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Moduli spaces for topologically quasi-homogeneous functions.

Yohann Genzmer, Emmanuel Paul

October 4, 2011

Abstract

We consider the topological class of a germ of 2-variables quasi-homogeneous complex analytic func-

tion. Each element f in this class induces a germ of foliation (f = constants) and a germ of curve (f = 0).

We first describe the moduli space of the foliations in this class and give analytic normal forms. The clas-

sification of curves induces a distribution on this moduli space. By studying the infinitesimal generators

of this distribution, we can compute the generic dimension of the moduli space for the curves, and we

obtain the corresponding generic normal forms. 1

Introduction

From any convergent series f in C{x, y}, we can consider three different mathematical
objects: a germ of holomorphic function defined by the sum of this series, a germ of
foliation whose leaves are the connected components of the level curves f = constants,
and an imbedded curve f = 0. Composing f on the left side by a diffeomorphism of (C, 0)
may change the function but nor the foliation or the curve. Multiplying f by an invertible
function u may change the function and the foliation but not the related curve. Therefore,
there are three different analytic equivalence relations:

• The classification of functions (or right equivalence):

f0 ∼r f1 ⇔ ∃φ ∈ Diff (C2, 0), f1 = f0 ◦ φ.

• The classification of foliations (or left-right equivalence):

f0 ∼ f1 ⇔ ∃φ ∈ Diff (C2, 0), ψ ∈ Diff (C, 0), ψ ◦ f1 = f0 ◦ φ.

• The classification of curves:

f0 ∼c f1 ⇔ ∃φ ∈ Diff (C2, 0), ∃u ∈ O2, u(0) 6= 0, uf1 = f0 ◦ φ.

In what follows, we are going to consider mostly the two last equivalence relations: as
shown in [1], when f has an isolated singularity, the difference between the two first equiv-
alence relations are minor. Finally, we emphasize that in our work, we will always require
that the conjugacies that appear above will respect a fixed numbering of the branches of
f = 0.

In the same way, one can define topological classifications requiring only topological
changes of coordinates. The moduli space of a function, foliation or curve is the space of
analytic classes in a given topological class.

1Keywords: holomorphic foliation, moduli of curve, singularities.

A.M.S. class.: 34M35, 32S65, 32G13
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In what follows, we will denote by T the topological class of a quasi-homogeneous
function: we recall that a germ of holomorphic function f : (C2, 0) → (C, 0) is quasi-
homogeneous if and only if f belongs to the jacobian ideal J(f) = (∂f∂x ,

∂f
∂y ). If f is

quasi-homogeneous, there exist coordinates (x, y) and positive coprime integers k and l
such that the quasi-radial vector field R = kx ∂

∂x + ly ∂
∂y satisfies R(f) = d · f , where the

integer d is the quasi-homogeneous degree of f [14]. In these coordinates, f has p cuspidal
branches and maybe axial branches, that is to say, f is written

f = xn0yn∞

p∏

b=1

(yk + abx
l)nb (1)

where the multiplicities satisfy n0 ≥ 0, n∞ ≥ 0 and nb > 0. The complex numbers ab
are non vanishing numbers such that ab 6= ab′ . Using a convenient analytic change of
coordinates, we may suppose that a1 = 1.

A germ of holomorphic function f is topologically quasi-homogeneous if the function f
is topologically conjugated to a quasi-homogeneous function. Therefore, following [11] and
[3] its desingularization by blowing up’s is the same as a quasi-homogeneous function, that
is to say: the exceptional divisor is a chain of components isomorphic to P 1(C), the strict
transform of the cuspidal branches intersect the same component, the principal component,
and the strict transform of the axes, if they appear, intersect the end components of this
chain (see Appendix A and figure (6)). The previous expression (1) is a topological normal
form for such a function.

A topologically quasi-homogeneous function is not necessarly quasi-homogeneous. Ac-
tually, if we fix the analytic invariants ab which corresponds to cross-ratios between the
cuspidal branches on the principal component, the analytic class of a quasi-homogeneous
function is unique in its topological class T [14].

The first aim of this paper is to describe the moduli space of a foliation induced by a
topologically quasi-homogeneous function which is defined by the quotient

M = T /∼

We give the infinitesimal description of this moduli space by making use of the cohomolog-
ical tools considered by J.F. Mattei for any germ of foliation in [12]: the tangent space to
the moduli space is given by the first Cech cohomology group H1(D,ΘF ), where D is the
exceptional divisor of the desingularization of f , and ΘF is the sheaf of germs of vector
fields tangent to the desingularized foliation. Using a particular covering of D, we give
a triangular presentation of the C-space H1(D,ΘF ) in Theorem (1.1). This description
leads us to consider triangular normal forms

Na = xn0yn∞

p∏

b=1

(yk +
∑

Φ(b,d)∈T

ab,dm
d)nb (2)

by perturbing the topological normal (1) with some monomials following an algorithm
described in the subsection (1.2). This family of normal forms turns out to be semi-
universal as established in Theorem (1.10). In this way, we obtain a local description of
M By a compacity argument, we finally give a global description of this moduli space
in Theorem (1.15) and Theorem (1.16) by proving that any function in T is actually
conjugated to some normal form Na , and that the parameter a is unique up to some
weighted projective action of C∗.

All the results of this first part can be extended to the generic Darboux function:

f (λ) = fλ1
1 · · · fλp

p
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with complex multiplicities λi. Nevertheless, we do not insert this extension here, since
we have previously explain in [8] how to perform it in the topologically homogeneous case.

The second part of our work is dedicated to the study of the moduli space of curves
in the quasi-homogeneous topological class. This problem is a particular case of an open
problem known as the Zariski problem. It has only a very few satisfying answer: Zariski
[16] for the very first treatment of some particular cases, Hefez and Hernandez [5, 6] for
the irreducible curves, Granger [9] in the homogeneous topological class and [2] for some
results which are particular case of our present results. Our strategy that we already
introduced in a previous work [8], differs from all this works: from our description of the
moduli space M, we consider the distribution C on M induced by the equivalence relation
∼c: two foliations represented by two points in M are in a same orbit of this distribution
if and only if they induce the same curve up to analytic conjugacy. Studying the familly of
vector fields that induce the distribution C on M, we compute the dimension of the generic
strata of the moduli space of curves M/C in Theorem (2.13). We give also an algorithm
in order to construct the corresponding generic normal forms in Theorem (2.14).

In order to keep a sufficiently readable text, we have postponed a lot of technical
computations in appendix.
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1 The moduli space of foliations.

1.1 The infinitesimal description.

We fix any class of function f in T which is not necessarily the quasi-homogeneous topo-
logical model. Let F be the foliation defined by f ◦E where E : M → (C2, 0) is the com-
position of the blowing up’s appearing in its desingularization process. Let D = E−1(0)

3



be the exceptional divisor.
Since the transverse structure of a foliation defined by a function is rigid, i.e. completely
given by the discrete data of the multiplicities, any topological deformation is an unfold-
ing as defined in [12]. We know from the same reference that the tangent space to the
moduli space of unfoldings of a foliation F is the vector space: H1(D,ΘF), where ΘF is
the sheaf on D of germs of holomorphic vector fields tangent to the desingularized folia-
tion. Furthermore, this vector space in a finite dimensional one, and gave a formula for its
dimension δ involving the multiplicities of the foliation at the singular points appearing
at each step of the blowing up process. In the present topological class, we will give a
alternative description of this tangent space which will allow us to construct normal forms.

Theorem 1.1. There is a one to one correspondance between H1(D,ΘF ) and the C-
vector space generated by the integer points ei,j in the triangle T in the upperhalf plane
(i, j), j ≥ 0, strictly delimited by the two lines of equations

ki− (k − v)(j − νc) = 0

li− (l − u)(j − νc) = 0

where νc = klp − k − l + lε0 + kε∞ is the multiplicity of the foliation on the principal
component of D – see Proposition (3.1) in Appendix A for the value of ε0 and ε∞ –, and
u and v are defined by the Bézout identity: uk − vl = 1, 0 ≤ u < l, 0 ≤ v < k.

We give a presentation of the tangent space to the moduli space of a function in the
topological class: (k, l) = (3, 5), p = 4, n0 = n∞ = 0, n1 = · · · = n4 arbitrary, in Figure
(6).

Proof. We will make use of the notations of Appendix A: D1,... Dc,... DN is the chain
of components of the exceptional divisor, Dc the principal component, θf the vector field
with isolated singularities

(
−∂f

∂y
,
∂f

∂x
)/g.c.d.(

−∂f

∂y
,
∂f

∂x
). (3)

Let U0 be an open set inM which covers ∪c
i=1(Di) excepted a small disc around Dc∩Dc+1

inDc, and U∞ an open set covering ∪N
i=c(Di) excepted a small disc aroundDc−1∩Dc inDc.

Let U be the covering of D by these two open sets U0 and U∞ - see figure (5) in Appendix
A. We know from the proposition (3.6) of the Appendix A that H1(D,ΘF ) = H1(U ,ΘF).
Therefore we have

H1(D,ΘF) =
ΘF(U0 ∩ U∞)

ΘF(U0)⊕ΘF(U∞)
.

In order to compute each term of this quotient, we consider the chart (xc, yc) of Dc (see
the atlas of charts defined in 3.1.2). The vector field

θis =
E∗θf
yνcc

has isolated singularities, and defines F on U0 ∩ U∞. Therefore we have:

ΘF (U0 ∩ U∞) = {
∑

i∈Z, j∈Z+

λi,j x
i
cy

j
c · θis }.

By the local monomial expression of E given by Proposition (3.1) in Appendix A, these
vector fields θ blow down on meromorphic vector fields with poles on the axes:

E∗θ =
∑

i∈Z, j∈Z+

λi,j x
il−j(l−u)+νc(l−u)y−ik+j(k−v)−νc(k−v) · θf .

4



Lemma 1.2. A vector field θ in ΘF (U0 ∩ U∞) extends to ΘF(U0) –resp. to ΘF(U∞)– if
and only if the meromorphic vector field E∗θ has an holomorphic extension on the y-axis
–resp. x-axis–.

Proof. Clearly, if θ has an holomorphic extension to ΘF(U0) which contains the strict
transform of the y-axis, its blow-down has an holomorphic extension on the y-axis. On
the converse, if E∗θ has such extension on the y-axis, θ is an holomorphic vector field on
U0∩U∞ whose meromorphic extension on U0 is holomorphic around the end point (D1, 0).
We claim that this vector field is holomorphic on the whole open set U0. Indeed, if the
multiplicities α1 and αc of this vector field on D1 and Dc are positive, the intermediate
multiplicities αi, 1 < i < c are also positive. This is a consequence of the relations

α2 = e1α1, αi+1 = eiαi − αi−1, i = 2, · · · c− 1

which can be obtained by using the change of charts, or by a similar argument as in
proposition (3.3). Since ei ≥ 2 for i = 1, . . . c− 1, we have

α2 ≥ α1, αi+1 − αi = (ei − 1)αi − αi−1 ≥ αi − αi−1, i = 2, · · · c− 1

which proves that this sequence increases.

End of the proof of Theorem (1.1). From the previous lemma we deduce that an element
θ in ΘF(U0 ∩ U∞) belongs to ΘF(U0) if and only if −ik + j(k − v) − νc(k − v) ≥ 0 and
it belongs to ΘF(U∞) if and only if il − j(l − u) + νc(l − u) ≥ 0. Therefore, there is an
explicit bijection Ψ between the C-space TC generated by the integer points ei,j in T and
H1 (D,ΘF) defined by:

Ψ :
∑

(i,j)∈T

λi,jei,j 7−→ [
∑

(i,j)∈T

λi,jx
i
cy

j
c · θis].

Remark 1.3. The two vectors (k − v, k) and (l − u, l) are tangent to the lines which
bound the triangle T. One can easily check that H1(D,ΘF) has a structure of O2-module.
Since we have x = xk−v

c ykc and y = xl−u
c ylc, the multiplication by x or y acts on this

representation by translations of these vectors. That is why we adopt the notation

~x = (k − v, k) and ~y = (l − u, l).

The two lines cut the vertical axis (i = 0) at the point (0, νc). The triangular representation
of H1(D,ΘF) is completely determined by this point (0, νc) and the two directions ~x and
~y ( see Figure (6) ).

This representation gives us a direct formula for the dimension δ of H1(D,ΘF), by
counting the integers points in the above triangle. In order to give an explicit formula, we
need the following fact (whose proof is left to the reader):

Lemma 1.4 (and notations). The number of integer points in an open interval ]a, b[ is
given by ]b]− [a[, where [a[ stands for the usual integer part n of a: n ≤ a < n+1, and ]b]
is the ”strict” integer part m of b defined by m < b ≤ m+ 1.

Since the intersections of the horizontal levels j with the two lines are given by aj =
k−v
k (j − νc) and bj =

l−u
l (j − νc) we obtain

5



Proposition 1.5. Let νc = klp−k− l+kε0+ lε∞ be the multiplicity of F on the principal
component of D. The dimension of H1(D,ΘF) is

δ =

νc∑

j=0

]
l − u

l
(j − νc)]− [

k − v

k
(j − νc)[.

Example. For the topological class given by (k, l) = (3, 5), p = 4, without axis, by
counting the integers points in figure (6) in Appendix C, or applying the previous formula,
we obtain that δ = 78.

1.2 Construction of the local normal forms.

We will construct here analytic models for topologically quasi-homogeneous functions
starting from the topological normal form (1). Since it already appears (p − 1) ana-
lytic invariants that is the value ab, we have to add δ − (p− 1) monomial terms of higher
degree. The construction to come is a priori based upon some algorithmic but arbitrary
choices. It will be justified by Theorem (1.10) in the next section.

In our previous work in [8], for the homogeneous topological class, in which the topo-
logical representative was p transverse lines, we straightened the fourth first lines on
xy(y + x)(y + a4,1x), added the monomials a5,2x

2 to the fifth line, a6,2x
2 + a6,3x

3 to
the sixth, and so on. We generalize this triangular construction here by making use of
the quasi-homogeneous (k, l)-degree. Nevertheless, the choice of the monomials and their
distribution between the branches is not so obvious here.

The figure (6) in Appendix C shows the procedure in order to construct the normal
forms associated to the topological class of

(
y3 + x5

)n1
(
y3 + a2x

5
)n2
(
y3 + a3x

5
)n3
(
y3 + a4x

5
)n4

.

The meaning of all the datas that appear on the figure will be detailed below.
The construction consists in three successive steps.

Step 1. The triangle of moduli. First, one has to draw the triangle T in the half plane
(i, j), j ≥ 0, bounded by the two lines given by Theorem (1.1).

Example. For the topological type (3, 5) with multiplicities (0, 0, n1, n2, n3, n4) considered
in Figure (6), since 2 × 3 − 1 × 5 = 1, we obtain that u = 2 and v = 1. We have
νc = 15× 4− 5− 3 = 52. Therefore the triangle is bounded by the lines:

5i− 3(j − 52) = 0, 3i− 2(j − 52) = 0.

Step 2. Choice of the monomials. Let d0 = kl the quasi-homogeneous degree of each
cuspidal branch yk − abx

l. One can easily check the following fact :

Lemma 1.6. For any d ≥ d0, there exists a unique monomial xiyj with quasi-homogeneous
degree d, such that j < k. We denote it: md.

Example. For (k, l) = (3, 5), we find m15 = x5, m16 = x2y2, m17 = x4y, m18 = x6,...

Therefore, to each horizontal line of index j, one can associate the monomialmd, d = kl+j.
We put them on a column on the right side in Figure (6).

Step 3. Choice of the branches. Now we will distribute these monomials between
the p cuspidal branches. The link between the monomial terms md and md+1 is the
multiplication by the meromorphic monomial term xiyj = md+1/md. According to remark
(1.3), this multiplication induces the translation ~td = i~x+j~y between two consecutive lines
of the upper half plane.

6



Lemma 1.7. For any d, the components of the translations ~td in the canonical basis of
the upper half plane (i, j) are either (1, 1) or (0, 1).

Proof. Let md = xiyj and thus ik + jl = d with 0 ≤ j < k. Suppose first that j − v ≥ 0.
Then md+1 = xi+uyj−v. Hence, in the the canonical basis, the components of ~td are

(i+ u− i) (k − v, k) + (j − v − j) (l − u, l) = (1, 1) .

If j−v < 0 then md+1 = xi+u−lyj+k−v . Indeed, we have 0 ≤ j+k−v < k and i+u− l ≥ 0
since from

(i+ u)k = kl + 1− (j − v) l > kl.

In this case, the components of ~td are

(u− l) (k − v, k) + (k − v) (l − u, l) = (0, 1)

Example. The meromorphic monomials form a periodic sequence of lenght 3 generated
by: y2/x3, x2/y, x2/y. The successive translations are ~t15 = 2~y − 3~x, ~t16 = 2~x − ~y,
~t17 = 2~x − ~y, ~t18 = ~t15 etc..., whose components are (0, 1), (1, 1), (1, 1). We put the
translations on a column on the right side of Figure (6).

Now we consider all the parallel paths issued from the integer points (i, 0) on the horizontal
axe, under the action of the successive translations ~td. Let (c, 0) be the intersection of the
left edge of the triangle with this horizontal axe. We consider the p integer points:

M1 := ([c[+p, 0), M2 := ([c[+p− 1, 0), . . .Mp := ([c[+1, 0).

Notice that the (p− 1) last ones are inside the triangle, while the first one is outside.

Proposition 1.8. The p paths issued from the initial points Mi, i = 1, · · · p, obtained by
the action of the successive translations ~td pass through all the integer points inside the
triangle T.

Proof. Let in and jn such that md0+n = xinyjn . Following the arguments in the proof of
Lemma (1.7), the sequence (in, jn) is explicitely defined by the following system





in = l+ uan − (l − u) bn

jn = −van + (k − v) an

ink + jnl = d0 + n

jn < k

where (an, bn) is defined by (a0, b0) = (0, 0) and

(
an+1

bn+1

)
=

(
an
bn

)
+

(
1
0

)
if jn − v ≥ 0

=

(
an
bn

)
+

(
0
1

)
if jn − v < 0.

Notice that an is the number of translations of type (1, 1) occuring in a path of lenght
n, and corresponds to the horizontal component of the sum of the n first translations. We
consider the left side of the triangle given by the equation

ki− (k − v)j + νc(k − v) = 0

7



and its intersections (xn, n) with the horizontal levels j = n. We have

xn =
k − v

k
(n− νc).

We consider the path starting from the last integer point ([c[+1, 0). The successive integer
points of this path are given by the sequence (pn, n) = ([c[+1 + an, n). We claim that the
moving point along this path does not go too far away from the left side of the triangle.
More precisely, we have:

(pn − xn) ∈]− 1, 1].

Indeed, by solving the above system, we obtain

an =
−jn
k

+ n
k − v

k
.

Therefore we have:

pn − xn = ([−νc
k − v

k
[+νc

k − v

k
+ 1) + (an − n

k − v

k
).

Clearly, the first part of the sum belongs to ]0, 1], and the second one, which equals to −jn
k

belongs to ]− 1, 0]. Therefore this path will catch all the first integer points of the triangle
on each level starting from the left side. If we consider the p parallel paths starting from
Mi, k = 1, · · · p, they will catch all the integers points of the triangle, since on each level
there is at most p points.

These p paths give us a unique way to distribute the monomials ab,dm
d on each branch,

putting the monomials encountered on the first path (starting from the right hand side)
on the first branch, and so on. With this path game, we do not miss any point of the
triangle according to the previous proposition. Each integer point of the triangle can be
represented by the new coordinates (b, d) (b: the index of a path or branch; d: the index
of a level, or degree). From our construction, they are related to (i, j) by the change of
coordinates

(i, j) = Φ(b, d) = ([c[+p+ 1− b+

d−1∑

d=kl−1

αd , d− kl), (4)

where αkl−1 = 0, and for d ≥ kl, αd is the horizontal component of ~td.

In conclusion, the general writing of the analytic normal forms for foliations defined
by a function in T obtained by our construction is:

Na = xn0yn∞

p∏

b=1

(yk +
∑

Φ(b,d)∈T

ab,dm
d)nb (5)

where a = (ab,d) belongs to the open setA of Cδ defined by a1,kl = 1, ab,kl 6= 0, ab,kl 6= ab′,kl
for b 6= b′, and Φ(b, d) is defined by (4).

Example. From the figure (6) in the Appendix C, the analytic normal form Na of the
foliation defined by a function f in the topological class (k, l) = (3, 5), p = 4, n =
(n1, n2, n3, n4) are given in the same Appendix: we add 2 monomials on the first branch,
16 on the second, 31 on the third and 29 on the last one.

Remark 1.9. Contrary to ~x and ~y, the translations ~td are not well defined in the coho-
mological module, since they don’t keep invariant the half planes corresponding to Θ(U0)
and Θ(U∞). For this reason, we will only consider their action on the global half plane,
i.e. on the set ΘF(U0 ∩ U∞) of cocycles.
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1.3 Local universality

The construction described in the previous section is justified, a posteriori, by the following
result:

Theorem 1.10. We fix a0 = (a0b,d) in A, and we consider the foliation F0 defined by

Na0 . The unfolding {Na, a ∈ (A, a0)} is a semi-universal one among the equireducible
unfoldings of F0.

This means that for any equireducible unfolding {Ft, t ∈ (T, t0)} which defines F0 for
t = t0, there exists a map λ : T → A such that the family Ft is analytically equivalent
to Nλ(t). Furthermore, the universality means that the map λ is unique and the semi-
universality only requires that the first derivative of λ at t0 is unique.

Proof - Let E be the common desingularization map for each normal form Na and F̃a

the foliation defined by Ña = Na ◦ E. Let Θ0 be the sheaf on D of germs of holomorphic
vector fields tangent to the foliation F̃a0 . We consider the unfolding {F̃a, a ∈ (A, a0)} of

F̃a0 .

Lemma 1.11. The unfolding {F̃a, a ∈ (A, a0)} is locally analytically trivial on each open
set U0, U∞.

Proof. One can locally solve the equation with the unknown variable θ:

θ(Ña) =
∂Ña

∂ab,d
. (6)

This is clear around a regular point of the foliation, and still true around a reduced singular
point: see [12]. Now, from Proposition (3.6) in Appendix A, we can solve this equation

globally on U0 and U∞. The vector field −θ + ∂
∂ab,d

is in the kernel of dÑa, and its flow

defines a local trivialization of this unfolding.

Let θ0b,d (resp. θ∞b,d) a solution of the above equation in the open set U0 (resp. U∞).

The cocycle (θ0b,d−θ
∞
b,d) defines a unique element of H1(D,Θ0) which only depends on the

analytic class of the unfolding F̃a. We denote it :
[

∂Fa

∂ab,d

]
a0

2. We have defined a map from

the tangent space to A in a0 into H1(D,Θ0). According to a theorem of J.F. Mattei ([12],
theorem (3.2.1)), we have to prove that this map is a bijective one. By our construction,

the dimension of A is equal to δ. Therefore it suffices to prove that the δ cocycles
[

∂Fa

∂ab,d

]

are independent in H1(D,Θ0). We denote by

〈[
∂Fa

∂ab,d

]
, ei,j

〉

the component of
[

∂Fa

∂ab,d

]
on each element of the basis {ei,j} represented by the integer

points in the triangular representation of H1(D,Θ0). These numbers define a δ× δ matrix
M , and we have to prove that it is an invertible one, that will be done in several steps.

Step 1. Components of the ”Bézout cocycles” of the first level.
We will only compute the cocycles (θ0b,d − θ∞b,d) in the two charts covering the principal
component Dc. Therefore, for sake of simplicity, we renumber these two charts:

(x0, y0) := (xc−1, yc−1) in the notations of Appendix A: chart around (Dc, 0);

2Since the point a0 is fixed, we will frequently omit it in this notation.
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(x∞, y∞) := (xc, yc) in the notations of Appendix A: chart around (Dc,∞).

We will make use of the quasi-homogeneous degree related to R = kx ∂
∂x + ly ∂

∂y . One
can check that the pull back of R is locally given in the previous charts of the principal
component by x0

∂
∂x0

in the chart around (Dc, 0) or by y∞
∂

∂y∞
in the chart around (Dc,∞).

Therefore the corresponding graduation is defined by the partial degree in x0 in the first
chart, and by the partial degree in y∞ in the second one. In what follows, ”R-degree”
refers to this graduation.

Among the solutions of (6) on each open set U0 (resp. U∞), we choose a particular
one, namely the ”Bézout solution” caracterized by Bézout conditions: indeed, if we want
to find the two components of θ0b,d satifying (6) solving degree by degree, we find a Bézout
identity with polynomial expressions in y0, or in x∞ in the other chart. We choose the
unique Bézout solution defined by the usual majorations of degrees. In order to precise
this, we compute the first term of the Bézout solution for the cocycle related to directions

∂
∂ab,kl

(i.e. on the first level d0 = kl). According to Proposition (3.1) in Appendix A, we

have:

Ña(x0, y0) = x
n∞k+n0l+|n|kl
0 y

n∞v+n0u+|n|vl
0

p∏

b=1

(ab,kl + y0 + · · · )nb

= xm0
0 P (y0) + · · ·

where |n| =
∑p

b=1 nb, m0 = n0l + n∞k + |n|kl, P is a one variable polynomial, and the
dots stand for terms of R-degree d higher than kl. Therefore we have:

∂Ña

∂x0
= m0x

m0−1
0 P (y0) + · · · ,

∂Ña

∂y0
= xm0

0 P ′(y0) + · · ·

Now we have
∂Ña/∂ab,kl

Ña

=
nb

ab,kl + y0
+ · · ·

and therefore
∂Ña

∂ab,kl
=
nbx

m0
0 P (y0)

ab,kl + y0
+ · · ·

Setting θ0b,kl = m−1
0 x0α

0
b,kl(y0)

∂
∂x0

+ β0
b,kl(y0)

∂
∂y0

+ · · · and identifying the terms of lower

R-degree in equation (6) on U0, we obtain

α0
b,klP + β0

b,klP
′ =

nbP

ab,kl + y0
.

We consider the unique solution (U0, V0) of the following Bézout identity in C[y0]:

U0P + V0P
′ = P ∧ P ′, deg(U0) < deg(P ′/P ∧ P ′), deg(V0) < deg(P/P ∧ P ′),

Notice that deg(P/P ∧ P ′) = p+ 1. We obtain an holomorphic solution θ0b,kl of (6) at the
first order by setting

α0
b,kl =

nbU0P

(P ∧ P ′)(ab,kl + y0)
, β0

b,kl =
nbV0P

(P ∧ P ′)(ab,kl + y0)
.

We can perform a similar computation in the other chart (x∞, y∞) on U∞. We have:

Ña(x∞, y∞) = xkn0−vn0+ln∞−un∞+|n|(kl−ku)
∞ ykn0+ln∞+|n|kl

∞

p∏

b=1

(1 + ab,klx∞ + · · · )nb

= ym0
∞ Q(x∞) + · · ·
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Setting θ∞b,kl = α∞
b,kl(x∞) ∂

∂x∞
+m−1

0 y∞β
∞
b,kl(x∞) ∂

∂y∞
+ · · · , we have to solve

α∞Q
′ +m0β∞Q =

nbx∞Q

1 + ab,klx∞
.

By considering the solution (U∞, V∞) of the following Bézout identity:

U∞Q+ V∞Q
′ = Q ∧Q′, deg(U∞) < deg(

Q′

Q ∧Q′
), deg(V∞) < deg(

Q

Q ∧Q′
)

we obtain a holomorphic solution at first order of (6) on U∞ by setting:

α∞
b,kl =

nbx∞QV∞
(1 + ab,klx∞)(Q ∧Q′)

, β∞
b,kl =

nbx∞QU∞

(1 + ab,klx∞)(Q ∧Q′)
.

We can compute now the first term of the Bézout cocycles related to the directions
∂

∂ab,kl
. According to our construction of the normal forms, the coefficient a1,kl is constant

equal to 1. Nevertheless, in order to perform calculus in a more symmetric way, we first
consider the unfolding in which a1,kl is a free parameter. In this unfolding, ab,kl are only
invariants up to a multiplicative constant. Then, we will set a1,kl = 1.

We denote by ∂Fa

∂ab,d
(without brakets) the Bézout cocycle (θ0b,kl−θ

∞
b,kl) in Θ0(U0∩U∞),

and [ ∂Fa

∂ab,d
] (in brakets) its image in H1(D,Θ0).

Lemma 1.12. The matrix defined by the components of the p Bézout cocycles ∂Fa

∂ab,kl
in

Θ0(U0 ∩ U∞), on eΦ(b′,kl), b = 1, . . . p, b′ = 1, . . . p, is an invertible p × p Vandermonde
matrix V .

Proof. In order to compute the Bézout cocycles, we give the expression of θ0b,kl in the chart

(x∞, y∞). Since we have x0 = x∞y∞, y0 = x−1
∞ , we obtain

∂

∂x0
= x−1

∞

∂

∂y∞
,

∂

∂y0
= −x2∞

∂

∂x∞
+ x∞y∞

∂

∂y∞
.

Furthermore, by considering the reduced polynomials related to P and Q, we also have

P

P ∧ P ′
(y0) =

1

xp+2
∞

Q

Q ∧Q′
(x∞).

We obtain:

θ0b,kl =
nbx

−(p+2)
∞ Q/Q ∧Q′(x∞)

(ab,kl + x−1
∞ )

[m−1
0 U0(x

−1
∞ )y∞

∂

∂y∞
+V0(x

−1
∞ )(−x2∞

∂

∂x∞
+x∞y∞

∂

∂y∞
)]

We consider now a vector field θis on U0∩U∞ tangent to the foliation defined by Ña, with
isolated singularities. Since

(−
∂Ña

∂y∞
,
∂Ña

∂x∞
) = (−m0y

m0−1
∞ Q(x∞) + · · · , ym0

∞ Q′(x∞) + · · · ),

we can choose

θis = (−
Q

Q ∧Q′
+ · · · )

∂

∂x∞
+ ( y∞

Q′

m0Q ∧Q′
+ · · · )

∂

∂y∞
.
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Let Φ0,∞
b,kl the coefficient such that θ0b,kl − θ∞b,kl = Φ0,∞

b,kl · θis. By computing the coefficient

of θ0b,kl − θ∞b,kl on ∂/∂x∞, we have:

Φ0,∞
b,kl =

nbx∞
1 + ab,klx∞

[x−p
∞ V0(x

−1
∞ )− V∞(x∞)].

The components of ∂Fa

∂ab,kl
on eΦ(b′,kl), i.e. on ei,0, i = [c[+p, [c[+p − 1, . . . [c[+1, are the

coefficients on x−i
∞ of the Laurent series of Φ0,∞

b,kl . We only have to consider the meromorphic

part of Φ0,∞
b,kl , i.e.:

nbx∞
(1 + ab,klx∞)

×
V0(x∞)

x2p∞
,

where V0(x) =
∑p

n=0 vnx
n is the polynomial xpV0(x

−1) (recall that deg(V0) ≤ p). We
have

x∞
1 + ab,klx∞

=

+∞∑

m=0

(−ab,kl)
mxm+1

∞ ,

V0(x∞)

x2p∞
=

p∑

n=0

vnx
n−2p
∞ .

Therefore, the coefficient of the Laurent series of Φ0,∞ in x−i
∞ is

∑

(m+1)+(n−2p)=−i

nbvn(−ab,kl)
m = nb

p∑

n=0

vn(−ab,kl)
2p−1−n−i

= nbV0(−a
−1
b,kl)× (−ab,kl)

2p−1−i

= nbV0(−a
−1
b,kl)× (−ab,kl)

(p−2−[c[)+b′

since, from (4), we have i = [c[+p+ 1− b. Finally we obtain

<
∂Fa

∂ab,kl
, eΦ(b′,kl > = λb(µb)

b′ , with µb = −ab,kl, (7)

which defines a Vandermonde matrix. Furthermore, µb 6= 0, 1 and the coefficients λb do
not vanish. Indeed, λb = 0 if and only if V0(−a

−1
b,kl) = 0, i.e. V0(−ab,kl) = 0. Evaluating

the Bézout identity

U0
P

P ∧ P ′
+ V0

P ′

P ∧ P ′
= 1

at y0 = −ab,kl, we would obtain a contradiction, since −ab,kl is a root of P . Therefore,
the determinant of V doesn’t vanish.

Step 2. Components of the Bézout cocycles of higher degree.

Lemma 1.13. 1) The components
〈

∂Fa

∂ab,d
, ei,j

〉
of the Bézout cocycles of higher levels

vanish on the strictly lower levels j < d− kl.

2) Let us consider the decomposition of [ ∂
∂ab,d

] in the basis ei,j:

[
∂

∂ab,d
] =

∑

j≥d−kl

∑

i

Ab,d
i,j (a) ei,j .

The function Ab,d
i,j (a) only depends on the variables ab,d′ with 0 ≤ d

′

− kl ≤ j − (d− kl) .
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Proof. 1) Using the logarithmic derivatives, we check that the equation θ(Ña) =
∂Ña

∂ab,d
is

equivalent to

p∑

b′=1

nb′
θ(B̃b′ )

B̃b′
= nb

m̃d

B̃b

. (8)

mkl = x̃l = xkl−vl
∞ ykl∞ ;

B̃b = xkl−ku
∞ ykl∞ + ab,klx

kl−vl
∞ ykl∞ + · · ·

where the dots stand for terms of degree d higher than kl. Therefore, for d = kl we have

nb
m̃kl

B̃b

= nb
x∞

1 + ab,dx∞
+ · · · = nb

1

y0 + ab,d
+ · · · (9)

and for d > kl

nb
m̃d

B̃b

= nb
x∞y

d−kl
∞

1 + ab,dx∞
+ · · · = nb

xd−kl
0

y0 + ab,d
+ · · ·

Therefore the components of the cocycle on ei,j vanish for j < d− kl.

2) The function Ab,d
i,j (a) is the coefficient of xi∞y

j
∞ in the Laurent developpement of

the function Φ0,∞
b,d which is defined by the relation

θ0b,d − θ∞b,d = Φ0,∞
b,d θis.

Now, the vector fields θ0b,d and θ∞b,d are defined on their respective open set of definition
by the relation

θ⋆b,d

(
Ña

)
=

∂Ña

∂ab,d
.

Let us filter the above relation with respect to y∞−valuation

∑

N

∑

p+q=N

θ
⋆,(p)
b,d

(
Ña

(q)
)

=
∑

N

(
∂Ña

∂ab,d

)(N)

.

In this decomposition, the vector field θ
⋆,(p)
b,d is written (·) ∂

∂x∞
+ (·) y∞

∂
∂y∞

where the

coefficients have a y∞−valuation equal to p. Thus, the term θ
⋆,(p)
b,d

(
Ña

(q)
)

has exactly a

y∞valuation equal to N . Let q0 be the smallest integer such that Ña

(q0)
6= 0. We know

that θ
⋆,(p)
b,d = 0 if p ≤ d− kl. Thus, the equation yields

∑

p+ q = N
q ≥ q0

p ≥ d− kl

θ
⋆,(p)
b,d

(
Ña

(q)
)

=

(
∂Ña

∂ab,d

)(N)

.
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Then, the vector field θ
⋆,(n)
b,d are inductively defined by

θ
⋆,(N−q0)
b,d

(
Ña

(q0)
)

=

(
∂Ña

∂ab,d

)(N)

−
∑

p+ q = N
q > q0

p ≥ d− kl

θ
⋆,(p)
b,d

(
Ña

(q)
)

We prove inductively that θ
⋆,(n)
b,d depends only on ab,d′ with 0 ≤ d

′

− kl ≤ n − (d− kl).
This is already known for n = d− kl. Now, suppose this is true until n = N − q0 − 1. Let
us prove it for n = N − q0.

• The vector field θ
⋆,(p)
b,d depends only on ab,d′ with 0 ≤ d

′

− kl ≤ p − (d− kl) <
N − q0 − (d− kl) = n− (d− kl)

• If the variables ab,d′ appears in Ña

(q)
then d

′

+q0−kl ≤ q therefore d
′

−kl ≤ q−q0 ≤
N − d+ kl− q0 = n− (d− kl)

• Finally, if ab,d′ appears in
(

∂Ña

∂ab,d

)(N)

then d
′

− kl + d − kl + q0 ≤ N which means

that d
′

− kl ≤ n− (d− kl).

Thus the lemma is proved.

Step 3. Relationship between the Bézout cocycles of different levels.

Lemma 1.14. 1. Let ~td the translation introduced at the step 3 of the construction of
normal forms, acting on the Bézout cocycles. We have:

~td ·
∂Fa

∂ab,d
=

∂Fa

∂ab,d+1
.

2. For each b, b′ in {1, · · ·p}, the value < ∂Fa

∂ab,d
, eΦ(b′,d) > is constant with respect to d.

Proof. 1. If (θ0b,d, θ
∞
b,d) is a solution of (8) on (U0, U∞) for the value (b, d), then multiplying

this solution by the meromorphic monomial term md+1

md yields a solution of (8) on (U0, U∞)
for the index (b, d+1). This solution is still holomorphic on each open set. Indeed, in the

chart (xc, yc), either
md+1

md = xcyc or
md+1

md = yc. Therefore, the solution is still holomorphic
on Vc ⊂ U∞. Now, θ∞ has an holomorphic extension on U∞, and one can check, using
the changes of charts of Appendix A, that yc or xcyc has also an holomorphic extension
on U∞. Indeed,

yc = xc+1y
ec+1

c+1 = y−1
c+2(xc+2y

ec+2

c+2 )
ec+1 = etc...

xcyc = xc+1y
ec+1−1
c+1 = y−1

c+2(xc+2y
ec+2

c+2 )
ec+1−1 = etc...

and the holomorphy of these extensions comes from ei ≥ 2 for any i = c + 1, · · ·N . We
have a similar argument on U0.

2. On the otherside, the definition of the paths and of the map Φ in the step 3 of the
construction of normal forms yields to ~td · eΦ(b,d) = eΦ(b,d+1). Therefore we have:

∂Fa

∂ab,d+1
= ~td ·

∂Fa

∂ab,d
=

∑

b′

<
∂Fa

∂ab,d
, eΦ(b′,d) > ~td · eΦ(b′,d)

=
∑

b′

<
∂Fa

∂ab,d
, eΦ(b′,d) > eΦ(b′,d+1)

which proves the second part of the lemma.

14



End of the proof of Theorem (1.10). From Lemma (1.13), we obtain that the δ × δ
matrix

M =

〈[
∂Fa

∂ab,d

]
, eΦ(b,d)

〉

is an upper block triangular matrix. Each diagonal block is related to a level d of the
triangle T and its size nd is the number of integer points on this line in T.

The first (p− 1)× (p− 1) block can be deduced from Lemma (1.12) by considering the
cohomological classes [ ∂Fa

∂ab,kl
] related to each Bézout cocycle. Since a1,kl = 1, we delete

the first column, and since [e[c[+p,0] = 0 –the first line has only p− 1 integer points in the
triangle–, we delete the first line. We obtain a (p− 1)× (p− 1) Vandermonde sub-matrix
of V , which is still invertible.

From Lemma (1.14), the next diagonal blocks are also sub-matrices of consecutive lines
and columns of V . Therefore, they are also Vandermonde non trivial matrices.

Finally, M is an upper block triangular matrix such that each diagonal block is a
Vandermonde sub-matrix of V . Therefore M is an invertible matrix. �

1.4 The global moduli space of foliations.

In this section, we are going to use the Theorem (1.10), that is to say, the infinitesimal
existence and unicity of a normal form for any function near Na0 to get a global statement.

Proposition 1.15 (Existence of normal forms). For any f in T , there exists a in A such
that f ∼ Na.

Proof. There exists some coordinates (x, y) such that

f = u (x, y)xn0yn∞

p∏

b=1

(
yk + ab,klx

l + pb (x, y)
)nb

where u (x, y) is a unity and pb (x, y) has a (k, l)-valuation greater than kl. Following
a result of finite determinacy due to Mather [10], we can suppose that u and pb are
polynomials. Hence, we can decompose the functions u and pb in (k, l)−homogeneous
components

f =


1 +

N∑

ν≥1

uν


 xn0yn∞

p∏

b=1


yk − ab,klx

l +

Nb∑

ν≥kl+1

pb,ν




nb

.

Let us consider the deformation defined by the following parametrized family of functions
f(ui,j),(pi,j,b)



1 +

N∑

ν≥1

∑

ki+lj=ν

ui,jx
iyj

︸ ︷︷ ︸
uν



xn0yn∞

p∏

b=1



yk − ab,klx

l +

Nb∑

ν≥kl+1

∑

ki+lj=ν

pi,j,bx
iyj

︸ ︷︷ ︸
pb,ν




nb

.

where the set of parameters (ui,j) and (pi,j,b) are the coefficients of the polynomials func-
tion uν and pb,ν . If we set (ui,j) = 0 and (pi,j,b) = 0 then

f(0),(0) = xn0yn∞

p∏

b=1

(
yk − ab,klx

l
)nb

= Na0
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where a0 = (ab,kl, 0, · · · 0). Now we have the following relation: for any λ ∈ C∗

f(ui,j),(pi,j,b)

(
λkx, λly

)
= λrfλ(ui,j),λ(pi,j,b) (10)

where

λ (ui,j) =
(
λki+lj−klui,j

)

λ (pi,j,b) =
(
λki+lj−klpi,j,b

)

and r = kn0+ln∞+kl
∑
nb. The equation (10) ensures that fλ(ui,j),λ(pi,j,b) ∼ f(ui,j),(pi,j,b).

Applying Theorem(1.10) to f(0),(0) = Na0 shows that for (ui,j) , (pi,j,b) small enough,

f(ui,j),(pi,j,b) ∼ Na

for some a in a neighborhood of a0 in A. Now, when λ goes to zero, fλ(ui,j),λ(pi,j,b) goes
to f(0),(0). Hence, for λ small enough and for some a in A we have

Na ∼ fλ(ui,j),λ(pi,j,b) ∼ f(ui,j),(pi,j,b),

which proves the proposition.

Let us consider the diffeomorphism: hλ(x, y) = (λkx, λly). We have:

Na ◦ hλ = λ|n|Nλ·a, with λ · a = λ · (ab,d) := (λd−klab,d) and |n| =
∑

b

nb.

As above, we have thus Na ∼ Nλ·a. Actually, this action of C∗ the only obstruction to the
unicity of normal forms:

Theorem 1.16 (Unicity of normal forms). Na ∼ Na′ if and only there exists a complex

number λ 6= 0 such that a
′

= λ · a.

Proof. Step 1 - Preparation of the conjugacy - Suppose that there exists a conjugacy
relation

ψ ◦Na = Na′ ◦ φ.

Following [1], we can suppose that ψ is an homothetie γ · Id. We are going to reduce
the proof to the case where φ is tangent to the identity. In order to do so, we denote by
(αx+ βy, ux+ vy) the linear part of φ. Let us take a look at the (k, l)-homogeneous part
of Na and Na′ : these are conjugated by the linear part of φ. Hence, we have

xn0yn∞

p∏

b=1

(
yk − ab,klx

l
)nb

=

γ (αx+ βy)
n0 (ux+ vy)

n∞

p∏

b=1

(
(ux+ vy)

k
− a

′

b,kl (αx + βy)
l
)nb

.

Looking at the leading coefficient in x and y in the above relation yields respectively to
u = 0 and β = 0. Hence the above equality reduces to

xn0yn∞

p∏

b=1

(
yk − ab,klx

l
)nb

= γαn0vn∞+k
∑

b≥1 nbxn0yn∞

p∏

b=1

(
yk − a

′

b,kl

αl

vk
xl
)nb

.

Since the conjugacy preserves the numbering of the branches, for all b, ab,kl = a
′

b,kl
αl

vk .

Since, a1,kl = a
′

1,kl = 1, we have αl = vk and thus ab,kl = a
′

b,kl. Let Λ be the linear
automorphism

Λ (x, y) =

(
1

α
x,

1

v
y

)
=
(
λkx, λly

)
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for some λ ∈ C∗. Then
Na′ ◦ φ ◦ Λ = γNa ◦ Λ = uNλ·a

where u stands for some non vanishing number. Since, in the above relation φ◦Λ is tangent
to the identity, it appears that u = 1. Thus, setting for the sake of simplicity a = λ ·a and
φ = φ ◦ Λ we are led to a relation

Na = Na′ ◦ φ (11)

where φ is tangent to the identity.

Step 2 - With a conjugacy tangent to Id - The proof reduces to show that in the situ-
ation (11), we have a = a′. Let us denote by Pδ the set of quasi-homogeneous polynomial
functions of R−degree δ. We say that a vector field θ is quasi-homogeneous of degree ν if
and only if

θ · Pδ ⊂ Pδ+ν

Notice that ν can be negative. For any vector field θ, we make the following decomposition

θ =
∑

ν≥ν0

θν

where θν is quasi-homogeneous of degree ν. One can easily check the following result

Lemma 1.17. The set of ν quasi-homogeneous vector fields is spanned by

aνx
∂

∂x
, aνy

∂

∂y
, xn

∂

∂y
, ym

∂

∂y

where aν is quasi-homogeneous of degree ν and n and m are defined by ν = kn − l and
ν = lm− k. Notice that both n and m may not exist for a given ν.

Now let X be a germ of formal vector field such that

φ = eX .

The vector field X can be decomposed in the following way

X =
∑

ν≥ν0

Xν0

with Xν = aνx
∂
∂x + bνy

∂
∂y + qx

n ∂
∂y + ry

m ∂
∂y where aν and bν are R-homogeneous function

of degree ν and n and m defined by ν = kn− l and ν = lm− k. Notice that q and r may
vanish when there is no relations such as ν = kn − l or ν = lm − k but also when φ let
invariant one or both axes. Now, suppose that ν0 ≥ pkl then following an analogue of the
lemma 1.4 in [8], a = a

′

. On the contrary, suppose that ν0 < pkl. The homogeneous part
of smallest degree N = n0l+ n∞k + kl

∑p
b=1 nb can be written

Xν0 ·N
(N)
a = N (N+ν0)

a −N
(N+ν0)

a′

where N
(q)
a stands for the R-homogeneous part of Na of degree q. We will prove that this

relation yields to a contradiction with ν0 < pkl. After composition with the desingular-
ization map E, this relation can be expanded in the chart (x0, y0) of (Dc, 0) as follows:

(
ãν0 + ryum−v

0

)
n∞ +

(
b̃ν0 + qyvn−u

0

)(
n0 + k

p∑

b=1

nb

)
(12)

+
(
lãν0 − kb̃ν0 − kqyvn−u

0 + lryum−v
0

)

︸ ︷︷ ︸
R(y0)

p∑

b=1

nbab,kl
y0 + ab,kl

= yδ−vl
0

p∑

b=1

λb
y0 + ab,kl
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where λb = ab,kl+ν0 − a
′

b,kl+ν0
. The number δ in (12) is defined by the relation: mν0+kl =

xαyβ and δ = αv + βu. Let us denote by Q̃ (y0) the polynomial function lãν0 − kb̃ν0 , that
is the strict transform of Q = laν0 − kbν0 . Let us write

Q =
∑

(s, t)
sk + tl = ν0

rstx
syt.

Then
Q̃ =

∑

(s, t)
sk + tl = ν0

rsty
sv+tu.

The number of monomial terms in Q is in correspondence with the number of positive
solutions of sk + tl = ν0. Such a solution (s, t) can be always written

{
s = uν0 −∆l

t = −vν0 +∆k
.

The conditions s ≥ 0 and t ≥ 0 reduce to vν0
k ≤ ∆ ≤ uν0

l . Moreover, the integer sv + tu
can be expressed in term of ∆

sv + tu = (uν0 −∆l) v + (−vν0 +∆k)u = ∆(uk − vl) = ∆.

Hence, the polynomial function R has a very simple form

R =
∑

vν0
k ≤∆≤

uν0
l

r∆y
∆
0 − kqyvn−u

0 + lryum−v
0 .

Notice that
∣∣vn− u− vν0

k

∣∣ < 1 and
∣∣um− v − uν0

l

∣∣ < 1, which ensures that actually R is
written

R =
∑

vn−u≤∆≤um−v

r∆y
∆
0 .

The integer δ − vl is non negative since

δ − vl = (α− l) v + βu =
ν0 − βl

k
v + βu =

vν0 + β

k
≥ 0.

Thus, evaluating the residue at −ab,kl in (12) yields the relation

R (−ab,kl)nbab,kl = (−ab,kl)
δ−νl

λb.

Now, in view of the construction of the normal form, the coefficient λb vanishes for

p− ♯

{
−p+

k − v

k
ν0 +

ε0
k
< δ <

l − u

l
ν0 −

ε∞
l

}

values of the parameter b. Now, we have

p− ♯

{
−p+

k − v

k
ν0 +

ε0
k
< δ <

l − u

l
ν0 −

ε∞
l
, δ ∈ Z

}

︸ ︷︷ ︸
number of zeros of R

≥

♯
{vν0
k

≤ δ ≤
uν0
l
, δ ∈ N

}
− ε0 − ε∞

︸ ︷︷ ︸
number of monomial terms in R

.
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According to the previous inequality, the polynomial function R has to be zero. Therefore,
looking again at the relation (12) yields

∀b, λb = 0.

Hence, the vector field Xν0 has to be tangent to N
(N)
a which is a contradiction with the

hypothesis ν0 < pkl.

Finally, we can summarize the previous results by

Theorem 1.18. The moduli space M = T / ∼ is isomorphic to A/(a = λ · a).

Topological description of M. Notice that the action λ · (ab,d) = (λd−klab,d) keeps
invariant each term of the first line d = kl. Consider

B = {a ∈ A, ab,d = 0 for d 6= kl}.

Clearly M is fibered on B, and the fibers are weighted projective spaces on Cδ−(p−1).
Since these fibers are topologically trivial, the topology of M is completely described by
the action of π1(B) which is a braid group.

2 The moduli space of curves.

Let C be the partition of M induced by the classification of curves ∼c.

2.1 The infinitesimal generators of C

We first recall general facts proved in [8], which are valid in every topological class. Let F
be a foliation defined by an holomorphic function f (or more generally by any generic non
dicritical differential form ω), and let S be the curve defined by f = 0 (or by the separatrix
set of ω). Let E : M → (C2, 0) be the desingularization map of the foliation, and D its

exceptional divisor. We denote by f̃ , F̃ , S̃ the pull back by E on M of f , F or S. The
tangent space to the point [S] in the moduli space of curves (for ∼C) is the cohomological

group H1(D,ΘS) where ΘS is the sheaf on D of germs of vector fields tangent to S̃. The
inclusion of ΘF into ΘS induces a map i:

H1(D,ΘF )
i

−→ H1(D,ΘS)

whose kernel represents the directions of unfolding of foliations with trivial associate un-
folding of curves.

Definition 2.1. An open set of M is a quasi-homogeneous open set (relatively to f) if

there exists an holomorphic vector field RU on U such that RU (f̃) = f̃ .
We can always cover D by quasi-homogeneous open sets. The cocycle of quasi-homogeneity
[RU,V ] of F is the element of H1(D,ΘF) induced by RU −RV .

Recall that H1(D,ΘF ) has a natural structure of O2-moduli. We have:

Theorem 2.2. [8] The kernel of the map i is generated by the cocycle of quasi-homogeneity,
i.e.:

ker(i) = {h · [RU,V ], h ∈ O2}.

Notice that the distribution induced by these directions is integrable and defines a
singular foliation C on A. The point corresponding to the topological model is a singular
one: indeed, this model is quasihomogeneous. Therefore the whole open set U = M is
quasi-homogeneous, and the cocycle [RU,V ] is trivial for this foliation.

19



Let Xm,n be the vector fields on A generated by xmyn · [RU,V ]. One can give the
explicit expression of X0,0 in the coordinates ab,d. Indeed, with a very slight modification
in the proof of proposition (5.5) of [8] -replace (λx, λy) with (λkx, λly) -, we obtain:

Proposition 2.3. The O2-generator of C is given by:

X0,0 = −
1

r

∑

Φ(b,d)∈T

(d− kl)ab,d
∂

∂ab,d
.

where r = kn0 + ln∞ + kl
∑p

b=1 nb

In the next result, we give a description of the vector fields Xm,n. We introduce the
following notation for the decomposition of X0,0 on the basis {ei,j}(i,j)∈T

X0,0 =
∑

(i,j)∈T

Γi,j(a)ei,j =
∑

(b,d)

Γφ(b,d)(a)eφ(b,d).

Moreover, for any level d we denote by Xd
m,n the projection of the vector field Xm,n on

the subspace Vect{eφ(b,d), b = 1, · · · p}.

Proposition 2.4. For any m, n, Xm,n is quasihomogeneous with respect to the degree
induced by rX0,0. Indeed, we have

[rX0,0, Xm,n] = (km+ ln)Xm,n.

The coefficients of Xν
m,n are quasi-homogeneous with respect to the weight rX0,0 of degree

ν−km− ln−kl. In particular, they only depend on the variables ab,d with d ≤ ν−km− ln.

The proof is also a slight generalization of the proof of Proposition (5.9) in [8].
We recall that the global moduli space of foliations is obtained from the local one by

considering the weighted action of C∗ on A which is also the flow of X0,0.

Proposition 2.5. The family of vector fields defined by

X̃m,n = akm+ln
2,kl+1Xm,n,

commute with X0,0. Therefore, they induced the distribution C on M.

Proof. The proposition relies on the following computation. Since the X0,0-degree of the
variable a1,kl+1 is equal to 1, we have

[
rX0,0, a

km+ln
2,kl+1Xm,n

]
= rX0,0(a

km+ln
2,kl+1 )Xm,n + akm+ln

2,kl+1 [rX0,0, Xm,n]

= −(km+ ln)akm+ln
2,kl+1Xm,n + akm+ln

2,kl+1 [rX0,0, Xm,n] = 0.

2.2 The dimension of the generic strata.

The dimension τ of the generic strata of the local moduli space of curves corresponds to
the codimension of the distribution C at a generic point of M. Therefore it suffices to
determine the minimal number of vector fields Xm,n which generate C and are function-
nally independent. In order to describe the independence properties of the vector fields
Xm,n, we introduce a decomposition by blocks of the triangle of moduli, and some related
arithmetical properties:

A block Bi in the triangle of moduli is a union of kl consecutive horizontal lines from
the line of index di = ikl + 1 - see Figure (6). We denote by
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• nd the ”dimension” of the line of index d which means the number of integer points
on this line.

• Ni =
∑(i+1)kl

d=ikl+1 nd the dimension of the block Bi which is also the number of integer
points in the whole block.

• nmax
i = max{nd, d = ikl + 1, · · · (i + 1)kl} which is the greatest dimension of a line

in the block Bi.

One can easily prove, by using the equations of the edges of the triangle, the following
lemma ( see also figure (6) :

Lemma 2.6. 1. We have: Ni+1 = Ni + kl, nmax
i = p− i.

2. For each line of level d of the block Bi, nd = nmax
i or nmax

i − 1.

3. On the first line di of the block Bi, the number ndi reach the maximum, indeed, ndi

is equal to nmax
i .

Let ν(Xm,n) = km+ ln+ kl + 1 be the order of Xm,n. We denote by:

• qd the number of vector fields Xm,n such that ν(Xm,n) = d

• Qi =
∑(i+1)kl

d=ikl+1 qd

• qmax
i = max{qd, d = ikl + 1, · · · (i+ 1)kl}.

One can check a similar result to (2.6):

Lemma 2.7. 1. We have: Qi+1 = Qi + kl, qmax
i = i.

2. For each line of level d of the block Bi, qd = qmax
i or qmax

i − 1.

3. On the first line di of the block Bi, the number qdi reach the maximum qmax
i .

We consider the maximal sequence of blocks Bi such that qmax
i = i < nmax

i = p− i, i.e.
the sequence B1, · · ·B]p/2], where ]p/2] is the strict integer part of p/2. We called critical
block, the block B p

2
when p is even or the unique block that appears B1 when p = 1. This

block is going to be analyzed independently.

Lemma 2.8. Suppose that p ≥ 2. Then the Q1 vector fields Xm,n such that ν(Xm,n)
belongs to a level of the block B1 are independent.

Proof. Since p ≥ 2 then, we have qmax
1 = 1 < nmax

1 = p − 1. We consider a relation∑
αm,nXm,n = 0 between the vector field Xm,n. By projection on the level d1, we have

α0,0X
(d1)
0,0 = 0 and since X

(d1)
0,0 6≡ 0, α0,0 = 0. Since we have at most one vector field on

each level of B1, by iteration we get αm,n = 0 for all the (m,n) such that ν(Xm,n) belongs
to {d1, · · · d2 − 1}.

Using same kind of arguments, we can extend this result to the union of blocks of index
less than the critical block:

Lemma 2.9. The Q1+ · · ·+Q]p/2] vector fields Xm,n such that ν(Xm,n) belongs to a level
of the sequence of blocks B1, B2, . . . , B] p2 ]

are functionnally independent.

Proof. We consider a relation
∑
αm,nXm,n = 0 between these vector fields such that

ν(Xm,n) belongs to {d1, · · · d]p/2] + kl − 1}. If we project this relation on the first block
we have from the previous lemma αm,n = 0 for all the (m,n) such that ν(Xm,n) belongs
to {d1, · · · d2 − 1}. By projection on the first line of B2, we obtain

αl,0X
(d2)
l,0 + α0,kX

(d2)
0,k = 0.
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We claim that these two vector fields X
(d2)
l,0 and X

(d2)
0,k are independent. The projection of

the vector field X0,0 on the level d1 is given by

X
(d1)
0,0 =

p−1∑

b=1

Γφ(b,d1)eφ(b,d1).

Now, using the action of x· and y· on the basis {eφ(b,d)}, we find

xl · eΦ(b,d1) = eΦ(b+1,d2), for b = 1, . . . , p− 1

xl · eΦ(p,d1) = 0.

yk · eΦ(b,d1) = eΦ(b,d2), for b = 2 · · · p

yk · eΦ(1,d1) = 0.

Therefore the components of Xl,0 on the eΦ(b,d2) are the first p− 2 components of X
(d1)
0,0

on the eΦ(b,d1) and the components of X0,k on the eΦ(b,d2) are the last p− 2 components

of X
(d1)
0,0 . Thus the first 2× 2 determinant between these components is

∆2 =

∣∣∣∣
Γφ(1,d1) Γφ(2,d1)

Γφ(2,d1) Γφ(3,d1)

∣∣∣∣

This determinant cannot vanish. Indeed, according to the formula (7) obtained in the
proof of Lemma (1.12), we have

∂

∂ab,d0

=
∑

b′

λbµ
b′

b eΦ(b′,d0)

formula which is still valid for any d according to Lemma (1.14). Therefore we have:

X
(d1)
0,0 =

∑

b

ab,d1

∂

∂ab,d1

=
∑

b

ab,d1(
∑

b′

λb(µb)
b′eΦ(b′,d1))

=
∑

b′

(
∑

b

ab,d1λb(µb)
b′)eΦ(b′,d1

.

which proves that for any b′,

Γφ(b′,d1) =
∑

b

ab,d1λb(µb)
b′ . (13)

From this expression, we conclude that the determinant ∆2 is a non trivial quadratic
form in the variables ab,d1 (with rational coefficients in ab,d0), and therefore cannot vanish
identically.

On the following levels d of the second block, either we have only one vector field Xm,n

such that ν(Xm,n) = d, and as previously we obtain αm,n = 0, or we have two vector
fields Xm,n and Xm′,n′ such that ν(Xm,n) = ν(Xm′,n′) = d. The same argument as before

allows us to conclude that X
(d)
m,n and X

(d)
m′,n′ are independent: by using the action of the

monomials xmyn and xm
′

yn
′

, their components on the basis (eΦ(b,d)) are the first p − 2

components (resp. the last p− 2 components) of X
(d1)
0,0 .
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On the upper blocks, we can prove the independence of the projection by considering
a similar determinant as before

∆r =

∣∣∣∣∣∣∣∣∣

Γφ(1,d1) Γφ(2,d1) · · · Γφ(r,d1)

Γφ(2,d1) Γφ(3,d1) · · · Γφ(r+1,d1)

...
...

...
Γφ(r,d1) Γφ(r+1,d1) · · · Γφ(2r,d1)

∣∣∣∣∣∣∣∣∣

From the formula (13) we deduce that ∆r is an homogeneous expression of degree r in the
variables ab,d1 which cannot identically vanish.

Remark 2.10. Consider a block Bi such that qmax
i > nmax

i . For each line of index d
of this block, since qd = qmax

i or qmax
i − 1, we have: qd ≥ nmax

i ≥ nd. According to the
previous functional independence of the vector fields Xm,n, we can conclude that in this
case their action is transitive on such a block and the following ones.

Consider finally the critical block Bi such that qmax
i = i = nmax

i = p− i, i.e. the block
of index i such that 2i = p or B1 when p = 1. In figure (6), this block in the second one
but in figure (1), since p = 1, this block is the sole block B1.

In this case, the integers nd − qd for d = di, · · · di + kl− 1 can only take the values +1,
0 or -1, starting from the value 0. Therefore on this first level the action of the Xm,n is
transitive. We consider the first line of this block on which nd − qd 6= 0:

• If we have nd − qd = +1, there remains one dimension which can’t be reach by the
action of the Xm,n. We have to count it in the codimension of the generic leaves of
C.

• If nd − qd = −1, the action of the vector fields Xm,n is transitive on this level.
Furthermore we have an extra vector field Xm,n such that ν(Xm,n) = d whose higher
components will act on the higher levels. Suppose that there exists a level d′ > d
such that nd′ − qd′ = +1.

Lemma 2.11. The d′-component of this extra vector field acts on this level indepen-
dently of the other vector fields Xm,n such that ν(Xm,n) = d′.

Since the proof of this lemma deserves to be developped besides the fact that it is
not very relevant and quite technical, we refer to the appendix B for more details.

Therefore, in order to number the generic codimension of the distribution C on the
critical block, we have to introduce the following non commutative sum :

Definition 2.12. Let rd be a sequence taking its values in {−1, 0,+1}. The notation∑̃
drd denote the value obtained by the following operations:

1. delete the values 0;

2. delete recursively the consecutive values (−1,+1) (but not the consecutive values
(+1,−1));

3. after the two first steps, remains a sequence of n consecutive terms with value +1,

followed by m consecutive terms with value -1. We set:
∑̃

drd = n.

Example. In the critical block of Figure (6), the sequence of values nd − qd is:

{0,+1,+1, 0,+1, 0,−1,+1, 0,−1, 0,−1,−1, 0,−1}.
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The extra vector field appearing on the 7th position acts on the next level. The next extra
vector fields are unuseful. Therefore, the number of free dimensions under the action of
these vector fields is

∑̃
{0,+1,+1, 0,+1, 0,−1,+1, 0,−1, 0,−1,−1, 0,−1}= 3.

From Lemmas (2.8), (2.9), (2.11) and Remark (2.10), we obtain:

Theorem 2.13. The dimension of the generic strata of the moduli space for curves is

τ =

d0+]p/2]+kl−1∑

d=d0

(nd − qd) +
∑̃dp/2+kl−1

d=dp/2

(nd − qd),

where nd =] v−k
k (νc − d + kl)] − [u−l

l (νc − d + kl)[, qd is the number of positive integer

solutions (m,n) of the equation km + ln+ kl + 1 = d, and the second sum
∑̃

is defined
above and only appears if p is even or if p = 1.

Example. In the topological class (k, l) = (3, 5) and p = 4 of figure (6), we obtain τ = 35.

2.3 Normal forms for curves.

Theorem 2.14. We consider the reduced normal form

Na = xy

p∏

b=1

(yk +
∑

Φ(b,d)∈T

ab,dm
d)

obtained for the classification of foliations defined by topologically quasi-homogeneous func-
tions. We obtain a generic unique normal form Nb, b ∈ Cτ for the classification of curves
by performing the following operations on Na:

1. we set: a1,kl+1 = 1;

2. for each level d in a block Bi, i ≤]p/2], we set ab,d = 0 for the first qd coefficients
starting from the rightside of the line d;

3. for each level in the critical block Bp/2 (which appears if p is even), we consider the
sequence of number nd− qd (recall that in this block we have nd ∈ {1, 2}, qd ∈ {1, 2},
and nd − qd ∈ {−1, 0,+1}.

• if nd − qd = 0, we vanish all the coefficients of the line;

• if nd−qd = +1, we set ab,d = 0 for the first coefficient starting from the rightside
of the line d;

• for the first lines such that nd − qd = −1 and encountered in the sequence on
some line d, we set ab,d = 0 for the unique coefficient on this line. Furthermore,
we set ab,d′ = 0 for the second coefficient on the next line d′ > d such that
nd′ − qd′ = +1, if such line exists.

• for the last line such that nd−qd = −1 without upper line d′ such that nd′−qd′ =
+1 we set ab,d = 0 for the unique coefficient on this line.

4. for each level d in a block Bi, i >]p/2], and every index b, we set ab,d = 0.

Proof. Since the projection X
(d1)
0,0 of X0,0 on the first line of the block B1 is the radial

vector field in the variables ab,d1 , its flow acts by homothety on this level and we can make
use of its action to normalize one coefficient to the value 1. We choose the first one starting
from the right side.
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On all the higher levels of index d > d1 and for the qd vector fields Xm,n such that
ν(Xm,n) = d, we have

X(d)
m,n =

∑

b

Γm,n(ad0 , ad1)
∂

∂ab,d

in which Γm,n(ad0 , ad1) only depends on the variables ab,d0 and ab,d1 . This is a consequence
of Xm,n = xmyn · X0,0 and Lemma (1.13). Therefore this vector field is constant with
respect to the variables of the level d > d1. Its flow acts by translation and we make use
of this flow (and the indepence property) to vanish qd coefficients.

In the critical block, if there is an extra vector field Xm,n on a line d such that nd−qd =

−1, we make use of the componentX
(d′)
m,n to act on the next level d′ such that nd′−qd′ = +1.

Suppose that this level is the next one (d′ = d+ 1). This means that we have to consider
the action of the second non vanishing component of Xm,n. According to Lemma (1.13),
this one will depend on the variables ab,d0 , ab,d1 and ab,d1+1. If we have to skip two lines
it will depend on the variables ab,d0 , ab,d1 , ab,d1+1 and ab,d1+2, and so one. Therefore, it

turns out that the components of X
(d′)
m,n will only depend on variables ab,d with d < d′. Its

flow still acts by translation and we make use of it to vanish the second coefficient of this
line.

We give in Appendix C the generic normal form obtained in the topological class
(k, l) = (3, 5) and p = 4.

2.4 An example: the case yn + xn+1

In, O. Zariski compute the dimension of the generic stratum of the moduli space of the
curve

yn + xn+1

for n ≥ 2. We are going to apply our strategy to recover this dimension.
Let us consider k = n and l = n+1. In this situation, the fundamental Bézout relation

is written
n · n− (n− 1) · (n+ 1) = 1.

Thus, the triangle T is delimited by the two lines

j − ni = n2 − n− 1

j − (n+ 1)i = n2 − n− 1

Since there is only one branch, there is only one block and it is a critical block. From
the construction of the triangle, it can be seen that the value of nd − qd for d0 ≤ d ≤
d0 + n2 + n− 1 is 




1 if (α− 1)n+ α+ 1 ≤ d ≤ αn− 2
−1 if αn+ 1 ≤ d ≤ αn+ α+ 1
0 else

where α is an integer that goes from 1 to n−1. Thus, the sequence nd−qd is the following

0, 1, 1, · · · , 1, 1︸ ︷︷ ︸
j=1···n−2

, 0, 0,−1,−1, 1, 1, · · · , 1, 1︸ ︷︷ ︸
j=n+3···2n−2

, 0, 0, 0,−1,−1,−1, · · ·
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X0,2

X1,1

X2,0

X0,1

X1,0

j = n − 2

j = n − 1

j = n + 2

j = n

j = n + 1

j = 2n + 3

j = 2n + 2

j = 2n + 1

j = 2n

j = 2n − 1

j = 2n − 2

j = 1 X0,0

Figure 1: The case yn + xn+1

τ =
∑̃

{0, 1, 1, · · · , 1, 1, 0, 0,−1,−1, · · · }

=

n−1∑

α=1

(n− 2α− 2)+

=
(n− 4)(n− 2)

4
if n is even

=
(n− 3)2

4
if n is odd

which are the formulas given in [16].

3 Appendix

3.1 A: reduction of singularities of a quasi-homogeneous function

Let f be a quasihomogeneous function of weight (k, l) with p cuspidal branches, and
multiplicities (n0, n∞, n1, · · ·np), and F the foliation defined by f . Let θf be a vector
field with isolated singularity, which defines the foliation F . We choose the following one:
let f red be the reduced function related to f . The one-form f reddf/f has an isolated
singularity and define the same foliation as df . Let θf be the dual vector field of this
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one-form for the volume form: dx ∧ dy(θf , ·) = f reddf/f . The components of θf are:

(
−∂f

∂y
,
∂f

∂x
)/g.c.d.(

−∂f

∂y
,
∂f

∂x
). (14)

3.1.1 The algorithm of desingularization

The blowing-up E1 of (C2, 0) endowed with the chart (x, y) is the manifold defined by two
charts (x1, y1) and (x1, y1) such that

(x, y) = (x1, x1y1) = (x1 y1, y1).

We have E−1(0) = (x1 = 0) = (y1 = 0). The change of charts is given by

x1 = x1 y1, y1 = x1
−1.

We will always keep these conventions:

The first coordinate of the first chart, and the second coordinate of the second chart are
equations of the divisor. The center of the first chart is denoted by 0 and the center of the
second one is denoted by ∞. In the following symbolic representation of a blowing up, we
always put the first chart on the right side of the component:

0∞

y1 x1
y1 x1

Figure 2: The atlas of one blowing up.

We denote by E : M → (C2, 0) the desingularization map of f obtained by compo-
sition of the blowing up’s. Let D = E−1(0) be the exceptional divisor. The reduction of
singularities of the topological model

f = xn0yn∞

p∏

b=1

(yk + abx
l)nb , k < l, n0 ≥ 0, n∞ ≥ 0, nb > 0

is completely determined by the Euclide algorithm of the pair (k, l). Indeed, a blowing-up
replace any cusp of weights (k, l) by a new cusp with the weights (k, l − k). Therefore
we perform a sequence of q blowing up’s until the cuspidal branches switch at infinity
(q = [l/k[+1). Then we perform a new sequence until the next switch and so on until
getting the pair (1,1). This algorithm has the following properties:
- we only have to use blowing up’s of 0 or ∞. Therefore, the tree of the exceptional divisor
is a totally ordered sequence of components, and the map E is monomial in each chart.
- all the cuspidal branches follow the same infitesimal point, before the last blowing up.
After this one, they appear on the same component of D: we call it the principal compo-
nent.
- if n0 6= 0 or n∞ 6= 0, the corresponding strict branches appear on the end components.

3.1.2 Atlas of charts induced by the algorithm.

In our present case, since l− k ≥ 0, we have to perform a second blowing up of the origin
of (x1, y1) setting (with our convention)

(x1, y1) = (x2, x2y2) = (x2 y2, y2).
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y1 x1 y2

y1 x1x2

Figure 3: The atlas of two blowing up’s at the origins.

We can cover the divisor by the 3 charts: (x1, y1), (x2, y2) and (x2, y2):
At the next step, either we have to blow up the origin of the last component (we

substitute (x2, y2) by two new charts) or we have to blow up the ∞ point of this component
(we substitute (x2, y2) by two new charts). At the end of the process, we obtain N
components covered by N + 1 charts. Since our divisor is totally ordered it is more
convenient to replace the historical numbering of the components and the corresponding
atlas with a geometrical renumbering from the right to the left side. We obtain N + 1
charts (xi, yi), i = 0, · · ·N , such that each component Di, i = 1 · · ·N is covered by the
domains Vi−1 and Vi of the charts (xi−1, yi−1) and (xi, yi) around (Di, 0) and (Di,∞).
The change of charts is given by:

xi−1 = y−1
i , yi−1 = xiy

ei
i , ei ∈ Z≥1

where −ei is the self intersection of the component Di. In the previous example of figure
3, the renumbering is:

(x4, y4) := (x1, y1), (x3, y3) := (x3, y3), (x2, y2) := (x4, y4),

(x1, y1) := (x4, y4), (x0, y0) := (x2, y2).

The self intersections −ei are: −3, −1, −2, −3.
Notice the yN -axis in (xN , yN) is the strict transform of the y-axis and the x0-axis in
(x0, y0) is the strict transform of the x-axis.

y4 y0x1x3y3x4 x0

−3 −2 −1 −3
D4 D3 D2 D1

y1x2
y2

Figure 4: The atlas of the divisor for (k, l) = (3, 5) after renumbering.

Let c be the index in {1, · · ·N} corresponding to the principal component in the geo-
metric numbering (in the previous example: c = 2).

3.1.3 Properties of the principal component.

We will essentially compute in the chart (xc, yc) centered at (Dc,∞). Therefore we give
here the expression of E in this chart and the multiplicity on Dc:

Proposition 3.1. 1. The desingularization map E is given in the chart
(xc, yc) by

(x, y) = (xk−v
c ykc , x

l−u
c ylc).

Therefore, the pull back by E is given by the meromorphic expressions

(xc, yc) = (
xl

yk
,
yk−v

xl−u
).
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2. The multiplicity of E∗θf on the principal component Dc of D is

νc = klp− k − l + kε∞ + lε0

where ε0 and ε∞ (=0 or 1) are the multiplicities on the axes of the reduced function
f red.

Proof. We prove both results by a common induction on the number of blowing up’s of
the minimal desingularization of f . For one blowing up, we have: k = l = 1, u = 1, v = 0,
and we have by direct computation: νc = p − 2 + ε0 + ε∞. Therefore, both formulas are
valid in this case.

Let θf a vector field with isolated singularity in a topological class of weights (k, l),
and νc(k, l) its multiplicity on the principal component. After one blowing up, the germ
of foliation at the origin of the exceptional divisor is in the class (k, l − k). Notice that if
uk− vl = 1 is the Bézout identity of (k, l), the corresponding Bézout identity for the new
pair is (u − v)k − v(l − k) = 1. Let us suppose that the formulas of Proposition (3.1) are
valid for the pair (k, l − k). Therefore, after one blowing-up we have in the first chart

x1 = xk−v
c ykc , y1 = xl−k−u+v

c yl−k
c . (15)

We obtain:
x = x1 = xk−v

c ykc , y = x1y1 = xl−u
c , ylc.

Now, we claim that

νc(k, l) = νc(k, l − k) + pk2 − k + kε0 (16)

from which we easily deduce the second formula. To prove this relation, let E = E′ ◦ E1

where E1 is the first blowing up. We have:

E∗θf

y
νc(k,l)
c

= E′∗(
E∗

1θf

xa1y
b
1

)
E′∗(xa1y

b
1)

y
νc(k,l)
c

where a = ν(E∗
1θf , x1) and b = ν(E∗

1θf , y1). From (15) and the previous equality, we
obtain

νc(k, l) = νc(k, l − k) + ak + b(l− k).

Now we have

f red ◦ E1 = xkp+1+ε0
1 yε∞1

p∏

b=1

(yk1 − abx
l−k
1 )

and thus ν(f red◦E1, x1) = kp+1+ε0 and ν(f
red◦E1, y1) = ε∞. From E∗

1dx∧dy(E
∗
1 θf , ·) =

E∗
1 (f

reddf/f) we deduce:
a = kp+ ε0 − 1, b = 0

which proves the relation (16).

3.1.4 Computing multiplicities

We first recall the classical result which allows us to compute multiplicities of a function
along D [4]:
We choose the geometric numbering of the components of the exceptional divisor, and we
consider the matrix of intersections J defined for i 6= j by Ji,j = 1 if the two componentsDi

and Dj meet together, Ji,j = 0 otherwise, and Ji,i = −ei, where −ei is the self intersection
of each component. Let bi be the number of strict branches of f ◦E meeting Di, counted
with their multiplicities, and B the column matrix induced by these numbers.
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Proposition 3.2. The multiplicities mi of (f ◦E) along each Di define a column matrix
M which satisfy

JM +B = 0.

In the quasi-homogeneous case, since D = D1 ∪ · · · ∪Dc−1 ∪Dc ∪Dc+1 ∪ · · · ∪DN , the
column matrix B is here: (n0, 0, · · · , 0, n, 0, · · · 0, n∞)t, where n =

∑p
b=1 nb is on index c.

The intersection matrix is given by:

J =




−e1 1 0 · · · 0
1 −e2 1 0 · · · 0
0 1 −e3 1 0 · · · 0
...
0 · · · 0 1 −eN−1 1
0 · · · 0 1 −eN




Therefore we obtain the multiplicities of f by M = −J−1B (see example below). We will
also need to compute the multiplicities of the desingularized foliation, i.e. of the vector
field E∗θf , where θf is the vector field (14) with isolated singularity, defining the foliation
F .

Proposition 3.3. The multiplicities νi of E
∗θf along each component Di define a column

matrix N which satisfy
JN + C = 0,

where C = (ε0 − 1, 0, · · · , 0, p, 0, · · ·0, ε∞ − 1)t, with p on index c, ε0 = 1 if n0 6= 0, ε0 = 0
otherwise, ε∞ = 1 if n∞ 6= 0, ε∞ = 0 otherwise.

Proof. Let V = (vi) be the multiplicities of E∗dx ∧ dy along each Di. From

E∗(dx ∧ dy)(E∗θ, ·) = (f red ◦ E)d(f ◦ E)/(f ◦ E)

we obtain:
vi + νi = ri + (mi − 1)−mi = ri − 1

where ri = ν(f red ◦E,Di). We consider the ”axis function”: a = xy. Let A = (ai) be the
column matrix of multiplicities of a ◦E along each Di. We claim that vi = ai− 1. Indeed,
let (xi, yi) be the chart induced by (x, y) and E around the origin of Di. Since E is here
monomial in these coordinates, there exist positive integers p, q, r, s, such that:

E∗dx ∧ dy = a ◦ E · E∗(
dx

x
∧
dy

y
) = a ◦ E · (ps− qr)

dxi
xi

∧
dyi
yi

from which we deduce vi = ai− 1. Therefore we obtain A+N = R, where R is the matrix
of multiplities of (f red ◦ E). Now, from the previous proposition we have: JR = Bred,
with Bred = (ε0, 0, · · · , 0, p, 0, · · ·0, ε∞)t and JA = B′ where B′ is the column such that
b′i = 1 for i = 1 or i = N and b′i = 0 otherwise. We obtain:

JN = J(R−A) = Bred −B′ = C.

Example. For (k, l) = (3, 5), the matrix of intersections is:

J =




−3 1 0 0
1 −2 1 0
0 1 −1 1
0 0 1 −3
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and we have B = (n0, 0, n, n∞)t, where n =
∑p

b=1 nb, and C = (ε0 − 1, p, 0, ε∞ − 1).
Therefore we obtain:

M =




2n0 + n∞ + 5n
5n0 + 3n∞ + 15n
3n0 + 2n∞ + 9n
n0 + n∞ + 3n


 ; N =




2ε0 + ε∞ + 5p− 3
5ε0 + 3ε∞ + 15p− 8
3ε0 + 2ε∞ + 9p− 5
ε0 + ε∞ + 3p− 2


 .

The multiplicity of the foliation on the principal component D2 is

νc = 5ε0 + 3ε∞ + 15p− 8.

3.1.5 Properties of the sheaf ΘF .

A chain of D is a connected sequence of components Di which meet exactly two others
components. In the quasi-homogeneous case, D contains two chains: {D2, · · ·Dc−1} –the
right hand chain– and {Dc+1, · · ·DN−1} –the left hand chain–.

Let W0 be the union of the charts domains V1, V2,... Vc−1: W0 covers D1 ∪ · · · ∪ Dc

excepted a small disc around 0 in D1 and a small disc around ∞ in Dc. In a similar way,
we consider W∞ = Vc ∪ · · · ∪ VN−1, covering Dc ∪ · · · ∪DN excepted small discs around 0
in Dc and around ∞ in DN .

0 0 0∞ ∞ ∞

x0y0
xc−1yc−1xc

ycxNyN

W∞ W0

U∞ U0

Dc

x1
y1

Figure 5: Open sets W∞, W0, U∞ and U0.

Proposition 3.4. There exists a global section T0 (resp. T∞) of the sheaf ΘF of germs of
vector fields tangent to E∗F on W0 (resp. W∞) which admits only isolated singularities.

Proof. From the previous relation JN + C = 0, we obtain :

νi−1 − eiνi + νi+1 = 0, i = 2, · · · c− 1.

We claim that the vector fields with isolated singularities

θi =
E∗θf

xνii y
νi+1

i

, i = 1, · · · c− 1

glue together defining a global section T0 of ΘF on W0. Indeed, using the change of two
consecutive charts, we have

xνii y
νi+1

i = xνieii−1 y
νi
i−1x

−νi+1

i−1 = x
νi−1

i−1 y
νi
i−1

which proves that θ1 = θ2 = · · · = θc−1 on their common domains.

Corollary 3.5. We have H1(W0,ΘF) = H1(W∞,ΘF) = 0.
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Proof. The previous section T0 with isolated singularities allows us to identify the sheaf
ΘF |W0 to OM |W0 . Since the Chern class of each branch is negative, one can easily check
that H1(W0,OM ) = 0. The proof is similar for W∞.

Proposition 3.6. Let U0 be an open set covering D1, · · · , Dc excepted a small disc in Dc

around Dc ∩Dc+1), and U∞ a similar domain for the left hand side. We have

H1(U0,ΘF) = H1(U∞,ΘF) = 0.

Proof. On can suppose that U0 = V0 ∪W0 where V0 is the domain of (x0, y0) at (D1, 0).
From corollary (3.5), we have H1(W0,ΘF) = 0. We also have H1(V0,ΘF) = 0 since we
can choose a vector field with isolated singularities on V0 (or without singularities if there
is no invariant branch in V0). Therefore we obtain:

H1(U0,ΘF) =
ΘF(V0 ∩W0)

ΘF(V0)⊕ΘF(W0)
.

Let T0 be the vector field on V given by (3.4). Let (x0, y0) and (x1, y1) be the charts
induced by (E, (x, y)) onD1 according to the previous notations and (x0, y0) = ϕ(x1, y1) =
(xe11 y1, x

−1
1 ) the change of charts. We have:

ΘF(V0 ∩W0) = {g(x1, y1) · T0, g holomorphic in x1}

ΘF(W0) = {g(x1, y1) · T0 ∈ ΘF(V0 ∩W0), g has an holomorphic extension in W0}

ΘF(V0) = {g(x1, y1) · T0 ∈ ΘF(V0 ∩W0), ϕ
∗(g · T0) holomorphic at (D0, 0)}

We set: g(x1, y1) =
∑

i≥0,j∈Z
ai,jx

i
1y

j
1. The existence of an holomorphic extension of g

along W0 gives us the necessary condition j ≥ 0. On the other side we have

ϕ∗(θ0) =
E∗T0
yν00

x0.

The vector field E∗T0

y
ν0
0

is non singular on a neighborhood of (D1, 0) if there is no invariant

branch at (D1, 0) and vanishes on this axis with some positive multiplicity ν otherwise.
Therefore the condition ϕ∗(g·T0) is holomorphic at ((D1, 0)) gives rise to: e1i−j+1+ν ≥ 0.
The two conditions j ≥ 0 and j ≤ e1i + 1 + ν vanish any element (i, j) ∈ Z+ × Z in the
quotient.

3.2 B: complement on the study of the vector fields Xm,n

In this appendix, we study the independance properties of the family of vector fields Xm,n.
We consider the following decomposition

X0,0 =
∑

d

∑

b

(d− kl) ab,d
∂

∂ab,d

=
∑

i, j≥1


 ∑

0≤d−kl≤j

∑

b

(d− kl)ab,dA
b,d
i,j (a)




︸ ︷︷ ︸
Γi,j(a)

ei,j .

Proposition 3.7. The functions Γi,j (a) are algebraically independent.
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Proof. Let us decompose the coefficient Γi,j (a)

Γi,j (a) =
∑

b

jab,kl+jA
b,kl+j
i,j (a)

︸ ︷︷ ︸
Li,j(a)

+
∑

0≤d−kl<j

∑

b

(d− kl) ab,dA
b,d
i,j (a)

︸ ︷︷ ︸
Rij(a)

.

Following, the lemma (1.13) the function Ab,kl+j
i,j (a) depends only on the variables ab,d′

with 0 ≤ d
′

− kl ≤ j− (kl + j − kl) = 0. Thus, it depends only on the variables ab,kl. The
expression Rij depends only on the variables ab,d′ where d′ satisifies

0 ≤ d
′

− kl ≤ j − (d− kl) =⇒ d
′

≤ j + kl − (d− kl) < j + kl.

In view of (1.12), for a fixed value of j, the linear forms Li,j are independent since their

determinant is det

(∣∣∣Ab,kl+j
i,j (a)

∣∣∣
i,b

)
6= 0. Thus, they are also algebraically independent.

Now, let us consider a polynomial function P
(
{Xi,j}(i,j)∈T

)
where the X

′

i,js are some
independent variables. Suppose that P induces an algebraic relation between the functions
Γi,j (a)

P (Γi,j (a)) = 0.

Let J be the greatest integer such that there exist a point (i, J) in T and denote by
{(i0, J), (i1, J), · · · , (iq, J)} the family of points in T at the level J . The relation P is
written

P
(
{Γi,j (a)}j<J , Li0,J (a) +Ri0,J (a) , . . . , Liq,J (a) +Riq,J (a)

)
= 0.

We fix all the variables ab,d with d − kl < J at a generic value. Then, the above relation
becomes an algebraic relation between the affine forms Li,J (a)+Ri,J (a). Let us decompose
the relation P as follows

P =
∑

I⊂{(ik,J)}k=0..q

QI (Xi,j)XI

where XI =
∏

(i,J)∈I Xi,J . Here, QI depends only on the variables Xi,j with j < J . Since,

the affine form Li,J (a) +Ri,J (a) are algebraiclly independant, for any I, we have

QI (Γi,j (a)) = 0,

which are algebraic relations between the function Γi,j (a) with j < J . Therefore, an
inducing argument ensures that P has to be the trivial relation, which proves the theorem.

We equipped the C-space Vect {ei,j}(i,j)∈T
with an hermitian product defined by

〈ei,j , ei′,j′〉 = δ(i,j),(i′,j′)

Corollary 3.8. Consider the subspace Vect
{
ei1,j1 , . . . , eiq,jq

}
and the orthogonal projec-

tion of a sub-family Xm1,n1 , . . . , Xmq,nq on this subspace. Suppose that for any eiq,jq , the
orthogonal projection of the family Xm1,n1 , . . . , Xmq,nq on eiq,jq does not identically vanish.
Then the projected sub-family is generically free.

Proof. Let us write the decomposition of X0,0 in the basis ei,j

X0,0 =
∑

(i,j)∈T

Γi,j (a) ei,j .
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The multiplication by x and y define an application of O-modules whose action on the
basis ei,j is as follows

x · ei,j = ek−v+i,k+j

y · ei,j = el−u+i,l+j .

Thus we have the following decomposition

Xm,n = xmyn ·X0,0 =
∑

(i,j)∈T

Γi,j (a) em(k−v)+n(l−u)+i,mk+ln+j

=
∑

(i,j)∈T

Γτm,n(i,j)
(a) ei,j

where τm,n is the translation of vector m~x + n~y. In this expression, we set Γ⋆,⋆ = 0 if
(⋆, ⋆) /∈ T. The determinant of this projected family is

∣∣Γτmr,nr (is,js)
(a)
∣∣

r = 1 . . . q
s = 1. . . . q

.

Since the functions involved in the above determinant are algebraically independant, this
determinant does not indentically vanish if and only if the determinant

∣∣Xτmr,nr (is,js)

∣∣
r = 1 . . . q
s = 1. . . . q

is not zero. The hypothesis of the corollary ensures that in the previous determinant
there is no zero row. Moreover notice that in the matrix

[
Xτmr,nr (is,js)

]
r = 1 . . . q
s = 1. . . . q

a

variable Xi,j cannot appear twice on the same row or on the same line. Suppose now that
there exists a vector (λi)i=1..q in the kernel of this matrix which means that for any r the
following relation holds ∑

s=1..q

λsXτmr,nr (is,js)
= 0.

Obviously, if τmr ,nr (is, js) ∈ T then λs = 0. Since, there is no zero row in the initial
matrix, then for any s there exists r such that τmr,nr (is, js) ∈ T, thus for any s, the
coefficient λs = 0, which proves the proposition.

3.3 C: normal forms for (k, l) = (3, 5) and p = 4

According to the figure draw below, the analytical normal form for the topological class of

(
y3 + x5

)n1
(
y3 + a2x

5
)n2
(
y3 + a3x

5
)n3
(
y3 + a4x

5
)n4

.

is given by the following family of functions with 78 parameters
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Na =
(
y3 + x5 + a1,16x

2y2 + a1,19x
3y2
)n1

×
(
y3 + a2,15x

5 + a2,16x
2y2 + a2,17x

4y + a2,18x
6 + a2,19x

3y2 + a2,20x
5y

+a2,21x
7 + a2,22x

4y2 + a2,23x
6y + a2,24x

8 + a2,25x
5y2 + a2,26x

7y

+a2,28x
6y2 + a2,29x

8y + a2,31x
7y2 + a2,34x

8y2
)n2

×
(
y3 + a3,15x

5 + a3,16x
2y2 + a3,17x

4y + a3,18x
6 + a3,19x

3y2 + a3,20x
5y

+a3,21x
7 + a3,22x

4y2 + a3,23x
6y + a3,24x

8 + a3,25x
5y2 + a3,26x

7y

+a3,27x
9 + a3,28x

6y2 + a3,29x
8y + a3,30x

10 + a3,31x
7y2 + a3,32x

9y

+a3,33x
11 + a3,34x

8y2 + a3,35x
10y + a3,36x

12 + a3,37x
8y2 + a3,38x

11y

+a3,39x
13 + a3,40x

9y2 + a3,41x
12y + a3,43x

10y2 + a3,44x
13y + a3,46x

12y2

+a3,49x
13y2

)n3
×

(
y3 + a4,15x

5 + a4,17x
4y + a4,18x

6 + a4,20x
5y + a4,21x

7 + a4,23x
6y

+a4,24x
8 + a4,26x

7y + a4,27x
9 + a4,29x

8y + a4,30x
10 + a4,32x

9y

+a4,33x
11 + a4,35x

10y + a4,36x
12 + a4,38x

11y + a4,39x
13 + a4,41x

12y

+a4,42x
14 + a4,44x

13y + a4,45x
15 + a4,47x

14y + a4,48x
16 + a4,50x

15y

+a4,51x
17 + a4,53x

16y + a4,54x
18 + a4,56x

17y + a4,59x
18y
)n4

.

Moreover, the normal forms for the generic curve are given by the 35-parameters family

Na =
(
y3 + x5 + x2y2

)
×

(
y3 + a2,15x

5 + a2,16x
2y2 + a2,17x

4y + a2,18x
6 + a2,19x

3y2 + a2,20x
5y

+a2,23x
6y
)
×

(
y3 + a3,15x

5 + a3,16x
2y2 + a3,17x

4y + a3,18x
6 + a3,19x

3y2 + a3,20x
5y

+a3,21x
7 + a3,22x

4y2 + a3,23x
6y + a3,24x

8 + a3,25x
5y2 + a3,26x

7y

+a3,28x
6y2 + a3,29x

8y
)
×

(
y3 + a4,15x

5 + a4,17x
4y + a4,18x

6 + a4,20x
5y + a4,21x

7 + a4,23x
6y

+a4,24x
8 + a4,26x

7y + a4,27x
9 + a4,29x

8y + a4,30x
10 + a4,32x

9y

+a4,33x
11 + a4,35x

10y
)
.
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B1

B2
n2 = 25
critical block

2

2

2
2

2

2

1
2
1

2
1

1

B3
n3 = 10
transitive action

p = 4 branches
ǫ0 = ǫ∞ = 0 (no axes)
δ = 3 + 40 + 25 + 10 = 78

d = 30

i

j

(0, νc = 52)(k, l) = (3, 5) (u, v) = (2, 1)

2j
−
3i

=
10
4

3j
−
5i

=
15
6

d = 17
d = 18

d = 32

d = 45

d = 47

d = 62

d = 60

τ = 32 +
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B2 = 32 + 3 = 35

d4 = 61
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x9

x8

yx4

yx5

yx6
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y2x2

y2x3

y2x5

y2x6

y2x4

md monomial of R-degree d

nd number of modules at level d
qd number of vector fields of C a such

~td translation associated to md+1
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that ν(Xm,n) = d
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↑
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↑

↑

ր
ր

↑
ր
ր
↑

ր

↑
ր
ր
↑

ր

ր
ր
↑

d3 = 46

d2 = 31

d0 = 15

ր
ր

ր

↑

M4M3M2M1

d1 = 16

critical block
jump of the

Figure 6: Moduli triangle of the topological class (k, l) = (3, 5) and p = 4
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Université Paul Sabatier

118 route de Narbonne

31062 Toulouse cedex 9, France.

yohann.genzmer@math.univ-toulouse.fr

E. Paul
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