

invariant of a manifold. If a manifold has the additional structure of a smooth projecdve

variety over the complex numbers, then its topological invariants can be expected to

have additional structures which reflect the algebraic or analytic structure of X. The

goal of Part II of this paper will be to describe the extra structures on the space of repre-

sentations. The present Part I contains the main constructions needed for this description,

presented in greater generality so they can be of further use.

The moduli space of representations is not a HausdorfT space, but there is a natural

modification to make. The semisimplification of a representation is the direct sum of

its irreducible subquotients with appropriate multiplicities. Say that two representations

are Jordan equivalent if their semisimplifications coincide. With this equivalence relation,

the moduli space becomes Hausdorff. Henceforth we will use the term moduli space to

mean the space obtained by dividing out by this equivalence relation.

The moduli space of representations of a finitely generated group is naturally

an affine algebraic variety, defined by the generators and relations. This is the incarnation

we will call the Betti moduli space, Mg. If the group is the fundamental group of a smooth

projecdve variety, we will construct two other algebraic varieties with the same under-

lying topological moduli space. These we call the Dolbeault moduli space Mp^ and the

de Rham moduli space Mp^. There are natural homeomorphisms between the topological

spaces underlying these three moduli space Mg, M^, and Mj^. These homeomorphisms

do not preserve the algebraic structures, although the identification between the Betti

and de Rham realizations will be complex analytic. These other algebraic structures

are the additional structures obtained by virtue of the algebraic structure of the manifold.

The Dolbeault moduli space parametrizes certain holomorphic objects on X: a

Higgs bundle [Hil] [Si5] is a holomorphic vector bundle E together with a holomorphic

map 8 : E -> E ® Q^ such that 6 A 6 == 0. There is a condition of semistability analogous
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to that for vector bundles, and M^ is the moduli space for semistable Higgs bundles

with vanishing rational Ghern classes. There is a correspondence between Higgs bundles

and local systems [Hil], [Do3], [Co], [Si2], [Si5], which gives a homeomorphism
between Mp^ and Mg.

A vector bundle with integrable connection on X is a locally free sheaf E together with

an integrable connection, in other words a map of sheaves of G vector spaces

V : E ->E®OX

satisfying Leibniz's rule V(^) = d[a) e + aV{e) and the integrability condition V2 == 0.

The de Rham space Mp^ is the moduli space for vector bundles with integrable connec-

tion. These correspond to representations of the fundamental group, by looking at the

monodromy representation of the system of differential equations V(^) = 0. This corres-

pondence is complex analytic in nature, but not algebraic, and as a result, it gives a
complex analytic isomorphism Mp^ ^ Mg which is not algebraic.

The topics mentioned so far are all treated in Part II. The present paper, Part I,

treats techniques of construction of moduli spaces for coherent sheaves, vector bundles

with integrable connection, Higgs bundles, and other similar objects on smooth projective

schemes over complex base schemes. We use Mumford's geometric invariant theory to

construct moduli spaces for sheaves provided with an action of a ring of differential

operators, a general situation which covers all of these examples. This technical work

in Part I is the main part of the constructions ofMp^ and Mp^. At the end of this first

paper, we discuss some analytic results which provide about half of the argument giving

the homeomorphisms between the three moduli spaces (the other half being given in § 7,
Part II). I have tried to keep the connections between the two parts of the paper under

control, using in the second part mostly results rather than techniques from the first

part. Thus, although the chapters are numbered globally—§§ 1-5 form Part I and

§§ 6-11 form Part II—it should be possible to read the two parts separately.

The first version of this paper was written in the summer of 1988, and preprint

versions were distributed during subsequent years. The present version has undergone

a substantial revision and expansion, and I have corrected several mistakes which some

people had pointed out in the earlier versions. I apologize for the fact that the orga-

nization and numbering of the paper are different from those of the preprint version.

Here are some details about the contents of Part I. In the first section, we construct

the moduli space of coherent sheaves on a projective variety using Mumford's " geometric

invariant theory55 [Mu]. This gives the section a dual purpose: it serves to introduce

the techniques of geometric invariant theory which will be used later on; and it gives

a construction for coherent sheaves which implies the projectivity of the moduli space,

a property which does not hold for the more general moduli spaces considered afterward.
The bulk of part I (§§ 2-4) is devoted to the construction of the moduli spaces of

a general class of objects like vector bundles with integrable connections. A vector bundle

with integrable connection may be considered as a module over the sheaf of rings 0)^
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of all (algebraic) differential operators on a smooth complex projective variety X. My

original construction of the moduli spaces for vector bundles with integrable connection

used this interpretation, and various properties of the ring Q)^. The construction pre-

sented here is a generalization, where Q^ is replaced by any sheaf of rings A with pro-

perties analogous to those of Q^ (2.1.1-2.1.6). We call A a sheaf of rings of differential

operators on X, since the axioms force A to be generated by elements acting as derivations

on the coordinate ring. The list of properties 2.1.1-2.1.6 was arrived at by looking

at which properties were needed in the construction (although there is no guarantee

that it is minimal). Part of the data that goes with A is a filtration compatible with the

ring structure. The associated-graded Gr(A) is required to have the same left and right

^x-module structures. The associated-graded ring in the case A^ = 2^ is just the sym-

metric algebra on the tangent sheaf, Gr(^x) == Sym^TX). This ring is itself a sheaf

of rings of differential operators (in this case it is generated by a collection of trivial

derivations, so the differential operators are actually of order zero). A module over

A^ == Sym'(TX) is a Higgs sheaf [Hil] [Si5]. Thus, in making our construction in

this general form, we construct at once the moduli spaces of vector bundles with inte-

grable connection, and of Higgs sheaves. There are several other examples, such as

vector bundles with connections along a foliation, and vector bundles with integrable

connection on a degenerating family of varieties, discussed briefly in § 2.

After discussing the axioms and some basic properties for sheaves of rings of dif-

ferential operators in § 2, we define in § 3 the notions of^-semistability, (A-semistability,

^-stability, and (Ji-stability for A-modules. These generalize the corresponding notions

for Higgs bundles [Si5] (whereas, for vector bundles with integrable connection, semi-

stability is automatic and stability is equivalent to irreducibility). In turn, these notions

for Higgs bundles were generalizations of the corresponding notions for vector bundles

or torsion-free sheaves [Mu] [Gi] [Mal]. Then we use Hilbert schemes to construct

a parameter space Q, for ^-semistable A-modules with a given Hilbert polynomial, with

an action of group S1(V).
In § 4, we use geometric invariant theory to construct a (< good 5? quotient (in the

terminology of [Gi])—in particular a universal categorial quotient of Q,by the action

of S1(V). This is the moduli space M(A, P) for ^-semistable A-modules with Hilbert

polynomial P. In case A = 0^ we recover the moduli space for coherent sheaves cons-

tructed in § 1. In both constructions, that of§ 1 and that of§ 4, we use Grothendieck's

embedding of this Hilbert schemes into Grassmanians, hence into projective space, to

obtain the linearized invertible sheaf used in applying geometric invariant theory. This

is a departure from the methods which had been used by Gieseker [Gi] and

Maruyama [Mal] to construct moduli spaces for torsion-free sheaves. This departure

is necessary, in § 1 because there is no good notion of exterior power of a coherent sheaf,
and in § 4 because we have to include the additional structure of the action of A—for

which we look at the Hilbert scheme of quotients of A,.®^ 0^{— M)^ for an appro-

priately high level Ay in the filtration of A.
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Suppose ^T is a coherent sheaf, and let Hflb^, P) denote the Hilbert scheme of
quotients

ifr -> <s?->o

where S has Hilbert polynomial P. There is an m such that for any point ofHBIb^, P),
the morphism

H°(X,^(m)) ^H°(X,<?(m))

is surjective, and the resulting map from the Hilbert scheme into the Grassmanian of
quotients of H^X.^w)) is an embedding. This is Grothendieck's embedding [Gr2].

We consider geometric invariant theory for the action of S1(V) on Hab(V®^P)
(where V is a finite dimensional complex vector space), using Grothendieck's embedding.

This is the method used for the constructions of § 1 (with IF == ^x(~ N)) and § 4
(with ^T = A,®^(-N)).

In order to make the constructions more useful, we treat the relative case where S
is a base scheme of finite type over Spec(C), and X -^ S is a projective morphism. The

notion of sheaf of rings of differential operators works in the relative case, and our

construction gives a relative moduli space M(A, P) -> S. Even in the fibers, this is only
a coarse moduli space, so it does not represent a functor. The categorical notion which

corresponds to the universal categorical quotient constructed by geometric invariant

theory, is that of universally co-representing a functor (see § 1, after Lemma 1.9). This

property characterizes the relative moduli space. The construction is compatible with

changing the base S. In particular, the fiber of M(A, P) over s e S is the moduli space
for A-modules on X,.

The description of the points of this coarse moduli space is the same as that given
by Gieseker and Maruyama for the case of torsion-free sheaves: a^-semistable A-module §

has a semisimplification gr(<T), the direct sum of the factors in its Jordan-Holder series.
Two objects are Jordan equivalent ifgr(^) = gr(^). The points ofM(A, P) correspond

to Jordan equivalence classes of ^-semistable A-modules with Hilbert polynomial P
on fibers X^.

In order to obtain fine moduli spaces, we need to add some type of rigidification.
We discuss a way to do this for A-modules whose Jordan-Holder factors are locally free

near a section ^ : S -> X (we call this condition LF(S) $ it is slightly stronger than the

requirement of being locally free along S), at the end of § 4. Assuming that the fibers X,

are irreducible, we obtain a representation space R(A, ̂  P) classifying pairs (<E?, (B) where
S. is a ^-semistable A-module with Hilbert polynomial P, satisfying condition LF(^),

and p is a frame for ^(^). The representation space represents the appropriate functor.

A group Gl(72, C) acts by change of frame, and the open subset of the moduli

space MF^A, P) where condition LF(y holds, is the good quotient of R(A, ^, P)
by the action of Gl(^, C).

In § 5, we treat some analytic questions connected with the construction. These

results are to be used in part II. The first subject is to show that the complex analytic
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space M^A, P) is a coarse moduli space in the complex analytic category. For this,

we have to discuss the corresponding type of statement for Hilbert schemes and for the

parameter spaces Q for j&'semistable A-modules; then we have to show that the complex

analytic space associated to a good quotient is a universal categorical quotient in the

analytic category (Proposition 5.5, which may be of independent interest).

The second subject of § 5 is the topology ofR^A, ^, P). We restrict the discussion

to the case where A is a split almost polynomial sheaf of rings of differential operators (see the

end of § 2), which nevertheless includes all of our examples, and we also assume that

X —>• S is smooth. We obtain a criterion for convergence of a sequence of points in

R^A, ^, P), intrinsically stated in terms of the objects (<^, (B,) represented by the points

in the sequence. This discussion is tailored to the needs of part II, where we will apply

Uhlenbeck's weak compactness theorem to obtain some continuity statements. We

need to know that, under the conditions provided by Uhlenbeck's theorem, the corres-

ponding sequences of points converge in the spaces we have constructed by algebraic

geometry. The discussion is complicated by the desire to treat the relative case, where

X itself need not be smooth since the base might not be smooth.

A brief description of part 11

Since much of the motivation for the constructions in Part I lies in the applications

in Part II, whereas Part I has to appear first for logical reasons, it seems advisable to

include a brief description of the results of Part II in this introduction. This will be

elaborated in the second introduction.

This second part is devoted to the moduli spaces of representations of ^(X^).

The first task is to recall the classical construction of the Betti moduli space Mg(X, n), a

coarse moduli space for rank n representations of the fundamental group of X^. Then

we apply the results of Part I to construct the de Rham moduli space Mj^(X, n), a coarse

moduli space for rank n vector bundles with integrable connection on X, and the Dol'

beault moduli space Mp^(X, n), a coarse moduli space for rank n semistable Higgs bundles

with Chern classes vanishing in rational cohomology. The construction ofM^ is obtained

by setting A^ to be the full sheaf of rings of differential operators Q^. The construction

of Mpoi can be obtained by thinking of a Higgs bundle as a coherent sheaf on the cotan-

gent bundle and using the results of § 1, or by thinking of a Higgs bundle as a module

over A1501 = Sym^TX) and using the results of § 4.

The three types of objects are related to each other. The Riemann-Hilbert corres-

pondence which gives an isomorphism of associated complex analytic spaces

M^X.^^M^X,^).

The correspondence between Higgs bundles and local systems gives a homeomorphism

of the underlying usual topological spaces

M^X, n) ^ M^(X, n) ^ M^(X, n).
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To verify the properties of these maps, we rely on the analytic results of§ 5, Part I. The

terminologies Betti, de Rham and Dolbeault come from analogies between the moduli

spaces, and the Betti cohomology, the algebraic de Rham cohomology, and the Dolbeault

cohomology ©y+g^ H^X, Q.^) of an algebraic variety.

The moduli spaces also exist in the relative case, where X is smooth and projecdve

over S (this is why we insist on that throughout Part I). We use the crystalline site to

construct a Gauss-Manin connection on the relative moduli space Mp^(X/S, n) over S,

a foliation transverse to the fibers corresponding to the trivialization given by the topo-

logical interpretation in terms of Mg.

We treat the case of principal objects with linear algebraic structure group G, obtai-

ning the Betti moduli space Mg(X, G), the de Rham moduli space Mp^(X, G) for prin-

cipal G-bundles with integrable connection, and the Dolbeault moduli space M^(X, G)

for principal Higgs bundles which are semistable with vanishing rational Ghern classes.

Parallel to the discussion of moduli spaces, we discuss the Betti, de Rham and

Dolbeault representation spaces RB(X, x, G), Rp^(X, x, G), and R^i(X, x, G). These are

fine moduli spaces for objects provided with a frame for the fiber over the base point

x e X, constructed using the construction of the representation spaces at the end of § 4.

We discuss the local structure of the singularities of the representation spaces and

moduli spaces, using the deformation theory associated to a differential graded Lie

algebra developed by Goldman and Millson [GM], and a formality result gives an iso-

singularity principle: that the singularities of the de Rham and Dolbeault moduli spaces

are formally isomorphic at corresponding points.

At the end, we prove that the space of representations of the fundamental group

of a Riemann surface of genus g ^ 2 is an irreducible normal variety.

Origins and acknowledgements

I would like to thank the many people whose interest and comments have contri-

buted to the present work, and acknowledge the sources of many indispensable ideas.

The main purpose of the very first version of this paper was to construct the moduli

space of Higgs bundles. These objects were introduced by N. Hitchin, and he gave an

analytic construction of the moduli space for rank two Higgs bundles over a Riemann

surface [Hil]. He obtained all of the relevant properties, and went on to use this construc-

tion to calculate the Betti numbers of the space of representations, and some coherent

sheaf cohomology groups of the moduli space of rank two vector bundles [Hi2]. Dis-

cussions with K. Corlette, whose work provides a key ingredient in the analytic

picture [Co], K. Uhlenbeck, W. Goldman and others made clear the importance of

Hitching work, and all of this provided the impetus to do the work presented here.

Subsequently, discussions with Hitchin were very helpful, and he and Oxbury pointed

out that N. Nitsure had given an algebraic construction for any rank over a Riemann

surface, following the ideas of Mumford [Nil],
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Our construction of the moduli space rests on techniques developed by D. Mumford

for constructing moduli spaces in algebraic geometry [Mu], More specifically, the construc-

tions presented here were done after studying the constructions by D. Gieseker [Gi]

(for surfaces) and M. Maruyama [Mal] [Ma2] (for higher dimensions) of moduli spaces

for torsion-free sheaves. The boundedness results of Maruyama are sufficiently general

that they can be applied more or less directly to new situations such as the one here

(when one first looks at his papers, it is hard to appreciate the fact that he did everything

as generally as possible, but when one needs a boundedness result, that turns out to

be handy!). Seshadri was the first to employ the fact that the quotient of the semistable

points of a projective variety is again projective, to obtain a compactification of the

moduli space of stable vector bundles over a curve [Se],

One day A. Yukie, a student of Mumford, tried to explain to me how the construc-

tion of the moduli space of vector bundles would work. As he wasn't familiar with the

details of Gieseker's construction, he guessed what should be the projective embedding.

As best as I can remember, he explained Grothendieck's embedding. So I think that the

idea to use Grothendieck's embedding for constructing moduli spaces comes from that

discussion at the blackboard.

Preliminary versions of this paper contained separate constructions of the moduli

space of Higgs bundles (using moduli spaces of coherent sheaves), and of the moduli

space of vector bundles with integrable connection using the Q^-mod\ile interpretation.

One of the motivations for doing the construction in the more general context presented

in the current version was a suggestion by P. Deligne [De2], to consider a moduli space

for ^-connections on X x A1 over A1, providing a deformation from the moduli space of
connections (X = 1) to the space of Higgs bundles (X = 0). This example was discussed

in [Si3], While the moduli space of X-connections could be constructed by an ad hoc

adaptation of the original constructions for Higgs bundles and vector bundles with

integrable connection, it was this situation which provided the impetus to realize the

general construction finally presented here. More generally, Deligne has made numerous

helpful suggestions in the course of the work on Higgs bundles and local systems.

The construction as presented below, as well as the part of the original preprint

concerning vector bundles with integrable connection, were deeply influenced by the

course on Q^-modules given byj. Bernstein at Harvard in 1983-1984 [Be], The forma-

lization of the properties of the ring A is influenced by Bernstein's presentation of the

properties of the ring 2^. The theory of S^-modules is by now well known, and the

list of people whose work contributed to this theory is long. I will not try to give references

here, leaving the place in the reference list to Bernstein's course. The reader is invited

to substitute any of a number of original papers and presentations of this theory which

are available.

After preliminary versions of this paper were circulated, Nitsure constructed the

moduli space of vector bundles with logarithmic connection (i.e. a connection with

poles of order one along a divisor) [Ni2], refering to my construction for vector bundles
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with smooth connection. His construction appeared shortly after I started to consider

rewriting the construction in its present generality, so he evidently had started thinking

about logarithmic connections first (and it was because of his paper that I realized the

example of A corresponding to logarithmic connections). I apologize for the unfortu-

nately Escherian situation caused by the substantial nature of the revisions undergone

by this paper since the earlier preprint versions, wherein Nitsure's space of logarithmic

connections appears as an example in the final version of a preprint in his reference

list. The moduli of logarithmic connections requires several additions to the construction

of the moduli of smooth connections presented in the early versions of this paper, in

particular the sheaves which occur are no longer automatically locally free, and the

condition of ̂ -semistability is no longer automatic. In so far as the construction presented

below has these added elements incorporated, these parts must be attributed to Nitsure.

The preprint versions of this paper were full of mistakes. I would like to thank

very much those who pointed them out, and in particular M. Maruyama, K. Yoko-

gawa, N. Nitsure, and J. Le Potter. I hope that there are no old, and not too many new

mistakes in the present version.

1. Moduli of coherent sheaves

This section has two purposes: to introduce the techniques of geometric invariant

theory we will need later, and to construct moduli spaces of coherent sheaves. Some

of the material at the end of the section is not necessary for the moduli of sheaves, but

is included for later use.

First we discuss semistability and boundedness for coherent sheaves. Then we

discuss various aspects of geometric invariant theory which will be used below. We give

our two main lemmas about semistability in Hilbert schemes, which are applications

of Mumford's criterion for semistability in Grassmanians. We use these to construct

the moduli space of coherent sheaves. At the end of the section we discuss some slice

theorems, then investigate the closed orbit adhering to a given orbit, giving an explicit

description of limits of G^-orbits in Hilbert schemes, and finally give a lemma about

local freeness.

All schemes will be, by convention, separated and of finite type over Spec(C).

We generally denote by S a base scheme, and sometimes may tacitly assume that it is

connected.

Semistability

Let X be a projective scheme over S == Spec(C) with very ample invertible
sheaf ^x(l)- For any coherent sheaf S on X, there is a polynomial in n with rational

coefficients p{(§
)
,n) called the Hilbert polynomial of S. It is defined by the condition that

p{S, n) == dim H°(X, ^(n)) for n > 0. Let d == d[ff) denote the dimension of the support
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of €. It is equal to the degree of the Hilbert polynomial. The coefficient of the leading

term is rfd\ where r = r(<?) is an integer which we will call the rank of S. Denote the
coefficient of the next term by a(<^)/(rf — 1)!. Thus

p{o, n) = rn^dl + ̂ -1/^ - 1)! + ...

Let (x(^) (the slope of <?) denote the quotient afr. We will call the quotient p\r the nor-

malized Hilberf polynomial of S.

With our conventions, (JL(<?® 0^(k)} = {ji(^) + k. If <f 4= 0 then ^(<i?, n) > 0

for n > 0.

We make the following definitions. A coherent sheaf € is of^w^? dimension d = ^(<s?)
if for any non-zero subsheaf <^C <s?, we have ^(e^) = fi?(<s?). A coherent sheaf <? is

p'semistable (resp. p-stable) if it is of pure dimension, and if for any subsheaf ^C S,

there exists an N such that

p{^n) ̂ p^n)

W " W

(resp. <) for n^ N. A coherent sheaf € is [L-semistable (resp. [^-stable) if it is of pure
dimension rf and if for any subsheaf ^C g, we have ^(^r) ^ (Ji(^) (resp. <). Note that

^-semistability implies p.-semistability, whereas (Ji-stability implies ^-stability.

If/: X<->Pn is a projecdve embedding with/*(^(l)) ^ ^x(1)? then a coherent
sheaf S on X may be considered as a sheaf/ S on P\ The Hilbert polynomials are the

same, and the conditions of pure dimension are the same. All of the above notions are
the same for the sheaf € on X and the sheaf/ S on P". Thus it suffices to discuss sheaves
on P

7
* (although we give some statements in terms of sheaves on X).

Here are some elementary properties, which have the same proofs as for vector
bundles. Any sheaf § of pure dimension d has a unique filtration

O fp /— e> r~ r~ e> e>
== 0 o < ^ . 0 ^ ^ - . . . L 0 ^ = = ©

such that the quotients <?J<^_i are j|&-semistable of pure dimension d and such that

the normalized Hilbert polynomials ^«/^-i)/r(^./<_i) are strictly decreasing for
large n. This filtration is called the Harder-Narasimhan filtration. The construction is given
in a more general context in Lemma 3.1 below. There is a similar filtration for (Ji-semista-

bility, although the two filtrations may not be the same. If € is a ^-semistable sheaf
of pure dimension d then there is a filtration

O e> f a ^- /— a /a
== © o v - < 5 1 v - • • • v - 0 f c = = G

such that the quotients ^J^_i are ^-stable of pure dimension d, with the same nor-

malized Hilbert polynomials. This filtration is not unique, but if we set gr( <?) = © S^\§^ i
then gr(<^) is unique [Gi].

The category of ̂ -semistable sheaves of pure dimension d with normalized Hilbert

polynomial RQ is abelian. If § is ̂ -stable, then the only endomorphisms are scalars. For
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if/is a nonzero endomorphism, then ker(/) and coker(/) are zero by the ^-stability

of <?; thus any such/is an automorphism, so the ring of endomorphisms of € is a division

algebra. But the only division algebra finite over C is C itself.

Boundedness

Theorem 1 . 1 . — Fix P, d = deg(P), and b. The set of sheaves S on X with Hilbert

polynomial P, such that S has pure dimension d, and for any sub sheaf e^C < ,̂ ^(e^) ^ 6, is

bounded. In particular^ the set of \x-semistable sheaves with Hilbert polynomial P is bounded.

The proof uses the results of Maruyama on boundedness for torsion-free sheaves.

We will also state a lemma that Maruyama uses, because we will need it later.

If F is a family of sheaves of pure dimension d on P", and if 0 ̂  k < d, say that

F is k-bounded if there exists a family F' of sheaves on'P
n
~~

k such that F' is bounded, and

such that for every S contained in F, there is an open set of (n — K) -planes pn
-

k
cP

n

such that S yn-k is contained in F'. We can now state Maruyama's lemma.

Lemma 1.2. — For any b, the family F(6) of torsion-free sheaves S on P^ with r(<?) == r

fixed and 0< (Ji(<?) ̂  1 such that for every subsheaf S^C <?, we have ̂ (^r) ^ b, is {n — 1)-bounded.

Proof. — [Ma2].

From this lemma, Maruyama deduces boundedness:

Proposition 1.3. — Let P be a polynomial^ and let b be an integer. The set of torsion-free

sheaves § on P^ withp[^^ m) = P(w) and such that for every subsheaf ̂ C < ,̂ ̂ {^r) ̂  b, is bounded.

proof. — [Ma2].

Proof of Theorem 1.1. — Fix a polynomial TT, let d be its degree, and r be the corres-

ponding rank. By choosing a projective embedding ofX, sheaves on X may be considered

as sheaves on P
71

. The slopes are the same on X or P^ so we may assume for the rest of the

proof that X == P\ Suppose S is a semistable coherent sheaf on P", of pure dimension rf,

with Hilbert polynomial P, and such that for any subsheaf y we have (i^) ^ b. In

particular § is of pure dimension d. Let Y be the scheme-theoretic support of <?, in

other words the subscheme ofP^ defined by the ideal Ann(<?). We can find a ' p
n
~

d
~

l

which doesn't meet Y, such that every 'P
n
~

d containing it meets Y in a finite set. Let
^ ; pro _ pn-d-i _^ pd ^ ̂  projection. Then TT^ S is a coherent sheaf on P^. It has

Hilbert polynomial P since ^y(l) = TC* ^p</(l). Note that T^ S is torsion-free: otherwise
there would be a subsheaf ^"C § such that TC^^") is supported in dimension < d, but

since n: Y -> P
d is finite, y would then be supported in dimension < rf, contradicting

the pure dimension of €.

In order to apply Maruyama's lemma to show that the TC^(^) form a bounded

family on P ,̂ we have to show that there is an integer V such that for every subsheaf

yc TT,(^), (JL(^) < V. Consider ^ 0^ as a sheaf of algebras on P .̂
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We claim that there is an integer m which depends only on n and r, such that

TT, ^y(w) is generated by global sections outside codimension 2. To see this, note first

that the set of artinian subschemes of P""^ of length ^ r
n
~

d is bounded. Since S has

pure dimension d, Y has no embedded points, so the projection Y -> P^ is flat in codi-

mension 1. Thus there is an open subset U CP
d whose complement has codimension 2

such that for u e U the intersection of Y with the corresponding 'P
n
~

d has length ^ y^""^

We obtain a k depending on n and r such that for any point y e U, the intersection

ofY with the corresponding P^'^ is generated by the sections of 0(k) on P
n
~

d
, These

sections fit together to form a bundle i^ on P^, and we have a morphism ̂  -> TT^ ^y(^)

which is surjective over U. If we choose m so that ^(m — k) is generated by global

sections, then (P^{m) is generated by global sections over U as claimed.

Suppose ^"C TC^ € is a subsheaf. We want to show that [Ji(^) ^ 6', so we may

assume that ^ is [A-semistable (by replacing it with the first subsheaf in its Harder-

Narasimhan filtration). We get a map ^ ®^. ̂  0^ -> n^ S, and the image ^ is a

subsheaf of TC^ ^y-modules, hence by assumption, pi(^) ^ b. On the other hand, since

the global sections generate TC^ G^(m) over U, there is N and a morphism

whose image is a subsheaf Jf^m), equal to ^{m) over U. The slope ofj^ is the same as

that of ^. Semistability of ^ implies that

^W ^ P )̂ + m ̂  b + m.

Set b' == b -\- m. Now we may apply Maruyama's boundedness result to conclude that

the TC^ S form a bounded family.

To complete the proof, note that there is a bundle i^ on P^ such that the structure

of ^Y"1110^^ of <? is determined by the map

^^^§ ^g9

For example we may assume that the fiber of i^ is the n — d + 1 dimensional space of

global sections of (P{1) on 'P
n
~

d
. The family of such maps is bounded, so this proves

boundedness of the family of €. D

This proof also provides the generalization of Lemma 1.2 to sheaves:

Lemma 1.4. — The set of sheaves € on P" of pure dimension d with r(<?) = r and

0 ̂  [ji(<?) ^ 1, such that for any subsheaf ̂ C S we have (A(^) ^ b, is [d — I)-bounded.

Proof. — Choose a generic projection TC as before. The above argument shows

that T^ € satisfies the hypothesis of Lemma 1.2, so for generic P
1 C P^, 7^ € |pi is contained

in a bounded family. But the restriction of TT^ € to P
1 is the same as the projection of

the restriction of S to a generic p"-^1. The last part of the above argument shows
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that if Tc^(<^[pn-</+i) is contained in a bounded family, then <?|pn-rf+i is contained in a

bounded family. D

We now give a lemma about A-bounded families, to be used in conjunction with

Lemma 1.4. Use the notation ^(X, ^") for the dimension of H'(X, ^r).

Lemma 1.5. — Suppose F is a k-bounded family of sheaves of pure dimension d and rank r on P ,̂

with k ̂  d — 1. Then there is an integer B such that for all § in F and all m, we have

[ Q if m + B ̂  0
h\V\ W) ̂

[ r(m + BYld\ if m + B ̂  0.

Proof. — The proof is by induction on k. It is trivial if k = 0 because a 0-bounded

family is bounded. Suppose F is a ^-bounded family of sheaves on P^, so by definition

we have a (A — l)-bounded family F' of sheaves on P""1. If € is in F then there is a
generic hyperplane Y ^ p^-1 such that <^L is contained in F'. We have exact sequences

0 ~> S^m — 1) -> €(m) -> S\^[m) -> 0.

Let B' be the constant given for the family F'. From these exact sequences we get

W, S{m)) - ̂ (P", S{m - 1)) == 0 for w^ - B', so in fact ^(P^ €(m)} == 0 for

m ^ — B'. Furthermore,

h°(P\ <W) - h\'P\ S(m - 1)) ^ r(m + B^-V^ - 1)!

for m ̂  — B'. In general there is a constant C depending on d such that iff(m) is a

function satisfying f{0) = 0 and

f(m) -f(m^ l)^md-l|(d^ 1)!

for m ̂  0, then /(w) ^ (w + C) !̂. We may take B = B' + C. D

The relative case

Suppose that S is a scheme of finite type over Spec(C). Suppose X -> S is a pro-

jective scheme over S, with very ample ^x(^)- ^or every closed point s e S, the fiber Xg
is a projective scheme over Spec(C) with very ample 0^ (1).

We make the following notational convention about base changes. Suppose X -> S

and S' -> S are schemes over S (usually, X is the family we are considering and S' is

a new base scheme). Then denote the fiber product by X' == X X g S'. Do the same for

a double prime.
We extend the definition of semistability to the relative case by imposing flatness

and then considering the fibers Xg separately. Fix a polynomial P of degree d. A p-semistable

sheaf € on X/S with Hilbert polynomial P is a coherent sheaf € on X, flat over S, such that

for each closed point s e S, S ^ is a j&-semistable sheaf of pure dimension d and Hilbert

polynomial P on the fiber Xg.
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Corollary 1.6. — The set of possible sheaves €^ which are semistable of pure dimension d

and Hilbert polynomial P on fibers X^, collected over all s e S, is bounded.

Proof. — Embed XC P^ using ^x(1)- Then semistability on a fiber X, is the same
as semistability on P

71
. The set of semistable sheaves on P" with Hilbert polynomial P

is bounded, and the set of subschemes Xg C P
71 which occur is bounded. D

Corollary 1.7. — There is an integer B depending only on r and d, such that if X -> S

is a projective morphism with relatively very ample ^x(l) and if € is a ^-semistable sheaf of pure

dimension d and rank r on a fiber X^, then

( 0 if [ji(<s?) +k + B< 0A°(X^(A))d ^ K ;-t- -1- -

\rW)+k+K)d|d[ if^)+k+B^O

for any k.

Proof. — Combine Lemmas 1.4 and 1.5 to obtain the statement for sheaves on P
71

.

Embedding X C P71 x S, pL-semistable sheaves on X, correspond to (i-semistable sheaves

on P
71

. D

A useful fact in connection with questions of boundedness is the following result

of Grothendieck. It provides a finiteness statement for the set of Hilbert polynomials

of certain saturated subsheaves of a given sheaf.

Proposition 1.8. — Suppose y is a given sheaf on X, flat over S. Suppose that the fibers ̂

over closed points have pure dimension d. Fix a number b. The family of saturated subsheaves ̂  C ̂

in fibers over geometric points s —> S, such that p.(^g) ^ by is bounded.

Proof. — This follows from Grothendieck's statement (which is for the quotient

sheaves ̂ /^), Lemma 2.6 of [Gr2]. D

The notation IP(X/S, ̂ -)

Use the following notation for direct images and higher direct images. Suppose

y : X - ^ S i s a proper morphism, and 3^ is a coherent sheaf on X. Then we will denote

by H^X/S, 3F} the coherent sheaf R1/,^) on S.

Lemma 1.9. — Given any family of sheaves ̂  on fibers X, which, collected over all fibers^

is bounded^ then there is an M which works uniformly for the following property. For any S' -> S

and any sheaf y on X' = X x g S' which is flat over S', such that all of the fibers <^ over closed

points s e S' appear in our bounded family^ and for any w> M, H^X'/S', ̂ "(m)) == 0 for

i^ 0, and H°(X7S', ^'(m)} is locally free and commutes with base change. This means that if

/: S" -> S', then /+ H°(X7S', ^(m)} ̂  H°(X'7S",/* ^(m)).

Proof. — These results, due to Grothendieck [Gri], are conveniently collected

in Chapter 0 of [Mu]. D
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There is a similar result for ^ which are not flat, giving the vanishing and compa-

tibility with base change. However, M will depend on y and the H^X'/S', ^(m))

will not necessarily be locally free.

Geometric invariant theory

We begin by describing a notion similar to but weaker than the notion of repre-

senting a functor. This property will characterize our moduli spaces. Suppose Y4 is a

functor from the category of S-schemes to the category of sets. Suppose Y is a scheme

over S, and <p : Y^(S') ->Y(S') is a natural transformation of functors. We say that

Y corepresents the functor Y^ if, for every S-scheme W and natural transformation of

functors ^ : Y^ -> W, there is a unique morphism of schemes/: Y -> W giving a facto-

rization ^ ==fo 9. Suppose V -^Y is a morphism of schemes. Define the fiber product
of functors

Vx^S^^S') X^)Y^(S').

We say that Y universally corepresents the functor Y^ if, for every morphism of schemes V -> Y,

V corepresents the functor V X y Y ^ .

The property that Y corepresents Y^ serves to characterize Y uniquely up to

unique isomorphism. The property of universally corepresenting a functor is more
flexible, for example it allows us to define group actions.

A morphism of functors g : Y^ -> Y!| is a local isomorphism if it induces an isomor-

phism of sheafifications in the ^tale topology. More concretely, this means that if S' is

an S-scheme, and u, v eY?(S') such that g(u) = g(v), then there is a surjective ftale
morphism S" -> S' such that u\^, == v\^,.; and if w eYJJ(S') then there are a surjective

Aale morphism S" — S' and u e Y^S") such that g{u) == w\s.,. Suppose g : Y? -> Yij is

a local isomorphism. If Y is a scheme, and h^: Y^ -> Y is a morphism, then there is a

unique morphism A g : YJJ -> Y such that h^g=h^. The condition that (Y, Ai) core-

presents Y^ is equivalent to the condition that (Y, ^) corepresents YJJ. If Z -> Y is a

morphism of schemes, then the fiber product morphism g x y Z is also a local isomor-

phism. Hence the condition that (Y, h^) universally corepresents Y^ is equivalent to
the condition that (Y, Aa) universally corepresents Y!j.

For the first part of our discussion of geometric invariant theory, we will treat

the case that the base scheme is S == Spec(C). Suppose G is a reductive algebraic group,

and suppose Z is a scheme on which G acts. Define the quotient functor of schemes S'
over Spec (C),

Y^(S') dlf Z(S')/G(S').

If Y is a scheme with a morphism <p : Z -> Y invariant under the action ofG, this induces

a morphism Y^ -> Y. The scheme Y is a categorical quotient if it corepresents the quotient

functor Y^, and a universal categorical quotient if it universally corepresents the quotient

functor. These definitions are equivalent to those of [Mu],
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Some terminology which has become common after [Mu] and [Gi] is the following.

The morphism 9 : Z -> Y is a good quotient if it is a universal categorical quotient, the

map 9 is affine (i.e. the inverse image of an affine open set is affine), and the quotient Y

is quasiprojective. The first two conditions imply that if U = Spec (A) C Y then

9" 1
{V) == Spec(B) where B is an A-algebra with action of G, and A = B0 is the subring of

invariants. Here is a well-known property which characterizes the points of a good quotient.

Lemma 1.10. — Suppose <p : Z -> Y is a good quotient. If V^ and Vg are two disjoint

G-invariant closed sets in Z, then the images <p(Vi) and 9(Vg) are disjoint. The closed points

y e Y are in one to one correspondence with the closed orbits in Z. If z is a closed point in Z, its

image is the pointy corresponding to the (unique) closed orbit in the closure of the orbit ofZ.

Proof. — This is implicit in [Mu], and was pointed out explicitly by Seshadri

[Se] [Se2]. D
Suppose that a reductive group G acts on a scheme Z. Suppose oSf is an invertible

sheaf (line bundle) on Z, with action of G. (In other words, there is an isomorphism

between the two pullbacks of JSf to G X Z, and the three pullbacks of this isomorphism

to G X G X Z form a commutative triangle.) Mumford makes the following defini-

tions [Mu]. A point z e Z is semistable if there exists n and a G-invariant section

/eH^Z.JSf0^0 such that f{z) =(= 0, and Z^o ̂  {x :f(x) + 0 } is affine. A point is

properly stable if there exists/as above, such that the orbits of G in Zy^o are closed there,

and the stabilizer of z is finite. The open subsets of properly stable and semistable points

are denoted Z^Z^CZ.

Proposition 1 . 1 1 . — With the same notations, there exists a good quotient 9 : Z®® ->Y,

and an open set Y8 C Y such that the inverse image of Y8 is Z8, and the quotient Y8 = Z8|G is

a universal geometric quotient. There is an ample invertible sheaf J?y on Y with 9* JSfy = S\

If Z is projective and oSf is ample, then Y is projective.

Proof. — Theorem 1.10 of [Mu]. Mumford mentions the last statement in a sub-

sequent remark; for a proof, see [Se]. D

Conversely, if 9 : Z -> Y is a good quotient, we can choose an ample line bundle Jify

on Y and set JS? = 9*(oS?y)* This is an invertible sheaf with action of G, with respect

to which all points of Z are semistable. The quotient Y is that given by the proposition.

This is Converse 1.12 of [Mu].
In Chapter 2 of [Mu], Mumford presents a numerical criterion for stability or

semistability in a projective scheme. This can be described briefly as saying that if Z is

projective, then a point z is semistable for the action of G if and only if it is semistable

for the action of every one-parameter subgroup G^ C G. Semistability for the action

of a one-parameter subgroup is then analyzed in terms of the weights of the action on

coordinates of the point.

One important abstract component of this analysis is the following statement.
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Proposition 1 .12. — Suppose V and Z ar^ schemes on which G acts, with V projective.

Suppose ^ is a very ample invertible sheaf on Z. Suppose f:V->Z is a G-invariant closed

embedding. Then Vs8 ̂ f'1^36) and Vs =/-1(ZS), where semistability and proper stability

are measured with respect to o§f andf*{^).

Proof. — This is Theorem 1.19 of [Mu], D

The relative case

Suppose Z -> S is a scheme over a base. Suppose that a reductive algebraic

group G acts on Z, acts trivially on S, and preserves the morphism Z -^ S. If we can

take a categorical quotient of Z by the action of G, the quotient will map to S by its

universal mapping property. Our only task is to compare the notions of semistability

in Z and in the fibers over geometric points.

Lemma 1 .13. — Suppose Z -> S is projective, and oS? is a relatively very ample invertible

sheaf with action ofG. If t -> S is a geometric point, then the semistable points of the fiber are those

which are semistable in the total space, (Z()88 = (Z^)^ and the same holds for the properly

stable points.

Proof. — This was proved in [Se] (it follows easily from Proposition 1.12 stated

above). D

Grassmanians

Let V and W be vector spaces, and let Grass (V 0 W, a) denote the Grassmanian

of quotients of dimension a of the vector space V®W. The group S1(V) acts on

Grass (V® W, a). There is a canonical S1(V)-invariant projective embedding of

Grass (V®W, a), given by a very ample invertible sheaf oS^ which can be described

as follows. Over a point represented by a quotient

V ® W — B -.0,

the fiber of ̂  is the line A" B.

Proposition 1.14. — A point V®W->U->0 in Grass (V® W, a) is semistable

(resp. properly stable) for the action o/*Sl(V) and invertible sheafS if and only if ̂ for all nonzero

proper subspaces HCV, we have Im(H®W) 4= 0 and

dim(H) dim(V)

dim(Im(H®W)) dim(U)

(resp. <). Here Im(H®W) denotes the image in the quotient U.

Proof. — [Mu], Proposition 4.3. D

Suppose H^ is a coherent sheaf on S. There is a projective scheme Grass(/^r
 a)

over S representing the functor which to eachy: S' -> S associates the set of quotients
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/* ̂ T -> y -> 0 with y locally free of rank a on S'. If^i is locally free and ̂  -> ̂ T -. 0

is a surjection, then Grass(^, a) may be constructed as a closed subscheme of

Grassy, a). The fiber of Grassy a) over ^ e S is Grassy, a). There is a rela-

tively ample invertible sheaf JSf restricting to the one described above on the fibers.

Suppose i^ is a coherent sheaf on S and V is a finite-dimensional complex vector

space. Then we obtain a projective scheme Grass(V®^, a) over S, again with action

of S1(V) and very ample linearized invertible sheaf S. According to Lemma 1.13, a

point lying over s e S is semistable if and only if it satisfies the criterion of Proposition 1.14

in its fiber Grass(V®^, a).

Hilbert schemes

Mumford's criterion for semistability in Grassmanians can be generalized to a

criterion for semistability in Hilbert schemes. To do this, we use the embeddings of the

Hilbert scheme in Grassmanians which were given by Grothendieck in the course of

his construction [Gr2].

Suppose X is a projective scheme over S. Fix a relatively very ample invertible

sheaf fix(1)-
Fix a polynomial P(%) with these properties. Supposed is a coherent sheaf on X.

Grothendieck constructs the Hilbert scheme Hilb(^, P) parametrizing quotients

^ -> 3F — 0

with Hilbert polynomial P [Gr2]. More precisely, the Hilbert scheme represents a
functor as follows. For any connected scheme a: S' -> S, the S'-valued points ofHilb(^, P)

are the isomorphism classes of quotients on X x g S',

(y*(^r) -> y -> o

where ^ is flat over S' and p(^, n) = P(%). The fiber of Hfflb^, P) over a closed

point ^ e S is Hflb^, P).

Grothendieck proved that VStb^isT, P) is projective over S, and his construction

gives some explicit projective embeddings. There is an M such that for any m ̂  M we
get an embedding

^ : HabC)T, P) -> Grass(H°(X/S,^(m)), P(m))

as follows. We may choose M so that H^X/S,^^)) is compatible with base change

S' ~> S. The set of quotients represented by points of the Hilbert scheme is bounded

and the quotient sheaves are flat, so we may choose M such that for any quotient

i^ ->y on X' == X Xg S' represented by an S'-valued point of the Hilbert scheme,

H^X'/S', y{m)) is locally free of rank P(m). Furthermore we may assume that for

any such quotient, if we let ^ be the kernel, we have H^X'/S', ^(m)) == 0 (to see this,

reduce to the case where IT is flat over S by taking a projective embedding of X and a
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surjection to ̂  in this case ^ is flat and we can apply Lemma 1.9). Thus we get a
surjection of locally free sheaves on S'

H°(X7S',^r(m)) -^H^X'/S',^)) ->0,

in other words an S'-valued point of Grass(H°(X/S,^(77z)), P(^)). This functor

corresponds to a morphism which we denote ̂  from the Hilbert scheme to the Grass-

manian. Grothendieck shows that, after increasing M some more, the ^ are closed

embeddings [Gr2]. Let J§f^ denote the very ample invertible sheaf on Hfflb^ P) which

is the pullback of the canonical invertible sheaf on the Grassmanian by the embedding ̂ .

Over an S'-valued point represented by a quotient i^ -> ̂ , the restriction of the inver-
tible sheaf JSf^ is canonically identified with the invertible sheaf A^ H^X'/S', ^(m)).

Suppose now that IT is a coherent sheaf on X, flat over S, and that V is a finite-

dimensional vector space. The group S1(V) acts on HHlb(V®^; P), and on the inver-

tible sheaves JSf^. The group action preserves the map to S. Since the Hilbert scheme

is proper over S, we can describe the sets of properly stable and semistable points with

respect to the group action and invertible sheaf, by restricting to fibers over geometric

points. Suppose s -> S is a geometric point. We analyze stability of a point in

Hilb(V®^, P). The results are stated in our two main lemmas. For brevity of
notation, assume that s == S = Spec(C).

Lemma 1.15. — There exists M such that for m ̂  M, the following holds. Suppose

V^iT-.y-^Qisa point in Hab(V®^; P). For any subspace HC V, let ^ denote the

sub sheaf of ^ generated by H ®IT. Suppose that p[
<
&,m)> 0 and

dim(H) dim(V)
———— ^ ———:—
Wmp P(77Z)

(resp. <) for all nonzero proper subspaces H. Then the point is semistable (resp. properly stable)

with respect to the linearized invertible sheaf JS^ and the action o/Sl(V).

Proof. — For large m the Hilbert scheme is embedded into Grass (V®W, P(w))

where W = H°(-)r(m)). For all points in the Hilbert scheme, and all subspaces H, the
sheaves ^ run over a bounded family. Let JT denote the kernel

0 -^jf-^H®^-^^ ->0.

Then the jf also run over a bounded family. In particular we may choose M large enough

so that for m ̂  M, h°(^{m)) ==p{^,m) and ^(^(w)) =0 for all such ^ and jT.

Let Im(H ® W) denote the image ofH®Win H°(^(w)) C H°(^(77i)). Twist the previous

exact sequence by 0^(m) and take the long exact sequence of cohomology, to get an exact
sequence

H®W-^H°(^(w)) ->H\^{m)).

The third term vanishes so this gives dim(Im(H®W)) ==p{^,m). Now apply Propo-
sition 1.14 to conclude the proof. D
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Lemma 1.16. — There exists M such that for m ̂  M, if ̂  is the quotient shea/represented

by a point o/*Hilb(V®^ P) which is semistable with respect to oS?̂  and the action of S1(V),

then the following property holds. For any nonzero subspace H C V, let ^ C ̂  be the subsheaf

generated by H®^. Then r(^) > 0 and

dim(H) dim(V)

~rW~^~W~
9

Proof. — Again, set W = H°(^r(w)). Suppose that

dim(H) dim(V)

~rW~ ~rW~
9

or possibly that dim(H) > 0 but r(^) = 0. Then for m ^> 0, we get

dim(H) dim(V)

~Wm) P{m) •

Since the possibilities for H range over a bounded family, we can choose M so that for

any such H and any m ̂  M, the previous inequality holds. Furthermore we may assume

that A°(^(w)) ==p{^,m) and ^(JT(w)) =0 where jT is the kernel as before. Then

dim(Im(H®W)) ==^(^,w) and we may apply Proposition 1.14 to obtain a contra-

diction. D

Remark. — In the situation of the lemma, suppose ^ -> jf -> 0 is a quotient sheaf.

Let HC V be the kernel of the map V -.H°(Hom(yr,jr)), and let J be the image.

We have dim(H) == dim(V) — dim(J). If ^ is the subsheaf generated by HO^T, then
^ maps to zero in jf, so r(^) ^ r(^) — r(^f). Thus the conclusion of the lemma implies

that
dim(J) dim(V)

7(^y~^'7(^p
By a similar argument forjf = <^, we can conclude that the map V -> H°(Hom(^, <^))

is injective.

Moduli of semistable sheaves

Suppose S is a scheme of finite type over Spec(C) and suppose X -> S is projective.

We will consider the functor M^fl^s^) which associates to any S-schemes S' the set

of semistable sheaves S on X'/S', of pure dimension d, with Hilbert polynomial P. If

€ is such a sheaf, and ify: S" -> S' is a further base change, then^* € is such a sheaf

on X'7S"—this gives the functoriality of M^fl^? P)* (Recall our conventions

X' == X X g S' and X" == X X g S".) We will construct a moduli space M(^x» P) which
universally corepresents this functor.

Fix a large number N. Let -T•= ^(~- N) and V == C .̂ For an S-scheme S',

the set of S'-valued points in Hilb(V ® '̂ r P) may be described as the set of pairs (<?, a)
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where S is a coherent sheaf on X' = X Xg S', flat over S' with Hilbert polynomial P,

and a: V® (9^ -> H°(X'/S', <s?(N)) is a morphism such that the sections in the image
of a generate <^(N).

Let Qi C ffilb(V ® ̂  P) denote the open set where the sheaf € has pure dimen-

sion d and is ̂ -semistable (the openness of the semistability condition is proved in a more

general context in the next chapter). The set of^-semistable sheaves on the fibers, with

Hilbert polynomial P, is bounded. Thus we can assume that N is chosen large enough

so that: every ^-semistable sheaf with Hilbert polynomial P appears as a quotient cor-

responding to a point of Q^; for any ^-semistable sheaf with Hilbert polynomial P,

the H°(X7S', <?(N)) is locally free over S' of rank P(N); and formation of the H°

commutes with further base extension. Set Q^ equal to the open set in Qi where a is

an isomorphism. Then Q^ represents the functor which associates to an S-scheme S'

the set of pairs (<?, a) where S is a j^-semistable sheaf on X' with Hilbert polynomial P,
and a : V ® ̂  ̂  H°(X7S', ^(N)).

We will also fix M large, and consider m ̂  M. We may assume that for each such m

there is an embedding ^ of Hilb(V ® ̂ , P) in a Grassmanian, corresponding to a

very ample line bundle ,Sf^. The group Sl(V) acts on Hab(V®')r,P) and the line

bundle oSf^. The open subset Q,a is preserved by the action.

Let Q^ and S^V^ denote the functors represented by Q^ and S1(V) respec-

tively. The second of these is a functor in groups acting on Q^. Form the quotient

functor QiySUV)^, associating to an S-scheme S' the quotient set Q,2(S')/S1(V) (S').

There is a natural morphism of functors Q^ ->M^(6^3 P) invariant under the group

action, so we get a natural morphism CT : C^VSl(V)11
 -> M^x? P)- As will be explained

in the proof of Theorem 1.21 below, GS is a local isomorphism. Thus, to construct a

scheme M(^?x? P) universally corepresenting the functor M^x? P) it suffices to construct
a scheme universally corepresenting the quotient Q?2/S1(V)^ that is to say a universal

categorical quotient of Q^ by the action of S1(V). We will construct the moduli space

as a good quotient M(^ P) == Q^HV)'
We would like to get a criterion for semistability of points in the Hilbert scheme

with respect to the action of S1(V) and linearized invertible sheaf o2f^ for large N and

m ̂  M(N). However, there may be a problem having to do with irreducible components

of the Hilbert scheme parametrizing sheaves which are not of pure dimension (I don't

know if this problem really exists). To get around this we make the following definition.

Let d be the degree of the polynomial P. Define Hilb(V ® ̂ , P, d) to be the closure

in Hilb(V ® ̂ , P) of the set of points such that the quotient sheaf € is of pure dimen-

sion d. Note that Q^ C Hfflb(V ® ̂ T, P, d).

Lemma 1.17. (Cf. [Gi].) — If € is the quotient sheaf represented by a point of

HBlb(V e)^ P, rf), let 3£ denote the coherent sub sheaf of sections supported in dimension < d — 1.

Then there is a sheaf €' of pure dimension d, with Hilbert polynomial P, and an inclusion

0 -> S\3£ -> S'.
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Proof. — There exists a curve S, a point 0 e S and a morphism S -> Hllb(V ® IT, P)

such that 0 goes to the point corresponding to <^, and the generic point T] of S maps

into the set where the quotient is of pure dimension d. Let E be the quotient sheaf

on P^, so EQ = €. Let Y C P" x { 0 } be the support of 3£. Let U === P^ - Y, and let

j : U -> P^ be the inclusion. Let E' ==J»(E [^). The sections of E' are the meromorphic

sections of E which are regular over Y] and at the generic point of the support of EQ.

Since E is flat over S, no subsheaf can have support lying over 0, so the condition that

the fiber E^ has pure dimension d means that E has pure dimension d + 1. The open

set U restricted to the support of E is the complement of a subset of codimension 2, so

purity of the locus of poles implies that E' is coherent. It also has no S-torsion, and

dim(S) == 1 so E' is flat over S. Let <?' = E^. It has Hilbert polynomial P. There is a

map E ->• E' and hence € -> S ' \ this latter is an isomorphism on the support of € inter-

sected with U. Finally we claim that S ' has pure dimension d. Note that § ' L has pure

dimension d. Choose m > 0 so that n^ E'(w) is locally free, such that its fiber 7^(E'(w))o

is the space of global sections ofEo(m) (where n is the projection from P" to S). We may

replace S ' by <?'(w), in order that any subsheaf supported in dimension d — 1 will

have a section. Suppose he is a non-zero section of € ' supported in dimension d— 1.

Then it extends to a section h of E', and Ao|u = 0, in other words AL vanishes on Ug.

Therefore there is a section h' of E |^j such that h = th' on U. By definition of E', h' is

a section of E' everywhere. But E' has pure dimension d + 1, so h = th' everywhere.

Thus ho == 0, a contradiction which proves the claim. The lemma follows. D

Lemma 1.18. — There exists No such that for all N ̂  No, the following is true. Suppose €

is a p-semistable sheaf on a fiber X,, with Hilbert polynomial P. Then for all subsheaves 3^ C < ,̂

we ham

h°^(N)) P(N)

r(^) ^ ~r(J)

and if equality holds then

p{y, m) P(w)

r{^) rW

for all m.

Proof. — Since the set of possibilities for S is bounded, we may fix one. Let (JL == (JL( S}.

Suppose SF is a subsheaf. Let r == r(e^). Let ̂  denote the terms in its Harder-Nara-

simhan filtration, let J?, == ^/^_i, let r, == r(^), and let ^ == (x(^). We have

A°(^(N)) < S,A°(^(N)). Also we have ^< ^ and S, ̂  = r. Now by Corollary 1.7

we have

f 0 i f ^ + N + B ^ O
A°(J2,(N))<

[r^+N+B)^! i f ^ + N + B ^ O .
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Let v == min((Jij). Then we get

f 0 if ( A + N + B < 0)
hWN)) <

[ (r - 1) ((A + N + W! i f ( x + N + B ^ o j

f 0 i f v + N + B < 01

[ (v + N + B)"/^! i f v + N + B ^ O J

For any A there is a G > A such that if v < (A — C then

( 0 if ( A + N + B < 01

[ (r - 1) ([A + N + B)^! i f p L + N + B ^ o j

f 0 i f v + N + B ^ O )
+ < r(N - A)^!

[ (v + N + B)^! i f v + N + B ^ o )

for N > G. We can also choose A such that (N — A)3/^! < ——-/>(<?, N) for N > A.
r(<f)

Let G be the number given above, and assume Ng ^ C. Then if v ^ y. — C, we have

hW^)) p^,N)

rW rW

for N S? No. On the other hand the set of saturations ^'flat of subsheaves ^'C <?

such that v > (A — G is bounded; thus we may choose No such that for N > No,
y^^^if)) ==p^<»\ N) for any such ^. Furthermore the set of Hilbert polynomials

which occur is finite. For each of them, we have the comparison of polynomials

p{^\m) ̂ p^,m)

W " r(«?) '

meaning a comparison of values for large n. But since there are only finitely many

polynomials involved, we may choose No such that for any N > No,

^^N^^N)

r(^-) " r(^) •

We may also arrange so that if the equality

/^.N) ^(^,N)

r(^-) r(<f)

holds for any one N ^ No, then equality holds for all N. Now A°(^'(N)) <S ^(^"'(N)),

and we can choose No so that if N ^ Ng then ^^(N) is generated by global sections.

Thus if ^(^^(N)) =A°(.^'(N)) then y = y^. We get the desired statements. D
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Theorem 1.19. — Fix a polynomial P of degree d. There exist N and M such that for

m ̂  M, the following is true. A point S in Hffl^V®^ P, d) is semistable (resp. properly

stable) for the action of S1(V) with respect to the embedding determined by m, if and only if the

quotient S is a p-semistable (resp. p-stable) coherent sheaf of pure dimension d and the map

V ->H°(<?) is an isomorphism.

Proof. — First the <c if" direction. Suppose we have a point in Hfflb(V®^; P, d)

such that € is a j^-semistable sheaf and the map

V->H°(^(N))

is an isomorphism. By Lemma 1.15 what remains to be proved is that we may choose M(N)

such that for m ̂  M, and for any subsheaf <^'C € generated by sections of <?(N),

^°(^(N)) P(N)

p{^m) ^W

(resp. < if € is stable). We may choose No such that for any N ^ No and any point in

Hilb(V®^,P) representing a semistable sheaf <?, the conclusion of Lemma 1.18

holds for <?. Once N is fixed, the set of subsheaves ^ generated by sections of ^(N)

is bounded, so the set of polynomials p^^m) is finite. These polynomials all have first

term r(<^') md
, so we may make M big enough so that for the 3^ where

^(^•(N)) P(N)

W W

we get the desired conclusion. (This completes the stable case.) For those 3F where

equality holds, we have

^(^ m) ^P(m)

W W

Thus in this case also we get the desired conclusion,

h°^(N)) P(N)

p{^m) ^W

This completes the proof of the first half of Theorem 1.19.

Now we turn to the second half, the " only if" direction. Suppose that N ^ No.

We will choose No as we go along. Let M == M(N) be as in Lemma 1.16. Suppose

V®^-^-^

is a point of Hilb(V®^, P, rf) which is semistable with respect to the embedding

determined by some m ̂  M. Let € be the subsheaf of S of sections supported in dimen-
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sion d — 1, and let § ' be the sheaf of pure dimension d given by Lemma 1.17. The

remark following Lemma 1.16 implies that for any quotient € ' -> ̂  ->0 we have

^°(^(N)) P(N)

rW ^ ~W

Let ^ be the (i-semistable quotient of S ' with the smallest (JL = (Ji(^), in other words

the last step in the Harder-Narasimhan filtration. Apply Corollary 1.7 to the sheaf ^(N)

to conclude that

^<™<(^N+B^.

Since P is fixed, there is a C and we may choose No so that for N ^ No,

^(N-<W.

Therefore N — G < p.(^) + N + B, so (A(^) ^ — B — G. Note that B and G are

independent of N5 and recall that the Hilbert polynomial of € ' is equal to P. Therefore

by Theorem 1.1 the sheaves § * remain in a bounded family independent of N. In parti-

cular we may increase No so that for N ^ No, A°(^'(N)) = P(N) and ^'(N) is generated
by global sections. Now applying the remark following Lemma 1.16 to the quotient

sheaf €\^, we get A°(<?/^"(N)) ^ P(N). Since <s?/^ is included in S
9
, the sections

of <s?/^"(N) generate S ' , so €\^ == § ' . But since the Hilbert polynomials of € and ff'

are the same, the Hilbert polynomial of ^ must be zero, so ^ == 0. Thus S == S * is

of pure dimension rf, and remains in a bounded family independent of N. Furthermore,
A°(<s?(N)) == P(N). Lemma 1.16 implies that the map

V->H°(^(N))

is injective, so by counting dimensions it is an isomorphism. It remains to be shown

that S is ^-semistable. For each element of the bounded family of <^s which is not

semistable we may choose a quotient ^S such that

p^,k) f{k)
rW r(^)

for large k. We may assume that the ^ remain in a bounded family, and hence we may

increase No so that for N ^ No,

p{^ N) P(N)

r(^) W

and furthermore A°(^(N)) ==^(^,N). But this now contradicts the conclusion of the

remark following Lemma 1.16, so there are no € which are not semistable. This completes
the proof of the statement about semistable points.

Suppose, under the same circumstances as above, that S is not ^-stable. Let

y C S be a nonzero proper subsheaf with the same normalized Hilbert polynomial.
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PutU == H°(<^(w)) andW = W{iT{m)) = H°(^(^ - N)), and set H = H°(^(N)) C V.

As the set of possibilities for y is bounded, we may assume that m and N are big enough
so that the image of HOW is equal to H^^m)) C U, and

dim(H) __ P(N)

h\^(m))
 =

 h\^m)Y

By the criterion of Proposition 1.14, S maps under ^w to a point which is not properly
stable in the Grassmanian. By Proposition 1.12, € is not a properly stable point in the

Hilbert scheme. This completes the proof of the statement about stability. D

Corollary 1.20. — The scheme Q^ constructed at the start of this section is equal to the set

ofsemistable points of Hilb(V®^ P, d) under the action of S1(V). The open subset Q^ para-

metrizing p-stable sheaves is equal to the set of properly stable points under the action o/*Sl(V).

Proof. — Note that Q 2 is an open subscheme of HBU^V®^, P) contained in

HiIb(V®^ P, d). Mumford proves that there is an open subset of semistable points

for the group action [Mu]. The previous theorem implies that the points of these subsets

are the same, so they are equal. The same argument holds for the properly stable

points. D

Theorem 1.21. — Let M(fl̂  P) ̂  Q^H1^)) be the g0^ quotient given by the

construction of [Mu], applied to the group action on Hilb(V®^, P, d).

( 1 ) There exists a natural transformation 9: M^x5 P) —"M^x? P) such that

M(fl̂ :5 P) universally corepresents M^(^x? P)-

(2) M(^x? P) ts a projectile scheme.

(3) The points o/'M(^:? P) represent the equivalence classes of semistable sheaves under

the relation that S-^^ S^ if gr{^^) = gr^g)-

(4) There is an open subset NT^x, P) C M(C?x5 P)? ^h inverse image equal to Qg,

whose points represent isomorphism classes of p-stable sheaves. Locally in the etale topology on

M8^ P) there is a universal sheaf '̂univ such that if ̂  is an element of M\0^ P) (S')

whose fibers ̂  are p-stable, then the pull-back of ^pmiv via S/ -^M^^P) is isomorphic

to y after tensoring with the pull-back of a line bundle on S'.

( 5 ) ff x e M^x, P) is a point such that Q^ is smooth at the inverse image of x, then

M^^x? P) ls smooth at x.

Proof of parts ( 1 ) , ( 2 ) and ( 3 ) . — For part (1) it suffices to show that the natural

transformation from the quotient functor Q?2/S1(V)11 to M^x, P) is a local isomor-

phism. Note first of all that the boundedness results and our choice of N, together with

the possibility of choosing local frames for the direct images H^X'/S', <?(N)), imply

that the natural transformation ^/^(V)^ -^M^(^x?P) is a local isomorphism. On

the other hand, the center G^CGl(V) acts trivially on Q 3 so the action descends to

an action of PG1(V) on Q^. The morphism of group schemes G1(V) -> PG1(V)

is locally surjective in the ^tale topology, so the morphism of quotient functors
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Q^/G1(V)^ -^QiyPGnV)^ is a local isomorphism. The morphism of group schemes

S1(V) -> PG1(V) is locally surjective in the ^tale topology, so the morphism of quotient

functors Q^/S^V)^ -^ Q^/PG1(V)^ is a local isomorphism. We obtain a commutative

diagram where three sides are local isomorphisms. Taking the sheafifications, we obtain

a commutative diagram where three sides are isomorphisms, so the fourth side is

an isomorphism. In the original diagram, the fourth side is a local isomorphism

Q?2/S1(V)^ -^M^C^P). The discussion before Lemma 1.10 implies that the natural
transformation 9 exists. As M(fi^, P) is a universal categorical quotient ofQ^g by S1(V),

it universally corepresents the quotient functor Q?2/S1(V)^. Therefore (M(fl^ P), ?)
universally corepresents M^x? P)? for property (1).

The closed subset Hab(V0'3r, P, d) of the Hilbert scheme is projective [Gr2],

so the good quotient of its set ofsemistable points is projective [Se] [Se2]. Thus M(fl^5 P)
is projective, proving (2).

To prove (3) using Lemma 1.10 (Seshadri's result of [Se] [Se2]), we have to

verify that for semistable sheaves S and ,̂ the closures of the corresponding orbits

in Qg intersect if and only if gr(<?) = gr(e^). This proof comes from [Gi]. First of all

given an extension 0 -> <? ' -><?-><?" -> 0 we can find a family of extensions g^ of <s?"

by § ' , parametrized by t e A1, such that for each t 4= 0 the extension is isomorphic to

the given one, and for t == 0 the extension is trivial. To do this, base change the exten-

sion S to X x A1 and then form a new extension of sheaves on X x A^A1 by pulling

back via t: € " -> € " . Applying this repeatedly to a semistable <?, using the extensions

in the Jordan-Holder filtration, we find that the orbit corresponding to gr(<?) is in the

closure of the orbit corresponding to €. So if gr(<?) == gr(^') then the closures of the
orbits of € and y intersect.

Conversely the orbit corresponding to gr(<^) is closed. For this it suffices to consider

the fiber over one point s e S. Suppose € is a ^-semistable sheaf on X, such that

gr(<?) ^ <?. Suppose T is a curve and to
 (= T is a closed point, and suppose that ^ is

a ^-semistable sheaf on X, x T over T such that ^r ^ S for t + to. If ^ is a stable

component of € then by semicontinuity, there are at least as many maps from <?, to <^

as to €\ since ̂  is ^-semistable, this implies that ^r is a direct sum of copies of <?,

with the same multiplicities as <?, so ̂  = §, This completes the proof of (3). D

We will prove (4) and (5) below, after discussing Luna's Aale slice theorem.

Slice theorems

Suppose Z is a scheme over S == Spec(C) with relatively very ample JS?. Suppose
a reductive group G acts on Z and oS .̂

Proposition 1.22. — Suppose Z is projective over S. Suppose z e Z88 is a semistable point

such that the orbit Gz is closed in Z88. Then the stabilizer H = Stab (z) C G is reductive.

Proof. — This is due to Matsushima [Mt]. D
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Proposition 1.23 (Luna's dtale slice theorem). — Suppose z is a point such that the

orbit Gz is closed in Z88. Let H == Stab [z). There is a locally closed ajfine VL-stable sub scheme

V C Z88 passing through z, such that the G-invariant morphism ^ : G XH V -> Z is itale. The

image V of ̂  is an affine open set such that U = <p~1 9(U) where 9 : Z88 -> Z^/G ^ /^ j&ro-

jection to the quotient. Furthermore the morphism of good quotients V/H -> Z^/G is etale.

Proof. — See [Lu]. D

In the situation of the proposition, we can choose an H-invariant complement

H1 C G containing the identity e, such that the map H1 x H -> G is ftale. (This can

be seen by applying the above theorem to the case of the action of H on G.) Then

the proposition says that the morphism H1 X V -> Z is 6tale.

Suppose Z is a scheme with invertible sheaf JS? and action of G on Z and oSf. We

will discuss the set of properly stable points Z
8
. Mumford constructs a universal geometric

quotient Y == VjG (see [Mu] for the definition; among other things, it means that the

points of the quotient correspond exactly to the orbits). The action of G on Z
8 is said

to be proper if the map Y : G X Z8 -> Z8 X Z8 defined by Y(^, z) == {gz, z} is proper.

The action is free if Y is a closed immersion.

Lemma 1.24. — The action of G on Z8 is proper. Suppose furthermore that for any z e Z8,

Stab(-8') == {e}. Then the action of G on Z8 is free, the morphism Z8 —>"Y is faithfully flat,

and T : G X Y Z8 ̂  Z8 x Y Z8 is an isomorphism. The scheme Z8 is a principal G-bundle

over Y in the {tale topology.

Proof. — Much of this follows from [Mu], and the remainder is Corollary 1

in [Lu]. D

Proof of ( 4 ) and ( 5 ) in Theorem 1.21. — The stabilizer in PG1(V) of the point of%

corresponding to a ^-stable sheaf, is { e}. By the above result, the set of properly stable

points 0^2 is a principal PGl(V)-bundle over MP(^x? P) m Ae dtale topology. This
implies that a universal family exists ftale locally. The existence of slices implies that at

points where Q^ is smooth, the quotient is smooth. D

Limits of orbits

We now make a general observation about limits of orbits in the set of semistable

points (reducing to the case of G^), followed by an explicit analysis of the limits of

G^-orbits in Hilbert schemes.

Suppose Z is a projective scheme over S === Spec(C) with very ample 3?. Suppose

a reductive group G acts on Z and J§ .̂

Lemma 1.25. — Suppose z e Z88. Let BC Z88 be the unique closed orbit in the closure

of the orbit of z. Then there is a one parameter subgroup \: G^ -> G such that lim^^^ X(/) z is

a point of B.

10



74 CARLOS T. SIMPSON

Proof. — This is essentially a statement from the proof of Proposition 2.3 in

Chapter 2 of [Mu], We have to make some preliminary reductions. We may assume

that Z = P(V), with G acting linearly on V. Choose a point y in the orbit B. Let

H = Stab(j), and choose a linear H-stable subspace P(W) C P(V) passing through j,

complementary to the tangent space of B—this gives a slice nearj as described in Propo-

sition 1.23. Suppose y(r) is a family of points approaching y as r ->0. Using the map

H1 X P(W) ->P(V), which is ^tale at (^j0, we can write y(r) == g(r) w(r) for g(r) ->e

in H1 and w(r) —>y in P(W). Since y is in the closure of Gz, we can choose y[r) e Gz,

and hence w(r) e Gz. Thusj^ appears in the closure of {Gz) nP(W).

Choose a point z ' e {Gz) n P(W) (and note that Gz == Gz'). We claim that Hz' is

dense in {Gz') nP(W). The map

H1 x (Hz') -> Gz'

has surjective differential at {e, z ' ) . On the other hand, the inverse image of Gz' under

the map

H
1
 x P(W) -^P(V)

is equal to H
1 X {Gz' nP(W)), so the map

H
1 x {Gz' n P(W)) -> Gz'

is ^tale locally at (<?, z ' ) . These imply that the inclusion Hz' C {Gz' n P(W)) has surjective

differential at z ' , so it is surjective locally at z ' . Hence the orbit H z ' is dense in

(Gz' nP(W)) as claimed. From this claim and the preceding discussion, the pointy

is in the closure of the orbit H z ' . We have reduced to the case where H acts on P(W)

and y is a fixed point. Let Ly denote the line in W corresponding to y. The group H

acts on Ly by a character ^: H -> C*. Change the representation W by tensoring

with ^-1. This does not change the action on P(W), but now we may assume that H

fixes the points in Ly. Choose an H-invariant complement U = L^C W, and a point

J^eLy. Projection from U X {J} to P(W) gives an isomorphism of U (with its linear

action) with an invariant affine neighborhood ofj/. We have z ' e U, for otherwise Hz'

would be contained in the complement of U and could not contain y in its closure.

Now z ' is a point in the linear space U, and the origin is contained in the closure of H z ' .

Hence we may apply the statement (zi) used in the proof of Proposition 2.3 of [Mu]

to obtain a one parameter subgroup X": G^ ->H such that lim(_^o>/(^) z ' = 0 in U.

Let g eG be an element with gz = z ' . Then \{t) = ̂ T1^) g is a one-parameter

subgroup of G with \{t) z == g~
1
 \'{t) z ' , hence

lim\(t) z = = ^ l y eB.
(-^0 v

This proves the lemma. D
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Remark. — We will use the lemma in the following way. Suppose A C Z88 is a

G-invariant locally closed subset, and suppose z e A. In order to prove that

Gz n A == Gz n Z88,

it suffices to prove that for every one-parameter subgroup X : G^ -> G, if the limit

y = lim^T^) z is in Z
88

, then this limit y is in A. For by the lemma, this
implies that the unique closed orbit B in the closure of Gz, is contained in A.

Then D == Gz n (Z88 — A) is a closed G-invariant subvariety of Gz n Z
88 which does

not contain B, hence D must be empty.
In order to apply this technique, we must be able to analyze explicitly the limits

of orbits under actions of G^. We will treat the case of Hilbert schemes. Suppose IT is

a coherent sheaf of (P^-mod\iles, and V is a vector space, and fix a Hilbert polynomial P.
The group G1(V) acts on Hab(V®')T, P). Suppose we have a map X : G^ ->G1(V),

in other words an action of G^ on the vector space V. Suppose

p\\^HT ->^ ->0

is a point in HiU^V®^, P). Then for each t eG^ we get a point X(<) p =po (t® 1).

The Hilbert scheme is proper, and by the valuadve criterion of properness, there is a

unique limit point lim^oX(^)^. We describe this limit point explicitly.

The vector space V decomposes under the action ofG^ as a direct sum V == ©a Va

where t e G^ acts on V^ by multiplication by f'. This gives rise to a filtration F of V

defined by

F^V=^V,

The direct sum decomposition gives an isomorphism V^ Gr^V). From our point

p : V ® IT -» y we obtain a filtration F. of ^, setting Fp ̂  = p(F^ V ®^). Then we

get a surjection

Gr^V) ® ')T — Grf^) -> 0,

and composing this with the isomorphism V ^ Gr^V), we get a point

^VO^-^GrfG^) -^0

of the Hilbert scheme Hilb(V®^; P).

Lemma 1.26. — W? fcz^ ^ == lim^Q\{t) p.

proof. — We will use the embedding ^ for some m > 0. Let W = H0^^)),

and for our quotient ^, let U = H0^^)). Then ^' = ^{p) is the point

^ : V 0 W - > U ->0
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in Grass (V0W, P(m)). Let F<, U denote the image of (F^V)®W. Note that if we

choose m large enough, then F^ U = H°(F^ ^(m)). The associated graded of p
1 gives

a morphism

Grf(V) 0 W -> Grf(U) -> 0,

and again composing this with the isomorphism V ^ Grf^V), a point

^V^W-^Gr^U) ->0

of Grass (V®W, P(w)). This point q
9 is equal to 4'm(?)' ̂ e embedding ^w ls invariant

under the acdon of G^, so it suffices to prove that lim^^^X^) ̂ ' = y\ Let j denote

the canonical embedding of Grass(V®W, P(w)) into the projecdve space of quotient

lines ofA^V^W). Let L^A^U, and p " ==j(/Q ^A^Y. The embedding j

is invariant under G^, so it suffices to find the limit ofX(^) ̂ ". There are induced filtra-

dons F. on A^^^VOW) and L, and

F^ L = j&"(F^ A^^V ® W)).

This may be checked by choosing a basis compatible both with the quodent U and the

filtration F. ofV®W. Again, the associated graded q" of p " is equal to the image j(q')

of the associated graded of p ' . The filtradon ofA^^V^W) is deduced from the acdon
ofG^ in the same manner as before. There is only one step of the filtradon ofL, corres-

ponding to the smallest a such that L is a quodent of F^ ( . . . ) . The associated graded q"

corresponds to the morphism Gr^(...) -> L. One can check by using coordinates which

diagonalize the action of X(^) that lim<_^X(^)^" == q". This completes the proof. D

A criterion for local freeness

Lemma 1.27. — Suppose F is a coherent sheaf on X which is flat over S, and such that the

restrictions FL to the fibers are locally free. Then F is locally free.

Proof. — Localizing, we may suppose that S == Spec (A) and X == Spec(B) where

A C B are noetherian local C-algebras with maximal ideals m^ and nig respectively.

Let I = B.m^. Suppose F is a finitely generated B-module which is flat over A, and

F/IF is free over B/I. Choose a collection of elements f^ ...,/„ such that their images

form a basis for the free module F/IF. We obtain an exact sequence

0-^K-^B^ ->F ->0;

surjecdvity follows from Nakayama's lemma and we denote by K the kernel. Tensoring

with A/m^ over A yields

0 -> K/IK -> (B/I)" -> F/IF -> 0,

which remains exact because F is flat over A. But this implies that K/IK === 0, and

since K is finitely generated, Nakayama's lemma implies that K = 0. Thus F is a free

module. D
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2. Sheaves of rings of differential operators

Suppose S is a noetherian scheme over C, and/: X -^ S is a scheme of finite type
over S. A sheaf of rings of differential operators on X over S is a sheaf of (not necessarily

commutative) 6^-algebras A over X, with a filtration AQ C A^ C ... which satisfies the
following properties.

2.1.1. A = U^o^ andA,.A,CA^,.

2.1.2. The image of the morphism O^ ->A is equal to AQ.

2.1.3. The image of/"1^) in Q^ is contained in the center of A.

2.1.4. The left and right (P^-mod\ile structures on Gr,(A) ^AJA^i are equal.

2.1.5. The sheaves of fl^-modules Gr,(A) are coherent.

2.1.6. The sheaf of graded ^-algebras Gr(A) ̂  ©^ Gr,(A) is generated
by Gr^(A) in the sense that the morphism of sheaves

Gri(A) ®^ ... ®^ Gr^A) -^ Gr,(A)

is surjective.

This definidon is an abstraction of the well-known properties of the sheaf of rings

of differential operators ^x/s 5 as presented in [Be] and elsewhere.

In this section we will point out some elementary properties and give some examples.

The first remark is that A has two structures of sheaf of ^x'^dules, coming from

multiplication on the left and on the right. On the associated graded ring Gr(A) these
two structures are, by hypothesis, equal.

Lemma 2.2. — The subsheaves A^ are coherent sheaves of 0^-modules under both the left

and the right structures. The full sheaf A is quasicoherent for both structures.

Proof. — Treat, for example, the left module structure. By induction on i, we

may suppose that A,_i is coherent. Then A, is an extension of Gr,(A) by A,_i, both

of which are coherent. An extension of coherent S^-mod^iles is again coherent, so A^

is coherent. The sheaf A is a union of coherent subsheaves, so it is quasicoherent. The
case of the right module structure is the same. D

Note that AQ is a sheaf of quotient rings of 0^ so there is a closed subscheme

X^CX with ^xo=Ao. Suppose U C X is an affine open subset. If aeAo(U) and

v eAi(U) then the commutator [y, a] = va — av is in Ao(U) (by 2.1.4). One has the
formula

[y, ab] = a[v, b] + [v, a] b,

so the function a\-^ [», a] is a derivation. It acts trivially on sections of 0^ (by 2.1.3),

so it is a derivation of 0^ over fl^g. The derivation is trivial if v e AQ, so it only depends
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on the class of v in Gr^(A). By the universal property characterizing the module of dif-

ferentials ^xo/g? there is a unique morphism

a:Gri(A) ^Hom(^s.^o)

such that a{v) {da) === [v, d\. We call a the symbol of A. Note that this formula can be

rewritten to read

va == av + <s{v) {da);

thus it can be used to pass elements ofAg through elements ofA^ at the expense of adding

additional terms of lower order.

Suppose S = Spec (A) and X = Spec(B) are affine. Then A is the quasicoherent

sheaf associated to the B-algebra L == A(X), and there is a filtration L^C L^C ... C L.

These satisfy properties analogous to the previous properties for A:

2.3.1. L=:U^oL, and L,.L,.CL^,.

2.3.2. The image of B in L is equal to Lo.

2.3.3. The image of A is contained in the center of L.

2.3.4. The resulting left and right B-module structures on Gr^(L) == LJL,_i

are equal.

2.3.5. The B-modules Gr^(L) are finitely generated.

2.3.6. The B-algebra Gr(L) = ©r==o ls
 generated by Gri(L): the morphism

Gri(L)®B---®BG^(L)^Gr,(L)

is surjective.
Conversely, a B-algebra with filtration satisfying these properties gives rise to a

ring of differential operators.

Lemma 2.4. — Given a 'K-algebra L with filtration satisfying 2.3.1-2.3.6, let A; and Ay

denote the associated sheaves of (P-^-modules obtained by localizing with respect to the left and right

structures. There is a unique isomorphism A, ̂  Ay of sheaves compatible with the restriction

maps L ->A,(U) and L ->Ay(U) and compatible with the left and right 'K"module structures

of A^(U) and Ay(U). Identify A, and Ay using this isomorphism, and call the resulting sheafA.

There is a unique morphism A ®^ A -> A of left and right 0^-modules extending the multipli-

cation of L. The left and right subsheaves associated to L^ are equal, giving a filtration

A o C A i C . . . C A .

Finally, the sheaf of (P^algebras A, provided with this filtration, satisfies the hypotheses 2 . 1 . 1 -

2.1 .6 for being a sheaf of rings of differential operators.

Proof. — This proof comes from the one given by J. Bernstein in his course [Be]

for the sheaf of rings Qy^. Suppose MC B is a multiplicative subset. The left localisa-

tion M~1 L is a left M~1 B-module and a right B-module. Note that M~1 L is the union
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of M~1 L,. We claim that M acts invertibly on the right, namely that for any v e M~
1 L

and m e M, vm = 0 =?> u == 0 and there exists u e M~1 L such that v = urn. Suppose

v e M~
1 L,, and write v == rT

1
 w for w e L,. Write w as a sum of terms of the form

w^ w^ ... w, + z where w, e Li and ^ e L,_i. Then

î ... ̂  w = (w^ ... z î) {mw, + a{w,) (dm)).

By induction we obtain w^ ... w, m = 77^1 ... ̂  + z ' where ^' e L,_i. Thus
m~

1
 vm == (mn)~

1
 wm == (mn)~

1
 mw + (mn)'

1
^ with y e L,_i. Hence

m"1 vm — »e M""1 I^_i.

Now suppose that zwz == 0 in M~"1 L (and hence also in M~1 L,). By the previous formula

we get v eM^1!^..!. Continuing by induction on i we obtain v == 0. Furthermore,

we have v -=y + m"
1
 vm where y e M~1 L,_i. By induction we may write y = xm,

hence v == (A: + TTI~ 1 y) yra. This completes the proof of the claim.

The fact that M acts invertibly on the right implies that the natural map

M^L -> M'^LM"1 is an isomorphism. The same argument works for the right
localisation LM'"1, and we obtain the isomorphisms

LM-1 ̂  M-1 LM-1 ̂  M-1 L.

Note that the previous argument also gives

L, M-1 ̂  M-1 L, M-1 ̂  M-1 L,.

The sheaf associated to L by left localisation is given by A^(U) = M~"1 L where M is

the multiplicative system of elements ofB which are invertible on U. The sheaf associated

to L by right localisation is A,(U) == LM~1. The above isomorphisms give A,(U) ^ A/U).

This is compatible with the filtrations. We obtain the desired isomorphisms (the state-

ments about uniqueness are left to the reader). Finally the multiplication in L gives

M-^L^BLM-1 ^M-^LM-1.

If M acts invertibly on the right of the left hand side in the tensor product and on the

left in the right hand side of the tensor product, then the tensor product is the same as

that taken over M~1 B. We obtain the desired multiplication A ®^ A -> A. The required
properties follow from 2.3.1-2.3.6. D

We define base change for A. Suppose g : S' -^ S is a morphism of noetherian

schemes over C. Let X' = X x g S', and let p^ and p^ denote the two projections. Set

A^^^xA-^A)

and A^A'^A)®^^^,

where the first formula uses the left module structure of A and the second formula uses
the right module structure.
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Lemma 2.5. — There exists a unique isomorphism of sheaves of rings A[ ^ Ay which

restricts to the identity on p\{A) and p^{Qy).

Proof. — It suffices to prove this in the case where X, S and S' are affine. Keep

the same notation as before and let S' = Spec(A'). Put B' = B ®^ A', so X' = Spec(B').

Note that A^ and K\ are both equal to the sheaves associated to the B'-algebras

I/ = L 0^ A' = A' ®^ L. The left and right tensor products are equal in this case,

since the image of A is in the center of L (thus the left and right A-module structures

are the same). With the previous discussion of the affine case, this gives the desired

isomorphism. D

Let A' denote either A; or Ay, each identified with the other via the isomorphism
given in the lemma. Set

A:,, = ̂ x'^i^A'W.

and A;,, = A~W ®^i ̂  ̂  •

Lemma 2.6. — The images of A^ and A^y in A' are equal. Call these images A,'. Then

A' with the filtration given by the A[ satisfies the conditions for a sheaf of rings of differential

operators on X' with respect to S'.

Proof. — Again, we may reduce to the affine case; keep the previous notation.

Let L' == L ®^ A' and let L,' be the image ofL, ®^ A7 in L'. The L^ are finitely generated;

since B' is a noetherian C-algebra, this implies that L,' is finitely presented. Thus L'

with filtration L^ satisfies the conditions listed above (the remaining conditions are
easily verified). The image of A^ ^ (resp. A^ y) in A' is equal to the subsheaf associated

to 1^ by left (resp. right) localisation. The proof of Lemma 2.4 shows that the left and

right localisations of the L^ are equal. Lemma 2.4 implies that A' with filtration given

by A[ satisfies the conditions for a sheaf of rings of differential operators. D

A-modules

Suppose f: X -> S are as above, and A is a sheaf of rings of differential operators.

For the purposes of this paper we define a A-module to be a sheaf § of left A-modules

on X such that S is coherent with respect to the resulting structure ofsheafof^x"modules.

We note how this behaves under base change.

Lemma 2.7. — Suppose S' —> S is a morphism of noetherian schemes over C. Suppose S

is a A-module on X. Then the pullback S' ==^(<?) has a natural structure of'Af-module on X'.

Proof. — This structure will be characterised as the unique one compatible with

the existing p^
1 (A) -module structure of R^

1
^) and the 0^-module structure of S * .

With this in mind, it suffices to treat the case where X, S and S' are affine. Keeping

the same notation as above, the A-module € is the sheafification of an L-module E
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such that E is finitely presented over B. The pullback E' is the sheafification of E ®^ A',

and this has a natural structure of L' == L ®^ A'-module. D

Lemma 2.8. — Suppose UC X is an affine subset. Then A(U) is generated as a ring

by A^(U).

Proof. — To prove thatA(U) is generated byAi(U) it suffices to prove that Gr(A(U))

is generated as a Ao(U)-algebra by Gri(A(U)). Since U is affine, Gr(A) (U) = Gr(A(U)).

Our hypothesis says that

Gri(A) 00^ ... 00^ Gri(A) -> Gr,(A)

is a surjecdve map of sheaves. But it is a map of coherent sheaves of 0^-modules, so the

fact that U is affine implies that the map

Gr,(A) (U) 00^ ... ®^ Gri(A) (U) -> Gr,(A) (U)

is surjecdve. This implies that Gr(A(U)) is generated by Gr^(A(U)). D

Corollary 2.9. — Suppose S is a A-module and ̂  C § is a coherent subsheqf of ̂ modules

such that A^ycy. Then ^ has a unique structure of A-module compatible with the A-module

structure of €.

Proof. — If this structure exists, it is unique since ^"(U) C <?(U) for any open set U.

To show that it exists, we must show that if x e ̂ (U) and v eA(U) then vx e ̂ "(U).

It suffices to show this locally, so we may assume that U is affine. By the lemma, A(U) is

generated by Ai(U). Thus v is a sum of terms of the form v^ ... ^ with Vj eAi(U).
By hypothesis, v^x Ee^U), and condnuing inducdvely we obtain v^ ... ^^e^(U).

Thus vx e^U). D

The split almost polynomial case

Suppose that X is flat over S. We say that a sheaf of rings of differendal operators A

on X over S is almost polynomial if AQ == 0^ Gr^(A) is locally free over 0^ and the

graded ring Gr(A) is the symmetric algebra on Gr^A). We say that A is polynomial if,

furthermore, A ^ Gr(A).

The property that A is almost polynomial is preserved under base change. In

fact, if/: S' -> S is a morphism, and if A' is the sheaf of rings of differendal operators

on X' == X Xg S' obtained by base change, then Gr(A') ==/* Gr(A). To see this, note

that since X is flat over S, all of the Gr^(A) are flat over S. Thus the maps from/*(A^)

to/* (A,.) for j> i are injecdve, so A,7 ==f*[A^) and/* preserves the associated graded.
A split almost polynomial sheaf of rings of differential operators A is an almost polynomial

sheaf of rings of differential operators A together with a morphism

^:Gri(A)-^A,

of left fl^-modules splitting the projecdon from A^ to Gri(A).

11
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We will give an explicit description of the split almost polynomial sheaves of rings A

in terms of triples (H, 8, y)- Before giving the statement of the relation with rings A,

we describe the objects H, 8 and y? and give some properties and constructions.

2.10.1. Suppose H is a locally free sheaf of (P^-modules on X.

2.10.2. Suppose S : (P^->H is a derivation over ffg.

2.10.3. Put Af^H*®^, and A^^^Af'8. Give A?8 the left

^x-module structure of the direct sum, and a twisted right (P^-module structure by the
formula

(X,^==(^,a+W))).

Note that the left and right (Py-module structures on Af' ̂ A?'8 ^ H* are the same.

2.10.4. Put K == A2!! with the same left and right module structure.

2.10.5. Suppose y^H^K^A? ' 8 is a morphism of right fl^-modules such

that the composition with the projection into K ®^ H* is equal to the canonical map
H-^H^H*.

2.10.6. From this data define a bracket

{ , ^H^cH'-^IP

by the formula

{a,b}^.u== ( f lA&).(Y^)) ~ (8M).^+(S(^)).fl- {a.u)b+ {b.u)a,

where the periods indicate pairings between dual spaces. Here a and b are sections of H",
u is a section of H, and the right hand side, a priori a section of A^'8, is in fact a section

of A^'8 == 0^. The formula is (P^-lmesir in u so it defines a section { a, b }^ of H*.

2.10.7. The bracket is antisymmetric and satisfies a Leibniz formula:

{^}^=(800.^+j{^^.

2.10.8. Assume that y has the property that the resulting bracket satisfies the
Jacobi identity:

{ { ̂  b }^c}^+{{ b,c}^a}^ + {{c,a}^b}^ == 0.

Remark. — The data of the bracket satisfying properties 2.10.7 is equivalent to

the data of the map y satisfying the properties 2.10.5. The map y can be recovered
from the bracket using the formula 2.10.6.

Theorem 2.11. — Suppose (A, ^) is a split almost polynomial sheaf of rings of differential

operators. Then there exists a unique triple (H, S, y) satisfying 2.10.1-2.10.8 and isomorphism

T) : Gri(A) ^ H*, such that 8 corresponds to the symbol and the bracket { , }^ gives the commutator

of elements under the isomorphism A^ ̂  H* © 0^ = A^8 given by the splitting.
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Suppose (H,8,Y) is a
 ^Rl

6
 satisfying properties 2.10.1-2.10.8. Then there is a split

almost polynomial sheaf of rings of differential operators (A^8^, ̂ ) together with isomorphism

73: Gr^A^8^) ^ H* such that 8 corresponds to the symbol and y corresponds to the commutator

of elements under the isomorphism Af'8^ ̂  H* C ̂  = A?'5 given by the splitting. If (A, ̂ } is

any other split almost polynomial sheaf of rings of differential operators corresponding to (H, 8, y)
under the previous paragraph, then there is a unique isomorphism A ^ A11'8'Y compatible with the

splittings and the isomorphisms T].

Proof. — For the first paragraph, set H == Gr^A)*. The derivation 8 comes from

the symbol defined before. The splitting gives an isomorphism A^ ^ H* © 0^ compatible
with the direct sum structure of left (P^-module and the twisted structure of right

(P^-mod\i\e defined in 2.10.3. To define the bracket, let A denote the imag^ ofA^ ®^ H*
in A^.Ifa and b are in H* C A^ then ab and ba are contained in A. Thus the commutator

ab — ba is an element of A n Ai = H*. Define the bracket { a, b }y to be equal to this

commutator. This satisfies the Leibniz rule, so it comes from a map y? and it satisfies
the Jacobi identity. This gives the required triple (H, 8, y).

For the statement of the second paragraph, it suffices to treat the question locally

on X, so we may assume that H is a free 0^-modMle.
 Fix a basis Xi, .... \ for H*.

Define A^8^ to be the quasicoherent left ff^-module freely generated by the mono-

mials X^ ... xy. Then use the derivation 8 to define the commutators of \ with sections

of <P^, and use the bracket { , }y to define the commutators of \ and X^. Use these

commutators to define the multiplication law on A^8'T (they give the rulels for passing
things through each other in order to rearrange any expression into a sum of monomial
products ordered as above). The Leibniz rule 2.10.7 and the Jacobi idekidty 2.10.8
insure that the multiplication is well defined independent of the rearrangemei|it procedure,
and that the ring axioms are satisfied. The associated graded algebra is just ^ polynomial
algebra, since the commutators only introduce terms of lower order. D

Lemma 2.12. — Suppose (H, 8, y) is a triple satisfying 2.10.1-2.10.7. The transpose

of the map y is an inclusion ^
rE

 : K* ̂  A^ ®^ H* of left O^-modules, such that tfie composition

K^Ai0^ H* ̂  IP ®^ H*

is equal to the canonical isomorphism K* ̂  A2 H\ The image of ^T is the kernel of the map

Ai®^H' ^Ag. Let

w^: A ->- H ®^ A

denote the transpose of the multiplication A 00^ H* -> A. Let \ •

z^:K®^Ai®^A->K®^A

denote the map given by multiplication of the last two factors. The composition w^^w^ is equal

to zero.
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Proof. — The transpose is defined by the formula -f(u).a == u^{d) for M e K*

and a e H. The composition of ^ with the projection into H" ®^ H* is the transpose

of the composition of y with the projection into K®^H*. This second composition

is, by hypothesis, the canonical map, so the composition of ^ with the projection is

the canonical inclusion. In particular, this implies that ^
T is injecdve. For the last two

statements, it is convenient to calculate in terms of a local frame ^, ..., \ for H*, the
dual frame h^ ..., hj, for H, and Kronecker's delta. If we write

k

{\> ̂ 3 }y= S r^. \,
3 JY ~~ /- i j '

then the map y is

Y(^) = S (A, A A,) (Ff, + 8^ X, - 8^ \).

We get

Y^A x,) = 2 r f ,®x^+x ,®\ - \®x , .

From the description of A given in the second part of the proof of Theorem 2.11, the

image o{-^ is the kernel of the map A^ ®^ H* -^ Ag. Finally, we have w^u) == S, ̂  ® \ u, so

^2 Y^i(^) = ̂  S^ (A, A A,) ® (F^ + 8^ \ - ̂  \) ̂  u

= S (A, A A,) ® (S r^\ +\\- \ \) u

==0. D

Suppose that A is a split almost polynomial sheaf of rings of differential operators

corresponding to a triple (H, 8, y) as in Theorem 2.11. Suppose S is a A-module. We
obtain a morphism of sheaves

9 : § ->- H ®^ §

by the formula

X.9(.)==^(X)(.)

for X e H*. Recall that the splitting ^ : H* -> Ai is a morphism of left ^'modules, so

(aX).9(.) == ^(flX) {e) = ̂ (X) (.) == a{\^(e))

for secdons ^ of § and fl of ^- Thus y(<?) gives an x̂-11110211* tuncdon from H* to <s?,
hence an element of H ®^ S as required. This morphism 9 satisfies the Leibniz formula with

respect to the derivadon 8, that is ^{ae) == a^{e) + 8 (a) ® ^ for secdons e dt § and aof^x-

Any such map <p satisfying the Leibniz formula determines a map

q/:Ai®^ <?-^<?

in a natural way. Composing with y gives a map

y ' Y ; H ® ^ ^ - > K ® ^ < ? .
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If (^3 9) comes from a A-module then the composed map 9' y? : <^ -> K ®^ < ,̂ is

equal to zero. This follows from the last statement of the previous lemma, by tensoring

with S over A. The following lemma gives a converse.

Lemma 2.13. — Suppose € is a coherent sheaf of 0-^ modules and

9 : S -> H ®^ §

is a morphism of sheaves satisfying the Leibniz rule y(^) = a^{e) + 8(fl) ®^. This gives a

morphism 9': A^ ®^ S —> S. There exists a structure of A-module for S which gives rise to

the map 9 if and only if the composition

9' Y9 : € ~> K 0^ S

is equal to zero, and the A-module structure is uniquely determined.

Proof. — By Theorem 2.11, we may assume that A ^A^8 '^ The question is

local, so we may assume that H is free and that A is constructed by using the relations

given by commutators coming from 8 and y. The map 9 gives an action of H* on §.

The Leibniz rule insures that this is compatible with the commutators coming from 8,

while the condition 9' y? == 0 is equivalent to the condition that this action is compatible

with the commutators coming from { , }.y (see the proof of the previous lemma). The

A-module structure is uniquely determined by the action ofAr D

By this lemma, if (A, ^) is a split almost polynomial sheaf of rings of differential

operators, then the notion of A-module is the same as the notion of a pair (<?, 9) where
€ is a coherent sheaf of ^-modules and 9 : € -> H ®^ S is a morphism satisfying

Leibniz's rule, such that the composition 9' y9 is equal to zero. This last condition may

be paraphrased as saying that 9 gives an action of H* on S compatible with the

bracket { , }̂  (which is the commutator in A).

The main examples

Vector bundles with integrable connection. — Suppose X -> S is a smooth morphism.

The main example of a split almost polynomial sheaf of rings of differential operators

is the sheaf of differential operators itself, A == ^/g [Be]. The filtration is A^ equal

to the sheaf of differential operators of order ̂  i on X/S —the associated graded ring Gr(A)

is isomorphic to the symmetric algebra Sym*(T(X/S)) [Be]. We have H = ^x/s? ^ ls

the canonical derivation, and the bracket is just the commutator of vector fields. The map

Y^x/8-^i/s^A,

may be written in local coordinates x^ ..., x^ as

k 8
Y(^) = du ® 1 + S (u A dx,) ® —.

i = 1 8X,
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The (P^-coherent A-modules are automatically locally free over 0^ [Be]. A A-module

thus consists of a locally free sheaf € with a connection V : € -> € ®^ d^/g satisfying

Leibniz's rule and the integrability condition V yV = 0, habitually written V2 == 0. If
necessary, use the superscript A^ to denote this example.

Higgs bundles. — The other main example we will use is

^Higgs ̂  G^A^) = Sym-(T(X/S)).

Again H = Q^/s ̂ ut t^le symbol is zero and y is defined as above without the differential.
More generally, ifV is any locally free sheaf, we can put Av = Sym'(V*). The A-modules

are Hitchin pairs (<?, 9) where S is a coherent sheaf of ^""^dules and 9 : € —> V ®^ S

is a morphism with 9' yep == 0, a condition habitually written 9 A 9 = 0. This notion

was introduced for locally free sheaves of rank one in [Hi I], The condition 9 A 9 = 0

was introduced in [Si2], In case V = tl^/s and € is locally free, we call these Higgs

bundles. We sometimes denote A^^ by A001.

Other examples

We mention here several other examples. These will not be treated further in

Part II, but some might be treated in future papers, and some have already been treated

by other authors. The possibility of considering these examples was the reason for

rewriting the construction of moduli spaces in the general context of a sheaf of rings

of operators A. Our constructions of the next two sections give moduli spaces for semi-

stable A-modules in all cases.

Connections along a filiation. — Suppose 3^ C X is a smooth holomorphic foliation

of a smooth projective variety X. Define A^ to be the sheaf of rings of differential

operators along the leaves of the foliation. If T{^") C T(X) is the tangent bundle to

the foliation, then A^ is a split almost polynomial sheaf of rings with H ̂  T^^) and

K giving the usual integrability condition. The A^-modules are sheaves E provided

with an integrable connection V : E -^E®^T*(^) along the leaves of the foliation.

Deformation to the associated graded. — Suppose A is a split almost polynomial sheaf

of rings of operators on X over S. Let T denote the linear coordinate on A1. Define AB

on X x A1 over S X A1 to be the subsheafof^(A) generated by sections of the form ST" \
for \ sections of A^. This is again a split almost polynomial sheaf of rings of operators.

There is an action of C* covering the action on A1. For any t^ =t= 0, the fiber A^xx { < Q }

is naturally isomorphic to A. On the other hand, AB [x x {0} l s isomorphic to the associated
graded Gr(A), which is polynomial. This was the reason for our choice of terminology
<( almost polynomial".

This construction probably also works for any A, although it may be that A should

satisfy some additional hypotheses in order for the resulting A^ to satisfy properties 2.1.1-

2.1.6.
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In the split almost polynomial case, suppose A corresponds to (H, 8, y) $ then A11

corresponds to Q^(H), T 83 yj where YT ls the map corresponding to the bracket r { , } .

^-connections. — If we apply the previous constructions to A == A^, we obtain a

family A11 which is a deformation from A^ to A^°\ A A^module on X x A1 over
S X A1 consists of a sheaf E with an operator

V^-^xxAl/SxAl^xxA^

satisfying the Leibniz rule V{ae) •== dV{e) + T d{a) e where t is the coordinate on A1, as

well as the usual integrability condition V2 = 0. This notion of <( r-connecdon " was

suggested to me by P. Deligne; it motivated the more general construction of defor-

mation to the associated graded. The constructions of subsequent chapters will give a

moduli space over S X A1 whose fiber over S X { t ^ } is equal to the moduli space for

vector bundles with integrable connection {t^ + 0), and whose fiber over S X { 0 } is

the moduli space of Higgs bundles. This moduli space of r-connections was suggested
by Deligne.

Logarithmic connections. — Suppose X -> S is smooth and D C X is a divisor with

relative normal crossings [Del]. Let O^/s^g13) denote the sheaf of logarithmic

differentials, and let T(X/S) (log D) C T(X/S) denote the subsheaf of the tangent sheaf

dual to ̂ x^^g D)- Let A^'1080 denote the split almost polynomial ring of differential
operators with H = Qx/s(l°g D), 8 the usual derivation, and with integrability condition

equal to the usual one outside of D. Then a A^'loe ̂ module is the same thing as a
sheaf E with logarithmic relative connection

V:E->^(logD)®^E

satisfying the usual Leibniz rule and integrability condition. These objects were considered

by N. Nitsure in [Ni2]. He constructed the moduli space for them.

Connections on degenerating families. — Suppose S is a smooth curve, s e S is a closed

point, and suppose f: X -> S is a projective morphism which is smooth except over s.

Suppose that the total space X is smooth, and that the inverse image D ==/~l(^) is a

disjoint union of smooth divisors meeting with normal crossings. Let T(X/S) C T(X)

denote the subbundle of tangent vectors which are tangent to the fibers off. It is equal

to the usual relative tangent bundle where / is smooth. Let H == T*(X/S) denote the
dual. Set

Oi n^T^ef QxQogD)^s(logD)=^^^^.

This is a locally free sheaf equal to Qx/s ̂  ^x(D) outside of the singular points of/.
We have

H=Q^(logD)®^(-D).
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In particular, H is locally free. Note that there is an H-valued derivation of (P^ corres-

ponding to differentiation in the directions tangent to the fibers. There is an integrability

condition equal to the usual one over the smooth points. We obtain a split almost poly-

nomial ring of differential operators A '̂81118. A A^' "^-module is a sheaf E with
operator

V : E ^ H O ^ E

giving an integrable connection outside of the singularities of /. Over S — { s } this
^DB, sing ^ ̂  g^^ ^g ̂  relative A^, and the notion of A^' ""^-module is the same

as the notion of vector bundle with relative integrable connection. Note that any

A^ ̂ -module which is flat over S is automatically locally free away from the singu-

larities off, but need not be locally free at the singular points of/(the crossing points ofD).

More generally. — Suppose X and S are smooth and/: X ->• S is a morphism.

Suppose VC TX is a subsheaf of the tangent sheaf such that df\^ == 0, such that V is

preserved under commutator of vector fields, and such that V is locally free. Then we can

set H == V*, and we obtain 8 and y satisfying the axioms 2.10.1-2.10.8. Theorem 2.11

gives a sheaf of rings of differential operators A. Most of the above examples are of this
form.

3. Semistable A-xnodules

Suppose X is projective over S == Spec(C), and A is a sheaf of rings of differentia
operators. A A-module € is of pure dimension d if the underlying (P^-coherent sheaf is of
pure dimension d. The Hilbert polynomial, the rank, and the slope of S are defined to

be those of the underlying sheaf; we keep the same notations for these as in the previous

section.
A A-module S is p-semistable (resp. p-stable) if it is of pure dimension, and if for

any sub-A-module e^C g with 0 < r(^") < r(<?), there exists an N such that

p{^n) ̂ p{^n)

W " r(<?)

(resp. <) for n ̂  N. A A-module S is ^"semistable (resp. ^-stable) if it is of pure dimension

and if for any sub-A-module e^C € with 0< r(^) < r(<?), we have [L{^) < (JL(^)

(resp. <). These definitions are the same as in the previous section, except that we only

consider subsheaves ^ preserved by the action of A. As before, ^-semistability implies

(Ji-semistability, whereas (A-stability implies ^-stability.
Fix the dimension d of support of sheaves we are considering. If ^ is a sheaf

supported in dimension rf, let < .̂ denote the subsheaf of sections supported in dimen-

sion^ rf -— 1. It is a coherent subsheaf, itself supported in dimension d — 1. If S is a

sheaf of pure dimension d on X, and if V is a subsheaf, define its saturation ^
8Qlt to be

the inverse image in S of the subsheaf (^/^)tor^ <^/^«



MODULI OF REPRESENTATIONS. I 89

If y is a A-module, then ̂ , is a sub-A-module. If € is a A-module and ^C <?

is a sub-A-module, then the saturation ^sat is also preserved by A. To see this, note

that (<?/^) is a A-module, the subsheaf (^/^)^ is preserved by A, the quotient by
this subsheaf is a A-module, and the kernel of the map from S to this quotient is a sub-
A-module. This kernel is ^sat.

The rank stays the same, and the slope and normalized Hilbert polynomial can

only increase upon going to the saturation, so in the definitions of semistability and
stability it suffices to consider saturated subsheaves.

Lemma 3.1. — Suppose € is a A-module on X over Spec(C). There is a unique filtration

{called the ^-Harder-Narasimhan filtration) by submodules preserved by A,

0= <?oC<^C.. . C<^= S

such that the quotients <?J<^_i are p-semistable A-modules, of pure dimension d, with strictly

decreasing normalized Hilbert polynomials.

Proof. — The construction is the same as in the well known case of vector bundles.

The set of possible slopes of subsheaves of € is bounded above, so in particular the set

of slopes of subsheaves preserved by A is bounded above. Let ̂  be the largest such slope.
Then, by Proposition 1.8, the set of saturated subsheaves with slope ^ is bounded.

In particular, the set of possible normalized Hilbert polynomials of such subsheaves is
finite. Let ̂  be the largest normalized Hilbert polynomial (in the lexicographic order

by highest coefficient first) of a sub-A-module of S with slope p^. If ^ and ^2 are

saturated subsheaves with normalized Hilbert polynomial p^ then they are both ^-semi-
stable. Hence the kernel of the map into S is a subsheaf of ^i ® ̂  of normalized Hilbert

polynomial less than or equal to p^. Thus the image, equal to the sum of ^i and ̂
has normalized Hilbert polynomial greater than or equal to p^—and by maximality

of/»i, it is equal. This image is saturated, otherwise the saturation would be a subsheaf

with larger normalized Hilbert polynomial. By repeating this construction, we may find

a saturated subsheaf ^ of maximal rank among those which are preserved by V and

have maximal normalized Hilbert polynomial p^. This is the first step in the ^-Harder-
Narasimhan filtration; and the rest of the filtration may be constructed inductively by
starting again with the quotient <?/^. D

There is a similar ^-Harder-N arasimhan filtration where the quotients are (A-semistable

with strictly decreasing slopes. The construction is the same as the previous one (except
that one must take the saturation of each subsheaf constructed along the way).

The category of^-semistable A-modules of given normalized Hilbert polynomial ?Q

is abelian. This is because all morphisms between such objects are strict: given/: ̂  -> ̂ ,

the image must have normalized Hilbert polynomial at once ^ RQ and < RQ, hence equal

to RQ—and the same for the saturation of the image—but then the image and its satu-

ration, having the same Hilbert polynomial, must be equal. The cokernel and kernel

of/are torsion-free A-modules with normalized Hilbert polynomial RQ.

12
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If S is a ^-stable A-module, then End(<^) consists only of scalars. To prove this,

note that all endomorphisms of § except zero are automorphisms. For ifyeEnd(<?),

then the image ofjfis a subsheaf preserved by A of normalized Hilbert polynomial p^\

by stability, the image is either zero or all of S. If the image is all of <^, then the rank

of the kernel is equal to zero (by additivity of Hilbert polynomials in exact sequences),

so/is an automorphism. Therefore End(<^) is a division algebra. But the only division

algebra finite over C is C itself, so End(<?) consists entirely of scalars.

Jordan equivalence

Suppose that S is a j^-semistable A-module. Then there exists a unique filtration

by saturated subsheaves preserved by the operators, such that the quotients are direct

sums of ̂ -stable A-modules with the same normalized Hilbert polynomials. To construct

the first step in the filtration, suppose there are two submodules which are direct sums

of /^-stable A-modules of the appropriate normalized Hilbert polynomial. The direct

sum of the two is a semisimple object in the abelian category of^-semistable A-modules,

so their sum inside S (which is a quotient of the direct sum) is also semisimple, i.e. a

direct sum of ^-stable A-modules of the correct normalized Hilbert polynomial. Hence

there is a maximal possible first step of the filtration; take that and proceed inductively

to construct the rest of the filtration. Define gr(<?) to be the direct sum of the quotients

in this filtration. Say that two j&-semistable A-modules ^ and S^ are Jordan equivalent

ifgr(^)^gr(^).

Boundedness

We will apply the boundedness results of the previous section to show that the

set of (Ji-semistable A-modules with a given Hilbert polynomial is bounded. We first

give some preparatory lemmas which will be useful later on, too.

Lemma 3.2. — Suppose S is a A'module, of pure dimension d and rank r on X. Suppose

y C § is any subsheaf^ not necessarily preserved by A. Let ^ C S he the saturation of the image

of the morphism Ay ®^ y -> S. Then ^ is a subsheaf preserved by A.

Proof. — Let ^ denote the image of A, ®^ ̂  in €. Let ^at denote its saturation.

Let r, be the rank of ̂  (also equal to the rank of ^at). We have r^i ^ r,, and 0 ̂  r, < r.

Hence, there is an i in the interval 0^ i< r such that r^ == ^4-1. In particular, the

Hilbert polynomials of ^at and <^i have the same leading coefficient. This implies

that the quotient ^^i/^T1' is supported in dimension ^ d — 1. But this quotient is a

subsheaf of S\S^, and the fact that S^ is saturated implies that S\§^ has no
nonzero sections supported in dimension < d — 1. Thus ^f^i == ^t. Now, since

A,.^ = A^.A,, the image of A^®^ <^ is contained in <^+i. In particular, the image

of A^®^ ̂  is contained in (^f'1'. Suppose u is a section of ^afc over an open set U,
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and suppose XeA^U). Let U ' C U be the complement of the support of (<s?/<^)tor

(so it is the complement of a subset of dimension < d — 1). Then u L' is a section of S^

so >u \^ is a section of §^'. Thus \u projects to a section of S\€^ supported on U — U',

in other words supported in dimension ^ d — 1. As ^at is saturated, this implies that

\u projects to zero in S\€^, in other words \u e ̂ (U). We have shown that ^at

is preserved by A^. Corollary 2.9 implies that it is preserved by A, so in particular all

of the <?, are contained in ^at. As <?,C €^ this implies that ^at = ^at. Thus ^at,

which is the sheaf called ^ in the statement of the lemma, is preserved by A. D

Lemma 3.3. — Let m denote a number such that Gri(A) ®^ ^x(771) ts gyrated by

global sections. Then for any \L-semistable A-module € of pure dimension d and rank r, and any

subsheaf ̂ C € (not necessarily preserved by A), we have ^.(^r) < [Ji(<?) + mr. In other words,

[i(^') — ^(<^) is bounded above in a way depending only on r and A.

Proof. — We may assume that ^ C € is the first step in the pi-Harder-Narashiman

filtration of <^, in particular that ^ is (Ji-semistable. Let <?, be the image of Ay ®^ y

in S. Let ^ be the saturation of <^y; by the previous lemma, ^ is a sub-A-module. By

the assumption of (Ji-semistability, (JL(^) ^ (JL(^). The slope increases when taking the
saturation, so we have

(X«) ^ (Jl(^).

We have surjections of coherent sheaves

Gr^(A) ®,, (^/<?,_^) -> <?^,/< ̂  0,

and this tensor product is a tensor product of ^••"^dules where the left and right

structures coincide. As m is chosen so that Gri(A) ®^ ^x(^) ls generated by global
sections, we obtain a finite dimensional C-vector space A and a surjection

A®c (<W_i) ®^ ̂ (- ̂ ) -^ <+i/^ -> 0.

Let a, be the smallest slope of any quotient (P^module of <^. Note that we may assume

that this quotient ^ is a p-semistable sheaf of slope o^. The quotient J?^i of S^^

either has a nontrivial subsheaf which is a quotient of <^, in which case a,< a^i,

or is a quotient of A®c (<^J<^i-i) ®^ ^x(^ m)? m which case a^ — w< a^r Since
<?o = ^r is a (Ji-semistable sheaf, we have (X.Q == (A(^"). The inequalides above give

a,. ̂  ao — m.

On the other hand, ̂  == ^, so

a,< ̂ )<^).

Lemma 3.2 and the condition that S is a {ji-semistable A-module imply that (Ji(^) ^ (x(<?).

We conclude that

(Ji(̂ ) == ao< (A(^) +mr.

This proves the lemma. D
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Corollary 3.4. — The set of ̂ -semistable A-modules on X with a given Hilbert polynomial P

is bounded.

Proof. — Together with the above lemma, Theorem 1.1 immediately implies that

the set of sheaves of ^"modules underlying p-semistable A-modules with Hilbert poly-

nomial P, is bounded. To complete the proof, it suffices to note that the structure of

A-module of € is determined by the morphism A^ ®^ S -> S. As S runs through a

bounded family, the family of such morphisms is bounded. D

The relative case

Suppose now that S is a scheme of finite type over Spec(C), that X -> S is projective

(with fixed relatively very ample ^(l))) ^d t^lat A is a sheaf of rings of differential
operators on X over S. For each geometric point j -^S (with ^^Spec(C)), let

X^ = X x s s and let A, be the sheaf of rings of differential operators on X, obtained

by base change (Lemmas 2.5 and 2.6).

A A-module § on X is p-semistable (resp. v,-semistable, p-stable, or ^stable) if § is

flat over S, and if the restrictions S\ to the geometric fibers Xg are of pure dimension d

and ^-semistable (resp. {ji-semistable, ^-stable or [A-stable) Ag-modules, all with the same

Hilbert polynomials (this last condition is inserted in case S is not connected).

Proposition 3.5. — The set of ̂ -semistable A-modules on geometric fibers X, with a given

Hilbert polynomial P is bounded.

Proof. — Apply Theorem 1.1 as in Corollary 1.6, using the bound given by

Lemma 3.3. We just have to verify that the same number m works for all geometric
points of S. We claim that Gri(A^) is a quotient of the fiber Gri(A) ®g,g O^. For this it

suffices to work in an affine open subset (keeping the notations of 2.3, S = Spec (A),

X == Spec(B), and A corresponds to L). Let C, denote the field of complex numbers
considered as an A-algebra corresponding to the point j, and let M == L ®^ C,. We

have surjections

L,®^C,->M,

and hence (Li/Lo) ®^ C, ->Mi/Mo. Thus Gri(M) is a quotient of Gri(L) ®^ C,, the
claimed statement. Continuing with the proof of the proposition, in order to have

Gri(AJ {m) generated by global sections, it suffices to have Gri(A) (m) ®^g C, generated

by global sections. Since S is of finite type over C and Gri(A) is a coherent sheaf on X,

there exists such an m. This shows that m may be choosen uniformly for all geometric

fibers. D

Corollary 3.6. — There is a number Ng depending on A and P such that for any N ̂  No,

any S' —^ S, and any ^-semis fable A-module S with Hilbert polynomial P on X' = X X g S',
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we have that H^X'/S', <?(N)) == 0 for i> 0, H^X'/S', <?(N)) ^ locally free of rank P(N)

072 S', formation o/H^X'/S', <s?(N)) commutes with further base change, and the map

H°(X'/S', ^(N)) O^, ̂ (- N) -> S -> 0

i^ surjective.

Proof. — By the boundedness established above, this is an immediate consequence
of Lemma 1.9. D

Lemma 3.7. — Suppose that § is a A-module on ̂ flat over S. There is an open subset

UC S such that for any geometric point s ->S the restriction < is ^'semistable (resp. ^-stable,

p-semistable, or p-stable) if and only if s e U.

Proof. — We use a method which U. Bhosle has attributed to Ramanan. Let

(AQ = (x(<^,) (we may assume that S is connected, so these slopes are independent of s).

By Proposition 1.8 the set of Hilbert polynomials of quotients of restrictions <?, ->• ̂ , -> 0
with [A(^) < [LQ and ^ of pure dimension d, is finite. Let S denote the set of such

polynomials corresponding to quotients with (Ji(^) < (JL() (resp. (Ji(^) ^ (JL() or Ae
appropriate inequalities for normalized Hilbert polynomials). For q e S, let H, -> S
denote the Hilbert scheme of quotients

g -^<S ->0

flat with Hilbert polynomials q over the base. There is a universal quotient ^univ

on X XgH^; let

0 -^ ̂ univ _^ ûniv ̂  ûniv _^ Q

denote the kernel. For any H^-scheme S' -> H^ we can pull back to obtain an exact
sequence

0 -> y -^ S* -> ̂  -> 0

of ^x'-modules on X' = X X s S'. The middle term is the A'-module obtained by base

change from S. Let (A^)' denote the pullback ofAi to X'; recall that A[ C A' is a quotient
of (Ai)'. From the A'-module structure of §

1 we obtain a morphism

^(S'):(A,)'®^^'-^',

and ^' is a quotient A'-module if and only if this morphism is zero. However, this
morphism is pulled back from a universal morphism

ûniv ; M )univ 0 p̂miv ̂  ûniy
\ J./ C^XgHg

over H^. Since ^univ is flat over H^, the condition on S' -> H^ that the morphism fl(S')

is zero, is represented by a closed subscheme Z,C H, (see the proof of Theorem 3.8
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below). Let D C S denote the union over the finite set of q e S of the images of Z in S.

The Hilbert schemes Hg are proper over S, so images of the closed subsets Z^ are closed
in S. Thus D is closed in S.

The open subset U == S — D is the one required by the lemma. Suppose s -> S

is a geometric point such that S\ is not (Ji-semistable (resp. not pi-stable, not ̂ -semistable,

or not ^-stable). Then there exists a quotient S\ -> ̂ \ of Ag-modules contradicting

(semi)-stability. As discussed above, we may suppose that ^g is of pure dimension d

(in other words, the kernel ^g is saturated). Hence the Hilbert polynomial of ^g is

one of the q e S. The quotient ̂  corresponds to a point in one of the Hilbert schemes Hg.

This point lies in the subset Zy because ^3 is a quotient A-module. Hence the image

of the geometric point s is contained in D C S. Conversely if s -> D is a geometric point

in D then it can be lifted to a geometric point of some Zg. We obtain a quotient

A^-module ^g of <S\ whose Hilbert polynomial is of a nature to contradict (semi)-

stability. This proves that the points of D are exactly those not satisfying our condition

for inclusion in U. D

A parametrizing scheme for ^-semistable A-modules

Theorem 3.8. — Fix a polynomial P, and let N ̂  ^ofor the N() given by Corollary 3.6.

The functor which associates to each S-scheme S' the set of isomorphism classes of pairs (<^, a),

where S is a p-semistable A-module with Hilbert polynomial P on X' = X X 9 S', and

a : (^g,)^ ̂  H°(X7S', <^(N)),

is representable by a quasiprojective scheme Q^over S. For any k ̂  1, the morphismfrom Q^to the

Hilbert scheme of quotients of A^ ®^ ̂ (N)1^ wtt^ Gilbert polynomial P, given by the A-module

structure of the universal object ^univ, is a locally closed embedding.

Proof. — Before beginning the proof, we make a general remark. Suppose S' is

an S-scheme of finite type, and E and F are coherent sheaves of ^-modules on X'.

Suppose that E is flat over S' (but F need not be flat). Suppose that 9 : F -> E is a mor-

phism of coherent sheaves. Then there is a closed subscheme T C S' such that for any

/: S" ->&', /*((p) = 0 as a morphism of sheaves on X" == X' Xg' S" if and only if

f factors through^: S" —>• T. To prove this we may choose a surjection fl^'(— m
)

k -^ F -> 0

with m > 0. This remains a surjection when pulled back to X". One is reduced to the

case where F = 6^/(— m
)

k
' ^ morphism to E is then just a ^-tuple of sections of E(m).

For m big enough, the direct image of E(w) is locally free on S' and compatible with

all base-changes. The subscheme is then just the intersection of the subschemes defined

by the corresponding sections of this locally free direct image.

Fix N ^ No as in Corollary 3.6. Let Qi -> S be the Hilbert scheme of quotients

A^^^-^^^^-^O
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with Hilbert polynomial p. For each S-scheme/: S' -> S, the set Q,i(S') of morphisms

e : S' —^Q.1 over S is equal to the set of isomorphism classes of quotients

^(A^^-N)^)^^

on X'/S' such that S is flat over S', and for each s e S', the Hilbert polynomial of S^

is p. Given e we denote the corresponding quotient by €.

We have a morphism 0^ N)^ ->A,®^ ̂ (- N)^, and if/:S'->S we

obtain

^(- N)^ -^(A,®^ ̂ (- N)^).

If ^ e Q,i(S') we say that e satisfies condition Q2 if the composed map

^(- N)^ ->/*(Ao®^ ̂ (- N)^) -> €

is surjective, and for each closed point s e S', the resulting map C^^ —^ H°(X^, ^s(N))

is injecdve. There exists a unique open subscheme Q,2^Q.i represendng this condition,

in other words, such that e eQ^S') if and only if e sadsfies condidon Q2.

Iff: S' -> S then eachjf^A^) has a structure of right (P^,-mod\i\e, and we have

/'(A,®,, ̂ x(- N)^) ^/-(A,) ®^ ̂ (- N)^.

Note also that there are natural maps f*{A.j) ->/*(A^) compatible with the left and

right (P^-module structures, for j < A.

Suppose e e 0,2(8'). For anyj^ ^ we obtain a map

/W^^-N)^^.

Let SS denote the kernel

0 -> 88 -> ̂ (- ̂ ^ -> ̂  -> 0.

We say that e satisfies condition Q3 if the map obtained from the previous ones by com-

posidon,

^/w ®^ ^-> <^
is zero. We claim that there exists a closed subscheme Q^CQ^ such that e £0,3(3')

if and only if e sadsfies Q3. To see this, note that 88 is the pullback of a uni-

versal kernel ^univ over X X g Q^. Let/^ : Q^ -> S denote the projection. Then

/-(A,) ®^ 88 = e^f-r (A,) ®,,̂ ^ ̂ miv)

and ^ === ^(^univ) where

ûniv ; (yuniv)* (A^) ®^^^ ̂ univ -> ^UDiv

is a morphism to the universal quotient ^UD1V over X X g Qg- Note that ^univ is flat

over Q^a. Our general discussion from the start of the proof applies: there is a closed
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subscheme Q^CQ^ such that for <? e Q^(S') we have ^(^mliv) = 0 if and only if

^0,3(8').

For e e Q^S'), the morphism

/W^^M-N)^-^
factors through a morphism

/W oo^ s ̂  ̂

and this factorization is the pullback of a universal one on Q^. For anyj we obtain

a morphism

^ :/W ®^ ... ®^ /*(Ai) 00^ ^ ̂  ̂

Let J .̂ denote the kernel of the surjecdon

A!0^ . . .®^Ai-^A,-^0.

Note that Jf, is a left and right (P^-module, and one can form the base changes f*^^)

which will be left and right (P^-mod\des, in the same way as described in the previous

section. The general properties of interchanging things in tensor products imply that

/W ®^ ... ®^ /W =/*(Ai ®^ ... ®^ Ai). For any/: S' -> S there is an exact

sequence

fW -^/W ®^ ... ®<^/W ^/*(A,) -> o.

Say that e satisfies condition Q4(j) if the composition

^vJ*TO0^ ^-^^

is equal to zero. Again, this morphism is pulled back from a universal one over (^3,

and the universal ^univ is flat over 0,3, so there are closed subscheme Q^CQ^ such

that e e Q^ , if and only if<? satisfies condition Q4(j). Let Q^oo denote the intersection

of all of these closed subschemes in Q 3. As S is noetherian and 0,3 is quasiprojective

over S, Q,3 is noetherian. Thus Q,^ oo l!s ag^11 a closed subscheme, and we have

e e Q,4,oo(S') it and only if e satisfies all of the conditions Q^{j).

Suppose e e Q^ oo(S'). We obtain factorizations

/W OO^, ... ®^ /*(Ai) ®^, € ^/*(A,) ®^, ^ ̂  ̂ .

The resulting morphisms

V, ^/'(A,) ̂ , S ̂  S

are compadble with the morphisms

/-(A,) -̂ (A,)
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for i ̂  j. Recall that A^. is the image of /"(A,) in/* (A). The compatibility for all i ̂  j

implies that the morphisms 9 .̂ factor through morphisms

9;.:A;.®^, € -^€,

which are compatible as j varies, to give

9': A' ®^, € -> g.

In the case of the 9^. and 9', note that these are no longer obtained by pullback from

a universal example over Q^oo- From the fact that our morphisms were defined by

combining several times the morphism/"(A^) ®^, S -> S, we obtain a compatibility:
the two morphisms

/w^x'/w0^^^
the first one obtained by multiplying into/* (A, +,) first and then acting on <?, the second

obtained by acting successively on <?, are equal. The same holds for the two maps

A;®^A;.®^ S -^S,

so we obtain an action of A' on <?. Let A^.oo denote the base change of A via Q^ „ -> S.

The universal ^univ over X X g Q^ oo is a A^, co-module. If e e Q^ „ then the A'-module

structure of the resulting € is obtained by base change from the A^oo -module structure

of ^univ.

Finally, suppose e e Q,4,oo(S'). Say that e satisfies condition Q5 if the morphism

^ :/W ®^ ̂ (- N)^ ̂  ^

obtained from the A'-module structure is equal to the original morphism ^ obtained

from the inclusion e e Q,i(S') in the Hilbert scheme. This condition is again of the form

that the pullback of a map is equal to zero, because the morphism ^' is pulled back

from a universal example over Q^ ^. Thus there is a closed subset Q^ C Q^ „ such that

e satisfies condition Q5 if and only if e e Q^(S'). If we denote by A°5 the base change

ofAvia.^Q^-^S, then the universal (s?1111^ on X X g Q 5 has a structure of A^-module,
and the morphism

S : r(A,) Cx)̂  0^- N)̂  -^ ^univ

coming from the map to the Hilbert scheme Q^ is also given by the A^-module structure
of ^UDiy.

Suppose e e Q^(S'). We say that e is semistable if the corresponding A'-module §

restricts to j^-semistable A^-modules S\ on the fibers over closed points s e S'. According

to Lemma 3.7, there is an open subset Q,CQ^ such that e is semistable if and only if

e e Q(S'). This will be the parameter scheme required for the theorem.

13
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Let A° denote the base-change of A to Q via Q -> S, and let S^ denote the

universal A^module on Q. We have a natural morphism

^: (^)P(N) ̂  H°(X Xs Q./Q, ^(N)).

Since the restrictions of S to fibers over closed points are semistable, Corollary 3.6

applies: the relative H°(X Xg Q7Q,, ^°(N)) is locally free of rank P(N) and compadble

with all base changes. Condition Q2 implies that a° is injective on the fibers over closed

points s e Q. Thus a° is an isomorphism. We obtain a universal object ((^Q, a0) over Q,

giving rise to the same type of object (<?, a) under any base change e : S' -> Q .̂

Suppose^/*: S' ->- S is an S-scheme of finite type, and suppose (<f, a) is a pair of

the type envisioned in the statement of the theorem. By Corollary 3.6, the morphism a

induces a surjection

^(-^^-x^-^O,

and the A'-module structure of S induces a map

/'(A.) ®^ ̂ (~ N)^ ̂  ̂

so we obtain a point e e Q,i(S'). It is evident that e e Q(S'). The pullback ^(^Q, a°)

is isomorphic to (<?, a).

We obtain maps in both directions between the functor considered in the theorem

and the functor S' ̂  Q.(S'). The fact that ^((E?0, a°) ^ (<s?, a) means that one of the

compositions is the identity. On the other hand, if e e Q,(S') then the construction of

the previous paragraph, applied to 6?*(<?, a), gives back e. This isomorphism of functors

completes the proof that Q is the desired parameter scheme.

We obtain a single morphism from Qinto the Hilbert scheme Q :̂ the morphism

obtained in a natural way from (^Q, a°) is the same as the inclusion QCQ^ obtained

from the construction of Q. By construction, this is a locally closed embedding. This

completes the proof of the theorem. D

4, Invariant theory for A-modules

Let X -> S be a projective morphism, and A a sheaf of rings of differential operators

on X over S. In this section we will construct moduli spaces for ^-semistable A-modules

with a fixed Hilbert polynomial.

Lemma 4.1. — There is an integer B depending on A, r, and d, such that ifSis a ^-semistable

A-module of pure dimension d and rank r on a fiber X,, then

' 0 if ^W +k +B^ 0
h°(X,, S(K)} < ,

[r^^+k+^ldl if^+k+K^O

for any k.
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Proof. — Let

_ cy r " (JE' r~ r~ ay _ ffi
— *y n v— *y^ i ̂ - • • • v- * y j == <S

denote the ^-Harder-Narasimhan filtration for the sheaf S (not the A-module!). Let

^ = .^/^-i denote the quotients; they are (Ji-semistable sheaves of pure dimension d.

Let ^ = [x(^) and r^ = r(^). By Lemma 3.3, there is a number b depending only

on r and A such that ^ ̂  (Ji(<?) + ^- By Corollary 1.7, there is a number Bo such that

f O i f ^ + ^ + B o ^ O
A°(X,, TO) ^

[ r,(^ + k + Bo)^! if ^ + k + Bo > 0.

On the other hand,

A°(X,, ̂ )) < S A°(X,, TO).
i=l

Setting B = Bo + ^5 we obtain the desired estimate (since r = Sr,). D

Lemma 4.2. — TA^n? m.̂ y No depending on A and P such that for all N ̂  No, the

following is true. Suppose S is a p-semistable A-module with Hilbert polynomial P on a fiber X^.

Then for all sub-A-modules y C §^ we have

A°(^(N)) P(N)

r(^) ^ ~rW

and if equality holds then

P{^ m) ^ P(m)

r(^) '̂ (^

ybr all m.

Proof. — The same as the proof of Lemma 1.8, but refering to the previous lemma

in place of Corollary 1.7. D

Fix a polynomial P and let r denote the corresponding rank. Fix N as required

by this lemma and Corollary 3.6, so as to work for all ^-semistable A-modules of rank

less than or equal to r and normalized Hilbert polynomials equal to P/r, on fibers X,.

Let Q, -> S denote the parameter scheme constructed in Theorem 3.8. We would like

to construct a universal categorical quotient of Q^by the action of S1(^(N)).

Let H^ = Ay®^ ^x(— N)? and let v = CP(N)- Theorem 3.8 gives a locally closed
embedding QC Hab(^TCx)V, P). Let o§̂  denote the line bundle on Hab(^*®V,P)

corresponding to the projective embedding ^ described in the paragraphs before

Lemma 1.15.

Lemma 4.3. — There is an M such that for any m ̂  M, the subschema Q^ C Hil̂ ^® V, P)

is contained in the set Hilb88' ̂ -sî  ® V, P) of semistable points of Q relative to the line bundle JS? .̂
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Proof. — Since Q^ is noetherian, it suffices to fix a closed point q and find M so

that q eKGlb^^OV, P) for m > M. Let s e S be the image of q, and restrict

everything to Xg for the rest of the proof. Suppose ^®V -> S ->0 is the quotient

represented by q e Q^ We apply the criterion of Lemma 1.15. Suppose H C V. Let ^

be the subsheaf of S generated by ^®H, and let ^ be the saturation of "̂. By the

construction of Q, ^ is the saturation of the image of the morphism Ay ®^ ^P -> €

where ^ is the image of the map 0^{— N) 0H -> <?. By Lemma 3.2, ^ is a sub-

A-module of S.

Apply Lemma 4.2 to ^, using the hypothesis that S is ^-semistable. Since

V ^ H°(<?(N)), we have HC H^^N)) C H°(^(N)). We find that

dim(H) ^ A°(^(N)) ^ P(N)

r(^) " r(^) " W

Note that r(^) = r(^) and dim(V) = P(N). There are two cases, depending on whether

there is inequality or equality between the first and last entries. Suppose that inequality

holds,

dim(H) P(N)

~~r{^T ~W

The set of possibilities for H is bounded, so the set of possibilities for 3^ is bounded.

Thus we may choose M large enough so that for m ̂  M,^(^, m) is approximated by r(^) m^

(up to a bounded multiple of 77^ ~1). The same may be assumed for P(m). So in this

case of inequality, for m ̂  M,

dim(H) P(N)
' ^* —'—~~—"~ •

p{y,m) p{^m)

Thus the criterion of Lemma 1.15 for semistability in the Hilbert scheme holds. Suppose

instead that we have equality,

dim(H) __ P(N)

~rW~~~W

By Lemma 4.2, this implies that ^(^, w)/r(^) == P(w)/r(<T) for all m. Thus ^ is itself

a ^-semistable A-module with the same normalized Hilbert polynomial as <?. By our

choice of N, ^(N) is generated by global sections. Equality also implies that

H^H^^N)) ==H°(^(N)). Therefore ^ = ̂ , and since the normalized Hilbert

polynomials of ^ and S are equal, we get

dim(H) _ P(N)

W^)~W)

for all m. So the criterion of Lemma 1.15 is satisfied in the case of equality too. This

shows that for m ̂  M, q e HUb88'"^ ® V, P). D
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For the rest of the argument, fix an m so that we get a map

Q-> Hab88'7^® V, P)/S1(V).

We want to show that its image is a locally closed subset representing a good quotient
ofQby S1(V).

Lemma 4.4. — The closure in Hab^^^V, P) of any Sl(V)-orbit in Q is itself

contained in Q^.

Proof. — Suppose a is a point in Q, corresponding to a point

a :^®V -> ^ -^0

of Hfflb
88

' "̂  ® V, P). Suppose

^ :^ r®V^^ ' ->0

is a point in the closure of the orbit of a. By the argument described in the remark after

Lemma 1.25, we may assume that there is a one-parameter subgroup 9 : G^ -> S1(V)

such that b = \im^Q^{t) a. Now apply the discussion of limit points of G^ orbits.

There is a filtration F. of V and an isomorphism V ^ Gr^V) coming from the one

parameter subgroup, 9^) acting on Gr^(V) by I". This induces a filtration

^ == fl(^®Fp(V)) on <;?. The previous discussion shows that S ' == Grf, and the

quotient map b is equal to the associated-graded of a.

Define a new filtration of S by letting Jfp be the saturation of J^. By Lemma 3.2,
^ are sub-A-modules of S. Let ^p be the image of Grf in Grf. Let p^\ € ' -> Grf

be the composition of the natural map Grf -> Gr-^ with the projection on the (Bth factor.

Note that Grjf is a A-module. The map

iT®Gr^V ->Grf

is a subquotient of the map a, so it is compatible with the action of A on the right and

the partial action of A on the right. Therefore the composed map

p^b'.iT^V ->Grf

is given by the splitting V^ GrifV, the map Gr^V ->H°(Grf(N)), and the action

of A. Let UpC V be the kernel of the map V -> H°(^p(N)) induced by p^ b. In parti-

cular, dim(Up) ^ P(N) —A°(^p(N)). Let Y^C^' denote the subsheaf generated by

^®Up. This subsheaf maps to zero in Grf, hence it maps to zero in ^p. Thus

^p) ^ yW - y-W. We are assuming that b is in Hab^C^^V.P), so by
Lemma 1.16 we have

dim(Up) ^ P(N)

W) " W •
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Comparing this with the previous inequalities gives

^(N)) ^ P(N)

r(^) -"rW

Similarly, by applying Lemma 1.16 to the kernel of the map

V->H°((D^(N))
3

induced by the quotient © j&p by we find that this kernel is zero. Therefore the map
V -^H°(<r(N)) is injective.

Now we claim that each «^p is a ̂ -semistable sub-A-module of S with normalized

Hilbert polynomial equal to the normalized Hilbert polynomial of S. We prove this

by induction on p. Note that the filtration e^p is decreasing. Suppose that this claim

is known for ^p+r Then <^/^+i is a ^-semistable A-module with the appropriate
normalized Hilbert polynomial, of rank less than or equal to ^(<^), and Gr"jfC ^/e^p^r

By our choice of N, Lemma 4.2 applies:

^(Grf(N)) P(N)

r(G<) -W

and if equality holds then Grjf has the same normalized Hilbert polynomial as S. But

^p C Grjf^ and the ranks are the same since the quotient Grjf7^p is supported in dimen-

sion d — 1. The inequality of the previous paragraph shows that equality holds here,
and furthermore H°(^(N)) == H°(Grf(N)). Therefore Grf has the same normalized
Hilbert polynomial as € and ^/^p+r Since Grf is a sub-A-module of <^/^p+i, it is
/»-semistable. This in turn implies that ^f^ is ^-semistable with the required normalized

Hilbert polynomial, completing the inductive proof of the claim.

By our choice of N, all of the sheaves Grf(N) are generated by global sections.
The incidental fact from the previous paragraph, that H°(^(N)) = H°(Grf(N)),

implies that ^ = Grf. Thus Grf -> Grf is surjective. This implies that ̂  = ̂

(one shows by induction on (B that ̂  -> Jfp is surjective). Therefore the ̂  are ^-semi-

stable sub-A-modules of S with the appropriate normalized Hilbert polynomial. The
associated-graded <?' = Grjf is a ^-semistable A-module with the normalized Hilbert

polynomial of S. The map H^ ® V -> Grf is compatible with A (it is obtained as the
associated-graded of the map a, through a splitting of the filtration on V which does

not affect the A structure), but this map is the same as the map b via Grf ̂  S
9
. Thus

the map b is compatible with the A-module structure of € ' . Finally, by our choice of N,

we have A°(^(N)) == P(N) = dim(V), so the injection V <-^ H°(<?'(N)) is an isomor-

phism. And <f'(N) is generated by global sections, so b restricts to a surjection

A^®^( -N)®V-><r ^0.

Therefore b represents a point in the subscheme Q. This proves the lemma, a
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Lemma 4.5. — Let 9 : Hflb
88 ̂ ^ ® V, P) -. HBIb

88 ^QT ® V, P)/S1(V) denote the

good quotient given by [Mu]. The image <p(QJ is a locally closed subset.

Proof. — The proofs of Theorems 1.1 and 1.10 in Mumford's book [Mu] imply

that ifBCHilb88 '^^®^?) is a closed S1(V)-invariant subset, then <p(B) is closed.

In our situation, let Q denote the closure of Q, in HBIb
881

 ̂ {i^ 0 V, P). Note that Q

and Q^are S1(V)-invariant. Thus the image <p(QJ is closed. Let B == Q^— Q. It is closed
and S1(V)-invariant, so (p(B) is closed. We claim that

9(QJ == <P(QJ - 9(B).

Note that the right side is certainly contained in the left. To prove equality, suppose

to the contrary that there were closed points a e Q and b eB such that 9(0) = 9(6).

Let 0{a) and 0(6) denote the orbits of a and b respectively. One of the properties of

the quotient 9 is that two closed points in Hilb^ "^^ ® V, P) have the same image

if and only if the closures of their orbits intersect. Thus

0{a) n 0(6) + 0.

On the other hand, B is closed, so 0(6) C B, and the previous lemma stated exactly

that 0(a) C Q. But B is the complement of Q, so this is a contradiction. This completes

the proof that 9(QJ = 9(0,) — 9(B). Therefore the image ofQis a locally closed subset. D

Corollary 4.6. — With respect to the induced line bundle oSf^L, all of the points ofQ are

semistable. The image 9(QJ has a structure of locally closed subscheme such that Q,-^9(Q,) is

the good quotient given by [Mu],

Proof. — Let A denote the inverse image in VStb^ ̂ (^ ® V, P) of 9(QJ. The

map A -> Q7S1(V) is an affine map representing a universal categorical quotient. If Q

were not a closed subset of A, then A would intersect the subset B refered to in the

previous proof, and this would contradict that proof's assertion that 9(B) does not

meet 9(QJ. Therefore Q, is closed in A. This implies that 9 : Q,—^ ?(QJ is an affine
map. There is a line bundle which we also denote by oSf^ on the quotient
Hab^C^^V.PYSHV), which pulls back to JSf^ on Hab^^r^V.P). For any

point yeQ, there is a section u of ^k on the quotient Hilb^^OV.PVSHV)
such that u does not vanish at 9(^)5 and such that the subset where u 4= 0 is affine. We
may also assume that u vanishes on the closed set 9(B). Therefore the subset of 9(QJ

where u =t= 0 is a closed (hence affine) subset of the whole affine set where u 4= 0. Since
9 is affine, this implies that the subset of Q where u 4= 0 is an affine subset. By definition

then, every point q ofQis semistable with respect to the line bundle oS?^. Thus a universal

categorical quotient of Q, by S1(V) exists, with the properties described in [Mu]. We

get a map from this quotient to Hab88'^(^ ® V, P)/S1(V). On the affine open subsets

defined by sections of the line bundle such as described above, suppose f is a function
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on the affine subset of Q, invariant under S1(V). Then since S1(V) is reductive, we

can lift this to an invariant function / on the affine subset of Hfflb^^^^V, P).

This then descends to a function on Hab^^^V.P^S^V). This shows that

the functions on the quotient of Q come from functions on open subsets of

Hflb^OT^V, P)/S1(V). Therefore the quotient of Q is included as a locally closed
subscheme of Hflb^^^V, P)/S1(V). D

Let M^(A, P) denote the functor of schemes over S which associates to S' —^S

the set of isomorphism classes of j&-semistable A'-modules on X' over S' with Hilbert
polynomial P.

Theorem 4.7. — Let M(A, P) = Q/S1(V) be the good quotient. There is a morphism

of functors 9: M^(A, P) ->M(A, P) such that (M(A,P),<p) universally corepresents the

functor M^(A, P). The following properties are satisfied.

(1) M(A, P) is a quasiprojective variety.

(2) The geometric points of M(A, P) represent the equivalence classes of p-semistable

A-modules with Hilbert polynomial P on fibers Xg, under the relation of Jordan equivalence

(^i^^s if g^ î) == g^^s))- T^e equivalence class of a A-module ^ on X, corresponds

to the point <p( '̂) in the fiber ofM{A, P) over s e S.

(3) The closed orbits in Q^ are exactly those corresponding to semisimple objects, y with

gr(^) ^ y.

(4) There is an open subset M?(A, P) C M(A, P) whose points represent isomorphism

classes of p-stable A-modules. Locally in the itale topology on M^A, P) there is a universal

A-module ^UDiv
 such that if ^ is an element of M^(A, P) (S') whose fibers ̂  are stable, then

the pull-back of ^
rumy

 via S' -> M^A, P) is isomorphic to y after tensoring with the pull-back

of a line bundle on S'.

Proof. — The proof is the same as the proof of Theorem 1.21. For part (1) note

that the good quotients of [Mu] are quasiprojective, but our quotient will not in general

be projective. Although not stated in Theorem 1.21, statement (3) here is given by the
proof of statement (3) there. D

The representation spaces

In this section we will rigidity the moduli functors by including the data of a frame

along a section i;: S -> X. For this, we consider A-modules which are locally free as

sheaves of '̂""^dules near the section ^. We construct representation spaces which para-

metrize pairs (<^, p) where € is a semistable A-module which is locally free along ^?

and P : S*(<^) ^ Q^. These representation spaces will be fine moduli spaces, representing

the appropriate functors. The terminology comes from the analogy (or correspondence,

in the case of A^) with representations of the fundamental group.

We make the following hypotheses for the rest of this section. Suppose X -> S is
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projecdve, flat, and has irreducible fibers. Suppose ^ : S -> X is a section. Fix a poly-

nomial P of degree equal to the relative dimension d = dim(X/S). Let deg(X) be the

rank of 0^ (it is the degree of the projective embedding determined by ^x(l))? an(^

let r be the rank corresponding to the polynomial P. Let n === r/deg(X). A sheaf of pure

dimension d and rank r on a fiber X, is a torsion-free sheaf whose rank, in the usual

sense, is n.

Suppose y is a ^-semistable A-module with Hilbert polynomial P on X over S.

We say that 3^ satisfies condition LF(^) if for every closed point s e S, gr(<^) is locally

free as a sheaf of ^•"^dules at ^{s). We have the following properties.

4.8.1. Suppose y is a j^-semistable A-module on X satisfying condition LF(S).

Then ^ is locally free as a sheaf of (P^-modules along the section i;. This follows from

Lemma 1.27.

4.8.2. After base change by S' -> S, there is a section which we also denote by

^: S' -> X'. The condition LF(^) or its negation are preserved by base change.

4.8.3. Suppose that 3^ is a ^-semistable A-module on X over S, satisfying condi-

tion LF(^). Consider a closed point s e S. Suppose that ^ is a sub-A-module of ̂  such

that the normalized Hilbert polynomial of ^ is the same as the normalized Hilbert

polynomial of ^. Then ^ and ^/^ satisfy LF(^)). This is because gr(^) and

gr(^/^) are direct summands in gr(<^).

4.8.4. Let Q, denote the parameter space given by Theorem 3.8. Let Q^

denote the open subset of Q parametrizing A-modules 3^ which are locally free along ^,

and let Q^^ = Q— Q^ be the complementary closed subset. Both of these sets

are invariant under the action of S1(V). Let Q^^ denote the subset of Q, parametrizing
A-modules ^ satisfying condition LF(^). It is contained in Q^ by 4.8.1. Let

9:Q^->M(A,P) denote the quotient of Theorem 4.7. Since condition LF(^(^))

depends only on the gr(^), and two points q and q ' in Q^map to the same point in

M(A, P) if and only if gr^^) ^ gr^^), there is a subset M^A, P) C M(A, P)

such that Q^ = (p-^M^^A, P)). A point^ eM(A, P) is contained in M^^A, P)

if and only if (p"^^) is contained in Q^ (note that if the closed orbit lying overj/

is contained in Q^ then y satisfies condition LF(^)). But the image of the closed

S1(V)-invariant subset Cy'̂  by the good quotient 9 is closed [Mu], Thus

M^^A, P) = M(A, P) — (^(Q^) is open. This implies that Q^^ is open, and

implies that the condition LF(S) is an open condition on the base S.

4.8.5. The morphism 9 : O^ -> M^^A, P) is a universal categorical quo-

dent, and thus M^^A, P) universally co-represents the functor MP^'^A, P) which

associates to an S-scheme S' the set ofj&-semistable A-modules S on X'/S' with Hilbert

polynomial P, satisfying condition LF(^).

Lemma 4.9. — Suppose that S and ̂  are p-semistable A-modules with the same normalized

Hilbert polynomial on X/S, both satisfying condition LF(S). Suppose that f: S -> ̂  is an

endomorphism of A-modules such that ̂ {f) =0. Thenf== 0.

14
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Proof, — First consider the case when S = Spec(C). Then ker(/) is a sub-A-module

of S and im(/) is a sub-A-module of e ,̂ so the normalized Hilbert polynomials of

ker(y) and im(y) are less than or equal to the normalized Hilbert polynomial of y.

The exact sequence

0 -> ker(/) -> y -> im(/) -^ 0

implies that the normalized Hilbert polynomials of ker(y*) and im(y) must be equal

to the normalized Hilbert polynomial of y. Then gr{^) == gr(ker(y)) © gr(im(y*))

and gr(<^) = gr(im(/)) ©gr(coker(/)). By condition LF, this implies that ker(jf)

and im(/), and coker(/) are locally free at ^(^). From the condidon that S*(/) ==0

it follows that im(jf) =0 in an open neighborhood of SM- Since im(/) has pure

dimension d == dim(X) and X is irreducible, this implies that im(/) ==0.

We now treat the general case. Suppose, in the situation of the lemma, that

y=)= 0. Then by KrulPs theorem, we may find a base change p : S' -> S where S' is the

spectrum of an artinian local C-algebra of finite type, such that p*{f) 4= 0. We may

then replace S by S'. In this way, we have reduced to the case (which we assume from

now on) that S = Spec(R) with R an artinian local C-algebra of finite type. Let m

denote the maximal ideal of R. We may choose k and / such that

fMx^ S -^y\m^y

is nonzero, but such that the maps

f'.m^1 S ->^7m^

and /: m^ S — ^"/m1-1 ^

are zero. Thus we get a nonzero map

f^: m^ ^/m^4-1 S -> m1-1 ^jm1 ̂ .

The source and target are A-modules on X, and the map f^ is a morphism of A-modules

on X, because R is contained in the center of A.

Since € and ^ are flat over S, the source and target of f^ are, respectively,

(<s?/m<s?) ®s,,n (m^/m^4'1) and (^/m^) 0^ {m
1
"

1
/^). Since R is contained in the

center of A, these identifications of the source and target are compatible with

the A-module structure. Thus the source and target of f^ are A-modules on

Xo == X Xapec(E) Spec(R/m), and f^ is a morphism. The tensor product formulas

show that the source and target are actually direct sums of <?o = § 0^ (^/ln) ^d
y^ = y®^ (R/m). In particular, the source and target off^ are j^-semistable A-modules

on XQ satisfying condition LF(^). We have S*^) === O? so ^e lemma applied to Xo
over Spec(C) (proved in the first paragraph) implies that f^ = 0. This contradiction

completes the proof. D
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The universal object ^runlv on X x g Q™^ is locally free along the universal

section ^ : Q™^ -> X Xg Q™^. The action of the group G1(V) on d preserves Q™^

and it lifts to an action on the universal object ^univ. We obtain a locally free sheaf
^univ) .̂ QLF(^ ^h action of G1(V). Let T -> Q^ be the frame bundle

of ^(^'UDiv). It is a principal Gl(^, C) -bundle over Q™^ represendng the functor

which associates to any S-scheme S', the set of all triples (^, a, (B) where: <s? is a ̂ -semi-

stable A-module with Hilbert polynomial P on X'/S', satisfying condition LF(^)$

a : ̂  ®c V -5. H^X'/S', ^(N)); and p : ̂ (^) -^ %. The group G1(V) x Gl(w, C)

acts on T, compatibly with the action of G1(V) on Q™^. The action can be defined
by the action on the functor.

Remark. — The center G^CGl(V) acts trivially on Q, because a scaling of the

frame a can be removed by a scalar endomorphism of y. However, this no longer works

when we go to the frame bundle T. Only a diagonal G^CGl(V) X Gl{n, C) acts
trivially.

Recall that J§f^ denotes the very ample line bundle on Q^^ induced by a pro-

jective embedding ^. We may choose a linearization of the action of G1(V) on JSf^6

in such a way that the center G^ acts trivially. For example, a power JSf^ descends

to a line bundle on the categorical quotient M^^ = Q^VSnV). Since the map
QLBW ̂  M™^ is Gl(V)-invariant, the trivial action on ̂  on M™^ pulls back

to a linearization of JS?^ on (y^. All points of Q^^ are semistable points for this

action of G1(V). The line bundle oS?^6 on Q^^ has a linearization with respect to

the group G1(V) X Gl(w), where the second factor acts trivially. Let L denote the
pullback of the G1(V) X Gl(7z)-linearized bundle oSf^ to T.

Theorem 4.10. — Every point ofT is stable for the action of G1(V) with respect to the

linearized line bundle L, and the action of G1(V) on T is free. The resulting geometric quotient

R(A, S, P) M T/G1(V) represents a functor—it parametrizes pairs (̂ ; (B) where ^ is a

p-semistable A-module on X' over S' with Hilbert polynomial P on X' over S', satisfying condi-

tion LF(S), and (B : ̂ W ^ % ̂  a frame. The group G\(n, C) acts on R(A, ̂  P), and every

point is semistable for this action (with respect to the linearized line bundle obtained from 'L). The

good quotient R(A, ^, P)/G1(^) is naturally equal to the moduli space M^^A, P). The closed

orbits in R(A, S? P) correspond to the A-modules which are direct sums of p-stable ones. The

subset R^A, ^, P) of properly stable points for the action of Sl{n, C) is exactly the set of points

corresponding to p-stable A-modules.

Proof. — The projection TT : T -> Q^^ is an affine map, since T is the frame

bundle for a locally free sheaf. All of the points of (y^^ are semistable for the action
of G1(V) and linearized line bundle JS? .̂ Thus if q eT is any point, then there is a

section a e H0^^^, ̂ ab
) which is G1(V)-invariant, such that (Q^^o ^ affine,

and such that a{n{q)) =1= 0. Now or pulls back to an invariant section of L0" which
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doesn't vanish at q. The fact that n is an affine map means that the set T^.. Q = TT~ ̂ Q;"^)

is affine. Thus q is a semistable point of T. To prove that every point of T is stable0 we

must show that the orbits are closed and the stabilizers are finite. The points of T lying

over s e S consist of triples (E, a, (3) with a : H°(X,, E(N)) ^ V and (3 : E^ ^ C71.
If A : (E, a, (B) ^ (E, ̂ a, (B), then ^ restricts to the identity at ̂ ), so h == 1 by Lemma 4.9,

gv. == a, and hence g == 1. Thus the stabilizer of (E, a, (B) is equal to { 1 }. In particular,

the dimensions of the orbits are all the same. Thus no orbit can be contained in the

closure of another orbit, so the orbits are closed. This proves that all points are stable.
By [Mu], a geometric quotient R(A, ^, P) == T/G1(V) exists.

To show that the action is free, note that the map G1(V) X T ->T x^ ^ p^ T
sending {g, q) to {g{q), q) is proper, by Corollary 2.5 of [Mu]. Suppose S' is an S-scheme,

<7,<7'eT(S') and g , g ' e G1(V) (S'), such that (^), q) = ̂  (?'),?'). Then q = q\

Let (E, a, (B) be the triple corresponding to the point q. Then the fact that g(q) = g\q)

means that there is an isomorphism of triples h: (E, a, (B) ^ (E, g~
1
 g ' a, (B). Then

S*(A) = 1, so h == 1 by Lemma 4.9. Thus g~
1
 g ' == 1. Thus the map

G1(V) xT-^TXn^T

is an inclusion of functors. A proper map which is an inclusion of functors is a closed

immersion. This means that the action is free, hence T is a principal G1(V) bundle
over R(A,S,P) [Mu].

There is a universal A-module ^-mliv on X X g T over T, and the action of G1(V)
on T lifts to an action on ^P" .̂ This gives descent data, so ^'umv descends to a universal

j^-semistable A-module ̂  with Hilbert polynomial P on X x g R(A, ^, P) over R(A, ̂  P).
Furthermore, we have a frame [B : y(^) ^ (9^ p p..

The scheme R(A, ^, P) together with the universal object (^rR, ^K) represents the

required functor (which we denote by R^A, ̂  P)). If?i and ̂  are points in R(A, S, P) (S')
such that q\^, (3s) ^ ^(^'R, ̂ ) then locally on S' we can lift to points (^, a,, ^)

of T with (^i, (Bi) ^ (^2, pg). Then ai and ag differ by a change of frame given

by g e G1(V) (S'). Thus the lifted points differ by the action ofGl(V), and the invariance

of the projection n implies that the original points q^ and ^ were equal. Thus the

morphism R(A, ̂  P) -> R^(A, ^, P) is an injection of functors. If ( ,̂ p) e R^(A, ^ P) (S')
and if q eR(A, ̂  P) (S') are such that ^(^rR, (3^) ^ ( ;̂ p), then this isomorphism is

unique by Lemma 4.9. This implies that the functor R^A, ̂  P) is a sheaf in the (Stale

topology. If (^,(3) eR^A.^P) (S') then, locally in the ^tale (or Zariski) topology

of S', we can choose a frame a to get a point (e^, a, (B) in T. This point projects to a

point q e R(A, ̂  P) (S') with ^(^E, p^ ^ (^ (B). This shows that the morphism

R(A, ^, P) -> R^A, ^, P) is a local isomorphism. Since both the source and the target

are sheaves in the Aale topology, this is an isomorphism of functors. Thus R(A, ^, P)
represents the functor.

The line bundle L descends to an ample line bundle oS? on R(A, ^, P) with lineari-

zation of the action of Gl(^, C). Note that this action comes from the trivial action on
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L = TT* oSf^6 which is due to the action ofGl(%, C) along the fibers ofn. I fr is any point

in R(A, ̂ , P), we may lift it to a point q in T, and choose a section a (= H°(T, L0") which

doesn't vanish at q, such that T^o is affine and a is invariant under G1(V). Recall from

above that we could choose a to be a pull back of a section on Q™^, so we may assume

that CT is also invariant under Gl{n, C). The section a descends to a section a' of (oS?)0®,

and R(A, ̂  P)o+o = ̂ o^nY) is affine [Mu]. Note that a is invariant under G\(n, C),
and does not vanish at r. Thus every point r in R(A, ̂  P) is semistable with respect

to the line bundle JSf and the action ofGl(%, C). By [Mu] we may form the good quotient
M'=R(A,S,P)/G1(^C).

The product group G1(V) X G\(n, C) acts on the space T. We have a composition

T^Q^-^M^A.P)

of categorical quotients by Gl(n, C) and G1(V) respectively. The first expresses T as

a principal bundle over Q™^, and it is preserved by the second group G1(V). In this

situation it follows that M^^A, P) is a categorical quotient of T by G1(V) X Gl{n).

We also have a composition

T^R(A^P) -^M'

of categorical quotients in the other order, and the first map is preserved by Gl(w, C)

as can be seen by looking at the functors represented by T and R(A, ^, P). Again, T is

a principal bundle over R(A, ^, P). Thus M' is a categorical quotient of T. Therefore

there exists a unique isomorphism M^^A, P) ^ M' commuting with the maps
from T. Thus the good quotient R(A, ^, P)/Gl(n, C) is naturally isomorphic to M™^.

Finally, we have to prove that the properly stable points for the action of Sl(^, C)

are the j^-stable A-modules. The stabilizer in GI(TZ, C) of a point (e ,̂ [B) is equal to the

stabilizer in G1(V) X Gl{n) of the point (<^, a, (B), and this in turn is equal to the

stabilizer of (e ,̂ a) in G1(V); this stabilizer is naturally identified with the group of

automorphisms of .̂ Furthermore, in either of the two compositions above, an orbit

of the second group is closed if and only if its preimage in T is a closed orbit for the

product of the two groups. In the first case, an orbit of G1(V) is closed if and only if

the A-module ^ is a direct sum of ^-stable ones; thus this criterion holds in the second

case too. The closed orbits in R(A, ^, P) correspond to the A-modules which are direct

sums of ^-stable A-modules. The group of automorphisms of determinant one of such a

direct sum is finite if and only if the sum has exactly one ^-stable component. Therefore

a point (^, p) e R(A, ^? P) has closed orbit and finite stabilizer in Sl(^, C), if and only

if y is ^-stable. This completes the proof of the theorem. D

Remark. — Since the space R(A, ̂  P) represents a functor, it is easy to form moduli

spaces for^-semistable A-modules satisfying the condition LF(^i, ..., ^) that the gr(e^)

are locally free at all ^(^), with frames at the points ̂ , . . ., ̂ . Choose one of the points

for defining R(A,^,P), and let R™^'•-•'^(A, ̂ , P) denote the open subset repre-
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sendng the condition LF(^, ..., y. The scheme R(A, Si, . . . , S&, P) of objects with
frames at all the points is just a principal bundle over R^^i* • • • ' ^(A, Si, P), the bundle

of sets of frames for the restrictions of the universal bundle to the various other sections.

We say that ^ satisfies condition LF(X) if^is locally free as a sheaf of ^•^cdules

on all ofX. This is also preserved by base change and, by the same argument as in 4.8.4,

it is an open condition over the base. We obtain an open subset R^^A, ^, P) C R(A, S, P)

parametrizing ( ;̂ (3) where y satisfies LF(X) and (B is a frame.

5. Analytic theory

Define the notion of analytic sheaf of rings of differential operators on a complex analytic

space in exactly the same way as for the algebraic case (we avoid repeating the axioms

here). Our first task is to show that an algebraic sheaf of rings of differential operators A

on X over S gives rise to an analytic A^ on X^ over S .̂ We include the more general
situation of a base change in the following proposition.

Proposition 5.1. — Suppose X is quasiprojective over a noetherian algebraic base scheme S.

Suppose S' is a complex analytic space and S' -> S^ is a morphism. Let X' = X^ x gan S7

denote the analytic space obtained by base change. Suppose that A is a sheaf of rings of differential

operators on X over S. Let K\ and K\ denote the pullbacks to X' of the coherent analytic sheaves

on X"1 corresponding to the coherent sheaf A, of left or right 0^-modules. There is a natural

isomorphism A[ ̂  AJ equal to the identity on algebraic sections. Put A^ equal to this sheaf, and set

A; =lmiim(A^->A^.

Then the union A' = U^ A.[ (with the given filtration) has a structure of analytic sheaf of rings

of differential operators on X' over S'.

Proof. — First we treat the case S' == S .̂ The sheaf Gri(A) acts on 0^ by a

derivation given by the symbol cr: Gri(A) -> Hom^/g^x)- But ^x^/s311 is the

analytic sheaf associated to Q^/s ? so we obtain a derivation

G : Gr^A)^ -> Hom^an/gan, ^an)-

If X = Spec(B) is affine, and A corresponds to a ring L as explained in § 2, then the

left and right analytic sheaves are given by the formulas (for U C X^ open)

A^(U) =^n(U)®BL.

and AJ(U) = L, ®g ̂ (U).

Using the derivation a we obtain rules for passing elements offl^^U) through expressions

which are products of elements in L^. These give isomorphisms

^an(U) ®B L,^ L, ®B ^X-(U),
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and hence A\ ̂  A,*". If X is not affine, the isomorphisms thus obtained over the subsets

in an affine covering glue together to give A\ ̂  A^. We obtain sheaves A^ which have

left and right structures of coherent (P^an-modMies. In this case, fl^an is flat over O^y

so the maps A^ —A^ are injective for i^j. Thus A^ is the union of the A"1. The

left and right O^an-modMie structures agree on the associated graded G^A8111). One can

verify all of the properties which correspond to 2.1.1-2.1.6.

Suppose now that S' -> S^ is a morphism of complex analytic spaces. We make

the base change from A^ on X^ to A' on X', by the same construction as in Lemmas 2.5

and 2.6, but with Stein open sets playing the role of the affine open sets. The construction

was based on two things: the notion of coherent sheaf associated to a module over the

coordinate ring, which works also in the analytic case with a little bit of extra care (one

must allow for sections over a subset those which are locally tensor products of elements

of the module with functions in the coordinate ring of the subset); and the tensor product

for obtaining the module which gives rise to the pullback sheaf on the product. In the

analytic case, we use a completed tensor product for the Frechet topology. This means

that one includes among the sections, limits of sequences of elements in the tensor product

which converge uniformly on compact sets. The Frechet topologies on the coherent

sheaves A, considered as left and right (P^an-modules are the same: fix a finite set of

sections which span the space of germs of sections around a compact subset, with respect

to the left module structure; a convergent sequence of sections may be represented as

a sequence of expressions in terms of the spanning set, with converging coefficients;

when the expressions are changed into expressions with the coefficients on the right,

some new terms are introduced depending on derivatives of the original coefficients;
but the derivatives will also converge on a smaller compact subset, so the coefficients

of the expressions on the right converge also. We obtain the isomorphisms A| ̂  A^ from

the formulas

B'^L, ̂  A'^L, = L^A' ^ L,®sB',

where A, A', B and B' denote the rings of functions on Stein open subsets of S ,̂ S',

X^, and X' respectively, and L( denote the modules corresponding to A^. The middle

equality depends on the fact that the left and right Frechet topologies on L, are the

same. Let A,' = lim_^ ,im(A^ -^A^). The A,' are locally equal to images of A^, since

the local rings of X' are noetherian. Hence the A,' are coherent sheaves of 0^-modules

for the left and right structures. The union A' = U, A,' satisfies all of the necessary

properties. D

Lemma 5.2. — Suppose € is an (P^-coherent A-module on X. Suppose S' -> S"1 is a

morphism of complex analytic spaces. Then the pullback <?' of the associated analytic sheaf ^an

to X' has a structure of A-module.

Proof. — The construction is again the same as in Lemma 2.7, with the remarks

made in the previous proof taken into account. D
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Analytic properties of Hilbert schemes

Suppose X -» S is a projective morphism of algebraic schemes, with a relatively

very ample ^x(l) chosen. Suppose that^ is a coherent sheaf on X. Fix a polynomial P

and let H -> S denote the Hilbert scheme parametrizing quotients

i^r _ ^ _ 0

with Hilbert polynomial P (relative to S).

Proposition 5.3. — The associated complex analytic space H8'11 —> S^ represents the functor

which associates to each analytic space S' -> S^ the set of coherent analytic quotients € of the

pullback i^' ofiT^ to X' = X^ XganS', which are flat over S' and have relative Hilbert

polynomial P.

Proof. — This follows from Douady's theory. In fact, it is easier, since we begin

with X and IT algebraic, so we indicate the proof here. We may suppose that X is flat

over S (replacing X by a projective space into which it embedds, if necessary). There

is an integer n and a surjective morphism

^(_^^^T^O.

Let^g denote the pullback of^to X X g H. We obtain a surjection

^XXSH(-^->^H->O,

and composition with the universal quotient gives a surjection

^XXs^-^^^'^O

on X X g H. There is an integer m such that for any s e S and any quotient S\ of^,

with Hilbert polynomial P, we have A°(X,, £\{m)) = P(w) and H^X,, <(^)) = 0

for i > 0. We may also assume that the same is true for Q^m — n) (with its own Hilbert

polynomial). For any quotient <fg, let

0-^-^(-^->^->0

denote the kernel; we may suppose also that H^X,, Jfg(w)) = 0 for i> 0. The base

change theorems—those of Grauert for the complex analytic case—imply that if

S' -> S^ is a morphism of complex analytic spaces, and if § is any quotient of H ^ ' on

X' == X^ XganS' flat over S' with Hilbert polynomial P, then H^X'/S', <?(w)) and

H°(X7S', 0^.(m — n)) are locally free over S' and commute with further base change;

that the higher direct images vanish; and that the map

H°(X7S', (B^(m - nY) -> H°(X7S', ^(m))
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is surjective (and the same in the case of an algebraic base change). Finally, the universal

quotient T^g -> ^unlY on X X g H gives rise to the surjection of locally free sheaves on H

H°(X X g H/H, ^xxsH^ - nY) ->H°(X X g H/H, ^(m)) ->0,

hence to a map into the relative Grassmanian

H -> GrasSs(H°(X/S, G^(m - ^)6), P(m)).

We may choose w so that this map is a closed embedding.
Now we complete the proof of the proposition. Suppose S' -> S^ is a morphism

of complex analytic spaces. If S' -> H^ is a morphism, then the pullback of the universal

quotient (<^UDiv)an over H^ gives an element of the specified set. Suppose, on the other

hand, that we are given a coherent analytic quotient H ^ ' -> S -> 0 flat over S' with

relative Hilbert polynomial P. We obtain a surjection of locally free sheaves on S',

H^X'/S7, Q^(m - n)^ -> H^X'/S', <?(w)) -^ 0.

The sheaf on the left is the pullback to S' of H°(X/S, Q^{m — n)6), so we obtain a

holomorphic map

9 : S' -> GrasSs(H°(X/S, G^(m - n)^, P(m)).

On the other hand, we know that the proposition is true for base changes to the formal

completions of S' at all points. This implies that, when restricted to the formal comple-

tions, the map 9 has image in H. This implies that the functions in the ideal defining H

restrict to zero on S', so we obtain a map S' -> H. It remains to be seen that these two

constructions are inverses. If we start with a map S' -> H, take the corresponding
quotient, and apply the above construction, we return to the same map. If we start

with a quotient € on X', apply the above construction to obtain a map S' -> H, and

take the pullback of the universal quotient, we obtain another quotient <?1 of^'. But

restricted to all of the formal completions, these two quotients are the same. The condition

for a section of^' to be contained in the kernel of one of the quotients can be tested

in the formal completions; thus the kernels are the same, so the quotients are the same. D

Proposition 5.4. — Suppose X is projective over a base scheme S, and A is a sheaf of rings

of differential operators on X over S. Fix a relatively very ample ^x(l) an^ a polynomial P. Let

N and r be the integers and Q be the ^-scheme constructed Theorem 3.8. Then the associated complex

analytic space O^ over S^ represents the functor which, to each morphism of analytic spaces

§' -> S"1, associates the set of isomorphism classes of pairs (^, a), where: S is a semistable

A.'-module on X' = X Xg S', 0^,-coherent and flat over S', with all fibers S\ being p-semistable,

and with Hilbert polynomial P; and

a : (^P(N)-^ H°(X7S', <?(N)).

Proof. — First we establish a GAGA principle: suppose T is an artinian scheme

of finite type over C, and T -^S is a morphism; then any A^-module ̂  on the fiber

15
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Xrr == X x g T is algebraic. Since Xp is projective over a complex artinian scheme,

the coherent sheaf of (P^an-modules underlying Sr^ is algebraic, obtained from the

coherent algebraic sheaf §^'. The sheaf A^\ ®^n <?r ls equal to the analytic sheaf

associated to A^, ®g, ^te (this isomorphism may be constructed using the methods

of Lemma 2.4 and Proposition 5.1). The A^-module structure of ^ is determined
by a map

A^^an^T-^T

of sheaves of fi^n-modules; this map is algebraic. The conditions satisfied by this map

in order to give a structure of Ay-module are similarly satisfied by the corresponding

algebraic map, so §^ has a structure of A^-module. Morphisms between analytic

Ay-modules are also algebraic.

This GAGA principle implies that the ^-semistable A^-modules on fibers X,

over closed points form a bounded family, and that the integer N chosen for Theorem 3.8

will give the same properties here. Suppose S' -> S^ is a morphism of complex analytic

spaces and S is a A'-module on X' •== X"1 X gan S' which is (Py-coherent, flat over S',

with relative Hilbert polynomial py such that the fibers £\ over closed points s e S' are

^-semistable. We obtain a map to the analytic space associated to the Hilbert scheme

of quotients of Ay®^ ^x(~ N)1^10 with Hilbert polynomial P, by Proposition 5.3 and

the same construction as before. When restricted to the formal completions at points

of S', this map has image in the locally closed subscheme Q,. Hence the map has image

in the closure Q. But all of the points map into the open set Q, we so obtain a map
S' -> Ct. As in Proposition 5.3, a map S' —^ Q^ gives rise to an element of the specified

set, and these two constructions are inverses. Note that the coherent sheaf S appears

as the quotient corresponding to the map from S' into the Hilbert scheme, so we obtain

the isomorphism between the original § and the one given by the constructed map

S' -^ Q. D

Analytic properties of good quotients

We show that good quotients in the algebraic category give universal categorical

quotients in the analytic category. In this section, the notation X plays a different role

than in the rest of the paper.

Proposition 5.5. — Suppose X is a quasi-projective scheme over C, on which a semisimple

group G acts linearizing an ample line bundle. Suppose that every point is semistable, X == X88.

Let 9 : X -^Y be the good quotient given by [Mu], Then 9^ : X"1 -^Y811 is a universal

categorical quotient in the category of complex analytic spaces.

Proof. — The proof is an analytic version of Mumford's original proof that his

quotients were universal categorical quotients in the algebraic category. The only
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interesting point is that we seem to need some results from the theory of moment maps

and symplectic quotients to obtain certain compact subsets.

First consider a special case. Assume that X = A" is the affine w-space, and that

G acts by a linear ^-dimensional representation. Let R be the ring of G-invariants in

the coordinate ring C[x^y ..., x^] of X. All points of X are semistable (with respect

to the trivial line bundle), and the good quotient is Y == Spec(R). Let 9 : X ->• Y denote

the projection. Note that R is contained in the field C(A*i, ..., xj, so Y is reduced and

irreducible. The complex analytic space X"1 is just C .̂ Suppose U C Y^ is an open

set which is a Stein space. Let W == ^~
1
{\J). It is an open subset of C^, and in fact it is

also Stein (it is equal to the intersection of the graph of 9, a closed subset, with the Stein

space C^* X U C C71 X Y^). We now prove the contention that iff is a G-invariant holo-

morphic function on W, then there is a holomorphic function g on U such that^ = <p*(^).

Suppose Uo C U is a relatively compact open subset. Let G denote the compact

closure of Uo. The first step is to show that there is a compact subset D C W such that

<p(D) = C. This relies on the theory of moment maps and symplectic quotients [GS]

[KN] [Ki], The standard embedding X == A^C P
n is compatible with a linear action

of G on P^ This action linearizes the ample line bundle defined by the divisor at

infinity P" — X, and with respect to this linearization, X is a subset of (P")88 defined

by the nonvanishing of a section of the line bundle. Hence Y is an affine open subset

of the good quotient (P^/G, and X is the inverse image of Y. Let K C G be a compact

real form (a real form which is compact and meets every connected component of G).

Let k denote the Lie algebra of K. There is a moment map for the action of K, which

is a C00 function [L : P" ->k*. The subset (Jl - l(0)CPW is closed, and hence compact.
It is K-invariant, so we can form the topological quotient (J^-1(0)/K, which is again

compact. The main facts we need are that ^"^O) is contained in the set of semistable

points (P71)88, and that the map

^(O^K^Pr/G

is a homeomorphism of usual topological spaces. See [Ki], p. 95, and the theorems

thereafter. Now (p^^G) is a closed subset o^P7*)88, so the intersection D = ^~
1
(C) n ^"^O)

is compact. Note that ^~~
1
(G) is contained in W == (p^U), so DC W. On the other

hand, the map ^"^(O) -> (P^/G is surjective by the above assertion, so y(D) = G

as desired.
The D constructed above is K-invariant. By the Weierstrass approximation theorem,

we may choose a sequence of polynomials P^i, ..., ̂ J such that

sup|P^/|->0.
D

Let CL(A') = f^kx} dk be the averages by the group K. Then Q^ are K-invariant

but still

sup|Q,~/|->0.
D
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Since KCG is a compact real form, the polynomials Q^ are G-invariant, in other

words they are elements of the ring R of algebraic regular functions on Y. They
form a uniformly Cauchy sequence on the compact subset C == <p(D). In particular,

they are uniformly Cauchy on any compact subset of Uo C G. Now the space of holo-
morphic functions on the reduced analytic space Uo is complete with respect to uniform
convergence on compact subsets, so the Q^ converge to a function g defined on Uo.

Considered as functions on D C W, the Q^ converge to /. Now f and h == ^*[g) are

two G-invariant holomorphic functions on Wo = P'^Uo), which agree on the subset
Wo n D. This subset surjects onto Uo. Suppose w eWo, and let u = <p(w). Letj be
a point in Wo n D such that <p(jQ == u. Then/(j/) == h{y). There is a unique closed

G-orbit in ^~
l
{u) [Mu], contained in the closure of any other orbit. The functions/

and h agree on the G-orbit ofjy, hence they agree on the closure of that orbit, so they
agree on the unique closed orbit. On the other hand,/and h are constant on the closure

of the G-orbit of w, which includes the closed orbit. Therefore f{w) = h{w). Hence we

have constructed a holomorphic function g on Uo such that /= y*(^) on Wo. This

condition uniquely determines g, since 9 is surjective. Finally, we may exhaust the
original subset U by such relatively compact subsets Uo. The functions g defined on
these subsets agree on overlaps, so they patch together to give a holomorphic function g

on U with/= 9*0?). We have shown in this first case of X = A^ that Y^ is a categorical
quotient of X^, also universal for inclusions of open sets in Y^.

Suppose that G acts linearly on affine space A", and suppose that X C A" is a
closed G-invariant subscheme (not necessarily reduced), defined by a G-invariant ideal
ICC[A:i, ..., A;J. Let R = C[^i, . . . , A;J° as before, with projection 9 : A" -> Spec(R).
The image Y = <p(X) C Spec(R) is a closed subscheme, defined by the ideal J == I n R.
Since G is semisimple, we may choose a G-invariant complement to I, so

M=?l,...,<|/I)G

Thus Y is the good quotient X/G. We will show, under these circumstances, that
X^ -> Y^ is a universal categorical quotient in the category of complex analytic spaces.

Suppose A is a complex analytic space with a morphism a: A -> Y^. We may as well

assume that A is a closed subspace of a Stein open set V C C"1. Let X' = A'* x A"1,
with G acting trivially on the second factor. The quotient Y' = X'/G is equal to

Spec(R) X A"1. Note that the first case treated above applies to <p ' : X' -> Y'. Let

U = Spec(R) X V, an open subset of (Y')^ = Spec(R)an x C^. Note that A is now
a closed analytic subspace ofU (interpreting it as the graph of the map a). Furthermore,

X X y A == (yT^A) n (X^ x C"1)

is a G-invariant closed analytic subspace o f W = (y^'^U). Denote also the projection
by 9 : X"1 Xyan A -> A. Suppose Z is a complex analytic space, and /: X Xy A -> Z

is a G-invariant morphism. We have to show that/factors through A.

Set theoretically,/must factor through A. For if [x^ u^) and (x^, u^) are two points
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in X^ XyanA which map to the same point in A, then u^=u^ and 9(^1) = (p^).

Thus the closures of the orbits of x^ and x^ intersect in X^. Hence the closures of the
G-orbits of (^, ̂ ) and (A;g, u^) intersect in X^ XyanA. Since the map/is G-invariant

and the space Z is separated, this implies that/(^i, u^) =f[x^u^. Hence we obtain
a function g : A -> Z such that / == g o 9.

Recall from the earlier part of the proof that there is a subset ^"^O) C X' such

that the map ^(O) -^Y' is proper and surjective. Furthermore, ify eY' then (JL'^O)

meets the unique closed G-orbit in ((p')"^./), cf. [GS] [KN] [Ki]. Let EC X^ XyanA

be the intersection of ^~
1
{0) with X^ XyanA. It is proper over A. It also surjects

onto A, because ify eA then X^ XyanA contains the closed orbit overj/'. Suppose

SC Z is a closed subset. Thenjf-^S) = p^CT^S)) is a closed subset of X^ XyanA.

Furthermore, ^(S) == ^(/"^S) n E). But since E is proper over A, the image in A

of a closed subset of E is closed. Thus ^"^(S) is closed. This proves that the map g is
continuous.

We have to show that g can be given a structure of morphism of complex analytic

spaces. (This structure may not be determined by the function g we have defined so

far, if A is not reduced.) Cover Z by open sets Z^ which have embeddings Z^ C C^

Then ^"^(ZJ are open subsets which cover A. In order to define the map g : A -> Z,

we can localize, replacing A by a smaller open subset which maps into some Z^. We

may replace Z by Z^, so as to reduce to the case where Z CC^ Keep the assumptions
and notation established for A above.

Suppose z : Z -> C is one of the holomorphic coordinate functions from among

those which induce the embedding ZCC^ We obtain a G-invariant holomorphic
function zf: X^ Xyan A -> C, and we would like to show that there is a unique holo-
morphic function b on A such that zf== 9* (6).

For uniqueness, note that if b^ and b^ are two such functions which do not agree,

then there is an artinian complex space A' C A such that the restrictions b[ and b^ do

not agree on A'. But an artinian complex space is the same as an artinian scheme, so

X^ XyanA' is algebraic over A'. Then ^(b[) are algebraic functions whose associated

analytic functions are equal to/. Hence ^*{b[) and ^{b^) are equal as algebraic functions.

By the universal categorical quotient property for X -> Y in the algebraic category,

this implies that b[ = V^ contradicting the possibility that b^ and b^ could be different.

This shows that b is unique if it exists (which makes possible the patching arguments

necessary to undo the previous reductions in the size of A).

Now X^ X yan A is a closed analytic subspace of the Stein open subset W C C" + m.

Thus the holomorphic function zf on Xs"1 X yan A is the restriction of a holomorphic

function e on W. We may replace e by its average with respect to the action of the

compact group K. This average still restricts to zf, since the latter is K-invariant. The

new e is K-invariant, in other words the two different pullbacks of e to G X W agree

on K X W. Since K is a real form of G which meets every connected component of G,

any connected component of G X W contains a totally real subset of half the real
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dimension where the two different pullbacks agree. Therefore the two pullbacks agree

on G X W, meaning that e is G-invariant.

Apply the result proved in the first case above, to the map <p' : W -^ U. It says

that there is a holomorphic function b' on U such that ((p')*^') == e
' Let b be the res-

triction of b' to the subspace A. Then 9* (6) is equal to the restriction of e to Z XyA,

in other words 9*(&) === zf. Applying this to all of the coordinate functions z which give

the embedding ZCC^ we obtain a morphism g : A ->• C^ such that y== 9*(^). In

particular, the continuous function associated to g is equal to the continuous function

defined above, so g maps A to Z set theoretically, at least. Suppose that z ' is a function

on an open subset of C^ which vanishes on the subspace Z. Then z ' g is a holomorphic

function on an open subset of A such that <p*(^ g) = 0. By the uniqueness proved above,

this implies that z ' g = 0. This shows that g maps the complex analytic space A to the

complex analytic space Z. This completes the proof that 9 : X^ -> Y^ is a universal

categorical quotient, in this second case where X is a closed subset of A^.

Finally, we will complete the proof of the proposition in general. Suppose that

X is quasi-projective with G-action linearizing an ample line bundle, that all points

of X are semistable, and that 9 : X ->Y == X/G is the good quotient of [Mu], Let

L denote the very ample line bundle on Y (its pull-back to X being the initial linearized

line bundle). The question of whether <p is a universal categorical quotient in the analytic

category is local on Y in the analytic topology, hence in particular it is local in the

Zariski topology. Thus we may replace Y by a Zariski open subset. Choose a section s

of some power of L on Y, such that the subset s =1= 0 is affine. Then replace Y by this

subset. Now Y is affine and L is trivial. The map 9 is affine, so X is affine too. The
group G acts in a locally finite way on H°(X, 0^], in other words that space is an

increasing union of finite dimensional G-invariant subspaces. Hence we may choose a

finite dimensional subspace VC H°(X, (P^), invariant by G, which gives an embedding

of X into the affine space V*. The action of G on V* is a linear representation, and the

embedding X C V* is compatible with the action of G. This places us in the situation

covered by the second case treated above, so 9 : X1"1 ->• Y^ is a universal categorical

quotient. This completes the proof of the proposition. D

The moduli spaces

Now we return to the following situation: S is a base scheme of finite type over C,

X is projective over S, and A is a sheaf of rings of differential operators on X over S.

Fix a relatively very ample ^x(^) ^d a polynomial P, and let Q be the parametrizing
scheme constructed in Theorem 3.8. The group G = S1(P(N), C) acts on Q. We have

seen (in Corollary 4.6) that there is a G-linearized very ample invertible sheaf 3? on Q,

and that Q == Q88 for this action. The good quotient is M(A, P) == Q,/G.

Corollary 5.6. — The associated complex analytic space MP^A, P) is a universal categorical

quotient of Q^ by the action of G in the category of complex analytic spaces.
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Proof. — This follows from Proposition 5.5, noting that if S is not quasiprojective

then at least it can be covered by quasiprojective open sets; the quotients obtained

from the previous proposition then glue together to give a quotient over S. D

We record here the universal property of M^A, P) implied by this corollary.

Let M^'^A.P) denote the functor which, to each morphism S' -> S^ of complex

analytic spaces associates the set M^'^A, P) (S') of isomorphism classes of ^-semistable

A'-modules € on X', 6^-coherent and flat over S', with relative Hilbert polynomial P.

Suppose Z -> U —>• S^ are morphisms of complex analytic spaces, and

M^A.P) X g a n U ^ Z

is a natural transformation of functors of complex analytic spaces over U. Then there

exists a unique factorization through a morphism of complex analytic spaces

M^A.P) XganU ->Z.

This follows from the same arguments used in the proof of Theorem 1.21.

The representation spaces

We have a similar result for the representation spaces R(A, ^, P) constructed at
the end of § 4.

Lemma 5.7. — Suppose that the fibers X, are irreducible and ^ : S -> X is a section. The

space R^A, ̂ , P) represents the functor which to each analytic space S' -> S associates the set

of pairs (<?, (B) where € is a p-semistable ^'module on X' over S', with Hilbert polynomial P,

satisfying condition LF(^), and P : !;*(<?) ^ 0^.

Proof. — This follows by applying Proposition 5.3-5.5 to the construction of the

representation space given in the previous section. D

Standardized sequences of diffeomorphisms

Suppose that X -> S is a smooth projective morphism. This does not imply that

X itself is smooth (we cannot avoid considering nonsmooth, and even nonreduced base

schemes S). To treat convergence questions in the relative case, we must investigate

the relationship between the various different fibers Xg.

Suppose s(i) e S is a sequence of points converging to t e S. We construct a

standardized sequence of diffeomorphisms Y,: X^ ^ X^, defined for i > 0. Here X^° denotes

the G
00 manifold underlying Xg. Choose a sufficiently small open neighborhood U C S"1

of t and a finite open covering/"^U) =: X^j == U Z^ together with holomorphic tri-

vializations (^a?./) : ̂ a s V^ X U over U, where V^C X^ are open discs and f\ X^j

is the projection.

Choose a sufficiently small neighborhood N of the diagonal

x^cNcnx /
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where the product is taken over the same index set as the covering. Let T C n^[0, 1]

denote the set of points r with 2^ ̂  == 1- ^e can choose a C
00 function

pi: N x T -> X,

such that (JL(^, r) = x if A; is in the diagonal X^ and such that if r^ == 0 then ^(^3 r.)

is independent of the a-th coordinate of x. In order to choose p., note first of all that

N can be given a structure of fiberwise convex open neighborhood of the zero section

in a vector bundle over the diagonal X^. Let m: [0, 1] x N ->N denote the scalar

multiplication for this vector bundle structure. We may proceed by induction and

assume that p.̂  : N X ^T -> X< is already chosen. Choose a G
00 function u: T -> [0, 1]

so that u(r) === 1 for r e ^T and z/(r) =0 for r in a disc in the middle of T. Choose a

function T : T -> 8T which is G
00 except on the interior of the disc where u vanishes,

and such that T^ is the identity. Then put [L{x, r) == ^(m(u[r), x), r(r)).

Choose a partition of unity 1 == Sa u^ with M^ compactly supported in Z^, in

the following (< G00 " way. Fix an embedding XC Vs
 x S; and choose open sets Z^8

of y X U restricting to Z^ in X^j. Then let { u^, UQ } be a partition of unity for P^ X U

for the covering consisting of the Z^ and the complement of X^j. Put Uy, == u^
e
\^.

Our trivializations have first projections ̂  : ̂ a -> ̂ ( • For x e X^j set

^)=(...,^),...)eIIX,;
a

in cases where x f Z^, choose a point at random for the value of ^a{x). Similarly, set

u{x) ==(... , u^x), ...) e T. Then put

YW=^W,^)).

From the above properties of pi, there is a smaller open neighborhood t e U' C U such

that for any s e U', T[^ is a G00 diffeomorphism from X, to X^. Put T, == Y|x^y
this is our sequence of standardized dijfeomorphisms, defined for i > 0. A different choice

of trivializations, partition of unity, etc. yields a different sequence of diffeomorphisms Y^.
These two sequences are related in the following way: for any k ^ 0, T '̂ Y,"1 -^ 1^

in the G*' norm for diffeomorphisms of X^, as i -> oo.

We say that a sequence of diffeomorphisms Y,' : X^ ^ X^° is a standardized

sequence if for one or for any collection of trivializations, partitions of unity, and [L as

above, the resulting standardized sequence Y^ gives Y^Y,"1 -> 1̂  in any G^ norm

as i -> oo.

Suppose Y^ is an algebraic vector bundle over X. Let Vg denote the associated

G°° vector bundles on the fibers Xg. Fix a standardized sequence of diffeomorphisms Y,,

according to our original construction. Then we can construct, in a similar way, a
standardized sequence of bundle isomorphisms ^ : Y, *(V^) ^ V^. Use a lifting of the (JL

constructed above to a bundle map (still a projection) from the direct sum © pr^(V()

over N x T, to the bundle V^ over the diagonal. Again, say that '̂ is a standardized
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sequence of bundle isomorphisms over any standardized sequence Y^ if, for some

standardized sequence ̂  over Y, constructed as described, the ̂  ^~1 —^ 1 in any C? norm

for diflfeomorphisms of the total space of V<.

Bundles in the split almost polynomial case

Suppose that X is smooth and projective over S, with connected fibers. Suppose

that ^ : S -> X is a section. Suppose (A, ^) is a split almost polynomial sheaf of rings

of differential operators on X over S (see § 2). Let H == Gr^A)* and K = A2 H, with

the splitting ^ : H* ->Ai, the derivation 8 : O^ -> H corresponding to the symbol of A,

and the morphism of sheaves y '- H -> K®^Ai described at the end of § 2.
Fix a point s e S. Let ̂  denote the sheaf of G00 functions on X,, and let H^°

and K^° denote the G°° vector bundles (or locally free sheaves over ^°) corresponding

to H, and K,. Note that H^° == H,®^ ̂  and similarly for K. We can extend the

derivation 8, to a derivation

800 , <2?00 . T_TOO

8 • ^8 -> ^S

by noting that 8, corresponds to a morphism O^ -^Hg, which gives ^^(Xg) —> H^°.

The derivation 8^° is the composition of the usual 8 with this morphism.

Fix a polynomial P which corresponds to the relative Hilbert polynomial of a

locally free sheaf of rank n on X. Let R^^A, ^, P) denote the scheme parametrizing

pairs (<?, p) where S is a ^-semistable A-module with Hilbert polynomial P, satisfying

condition LF(X), and (3 : ̂ (<s?) ^ ̂  is a frame (see the end of § 4).

Suppose (<?, p) corresponds to a point y eR^^A,, ^(^), P). Let E denote the

G°° vector bundle on Xg corresponding to the locally free sheaf S^ and let 9 : E -> A^^E)

denote the operator defining the holomorphic structure of S. Thus S^ is the sheaf of

sections e of E with H){e) == 0. The frame P gives (B : E^ ^ C". The A-module structure

of S is determined by an operator

(pg: S -> H ®^ €

satisfying the Leibniz rule (pg(^) = ^<peM + ^sW
 e

^
 and 9e Y^e == 0- ^Y enforcing the

same Leibniz rule using the derivation 8^ we obtain an operator

9 : E -> H00 ®^oo E.

This satisfies the equation

a<p + (pa = o,

an equation of operators from E to A^^H^ ®^oo E). Given any such operator, we can

form an operator

9' Y : H00 ®<^o E -^ K°° ®^oo E.

If y comes from a A-module structure, then 9' y9 == 0- We have the following converse.

16
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Lemma 5.8. — Suppose E z'j a C00 zw^r bundle on X, z^A a holomorphic structure given

by the operator 8, and an operator

9 : E -> H00 ®^ E.

Suppose that 8 is integrable, By + 9^ = 0, ̂ rf 9' yep = 0. Then there exists a unique A-module S

on X,, together with isomorphism S>®^ ̂  ̂  E, J^A ̂  ̂  operators B fl^rf 9 ar<? those

given by §.

Proof. — From the integrability of ~8 we get a holomorphic vector bundle <?an.

The second equation gives an operator yt" on sheaves of holomorphic sections. Serre's

GAGA theorems give an algebraic object (<^, <pg), and the equation 9' y9 implies y^ YPe-
This gives a A-module structure for S (Lemma 2.13). D

A convergence statement for Hilbert schemes

We would like to use this analytic description ofA-modules to study the question

of convergence of a sequence of points in R^^A, ^, P). Before getting to the theorem,
we need the following statement about convergence in Hilbert schemes.

Suppose X -> S is smooth. Supposed is a locally free sheaf over X; let W denote

the corresponding G
00 bundle. Let Hilb^20^ P) denote the Hilbert scheme over S

of quotients of H^ which are locally free with Hilbert polynomial P. Suppose s{i) is a

sequence of points converging to t in S. Choose a standardized sequence of diffeo-

morphisms Y^: X,^ ^ T and a standardized sequence of bundle isomorphisms
^:^(W^W<.

We may assume that there exists an open set U^ C X< meeting each connected
component of X^, such that for u e U^ there exists a section ^: S' -> X defined on a

usual open neighborhood S' of t (which also contains s{i)), such that SuW = u and
V,(^(^(i))) == u for all i. We may suppose that S' is part of an (Stale neighborhood and

that the sections are defined algebraically. (The open set U^ consists of the points where

only one element of the partition of unity used to construct the T, is nonzero.)

Lemma 5.9. — In the above situation, suppose y{i) e Hfflb^^^^p P) and

z e Hflb1^30^, P). These correspond to quotients which we denote in terms of G
00

 bundles

as a,: W,^ -> E, -> 0 and a: W< -^ E -> 0. Assume that there exists a sequence of bundle

isomorphisms ^ :Y^,(E,)^E such that, with ^ : W ( - > E - > O denoting the transported

morphisms b, == T), Y, ̂ {a,) ̂ ~
1
, we have b, -^ a in L1

 norm. Then the points y{i) approach

the point z in Hfflb^^^; P).

Proof. — It suffices to show that there is a subsequence { i ' } such that j?(t') -> z.

To see this, note that in order to show thatj^(z) -> z it suffices to show that any sub-

sequence has a subsequence which approaches z.

If b^ -> a in L1 norm then there is a subset S C X^ of full measure and a subse-

quence { f } such that by(u) -> a(u) for u e S ([Ru], Exercise 18, p. 76-77). Replace
our sequence now by this subsequence.
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The intersection S n U is a set of positive measure. There exist points u^ ..., u^ e S

such that, denoting ^. by ^,5 the morphism
k

Hfflb^^ P) -> n Grassy ̂  ^)
3=1

is a locally closed embedding. Although this is well known, we briefly note the proof.

Choose an embedding

^ : IfflbOT, P) ̂  Grass(H°(X/S, ̂ (w)), P(w)).

Denote with a script € the algebraic quotients corresponding to points of the Hilbert

scheme. The set of quotients € which occur is bounded. We may choose the points

u^ e S n U such that there are sufficiently many sections ^ in a general enough position

so that

H°(X^^r(m))^®^(^)^

and for any quotient € on a fiber X, over s e S', we have

H°(X^E(m))^®^(m)^.

Let T == n^iGrass(^(^(w)),^). Denote a point in T by t == (^, . . . ,^) where

t y : ^(^(w)) -> V .̂ is a quotient of rank n. Let T^C T be the locally closed subset whose

S^-valued points (for S" -> S') are those t such that composition

F,: H^X'/S", iT{m)) ̂  © ^(^(^)) (<1>"'^ © V,
^ == i 3 == i

has an image which is a locally free sheaf or rank P(m) over S". This gives a natural

map F : TI -> Grass(H°(X/S, ^(m)), P(m)) (S"). If c: IT -> S -> 0 is an S"-valued

point in HUb"™^, P) then we obtain a point t e T(S") and a diagram

H^X'VS",^^)) —> H°(X'7S", ^(m))

i i
®;-, ?(<>'(»)) ——^ ©;-,v,.

The vertical arrows are injective, so the vertical map on the right gives an isomorphism

between H°(X'7S", <?(m)) and the image of the map F( defined above. But the top

row is the point ̂ ) e Grass(H°(X/S, ')T(w)), P(w)) (S"). Therefore the diagram

Hflb^or, P) ——————> TI

\ i
Grass(H°(X/S, i^{m)}, P(m))

commutes. Since the diagonal map <?„, is a locally closed embedding, the map

Hilb"""^ P) -^ TI is a locally closed embedding.
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We complete the proof of the lemma. Let A,, :^(w)^^ -> ^(m)^.^ denote

the points in Grass (^ iT{m), n)^ corresponding to the quotients a, over the

points S,(^)), and let A;: ̂ (m)^ -> <?(w)^ denote the points in Grassy ̂ (m), n)^

corresponding to the quotient a. The fact that ^,) -^a(u,) implies that A,, ->A^

The collection (A^ , . . . , A^) (resp. A;, .... A;) is the image in T ofj/(z) e Hfflb^^, P)
(resp. z). Thusj/(i) -> z. n

Suppose that we are in the situation of the previous lemma. Since a universal

family of quotients exists, andj^(i) -> z, we can choose a standardized sequence of bundle

isomorphisms r^: Y^(E,) ^ E. Suppose that there is a subbundle i^CiF which is

locally a direct summand. Then the associated G
00 bundles V, are direct summands

of W, and we can choose the standardized sequence of isomorphisms ^' such that
W.v,j^v,.

Lemma 5.10. — Under these circumstances, suppose that the morphism a: V^ -> E is

surjective. Suppose that the morphisms b, |̂  approach a in G° norm. Then the automorphisms ̂  ̂ 1

approach the identity in C° norm. D

Proof. — Choose sections z^, ...,»„ of Y^ over an open set in X, so that av^ L are

a frame for E. Then ̂ {a, v, \^) -> av, |̂  and ̂ (v, \^ -> v, |̂  in G° norm. We have

n l̂x^) =Wv^)),

so the hypothesis implies that ^{a, v, \^) -^ av, |̂  in G° norm. Comparing these,

^ ^i"" -> 1 m G° norm. D
Suppose ^ : S -> X is a section, and let Hab1^30 ,̂ ^, P) denote the frame bundle

over Hilb^^; P), parametrizing pairs (<?, (B) where E is a quotient of ̂  and
P : S*(<^) ^ ^w is a frame along the section.

Corollary 5.11. — Suppose

y{i) e Hab^OT^, i;(^')), P) a^ ^ e Hfflb^^, ^W, P),

corresponding respectively to pairs (E,, (BJ <W (E, p). Suppose that there exists a subbundle

V C IT which is a local direct summand, that the ^ are chosen compatibly, and that a: V, -> E

is surjective. Suppose that there exist bundle isomorphisms T], : Y, ,(E,) ^ E such that

b, = -^Y^a,) ^-1 approach a in L1 w?rw, a^ ^A^ ^[^ ->a|v< ^ GO ^m- •S'̂ o^ that

P, ̂ ~1 -> P- Then the points^) approach z in HHb̂ ,̂ ̂  P).

Proo/: — By Lemma 5.9, the points in IBIb^ ,̂ P) converge. By Lemma 5.10

the ^ are comparable to a standardized sequence of bundle isomorphisms ^td, so

P^7]?*1)"1 -'' P- This implies that the points in the frame bundle converge. D

Convergence in R^^A, ̂  P)

Return to the case of a split almost polynomial A on X smooth over S. We give

some notation to make the statement of the next theorem simpler. Suppose jy{i) is a
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sequence of points and z is another point in R^^A, ^, P). Let s{i) and t be their

images in S. Let (<^, j3^) an
^ (^ P) denote the A-modules with frame over X^^ or X,,

corresponding to the points y{i) and z. Let E .̂ and F denote the underlying G
00 bundles,

with operators 9-^.
 anc^ ?E- on ̂ , or ^ and 9 on F. Suppose that a standardized sequence

of diffeomorphisms Y,: X^ ^ X^° is fixed. Suppose we have chosen a sequence of
bundle isomorphisms ^: Y^ ^(E^) ^ F. Then by transport, we obtain a sequence of

operators

yi^^,^,*^)

and ^S,̂ A)

on the bundle F. Let x == ^(t) and ^(z) == ^{s{i)) in X,. We obtain a sequence of frames

P,: F^ s C" by composing the ̂  with 7],"1.

Fix q > 0, large compared with the dimension of the fibers Xg. Recall that L^

denotes the Banach space of functions whose first k derivatives are in L®. If V is a
G

00 bundle, let L^(V) denote the Banach space of sections of V whose first k derivatives
are in L3 (we supress the subscript k when it is equal to 0). The norm is the sum of the
L® norms of the derivatives in question.

Theorem 5.12. — Suppose y{i) is a sequence of points in R^^A, ̂ , P) lying over

s{i) G S, and z is a point lying over t e S. Suppose that s{i) converge to t in the analytic topology

of S. Fix a standardized sequence of dijfeomorphisms Y^: X^ ̂  X^. Let T denote the complexified

tangent bundle of X^. Let (E^, 8 .̂, 9^3 PE,) ^ ^ objects corresponding to y{i)^ and let

(F, ,̂ 9, (B) be the object corresponding to z. Then the points y[i) converge to z in the analytic

topology of R^^A, ̂ , P) if and only if there exists a sequence of bundle isomorphisms

7]^: Y^ ^(E^) ^ F such that, with the above notations, the following convergence statements hold:

the operators 9, converge to 9 in the operator norm for operators from L?(F) to L^F ® T) $ the

operators 9^ converge to 9 in the operator norm for operators from L^(F) to L^F ® T); and the

frames ^: F )̂ ̂  C" converge to (B : F^ ̂  C^ (note that the condition that Y^ are standardized

implies x(i) ->x).

Proof. — If the points y(i) converge to z then we can choose ^ to be a standardized

sequence of bundle isomorphisms, which will have the required convergence properties.

Suppose we are given a sequence of bundle isomorphisms T], as in the statement
of the theorem. Fix a number I in the same way that N was fixed in the construction

of Theorem 3.8. Let M denote the G
00 line bundle on X^ corresponding to the holo-

morphic bundle 0^(1). Let ^ denote the operator giving the holomorphic structure.

We can choose a sequence of standardized bundle isomorphisms Y^ ,*(^x rW) ^ M
converging to the identity in any norm. Let ~9^^ denote the operators on M obtained

by transporting the holomorphic structures from 0-s.,M)^ These converge to 8^ in any

operator norm. Note that the operators 8, and 9^ ^ do not have type (0, 1) on X^, as
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the diffeomorphisms Y^ do not necessarily respect the holomorphic structure. These

operators have values in the full complexified tangent bundle T.

Setting ^p0M,i == ^0 1 + 1 ® ^M,i we obtain a sequence of operators

^®M,^L?(F®M) -^(F^M^T),

which by hypothesis converge to ^ p ^ M ^ ^ 0 ! + l0^ m t^ operator norm for
operators from L? to L

0
.

Choose G
00 metrics for K( and the holomorphic bundles (F, 8) and (M,^). The

kernel K = ker(^p^) is finite-dimensional, so we may choose a continuous projection

CT : L?(F ® M) -^ K. Letj : W <-> L^F ® M ® T) denote the space of vectors orthogonal

to the image of 8-p^-^ with respect to the L2 inner product given by the chosen metrics.

Harmonic theory implies that W is a closed subspace, and that the map

f^ B^M + o +j : L?(F 0 M) C W -> L^F ® M ® T) C K

is an isomorphism. Since &p(g)M,i -> ^F®M m
 operator norm, the maps

def —

Ji
 == ^F®M,i + ^5 +J

are isomorphisms for i > 0, and the inverses converge^"1
 ->f~

1 in operator norm.

The image ̂ "^(K.) is equal to the kernel of

^w+^L^F^eW^L^F^M^T),

but this kernel contains the kernel of^p^^. By the hypothesis on ^, the kernel of^p^^^

has the same dimension as K, therefore

/^(K) = ker(a^M,i) C L?(F ® M).

Rename the resulting maps as ^ : K -> L^(F® M). These converge to the original

inclusion g : K -> L^(F ® M). Fix an isomorphism K ^ C^. The maps ^, when trans-

ported back using Y^ and ^-1, give frames YI ^ ^(^-s^)? BI^)) ^ C^; and the map ^

corresponds to a frame y ^ H°(X(, F^)) ^ C^. We obtain a sequence of points (E^, y^ Pi)
in the parametrizing scheme T™^, the frame bundle over Q1'1™ (see the discussion

preceeding Theorem 4.10). We claim that these points converge to the point (F, y, (3).

This statement will imply the theorem.

Let IT = A! ®^ ^x^)^- Recall that Q™30 embeds as a locally closed subset in

the Hilbert scheme Hilb1 '̂)̂ ; P) of quotients of IT (note that the condition LF(X),

that gr(^) is locally free, is stronger than the condition lf(X) that S is locally free).

The frame bundle T^^ embeds as a locally closed subset in the parameter scheme
Hyyf(X)^ ^ p) ^ locally free quodents of IT provided with a frame along the

section ^. Keep the notation of Lemma 5.9. Choose a standardized sequence of iso-

morphisms ^ : ̂ ^(W^) ^ W(. Let ^ : Wg(^ -> E, -> 0 be the quodents corresponding
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to the A-modules E, with the frames Yi constructed above. Transport to X^ using the

isomorphisms ^ and •/),: we obtain quotients

a\: W, -> F -> 0.

The frames (B, also give frames ^ : F^(^ ^ C", which converge to the frame (B : F^ ^ C\

This takes care of the part of the hypotheses of Corollary 5.11 concerning the frame.

In order to apply Corollary 5.11 we must show that the maps a[ converge, in terms

of the fixed bundle structure of F, to the map a: W< -» F -> 0 corresponding to the

A-module F with its frame y-
Locally we can choose a frame (v, Xi, ..., \) for A^ (considered as left (P^-mod\ile),

such that v corresponds to the identity in Ag ^ 0^, and the \ give a frame for H. This

collection of sections is then also a frame for A^ considered as a right ^"•"^dule. Let

^15 • • - 5 ^W) denote a frame for ^x(~ N)^^ consisting of the standard frame for C^

times a nonvanishing section of ^("^ N). Then

{v®^,®^}

s a frame for IT. Evaluation at any s e S gives a frame { v 0 ̂ (^), X, ® ^(^) } for W,.

When transported to W, by our standardized sequence of isomorphisms, the frames

for W,^ converge to the frame for W<. Let ^ = Ao®^ ^x(— ^p(^ and note that

a: V< -> F is surjective. The elements v®&,(j) provide a frame for V,. It suffices to

prove that the sequence of sections

^.(^W))) ^ ^(^W)))

converge to a{y ® ̂ )), in G°, or <z(X, ® ^(?)), in L1, respectively. The image a^ ® ^(^))
is the section ^(?) of E, corresponding to the k-th element of the frame chosen for

H°(X,, E,(N)) via the local trivialization of 0^— N). The ^c^{s(i)) converge to c^t)

in L^ and hence in C°. On the other hand,

^\®W)=^(c,{s))^(s))

where 9,: E, -> Eg ®^ H is the operator giving the A-module structure of Eg. We

obtain

^A®W))) -^(pi) (^M) W,.^))-

The operators T], ^(9^) converge to <p in the operator norm for operators from L^ to L^

by hypothesis, the Y,^ X,(^) converge to \^{t) in any norm, and the ^{c^s{i))) converge

to c^(t) in L?, so

7)^,(X,®^(^))) ^(X,00^))

in L^ and hence in L
1
. By Corollary 5 .11, (E,, y? P,-) converge to (E, y, P). D
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