
MODULI SPACES OF ABELIAN DIFFERENTIALS:

THE PRINCIPAL BOUNDARY, COUNTING PROBLEMS,

AND THE SIEGEL–VEECH CONSTANTS

by ALEX ESKIN⋆, HOWARD MASUR⋆⋆, and ANTON ZORICH

ABSTRACT

A holomorphic 1-form on a compact Riemann surface S naturally defines a flat metric on S with cone-type
singularities. We present the following surprising phenomenon: having found a geodesic segment (saddle connection)
joining a pair of conical points one can find with a nonzero probability another saddle connection on S having the
same direction and the same length as the initial one. A similar phenomenon is valid for the families of parallel
closed geodesics.

We give a complete description of all possible configurations of parallel saddle connections (and of families of
parallel closed geodesics) which might be found on a generic flat surface S. We count the number of saddle connec-
tions of length less than L on a generic flat surface S; we also count the number of admissible configurations of pairs
(triples,...) of saddle connections; we count the analogous numbers of configurations of families of closed geodesics.

By the previous result of [EMa] these numbers have quadratic asymptotics c · (πL2). Here we explicitly compute the
constant c for a configuration of every type. The constant c is found from a Siegel–Veech formula.

To perform this computation we elaborate the detailed description of the principal part of the boundary of
the moduli space of holomorphic 1-forms and we find the numerical value of the normalized volume of the tubular
neighborhood of the boundary. We use this for evaluation of integrals over the moduli space.
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Introduction

1. Flat surfaces and geodesics on flat surfaces

In this paper we shall consider flat metrics with isolated conical singularities on

a closed orientable surface of genus g. An important class of such flat metrics corres-

ponds to the translation surfaces: those surfaces for which the flat metric on the surface

has trivial linear holonomy. These surfaces have been studied by several authors in

various guises; in the context of Abelian differentials (and more generally quadratic

differentials) on compact Riemann surface in [S], in the context of rational billiards

in [KaZe], [KMS], [Ve3], and [GJ]. Moduli spaces of these structures have been

studied in [Ve4], [MS], [Ko], [KonZo], and [EMa]. A survey is given in [MT].

Triviality of holonomy means, in particular, that the parallel transport of a vec-

tor along a small loop going around a conical point brings a vector back to itself. This

implies that all cone angles of such surface are integer multiples of 2π.

Choose a direction in the tangent space to some base point x0 ∈ S of the flat sur-

face and transport this direction using the parallel transport to all nonsingular points

of the surface. Since the monodromy is trivial this parallel transport does not depend

on the path. Thus, any direction is globally defined on the flat surface punctured at

the singularities. Throughout this paper by a flat surface we mean a flat surface having

trivial holonomy representation in SO(2, R). Following a tradition we often call the

conical points the saddles.

FIG. 1. — Identifying the opposite sides of these octagons by parallel translations we obtain a pair of flat surfaces of

genus g = 2

A flat torus gives an example of a flat surface without any saddles. One can

glue a flat torus from a parallelogram by identifying opposite sides. A generalization

can be found by considering a polygon in the plane having the property that its sides

are distributed into pairs that are parallel and of equal length. Identifying the pairs

by translations one gets a closed oriented flat surface. For example, identifying the

opposite sides of a regular octagon one gets a surface of genus 2, see Figure 1. All

vertices of the octagon are identified to a single saddle which has an angle of 6π.

Deforming the regular octagon in such way that the sides are organized into pairs of
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parallel sides of equal length we get a family of flat surfaces of genus g = 2 each having

a single conical singularity with the cone angle 6π.

We may assume that we have cartesian coordinates in the polygons. In these

coordinates away from the saddles, geodesics on the surface S are straight lines. The

behavior of geodesics on flat surfaces is in many aspects similar to the behavior of

geodesics on a flat torus. In particular, a geodesic cannot change the direction, and

thus cannot have self intersections. A generic geodesic is dense in the surface analo-

gously to an irrational winding line which is dense on the torus.

However, a flat surface different from the torus must have saddles and some

geodesics that hit the saddles. Some geodesics hit the saddles going both in forward

and in backward directions. Such a geodesic segment joining a pair of saddles and

having no saddles in its interior is called a saddle connection.

Note that the shortest representative in a homotopy class of curves joining two

saddles exists. Typically, even for the class of a simple closed curve, one gets a bro-

ken line containing many geodesic segments. The segments of these broken lines pass

through the saddles changing directions there. We want to stress that throughout this

paper we consider only those saddle connections which contain a single geodesic seg-

ment and thus no saddles in its interior. However, we consider the situation when the

endpoints of a saddle connection coincide. We call such saddle connections the closed

saddle connections.

A geodesic leaving a regular point P may return back to P without meeting

any singularities. Since it cannot change its direction, we necessarily get a closed regular

geodesic in this case. Note that as in the case of the torus, any geodesic leaving a nearby

point in a parallel direction will be also closed and will have the same length as the

initial one. Thus closed regular geodesics appear in families of parallel geodesics of the

same length. However, unlike the case of the torus, such parallel closed geodesics do

not typically fill all the surface, but only a cylindrical subset. Each boundary compon-

ent of such a cylinder is comprised of saddle connections. For example, choosing the

vertical direction on the flat surface obtained from a regular octagon (see Figure 1) we

get two families of regular closed geodesics, and each of the two families fills a cylin-

der. Generically, each boundary component of a cylinder filled with closed geodesics

is a single closed saddle connection.

The converse, however, is false. A closed saddle connection does not necessar-

ily bound a cylinder of regular closed geodesics. In fact, it bounds such a cylinder if

and only if the angle at the saddle between the outgoing and incoming segments is ex-

actly π. In this paper we will be interested in both counting closed saddle connections

and counting cylinders filled with regular closed geodesics.

Now fix a flat surface S. Let Ŝ be the universal cover of S − Σ, where Σ is the

collection of saddles. There is an isometric map of Ŝ to R2 called the developing map

which maps a lift γ̂ of an oriented curve γ on S to a curve in R2. We denote by
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hol(γ) the difference of the endpoints of the image. The vector hol(γ) ∈ R2 is called

the holonomy vector of γ .

Remark 1.1. — By definition a flat surface has trivial holonomy representation

in the linear group

π1(S) → H1(S, Z) → SO(2, R).

However, the holonomy representation in the affine group is nontrivial: its image be-

longs to the group of translations. From now on we reserve the notion of holonomy for

this second representation. It matches the notion of holonomy hol(γ) defined by an

arbitrary (not necessarily closed) oriented curve γ suggested in the paragraph above.

Now fix a pair of saddles on a flat surface S, and some length L. Consider all

those saddle connections joining the fixed saddles whose length is shorter than L. We

are interested in the asymptotics of the number of saddle connections when the bound

L tends to infinity. In the model case of the torus of unit area it is sufficient to pass to

the universal covering plane to see that the number of geodesic segments of length at

most L joining a generic pair of distinct points on the torus grows quadratically as the

number of lattice points in a disc of radius L, so we get asymptotics πL2. Note that

the number of (homotopy classes) of closed geodesics of length at most L has different

asymptotics. Since we want to count only primitive geodesics (those which do not repeat

themselves) now we have to count only coprime lattice points in a disc of radius L,

considered up to a symmetry of the torus (issues of symmetry will be considered in

details later). Therefore we get the asymptotics
1

2ζ(2)
· πL2 = 3

π2
· πL2.

It is proved in [EMa] that the growth rate of the number of saddle connections

for a generic flat surface also has quadratic asymptotics c·(πL2), and, moreover, almost

all flat surfaces in some natural families of flat surfaces share the same constant c in the

asymptotics. One of the principal goals of this paper is to compute these constants for

all natural families (which are explicitly defined below). We also compute the constants

in the quadratic asymptotics for the number of families of closed regular geodesics.

It is relatively easy to show that for a generic flat surface one can never find

a pair of saddle connections having the same direction but different lengths, see Propo-

sition 7.4 at the end of Section 7. However, somewhat surprisingly, the configurations

of pairs of parallel saddle connections of the same length and same direction can be

found on almost every flat surface, and, what may seem even more surprising, their

number also has quadratic asymptotics (with another constant c).

One can ask now the similar questions about the triples of saddle connections,

or about some more specific configurations of saddle connections, or similar questions

concerning closed geodesics. We give a complete description of those configurations

which can be found on a generic surface; we show that each of them has quadratic
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asymptotics (this was essentially already proved in [EMa]), and in every case we com-

pute the corresponding constant in the quadratic asymptotics.

Remark 1.2. — A billiard in a polygon with rational angles gives rise to a flat

surface, see for example [KaZe], [KMS], or [MT]. However, rational billiards are not

generic in the natural families of flat surfaces, which we consider. Thus, the constants

described in this paper do not apply to the billiard problem, with an exception for

some particular classes off billiards, see [EZo].

1.1. Flat surfaces and Abelian differentials. — If we cut a flat surface S successively

along an appropriate collection of saddle connections we can decompose it into poly-

gons contained in R2 = C, see, for example, Figure 1. We may then view S as a union

of polygons glued along parallel sides by means of parallel translations. Note that we

have endowed every polygon with a complex coordinate. Since our gluing rules are

just translations, the transition functions in these complex coordinates have the form

z → z + const.

Thus any flat surface with the conical singularities removed is endowed with a nat-

ural complex structure. Moreover, consider a holomorphic 1-form ω = dz on every

polygon. Since dz = d(z + const) we obtain a globally defined holomorphic 1-form on

the surface with removed singularities. It is an easy exercise to show that the com-

plex structure and the holomorphic 1-form can be extended to the singularities; the

holomorphic 1-form (or, what is the same, the Abelian differential ) ω has a zero at every

conical point.

Conversely, given a pair (M, ω) where M is a Riemann surface, ω is a holomor-

phic Abelian differential on M, and a point P ∈ M such that ω(P) �= 0, there exists

a local coordinate z near P such that ω = dz. Such a local coordinate is unique up

to change of coordinates z → z + const. Thus |dz|2 is a flat metric on M; this metric

develops conical singularities at the zeroes of ω. At a zero of order k the total angle

is 2π(k + 1). Such collection of coordinate charts determines a structure S = (M, ω)

of a “translation surface” (which we agree to call just a “flat surface”) on M, namely,

an atlas of coordinate charts which cover the surface away from the singularities, such

that the transition functions are translations

z → z + const.

When we consider moduli spaces of flat surfaces we will wish to distinguish be-

tween ω and eiθω. This is equivalent to specifying a distinguished direction on the flat

surface.

Convention 1. — Depending on the context we shall use one of the synonyms

“saddle”, “conical singularity”, “zero of Abelian differential” or just “zero”.
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2. Moduli spaces of Abelian differentials

2.1. Stratification. — Let α be a partition of 2g−2 (i.e. a representation of 2g−2 as

an unordered sum of positive integers). Let H (α) denote the moduli space of pairs

(M, ω) where M is a closed Riemann surface of genus g, and ω is a holomorphic

Abelian differential on M such that the orders of its zeroes is given by α. Here we

distinguish between ω and eiθω. The zeroes on each surface are assumed to be named.

We say that two such structures are equivalent if there is an isomorphism from one to

the other which takes zeroes to zeroes, preserving the naming. The set of equivalence

classes is denoted H (α) and is called a stratum. This term is justified by the fact that

the space of all Abelian differentials on Riemann surfaces of genus g is stratified by the

spaces H (α), as α varies over the partitions of 2g−2. In the case of flat tori the space

is GL+(2, R)/SL(2, Z), the moduli space of lattices. The stratum corresponding to the

partition (1, ..., 1) is called the principal stratum: it corresponds to holomorphic differen-

tials with simple zeroes. For example, the surface in Figure 2 belongs to H (1, 1). The

stratum might be nonconnected, although the components have been completely clas-

sified (see [KonZo]). The classification involves the notion of parity of spin structure

and issues of hyperellipticity. These components will be described later in Section 5.2.

2.2. Local coordinates and volume element. — The stratum H (α) can be topologized

and given a natural “Lebesgue” measure as follows. For a flat surface S0 ∈ H (α) with

conical points P1, ..., Pk, choose a basis of cycles for the relative homology

H1(S0, {P1, ..., Pk}; Z). This basis may be chosen in such a way that each element

is represented by a saddle connection. Equivalently, the saddle connections cut S into

a union of polygons. For any S near S0 the vectors associated to these saddle con-

nections serve as local coordinates, see, for example, Figure 1. By construction these

vectors are the relative periods of the Abelian differential ω (i.e. the integrals of ω

along the paths joining points Pi and Pj , where i = j is also allowed). So we ac-

tually use a domain in the space of relative cohomology H1(S0, {P1, ..., Pk}; C) as

a local coordinate chart. Ignoring the complex structure we get a domain in Rn =
H1(S0, {P1, ..., Pk}; C), where n = 4g + 2k − 2. Note that we have a natural cubic

lattice in our coordinates given by the “integer” cohomology

H1(S0, {P1, ..., Pk}; Z ⊕ iZ) ⊂ H1(S0, {P1, ..., Pk}; C) = Rn.

We define a measure or volume element dν(S) on H (α) as Lebesgue measure defined

by these coordinates, normalized so that the volume of a unit cube in Rn is 1. One

easily checks that the volume element is well-defined: it is independent of choice of

basis.

Let H1(α) ⊂ H (α) be the hypersurface in H (α) of unit area flat surfaces.

Choose a symplectic homology basis of closed curves Ai, Bi, i = 1, ..., g on the surface
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S = (M, ω). The area of the flat surface S defined by the Abelian differential ω is

given by the Riemann bilinear relation,

∫

S

|ω|2dxdy = i

2

∫

S

ω ∧ ω̄ = i

2

∑

i

(∫

Ai

ω

∫

Bi

ω̄ −
∫

Ai

ω̄

∫

Bi

ω

)

.

Thus the unit area surfaces represent a “hyperboloid” in terms of the coordinates cho-

sen above.

Throughout this paper we shall mostly work with the “hyperboloid” H1(α) ⊂
H (α). The volume element in the embodying space H (α) induces naturally a vol-

ume element on the hypersurface H1(α) in the following way. There is a natural C∗-

action on H (α): having λ ∈ C − {0} we associate to the flat surface S = (M, ω)

the flat surface λ · S = (M, λ · ω). In particular, we can represent any S ∈ H (α)

as S = r S′, where r ∈ R+, and where S′ belongs to the “hyperboloid”: S′ ∈ H1(α).

Geometrically this means that the metric on S is obtained from the metric on S′ by

rescaling with coefficient r. In particular, vectors associated to saddle connections on

S′ are multiplied by r to give vectors associated to corresponding saddle connections

on S. It means also that area(S) = r2 · area(S′) = r2, since area(S′) = 1. We define the

volume element d vol(S′) on the “hyperboloid” H1(α) by disintegration of the volume

element dν(S) on H (α):

dν(S) = rn−1 dr d vol(S′) ,

where n = dimR H (α). Using this volume element we define the total volume of the

stratum H1(α):

Vol(H1(α)) :=
∫

H1(α)

d vol(S′) .(1)

Since the measure on H1(α) is induced by the volume element, the total volume of

the stratum coincides with the total measure.

For a subset E ⊂ H1(α) we let C(E) ⊂ H (α) denote the “cone” based on E:

C(E) := {S = r S′ | S′ ∈ E, 0 < r ≤ 1} .(2)

Our definition of the volume element on H1(α) is consistent with the following nor-

malization:

Vol(H1(α)) = n · ν(C(H1(α)) ,(3)

where n = dimR H (α), and ν(C(H1(α)) is the total volume (total measure) of the

“cone” C(H1(α)) ⊂ H (α) measured by means of the volume element dν(S) on

H (α) defined above.
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Convention 2. — We need to use both volume elements. To distinguish them we

keep the notation dν(S) for the volume element in the whole stratum H (α) and no-

tation d vol(S) for the volume (hypersurface) element in the “unit hyperboloid” H1(α)

which is a hypersurface in H (α).

It is a result of [M], [MS] and [Ve2] that these volumes are finite. Their values

have been calculated in [EOk], see also [Zo] for the volumes of some low-dimensional

strata. They will be needed for the calculations of the asymptotic constants. Tables of

the values of the volumes for all connected components of the strata in genera g ≤ 4

are presented in Section 8.4.

3. Principal boundary of the moduli spaces and method of evaluation of the

Siegel–Veech constants

3.1. Holonomy and homology. — Note that in terms of the local coordinates (x, y)

defining the flat structure the corresponding Abelian differential has the form ω =
dz = dx + i dy. This has an important consequence: for any oriented curve β on S,

the holonomy of β (as defined above in terms of the developing map) coincides with the

integral
∫

β
ω of ω over β (here we have identified R2 and C). Since the 1-form ω is

closed, it means, in particular, that if β and γ are homologous, then hol(γ) = hol(β).

In particular, if we have a cylinder filled with regular closed geodesics, then all these

geodesics share the same holonomy vector.

When a path β joins a pair of distinct points we say that a path γ is homologous

to β if it joins the same pair of points and if the closed loop β · γ−1 is homologous to

zero, that is breaks the surface into two components. The paths β, γ which interest us

in this paper are saddle connections or closed geodesics on S. We can formalize the

above observation saying that saddle connections β, γ representing homologous elem-

ents in H1(S, {P1, ..., Pk}; Z) (where P1, ..., Pk are the saddles) share the same holon-

omy vector hol(β) = hol(γ).

On the other hand the equality hol(β) = hol(γ) for nonhomologous β, γ occurs

only for non generic surfaces. Consider the following example. Take four unit squares

with sides glued as indicated at the left-hand-side picture at Figure 2. The result is

a closed surface S of genus 2. The five points indicated by the filled circle symbol

are identified, as are the five points indicated by the unfilled circle symbol. Hence

S has two conical singularities, each of total angle 4π. Each of the hatched squares

corresponds to a cylinder filled with horizontal regular closed geodesics of length 1.

Hence, for any closed geodesics σ1 in the first cylinder and any closed geodesics σ2 in

the second cylinder we get hol(σ1) = hol(σ2) = (1, 0).

Note, however, that σ1 and σ2 are not homologous. This means that the relation

above does not survive under a generic deformation of this flat surface, see the right-
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hand-side picture at Figure 2. On the other hand the pair of saddle connections γ and

γ1 are homologous and we see that they keep sharing the same holonomy hol(γ) =
hol(γ1) under any small deformation of the surface. Figure 11 gives an example when

such a relation between two distinct families of closed geodesics is stable under any

small deformation of the flat surface.

FIG. 2. — Nonhomologous saddle connections which have the same holonomy lose this property after a generic defor-

mation of the surface, while homologous ones keep the same holonomy

This observation can be formalized as follows.

Proposition 3.1. — Almost any flat surface S in any connected component of any stratum

does not have a single pair of nonhomologous saddle connections sharing the same holonomy vector.

Proof. — Consider a basis of (relative) cycles in H1(S, {P1, ..., Pk}; Z). We know

that the corresponding periods of ω (integrals over these basic cycles) serve as local

coordinates in the stratum H (α). Note that for almost all points of the cohomo-

logy space these periods are rationally independent: no linear combination of periods

equals to zero when the linear combination is taken with rational coefficients. Note

also, that if the periods of a closed 1-form ω are rationally independent, then the same

property is obviously true for the form λ·ω where λ ∈ R. Hence, this is true for almost

all flat surfaces in the “unit hyperboloid” H1(α).

A pair of saddle connections β, γ represent integer cycles in H1(S,{P1,...,Pk};Z).

Hence, if they are not homologous, for almost all points (S, ω) of H1(α) the corres-

ponding periods are different:
∫

β
ω �=

∫

γ
ω. Since hol(β) =

∫

β
ω and hol(γ) =

∫

γ
ω the

proposition is proved. ⊓⊔
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3.2. Configurations of saddle connections. — Consider the set of all saddle connections

on a flat surface S and consider its image Vsc(S) ⊂ R2 under the holonomy map. (We

remind the reader that by definition, a saddle connection is represented by a single

geodesic segment joining a pair of conical points, and not by a broken line of geodesic

segments.)

Choose, for example, a flat torus R2/(Z⊕Z) as a surface S and mark a generic

pair of points P0, P1 on this torus. Let �v0 := �P0P1. The set Vsc(S) ⊂ R2 is the square

lattice of the form {�v0 + �u}�u∈Z⊕Z.

Similarly to the torus case, the set Vsc(S) is a discrete subset of R2. However,

when S is different from the torus the map from the set of saddle connections on S to

Vsc(S) is not injective: different saddle connections may have the same holonomy. We

define the multiplicity of an element �v ∈ Vsc(S) to be the number p of distinct saddle

connections γ1, ..., γp such that hol(γi) = �v. For example, for the surface S presented

on the left of Figure 2 the vector (0, 1) ∈ Vsc(S) has multiplicity four: the saddle

connections β, γ, γ1, η chosen with appropriate orientation have holonomy (0, 1).

In this example the saddle connections represented by β, γ, γ1, η are not pair-

wise homologous. As indicated above, the fact that their holonomy coincides is not

generic; deforming the surface slightly we see that the corresponding saddle connec-

tions have different holonomy; see the right-hand-side picture at Figure 2. The situ-

ation is different with the saddle connections γ and γ1, for they are homologous. The

right-hand-side picture at Figure 2 confirms that even after any small deformation

of the surface the corresponding saddle connections share the same holonomy vector

hol(γ) = hol(γ1).

From the measure-theoretical point of view Proposition 3.1 allows us to assume

from now on that if two saddle connections β, γ have the same holonomy, then γ

and β are homologous. In particular, if β joins distinct saddles P1, P2, then γ joins

the same pair of saddles. Since the surfaces as in the left-hand-side picture at Figure 2

form a set of measure zero we will ignore them in our considerations.

Somewhat surprisingly, higher multiplicity is very common even for a generic

surface. For example, we will show that if the genus is at least 3, then counting sep-

arately the vectors of multiplicity one in Vsc(S) of length at most L and the vectors

of multiplicity two, we get quadratic growth in L for the number of elements of both

multiplicities.

Multiplicity is not the only property distinguishing elements in Vsc(S): some of

them correspond to closed saddle connections, other elements correspond to saddle

connections joining distinct zeroes. We may also consider only those �v ∈ Vsc(S), which

correspond to saddle connections joining some particular pair of saddles. We refine

our consideration slightly more specifying the following data.

Suppose that we have precisely p homologous saddle connections γ1, ..., γp join-

ing a zero z1 of order m1 to a zero z2 of order m2, see Figure 5 for a topological
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picture. All the γi, 1 ≤ i ≤ p have the same holonomy (where the orientation of each

γi is from z1 to z2). By convention the cyclic order of the γi at z1 is clockwise in the

orientation defined by the flat structure. Let the angle between γi and γi+1 at z1 be

2π(a′
i +1); let the angle between γi and γi+1 at z2 be 2π(a′′

i +1). We call this data the

configuration

C = (m1, m2, a′
i, a′′

i )

of the p homologous saddle connections. If there is just a single saddle connection

(p = 1) then C = (m1, m2).

Convention 3. — We reserve the notion “configuration” for geometric types of pos-

sible collections of saddle connections, and not for the collections themselves.

Now given a surface S and a configuration C , let VC (S) ⊂ Vsc(S) denote the

vectors �v in R2 such that there are precisely p saddle connections γ1, ..., γp forming the

configuration of the type C and having holonomy hol(γi) = �v. We want to compute

the number of collections {γ1, ..., γp} of the type C having holonomy vector of length

at most L. In other words, we want to compute the asymptotics as L → ∞ of the

cardinality

|VC (S) ∩ B(L)|

of intersection of the discrete set VC (S) with the disc B(L) ⊂ R2 of radius L centered

at the origin.

Now consider the second problem of this paper: counting closed saddle connec-

tions.

We have a surface S and a saddle connection γ1 joining a zero z1 to itself. There

may be other saddle connections γ2, ..., γm having the same holonomy vector as γ1.

By the same argument as above we shall always assume that all such γi are homolo-

gous.

Some of the γi may start and end at the same zero z1, the others may start and

end at the other zeroes. Each γi returns to its zero at some angle θi which is an odd

multiple of π. Some of the γi may bound cylinders filled with regular closed geodesics.

A configuration C describes all these geometric data; this notion will be formalized in

Section 11.

We may have numerous collections of precisely p homologous closed saddle con-

nections corresponding to a configuration C , i.e. defining the prescribed number of

cylinders, prescribed angles θi, etc. As in the first problem for a surface S and config-

uration C let VC (S) denote the vectors �v in R2 such that the saddle connections in

C have holonomy hol(γ1) = · · · = hol(γp) = �v equal to that vector. Again we shall
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compute the asymptotics as L → ∞ of

|VC (S) ∩ B(L)|,

where B(L) is the disc of radius L.

Theorem (A. Eskin, H. Masur; [EMa]). — For either of the problems, given a configu-

ration C , there is a constant c = c(α,C ) such that for almost all S in any connected component of

any stratum H1(α) one has

lim
L→∞

|VC (S) ∩ B(L)|
πL2

= c(α,C ).(4)

The constant c(α,C ) depends only on the connected component of the stratum and on the configura-

tion C .

Versions of the above theorems where convergence a.e. is replaced by conver-

gence in L1 are proved in [Ve4]. Thus the growth rate is quadratic for a generic

surface. What is perhaps surprising is that this formula says that the growth rate is

quadratic for a generic surface even for multiple homologous saddle connections. By

contrast, a generic surface does not have any pairs of saddle connections that deter-

mine vectors in the same direction but with different lengths, see Proposition 7.4 at the

end of Section 7.

Remark 3.2. — The issue of higher multiplicity and specifying the angles is not

explicitly addressed in [EMa]. However, the set VC (S) defined above, satisfies all of

the axioms of that paper, so the asymptotic formula from [EMa] is applicable to the

problems formulated above.

One of the main results of this paper is a description of all possible configura-

tions C for any connected component of any stratum, and an evaluation of the cor-

responding constants c(α,C ).

We note that the lists of configurations and the values of the constants have been

verified numerically. Beside direct considerations of flat surfaces we used the following

implicit experiments. A formula based on the formula of Kontsevich (see [Ko]) ex-

presses the sum of the Lyapunov exponents of the Teichmüller geodesic flow on each

connected component of every stratum H (α) in terms of some rational function of α

and of some specific linear combination of the constants c(α,C ) for the corresponding

component of H (α). These Lyapunov exponents have been computed numerically

and the constants achieved in this paper are consistent with these exponents and with

Kontsevich’s formula.
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3.3. Siegel–Veech formula. — Fix a topological type of a configuration C . To every

flat surface (S, ω) in H1(α) we can associate a discrete set VC (S) ⊂ R2. This en-

ables us to construct an operator f �→ f̂ from the space of integrable functions with

compact support in R2 to functions on H1(α). We define f̂ as

f̂ (S) :=
∑

�v∈VC (S)

f (�v).

Averaging f̂ over the entire moduli space we get a functional on the space of functions

with compact support in R2. In [Ve4] it was proved that this functional is SL(2, R)-

invariant which implies the following Siegel-type formula. For each configuration C

and for each connected component H1(α) of each stratum the average of f̂ over

H1(α) and the average of f over R2 coincide up to a multiplicative factor const(C )

which depends only on the configuration type and on the connected component of

the stratum. The formula

1

Vol(H1(α))

∫

H1(α)

f̂ (S) d vol(S) = const(C )

∫

R2

f(5)

was called in [EMa] the Siegel–Veech formula. It was shown in [EMa] that the Siegel–

Veech constant const(C ) in the formula above and the c(C ) in equation (4) coincide.

Thus, one of the major goals of this paper can be thought of as finding the constant

in the Siegel–Veech formula (5).

The strategy for evaluating c(C ) = const(C ) consists of choosing a convenient

function f for which the complicated integral on the left in (5) can be computed as

explicitly as possible. As such a “convenient function” we take the characteristic func-

tion fε of the disc B(ε) centered at the origin of R2, where ε is the radius of the disc.

The integral on the right in equation (5) is equal to πε2. The integral on the left gives

the average number of configurations of the type C having holonomy vector shorter

than ε. We cannot compute this average explicitly for any given ε. However, we can

compute the leading term of order ε2 in the asymptotics of the left-hand-side of (5) as

ε → 0. This will be sufficient for our purposes. To compute this leading term we use

the idea which we illustrate in the simplest case, when the configuration C consists of

a single saddle connection joining two distinct saddles z1, z2. The general case, as well

as a rigorous proof of equation (6) below is treated in Section 7.

Denote the support of f̂ ε by H ε
1 (α,C ). This is the subset of flat surfaces S,

which possess at least one short saddle connection γ of multiplicity one joining the

chosen zeroes z1, z2. Saying “short” we mean that |�v| ≤ ε, where �v = hol(γ). This

space is not compact: for any compact subset K of H1(α) the length of the short-

est saddle connection on any flat surface S ∈ K is bounded from below. The space

H ε
1 (α,C ) is difficult to analyze since a surface S ∈ H ε

1 (α,C ) may have short saddle

connections different from γ , possibly even many saddle connections that intersect.
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To simplify our task we decompose H ε
1 (α,C ) into two complementary subsets:

a “thick” and a “thin” part: H ε
1 (α,C ) = H

ε,thick
1 (α,C ) ⊔ H

ε,thin
1 (α,C ). The thick

part H
ε,thick

1 (α,C ) consists of surfaces S having exactly one saddle connection γ shorter

than ε; moreover, we require that this γ joins the two chosen zeroes z1 and z2. The thin

part H
ε,thin

1 (α,C ) consists of surfaces S having at least one short saddle connection γ

as above and at least one other short saddle connection β nonhomologous to γ . Here

β is an arbitrary short saddle connection, not necessarily joining z1 to z2, possibly

closed.

The function f̂ ε is equal to zero outside of H ε
1 (α,C ). By definition of the thick

part, the value of f̂ ε on any S ∈ H
ε,thick

1 (α,C ) is identically 1. Finally, for S ∈
H

ε,thin
1 (α,C ) we have f̂ ε(S) ≥ 1. Thus, we get the following representation of the

integral above:
∫

H1(α)

f̂ ε(S) d vol(S) =
∫

H
ε,thick

1 (α,C )

d vol(S) +
∫

H
ε,thin

1 (α,C )

f̂ ε(S) d vol(S).

The first term in this sum is just the volume of the thick part. Even though f̂ ε is

unbounded on the thin part, its measure is so small that the integral of f̂ over the

thin part is negligible: it is of the order o(ε2). We prove this statement in Section 7

using a nontrivial upper bound for f̂ ε found in [EMa]. The fact that the thin part is

small implies also that Vol(H ε
1 (α,C )) = Vol(H

ε,thick
1 (α,C )) + o(ε2). Hence, we get

the following key statement:

Proposition 3.3. — For any connected component of any stratum H (α) and for any con-

figuration C the following limit exists and is equals to the corresponding Siegel–Veech constant:

c(C ) = lim
ε→0

1

πε2

Vol(H ε
1 (α,C ))

Vol(H1(α))
.(6)

We prove this Proposition in Section 7. Formula (6) explains why one of the

principal goals of this paper is the calculation of the asymptotics of the volume

Vol(H ε
1 (α,C )) for any connected component of any stratum and for any configu-

ration C of homologous saddle connections admissible for this component.

3.4. Principal boundary of the moduli spaces. — Now as one lets ε → 0, the flat sur-

faces in the thick part degenerate to simpler surfaces. In the case of a single saddle

connection joining a pair of distinct zeroes the zeroes coalesce to a higher order zero

giving a surface in a stratum in the same genus; the complex dimension of the result-

ing stratum decreases by one with respect to the initial one. In general, collapsing all

saddle connections from a configuration C to a single point we obtain a surface from

more degenerate stratum; the surface is disconnected if the configuration has multipli-

city two or more. We shall say that the resulting surface (connected or not) belongs
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to the principal boundary of the original stratum. Each configuration C will determine a

“face” of this principal boundary. A major part of this paper then will be to describe

this principal boundary, an object of independent interest.

Conversely, given a flat surface S′ in the principal boundary, we will describe

a set of surgeries on S′ that allow us to recover surfaces S in the thick part. The first

surgery is a splitting apart of a higher order zero into simpler zeroes that is the op-

posite of coalescing. The second one is a slit and gluing construction which is the op-

posite of the degeneration of multiple saddle connections. To construct surfaces with

homologous closed geodesics, we shall also need a pair of constructions, called the

figure eight and creating a pair of holes construction.

The above constructions lead to the following picture. Let C be a configuration

of homologous saddle connections joining two distinct points. We shall prove that the

thick part H
ε,thick

1 (α,C ) has the structure of a (ramified) covering over a direct product

H1(α
′)×B(ε) of the corresponding stratum of surfaces obtained after degeneration of

C and a two-dimensional disc B(ε) of radius ε. Moreover, the measure on the thick

part H
ε,thick

1 (α,C ) is just the product of corresponding measures on the two factors

H1(α
′) and B(ε). The degree of the covering (the combinatorial constant) M corresponds

to the number of ways to perform the surgeries on S′ to obtain S. Hence, we shall

obtain the following answer in all cases

Vol
(

H
ε

1 (α,C )
)

= M · πε2 · Vol(H1(α
′)) + o(ε2).

Applying (6) we then are able to prove the following result

c(C ) = M · Vol(H1(α
′))

Vol(H1(α))
.(7)

Analogous considerations can be applied to a configuration C of closed saddle

connections. Since we are interested in the answers for all connected components of

the strata we shall need in certain situations to pay attention to parity of spin struc-

tures and hyperellipticity.

One can think of every stratum as an analogue of a complex polyhedron; the

boundary of the polyhedron has “faces” of complex codimension 1, “edges” of com-

plex codimension 2, etc. A collection of all admissible types C of configurations of

homologous saddle connections describes all generic degenerations of our surfaces, that

is all possible “faces” of the boundary. Thus, though we do not construct a compact-

ification of the strata H1(α) in full generality we describe the principal boundary of the

strata H1(α).

Remark 3.4. — One can consider these same problems in the context of quadratic

differentials. To avoid overloading the paper we prefer to treat them in a subsequent

one.
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Remark 3.5. — A list of the geometric types of admissible configurations C is

shared by almost all surfaces in any connected component of any stratum. However

this list varies when we change the stratum, or a connected component of the stra-

tum. Thus, such lists can be used as an invariant of a connected component. There

are other orbifolds in the moduli space of Abelian differentials invariant under the

SL(2, R)-action; they have their own lists of geometric types of admissible configura-

tions (understood more generally). These lists have proved to be important invariants

of such orbifolds: in [HuS] they are used to give an example of different Veech sur-

faces (with different Teichmüller discs) sharing isomorphic Veech groups.

3.5. Arithmetic of Siegel–Veech constants. — As remarked earlier the number of (ho-

motopy classes) of primitive closed geodesics of length at most L on a flat torus of area

one (considered up to a symmetry of the torus) is approximately
3

π2
· πL2. The num-

ber of geodesic segments of length at most L joining a generic pair of distinct points

P1, P2 on the same torus is approximately 1 · πL2.

The general Siegel–Veech constants c(C ) share the same arithmetic property!

Those Siegel–Veech constants, which correspond to configurations of closed saddle con-

nections always have the form of a rational divided by π2; those Siegel–Veech con-

stants, which correspond to configurations of saddle connections joining distinct points

are always rational.

We have no simple geometric explanation of this phenomenon. It rather follows

directly from (7), the fact that the combinatorial factor M is by its meaning always

rational (mostly integer) and the fact that the volume of any connected component of

any stratum H1(α) of Abelian differentials is a rational multiple of π2g, where g is the

genus of the surface. This latter fact was conjectured by M. Kontsevich and proved

by A. Eskin and A. Okounkov, who, actually, calculated these volumes (see [EOk] for

connected strata). This property of the volume is true not only for primitive strata, but

for strata of surfaces with marked points and even for strata of disconnected surfaces.

4. Readers guide

In the first half of the paper we solve these problems for saddle connections join-

ing distinct zeroes. We describe the multiplicity one case first, because it is the easiest

one and because it illustrates the computations. This is done in Sections 8.2–8.3. We

then describe the principal boundary in the higher multiplicity case, describing the slit

and gluing constructions and again give the constants. This is done in Sections 9.1–

9.2 and 9.5. Sections 10.1–10.4 as well as the corresponding preliminaries from Sec-

tion 5.1 are devoted to describing the constants in the cases of strata with several com-

ponents and could be skipped by the reader interested only in the general thrust of

the paper.



78 ALEX ESKIN, HOWARD MASUR, ANTON ZORICH

In the second half of the paper we consider the case of closed saddle connec-

tions. We describe the principal boundary using the creating a pair of holes and figure

eight constructions. The reader interested only in the structure of the principal bound-

ary may consult Sections 11–12. The computation of the combinatorial factor is per-

formed in Section 13.3 and the computation of the constant c is given in Section 13.1.

The rest of Section 13 is devoted to numerous examples and Section 14 is devoted to

the special case of strata with several connected components.

We are illustrating all constructions by numerous examples. All possible strata

and all possible configurations in genera g = 2 and g = 3 and all related computa-

tions are presented as the examples in the main body of the text. The complete list

of admissible configurations in genus g = 4, and the values of the corresponding con-

stants are presented in the Appendix. We also present in the Appendix the values of

the constants for the two distinguished strata H (1, ..., 1) and H hyp( g − 1, g − 1) up

to genus g = 30.

Part 0. Structure of the strata

5. Connected components of the strata

5.1. Parity of a spin structure. — As noted earlier, the strata H1(α) are not nec-

essarily connected. To classify the components one needs the notion of parity of spin

structure. Consider a smooth simple curve β on the flat surface S which does not con-

tain any zeroes. We define the index ind(β) ∈ N of the vector field tangent to β to

be the degree of the corresponding Gauss map: the total change of the angle between

the vector tangent to the curve and the vector tangent to the horizontal foliation is

2π · ind(β).

Now take a symplectic homology basis {ai, bi}, i = 1, ..., g, such that the inter-

section matrix has the canonical form: ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij , 1 ≤ i, j ≤ g.

Though such basis is not unique, traditionally it is called a canonical basis. Consider

a collection of smooth closed curves representing the chosen basis. Denote them by

the same symbols ai, bi.

When all zeroes of the Abelian differential ω corresponding to the flat structure

have only even degrees we can define the parity of the spin structure φ(S) as

φ(S) :=
g

∑

i=1

(ind(ai) + 1)(ind(bi) + 1) (mod 2).

It follows from the results of D. Johnson [ J ] that the parity of the spin struc-

ture φ(S) does not depend on the choice of representatives, nor on the choice of the

canonical homology bases.
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Moreover, it follows from the results of M. Atiyah [At] that φ(S) is invariant

under continuous deformations of the flat structure of the translation surface, (see

[KonZo] for details).

Since we do not need the notion of a spin structure itself, we do not discuss

it in this paper; the reader may consider the notion “parity of the spin structure” as

a single term. Note that it is applicable only to those flat structures ω which have a set

of zeros α containing even numbers only.

5.2. Classification of connected components of the strata. — The components are classified

as follows (see [KonZo]).

Consider the general case, when g > 3, and α is different from two exceptional

cases: α �= (2g −2), α �= ( g −1, g −1). Under these assumptions the stratum H1(α) is

connected whenever collection α contains an odd number. When g > 3, α �= (2g − 2),

α �= ( g − 1, g − 1), and α has only even elements, there are exactly two connected

components corresponding to even and odd spin structures. We shall denote them by

H even
1 (α) and H odd

1 (α) correspondingly.

The strata H1(2g−2) and H1( g−1, g−1) have in addition a special component

– the hyperelliptic one. It consists of flat structures on hyperelliptic surfaces. In both

cases the hyperelliptic involution τ sends the flat structure ω to −ω; for H1( g−1, g−1)

we also require that τ interchanges two zeroes of ω.

For g > 3 the stratum H1(2g −2) has three connected components: the hyperel-

liptic one – H
hyp

1 (2g − 2), and two nonhyperelliptic components – H even
1 (2g − 2) and

H odd
1 (2g − 2) corresponding to even and odd spin structures. For even g > 3 the stra-

tum H1( g − 1, g − 1) has two connected components: the hyperelliptic one, and the

nonhyperelliptic one H
nonhyp

1 ( g − 1, g − 1). For odd g > 3 the stratum H1( g − 1, g − 1)

has three connected components: the hyperelliptic one, denoted by H
hyp

1 ( g −1, g −1),

and two nonhyperelliptic ones – H even
1 ( g − 1, g − 1) and H odd

1 ( g − 1, g − 1) corres-

ponding to even and odd spin structures.

Genera 2 and 3 are special. In genus 2, all flat structures are hyperelliptic, so

each of the H1(2) and H1(1, 1) have one component which is hyperelliptic. In

genus 3, only hyperelliptic flat structures may have even parity of the spin structure.

Thus H1(4) and H1(2, 2) each have two connected components, the hyperelliptic one

and the one with odd spin structure. The other strata in genus 3 are connected.

The flat surfaces from hyperelliptic strata have the following parity of the spin-

structure (see [KonZo]). The parity of the spin structure determined by a flat structure

from the hyperelliptic component S ∈ H
hyp

1 (2g − 2) equals

φ(S) =
[

g + 1

2

]

(mod 2)(8)

where the square brackets denote the integer part of a number. The parity of the

spin structure determined by a flat structure ω from the hyperelliptic component
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ω ∈ H
hyp

1 ( g − 1, g − 1), for odd genera g equals

φ(S) =
(

g + 1

2

)

(mod 2) for odd g.(9)

6. Nonprimitive strata

6.1. Strata of surfaces with marked points. — In this paper we shall often consider

the strata H1(α) of surfaces S = (M, ω) where we not only fix the zeroes of the

Abelian differential ω, but we also mark one or more regular points on the surface.

Say, H1(3, 1, 0) will denote the surfaces of genus g = 3 endowed with an Abelian

differential with zeroes of orders 3 and 1 having one additional marked point (“zero

of order 0 of the Abelian differential”).

Throughout this paper we assume that all zeroes and all marked points are al-

ways numbered. Thus a stratum with one or more marked points has the natural

structure of a fiber bundle over the corresponding stratum without marked points with

a direct product (minus diagonals) of several copies of the translation surface as a fiber,

where the number of copies equals the number of marked points. For example, the

universal curve H1(3, 1, 0) fibers over H1(3, 1) with a fiber S.

In particular, there is the following formula for the dimension of the strata with

marked points. Let g be the genus and let card(α) denote the number of entries in α.

Suppose that 0 /∈ α. Then

dimC H (α, 0, ..., 0
︸ ︷︷ ︸

n

) = dimC H (α) + n = 2g − 1 + card(α) + n.(10)

Convention 4. — By convention we always mark a point on a flat torus. We denote

the corresponding stratum H (0).

Note that dimC H (0) = 2 which matches formula (10).

The natural measure on the stratum with marked points disintegrates into

a product measure, where the measure along the fiber is just the Lebesgue measure

on S (correspondingly product of several copies of S) induced by the flat metric on S,

and the measure on the base is the natural measure on the corresponding stratum

taken without marked points.

Recall that from the point of view of volumes we have confined ourselves to the

subspaces H1(α) of the strata for which the area of every surface S (measured in the

flat metric) is equal to one. The observation above implies that volumes of the strata with

marked points coincide with the volumes of the corresponding strata without marked points:

Vol(H1(α)) = Vol(H1(α, 0)) = Vol(H1(α, 0, 0)) = ... .(11)
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6.2. Strata of disconnected surfaces. — It will be convenient to consider sometimes the

strata H (α′) = ∏p

i=1 H (α′
i), of closed flat surfaces S having p connected components

S1 ⊔ · · · ⊔ Sp of prescribed types.

Convention 5. — Using notation α′ = ⊔p

i=1α
′
i for the strata H (α′) of disconnected

surfaces we assume that we keep track of how α′ is partitioned into collections α′
i .

We shall need the expressions for the volume element and for the total volume

of such strata.

We write Si = riS
′
i, where area(S′

i) = 1. Then area(Si) = r2
i . Let di := dimR H (α′

i);

let d := dimR H (α′) = ∑p

i=1 di; let dν′
i be the volume element on the stratum H (α′

i)

(which should not be confused with the volume element on a “unit hyperboloid”

H1(α
′
i) in the same stratum, see Convention 2). We have

dν(S) =
p

∏

i=1

dν′
i(Si) =

p
∏

i=1

(

r
di−1
i dri

)
p

∏

i=1

d vol
′(S′

i).

Let D(1) be the unit ball r2
1 + · · · + r2

p ≤ 1; set

W =
p

∏

i=1

Vol(H1(α
′
i)).

Then,

ν(C(H1(α
′)) = W ·

∫

D(1)

p
∏

j=1

r
dj−1

j drj .

We now make the change of variable xi = r2
i to evaluate the integral. For each i, let

bi = di/2 − 1, so that r
di−1
i dri = (1/2)x

bi

i dxi. Then the above integral becomes

ν(C(H1(α
′)) = W · 1

2p

∫

∑

i xi≤1

x
b1

1 ...x
bp

p dx1...dxp

where now we integrate over the standard simplex. Repeated application of the iden-

tity
∫ u

0

xa(u − x)b dx = a! b!
(a + b + 1)!u

a+b+1

yields

ν(C(H1(α
′)) = W · 1

2p

b1!...bp!
(b1 + · · · + bp + p)! .



82 ALEX ESKIN, HOWARD MASUR, ANTON ZORICH

Since b1 + · · · + bp + p = ∑

(di/2) = d/2 we obtain

ν(C(H1(α
′)) = W

2p
·
(

d1

2
− 1

)

!...
( dp

2
− 1

)

!
(

d

2

)

! .

Hence,

Vol(H1(α
′)) = d · ν(C(H1(α

′)) =
2 · d

2
· W

2p
·
(

d1

2
− 1

)

!...
( dp

2
− 1

)

!
(

d

2

)

! =(12)

= 1

2p−1
·
(

d1

2
− 1

)

!...
( dp

2
− 1

)

!
(

d

2
− 1

)

! ·
p

∏

i=1

Vol(H (α′
i)).

Repeating literarily the same arguments we obtain the corresponding formula

for the volume elements:

d vol = 1

2p−1
·
(

d1

2
− 1

)

!...
( dp

2
− 1

)

!
(

d

2
− 1

)

! · d vol
′
1 · · · d vol

′
p.(13)

7. Thick–thin decomposition, volume estimates, and computation of the

Siegel–Veech constants

In this section we prove Proposition 3.3 and justify the key formula (6) for the

Siegel–Veech constant. We also describe more precisely the structure of the thick–thin

decomposition of neighborhoods of the cusps H ε
1 (α,C ). Our estimates of the volumes

of the thick and the thin part are based on the following result:

Lemma 7.1 (H. Masur, J. Smillie). — There is a constant M such that for all ε, κ > 0

the subset of H1(α) consisting of those flat surfaces, which have a saddle connection of length at

most ε, has volume at most Mε2. The volume of the set of flat surfaces with a saddle connection of

length at most ε and a nonhomologous saddle connection with length at most κ is at most Mε2κ2.

Proof. — The proof is contained in the proof of Theorem 10.3 in [MS]. ⊓⊔

As we have seen in Section 3.3 it is convenient to decompose the set H ε
1 (α,C ),

which plays the role of a neighborhood of the “cusp” corresponding to the config-

uration C , into two disjoint subsets: the “thick” and the “thin” part, H ε
1 (α,C ) =

H
ε,thick

1 (α,C ) ⊔ H
ε,thin

1 (α,C ). Sometimes it will be convenient to vary slightly this

partition making the thin part a bit larger or a bit smaller depending on the con-

sideration. This does not affect the sense of the thick–thin decomposition, but sim-

plifies the proofs. This variations can be described as follows. We use the parame-

ter ε, 0 < ε < 1 to bound the length of the shortest saddle connection. We introduce
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the bound κ := λ · εr for the length of the shortest saddle connection nonhomolo-

gous to the first one. Here the parameters λ and r satisfy the following conditions:

λ ≥ 1, 0 < r ≤ 1, which guaranties κ(λ, r) ≥ ε for all λ and r.

The subset H ε
1 (α,C ) ⊂ H1(α) is comprised of those surfaces which have at

least one collection of short (shorter than ε) homologous saddle connections of the

type C . The thin part H
ε,thin

1 (α,C ) of this subset consists of surfaces S having at least

one additional saddle connection of any type shorter than κ.

The complement to the thin part in H ε
1 (α,C ), the thick part H

ε,thick
1 (α,C ), con-

sists of surfaces S having exactly one collection of short homologous saddle connec-

tions. This collection is necessarily of the type C ; the saddle connections from this

collection (which are all of the same length) are shorter then ε; any other saddle con-

nection on S is longer then κ.

Lemma 7.1 implies the following immediate corollary.

Corollary 7.2. — For any connected component of any stratum H (α), any configuration

C and any choice of parameters λ, r defining the thick–thin decomposition we have

Vol
(

H
ε

1 (α,C )
)

= Vol
(

H
ε,thick

1 (α,C )
)

+ o(ε2).

To prove formula (6) it remains to prove the following lemma.

Lemma 7.3. — Let f be the characteristic function of a disc of radius ε centered at the

origin of R2. For any connected component of any stratum H (α), any configuration C and for an

appropriate choice of parameters λ, r defining the thick–thin decomposition the integral of the function

f̂
C

over the thin part is negligible:
∫

H
ε,thin

1 (α,C )

f̂
C
(S) d vol(S) = o(ε2).

Proof. — Recall that the nonnegative function f̂
C
(S) counts only those saddle

collections which are arranged in the configuration C ; it can be defined as the cardi-

nality of the intersection of the discrete set VC (S) with the disc B(ε).

f̂
C
(S) := |VC (S) ∩ B(ε)|.

Consider the analogous function

f̂ (S) := |Vsc(S) ∩ B(ε)|
which counts all short saddle connections (without multiplicity) regardless of which

configuration they correspond to. Clearly f̂ ≥ f̂
C

since VC (S) ⊂ Vsc. Thus, it is suf-

ficient to prove the above lemma for the function f̂ . We use the following estimate

proved in [EMa].
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Theorem (A. Eskin, H. Masur). — Let l(S) denote the length of the shortest saddle

connection on S ∈ H1(α). For any connected component of any stratum H1(α) there exist constants

c′ and 0 < δ < 1, depending only on the stratum, so that for any S ∈ H1(α) for which l(S) is

sufficiently small, the following bound is valid:

f̂ (S) ≤ c′

(l(S))
1+δ

.(14)

We now can complete the proof of Lemma 7.3. Choose any 0 < r ≤ 1 so that

2r > 1 + δ;(15)

and let λ = 1. This choice of λ, r gives κ = 1 · εr ; consider the thick–thin decompos-

ition corresponding to this choice of parameters. To prove the estimate
∫

H
ε,thin

1 (α,C )

f̂ (S) d vol(S) = o(ε2)(16)

we decompose the set H
ε,thin

1 (α,C ) into a disjoint union of subsets Un, such that the

shortest saddle connection for S in Un has length l(S) satisfying ε/2n+1 < l(S) ≤ ε/2n,

where n is a non-negative integer. Since by definition, on each surface in Un there

is a saddle connection with length between ε/2n+1 and ε/2n and a nonhomologous

saddle connection with length at most κ = εr , by Lemma 7.1 there is a constant M

so that the measure of Un is at most M · 2−2nε2+2r .

Together with (14) this implies that for some new constant M′, the integral of f̂

over Un is bounded by

M′2(δ−1)nε1+2r−δ.

Summing over n, and using (15) we find that the estimate (16) holds. Lemma 7.3 is

proved. ⊓⊔

Proposition 3.3 now follows from Lemma 7.3 and Corollary 7.2.

We complete this section with a proof of the statement promised in the intro-

duction.

Proposition 7.4. — For almost all flat surfaces S from any stratum H (α) of Abelian

differentials one cannot find on S a pair of parallel saddle connections of different lengths.

Proof. — As coordinates in the stratum me may locally choose a domain in the

relative cohomology space H1(S, {P1, ..., Pk}; C). Let c1, c2, ..., cn be a basis of relative
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cycles in H1(S, {P1, ..., Pk}; Z) The relative periods

Ai +
√

−1 · Bi =
∫

ci

ω, i = 1, ..., n

serve as the local coordinates in H (α).

Suppose that we have two parallel saddle connections of different lengths on

a flat surface S. They give us a pair of integer (relative) cycles

s1, s2 ∈ H1(S, {P1, ..., Pk}; Z).

(We don’t care, whether they are both loops, or they both are segments, or one of

them is a segment, and another – a loop, the argument works for any combination.)

By assumption they are not homologous, so we may assume that s1 �= ±s2. Since

the cycles s1, s2 are represented by simple connected curves, they are primitive (i.e.,

neither of them can be represented as an integer multiple of another integer cycle).

Hence, they are not collinear

s1 �= λ · s2

even with a real λ ∈ R.

Let s1 = ∑n

i=1 ki · ci, where ki ∈ Z; s2 = ∑n

i=1 li · ci, where li ∈ Z. Since the cycles

are not collinear, these two linear combinations of the basic cycles are linearly inde-

pendent over reals. This means, that the rational function f (x1, ..., xn) of real variables

x1, ..., xn

f (x1, ..., xn) =
∑n

i=1 ki · xi
∑n

i=1 li · xi

is nonconstant.

The fact, that the two saddle connections are parallel, means, that
∫

s1

ω = λ ·
∫

s2

ω, with some real λ �= 0.

We have
∫

s1

ω =
n

∑

i=1

ki · (Ai +
√

−1 · Bi)

∫

s2

ω =
n

∑

i=1

li · (Ai +
√

−1 · Bi).

This implies that

f (A1, ..., An) = f (B1, ..., Bn),

which is an algebraic condition on our coordinates A1, ..., An, B1, ..., Bn. (To be ab-

solutely rigorous we have to avoid the set of measure zero defined by the algebraic

condition
∑

li · Ai = 0 or by
∑

li · Bi = 0.) Thus, the set, satisfying this condition,

has measure zero. Taking a union over the countable collection of possible conditions

(countable, because we have to consider all possible pairs of integer vectors (k1, ..., kn),

(l1, ..., ln)) we still get a set of measure zero. ⊓⊔
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Part 1. Saddle connections joining distinct zeroes

In this part we describe the possible configurations of saddle connections joining

distinct zeroes and compute the constants in the corresponding asymptotics.

To separate the basic construction and numerous details we start with the easiest

case. In the first section of this part we assume that the saddle connection joining

a pair of zeroes Pi, Pj has multiplicity one, i.e., there are no other saddle connections in

the same direction joining the same pair of zeroes. In this section we also assume that

the translation surface under consideration belongs to a connected stratum.

In the second section of this part we consider the problem in full generality for

the translation surfaces from connected strata. In particular we give the explicit gen-

eral formula for the surfaces from the principal stratum.

In the last section of this part we treat the surfaces from the strata which are

not connected.

8. Saddle connections of multiplicity one. Connected strata

8.1. Breaking up a zero. — Suppose we are given a flat surface S′ defined by ω′,
a zero w of order m ≥ 2, a pair of positive integers m1, m2, such that m = m1 + m2,

and a vector γ ∈ R2 of length 2δ ≤ ε. Further suppose that S′ does not have any

saddle connection or closed geodesic of length smaller than 2ε. Let w, z1, ..., zl be

the set of all zeroes of the flat structure on S′. If w is the only zero of ω′ choose

a basis of cycles for the relative homology group H1(S
′, {w}; Z) all of which miss w.

If there are other zeroes, we may choose a basis of cycles in the relative homology

group H1(S
′, {w, z1, ..., zl}; Z) such that exactly one curve β1 contains w and β1 is

not closed; that is, w is an endpoint of β1.

We take a disc of radius ε about w that misses all other zeroes. We may break

up the zero w of order m on S′ into two zeroes z′, z′′ of orders m1 and m2 correspond-

ingly with a vector γ joining them constructing a flat surface S. We can describe this

breakup as a Whitehead move on the foliation in direction γ . We do this by forming

2m+2 half discs of radius ε. Along the real axis of two of them we mark points at dis-

tance δ from the origin. These two discs are glued together along the corresponding

segment of length 2δ leaving a pair of free segments of length ε− δ on each. On each

of the remaining discs we mark a point at distance δ from the origin leaving segments

of length ε + δ and ε − δ. We now glue the segments isometrically to each other in

a circular fashion, see Figure 3.

If m1 �= m2, the number of ways of effecting the breakup is 2m + 2. However we

have
−→
z′z′′ = γ for only half of the resulting surfaces, i.e. for m + 1 ones; for another

m + 1 surfaces we have
−→
z′′z′ = γ . If m1 = m2 = m/2 the number of the resulting

surfaces is m + 1. For every such surface there are two ways to assign “names” z′, z′′
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FIG. 3. — Breaking up a zero of degree 2 into two simple zeroes. Note that the surgery is local: we do not change the

flat metric outside of the neighborhood of the zero

to the newborn zeroes of order m/2. This doubles the number of resulting surfaces

with “named” zeroes. However we again have only m + 1 surfaces with
−→
z′z′′ = γ ; for

another m + 1 ones we have
−→
z′′z′ = γ . We again choose only those m + 1 surfaces for

which we have
−→
z′z′′ = γ .

By convention we let the curve which had the endpoint at w (if it was present)

keep the corresponding endpoint at z′ during the deformation. The fact that this con-

struction was local means that except for the curve β1 (if it exists) the holonomy is

preserved along the homology basis of S′. The holonomy of β1 is changed by −γ/2.

Furthermore every saddle connection other than
−→
z′z′′ has length at least ε.

We denote the assignment by

(S′, γ, m) → (S, m1, m2).

We denote by H1(α) the stratum which contains the resulting flat surface S. By

construction the partition α is obtained from the partition α′ by replacing the entry m

by two entries m1 and m2.
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Recall that all the zeroes on the surface S′ are “named”. For all the zeroes on

the new surface S different from the zero which was just broken we keep the same

“names” on S as their initial “names” on S′.

8.2. Collapsing a pair of zeroes, principal boundary. — Now conversely, suppose we

have a surface S ∈ H1(α), a saddle connection of length 2δ ≤ ε joining distinct ze-

roes w1, w2 of orders m1 and m2 with holonomy γ , and no other saddle connection

of length smaller than 3ε. Let z1, ..., zl be the other zeroes. Choose a basis of cycles

in the relative homology group H1(S, {w1, w2, z1, : : : , zl}; Z). This basis can be rep-

resented by a collection of curves βi on the surface S. One of these curves, β0 is the

saddle connection joining w1 and w2. If these are the only zeroes, then we can choose

a basis of cycles in such way that all other cycles are closed and miss w1 and w2. If

there are other zeroes, then a single curve β1 intersects one of the wi, say w1. The

curve β1 is not closed; it has w1 as an endpoint.

One can now exactly reverse the breaking up procedure to collapse the saddle

connection of length 2δ to a zero w of order m = m1+m2 to construct a flat surface S′.
Namely, we can describe a neighborhood of the saddle connection as a union of 2m+2

half discs of radius ε glued along pieces of their boundary. Two of the half discs are

glued along segments of length 2δ to form the saddle connection. This leaves a pair

of segments of length ε − δ on each side. The other discs have marked segments of

length ε − δ and ε + δ which are glued isometrically to form the neighborhood. We

deform S in the neighborhood by taking 2m+2 half discs of radius ε and gluing them

cyclically along segments of length ε. The saddle connection β0 is collapsed to a point

which becomes a zero w of order m. We may perform this deformation while keeping

the flat structure in the complement of the neighborhood fixed, see Section 8.1 and

Figures 3 and 4.

If β1 exists then we can replace β1 with a curve joined to w. The fact that the

deformation is local means that the holonomy is fixed along the entire basis other than

β0 and β1. The holonomy of β1 is changed by adding γ/2. Furthermore, every saddle

connection on S′ has length at least 2ε. All named zeroes on S not affected by the col-

lapse are given the same names on S′. We may think of this surgery as of a Whitehead

move on the foliation in direction γ . The resulting surface S′ belongs to a stratum

H1(α
′). By construction the partition α′ is obtained from the partition α by replac-

ing the pair of entries m1, m2 by the entry m. The stratum H1(α
′) is in the closure of

H1(α) inside the moduli space of all flat structures on the surfaces of genus g. We say

that H1(α
′) is the principal boundary of H1(α) corresponding to this configuration.

Now choose a simply connected subset of H1(α
′) of full volume and remove the

set of flat surfaces with a saddle connection or closed geodesic of length at most 2ε.

Call the resulting set F ′ ⊂ H1(α
′). By Lemma 7.1

Vol(H1(α
′) − F

′) = O(ε2).
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Choose a homology basis that is valid for all S′ ∈ F ′. Thus distinct S′
1, S′

2 have

different holonomy on some basis element. As in Section 7 for κ = ε or 3ε let

H
ε,κ

1 (α,C ) ⊂ H1(α) be the set of flat surfaces with a saddle connection of length

at most ε joining the named zeroes and no other saddle connections of length smaller

than κ; the configuration C corresponds to a single saddle connection. We have

Lemma 8.1. — For γ a vector in R2 of length at most ε, except for a set of S′ ∈ F ′

of volume 0, there are precisely m + 1 surfaces in H
ε,ε

1 (α,C ) that are the result of the assign-

ment (S′, γ, m) → (S, m1, m2). Moreover, every surface in H
ε,3ε

1 (α,C ) is the result of such an

assignment.

Proof. — We have addressed every issue except the statement that there are

precisely m + 1 surfaces obtained as the result of the assignment. Suppose that for

fixed S′ ∈ F ′ ⊂ H1(α
′) two of the m + 1 surfaces S built from S′ are isomorphic.

Since by construction each of these surfaces has a single short saddle connection, the

isomorphism sends the newborn saddle connection on one surface to the newborn

saddle connection on the other surface. Hence, it sends the corresponding “disc” on

one surface to the corresponding “disc” on the other surface, see Figure 4. Hence, it

is an isomorphism of the complements of the “discs”, which implies that it induces an

automorphism of the surface S′. It is sufficient to note that the set of flat surfaces, that

have automorphisms, has measure 0. ⊓⊔

FIG. 4. — The cone angle corresponding to a zero of order m = 2 is equal to (m + 1) · 2π = 6π. Thus we have

(m + 1) = 3 different ways of breaking up a zero of order 2 in a direction �γ . In this way ( generically) we get m = 3

different flat surfaces
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Remark 8.2. — Note that the cohomology class [ω] ∈ H1(S, {w, z1, ..., zl}; C)

together with
−→
z′z′′ = γ determines an element of the relative cohomology group [ω] ∈

H1(S, {z′, z′′, z1, ..., zl}; C). The lemma above claims, actually, that the local mapping

H
ε,3ε

1 (α,C ) → F ′ × B(ε) is a ramified covering of order m + 1 almost everywhere

and that dν(S) = dν(S′) dγ .

8.3. Computing the Siegel–Veech constants. — In this section we derive formulae for

the constant c in quadratic asymptotics of the number of saddle connections joining

a zero of order m1 to a zero of order m2 in multiplicity one. According to Proposi-

tion 3.3 this means that we have to find the asymptotics of Vol(H
ε,ε

1 (α,C )), where

the configuration C corresponds to a single saddle connection. Recall also that we are

assuming that the zeroes are named. Since we may have numerous zeroes of orders

m1 and m2 we, actually, have two different counting problems:

Problem 1. — Count the constant in the quadratic asymptotics for the number

of saddle connections joining a fixed zero z1 of order m1 to a fixed zero z2 of order m2.

(When m1 = m2 we require that z1 �= z2.)

Problem 2. — Count the constant in the quadratic asymptotics for the number

of saddle connections joining some zero of order m1 to some other zero of order m2. (This

is, in fact, equivalent to counting the saddle connections joining unnumbered zeroes.)

Let us start by assuming that H1(α) is connected. The case of strata that are not

connected will be postponed until the end of the section on higher multiplicity.

In the computations to follow we will obscure the distinction between γ as a sad-

dle connection in the configuration and its holonomy. Thus we will use γ as a vector

in the disc B(ε) and as a variable of integration.

Again let n = dimR H (α), n′ = dimR H (α′). Then n′ = n − 2. Recall that

dν′(S′) is the natural measure on H (α′). For S′ ∈ C(F ′) we set S′ = r S′′ where

area(S′′) = 1 so area(S′) = r2. Then by Remark 8.2

dν(S) = dν′(S′) dγ = rn′−1 dr d vol
′(S′′) dγ.

By Lemma 7.1

Vol
(

H
ε,ε

1 (α,C ) − H
ε,3ε

1 (α,C )
)

= O(ε4)

so by Lemma 8.1

ν
(

C
(

H
ε,ε

1 (α,C )
))

= (m1 + m2 + 1) Vol(F ′)

∫ 1

0

rn′−1

∫

B(εr)

dγ dr + O(ε4)

= πε2(m1 + m2 + 1) Vol(F ′)

∫ 1

0

rn′+1 dr + O(ε4)

= πε2

n′ + 2
(m1 + m2 + 1) Vol(F ′) + O(ε4).
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Since n = n′ + 2 we have

Vol
(

H
ε,ε

1 (α,C )
)

= nν
(

C
(

H
ε,ε

1 (α)
))

= (m1 + m2 + 1)πε2
Vol(F ′) + O(ε4).

Thus, the constant from the Problem 1 has the following form:

c = lim
ε→0

Vol
(

H
ε,ε

1 (α,C )
)

πε2 Vol(H1(α))
= lim

ε→0

(m1 + m2 + 1) Vol(F ′))

Vol(H1(α))
=

= (m1 + m2 + 1) Vol(H1(α
′))

Vol(H1(α))
.

Note that having solved the Problem 1 we get a solution of Problem 2 by an

elementary combinatorial calculation. Let o(mi) be the number of zeroes of order mi

in the stratum H (α). If m1 �= m2, then there are o(m1) ways of choosing the zero of

order m1 and o(m2) ways of choosing the zero of order m2. Thus we get an additional

factor o(m1) · o(m2) in comparison with Problem 1.

Formula 8.1. — The constant in any connected stratum H1(α) for the number of saddle

connections of multiplicity one joining two zeroes of orders m1 �= m2 is equal to

c = o(m1)o(m2) · (m1 + m2 + 1) · Vol(H1(α
′))

Vol(H1(α))
when m1 �= m2.(17)

If m1 = m2, then there are o(m1)(o(m1) − 1)/2 ways of choosing an unordered

pair of zeroes of order m1. Having chosen an unordered pair, we choose, which of

two zeroes would called be z1, and which one would be z2 in arbitrary way: the num-

ber of saddle connections is obviously symmetric with respect to interchange of the

names z1, z2. Thus, when m1 = m2 the answer to Problem 2 is given as the answer for

Problem 1 multiplied by an additional factor o(m1)(o(m1) − 1)/2.

Formula 8.2. — The constant for the number of saddle connections of multiplicity one joining

two distinct zeroes of the same orders m1 is equal to

c = o(m1)(o(m1) − 1)

2
· (2m1 + 1) · Vol(H1(α

′))

Vol(H1(α))
when m1 = m2.(18)

Note that we may view the entire combinatorial calculation in terms of the nam-

ing of the zeroes. We can assume that on S′ we have broken up the zero of order m =
m1 + m2 at the first “named” zero of order m. The remaining zeroes are then given

the same names on S. Other zeroes of orders m1, m2 already have names on S. There

are o(m1)o(m2) ways of adding additional names to zeroes of orders m1, m2 if m1 �= m2

and o(m1)(o(m1) − 1) if m1 = m2.
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Note that in the consideration above the stratum H1(α
′) might be nonconnected.

In this case Vol(H1(α
′)) is the sum of the volumes of connected components. For ex-

ample if we start with the stratum H1(5, 3), then H1(α
′) has three connected com-

ponents H
hyp

1 (8),H even
1 (8) and H odd

1 (8), and the sum of the volumes of these must be

in the numerator.

8.4. Examples: Constants for connected strata in genus 3. — As an illustration of the

formulae above we now give the explicit values for these constants in a number of

cases.

In Table 1 we present the normalized volumes
1

π2g
Vol(H1(α)) of the strata with

numbered zeroes, see [EOk], see also some values in [Zo]. These values will be used for

computations in all the examples.

Both strata in genus g = 2 are hyperelliptic; they will be treated later on in

Section 10. In genus g = 3 there are three connected strata: H1(3, 1),H1(2, 1, 1),

and H1(1, 1, 1, 1).

Example 8.3. — Stratum H1(3, 1). After collapsing zeroes we obtain a flat surface

S′ ∈ H1(4), where both components H
hyp

1 (4) and H odd
1 (4) occur. We have m1 = 3,

m2 = 1, thus the combinatorial factor equals o(m1)o(m2)(m1 + m2 + 1) = 5. We get

c = 5 · Vol(H1(4))

Vol(H1(3, 1))
= 5 · Vol

(

H
hyp

1 (4)
)

+ Vol
(

H odd
1 (4)

)

Vol(H1(3, 1))

= 7625

1024
≈ 7.45.

Example 8.4. — Stratum H1(2, 1, 1). There are two cases here in multiplicity 1.

The first case is a saddle connection joining the zero of degree 2 with any of the

two zeroes of degree 1. Collapsing the zeroes we obtain a surface S′ ∈ H1(3, 1). For

m1 = 2, m2 = 1, o(m1) = 1, o(m2) = 2. Thus the combinatorial constant equals 8. We

get

c = 8 · Vol(H1(3, 1))

Vol(H1(2, 1, 1))
= 512

45
≈ 11.4.

The second case consists of collapsing the pair of simple zeroes to a zero of

order 2. We obtain a surface S′ ∈ H1(2, 2). Any surface in any component of H1(2, 2)

can be found by collapsing a pair of simple zeroes in this manner. Here m1 = m2 = 1

and o(m1) = 2 so the combinatorial constant is 3. We get

c = 3 · Vol(H1(2, 2))

Vol(H1(2, 1, 1))
= 3 · Vol

(

H
hyp

1 (2, 2)
)

+ Vol
(

H odd
1 (2, 2)

)

Vol(H1(2, 1, 1))
=

= 153

40
≈ 3.83.
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TABLE 1. — Normalized volumes
1

π2g
Vol(H1(α)) of the strata in small genera

Genera g = 1, 2

H1(0) H1(2) H1(1, 1)

1

3

1

120

1

135

Genus g = 3

H
hyp

1 (4) H odd
1 (4) H1(3, 1) H

hyp

1 (2, 2) H odd
1 (2, 2) H1(2, 1, 1) H1(1, 1, 1, 1)

1

6720

1

2430

16

42525

1

9450

1

4320

1

3780

1

4860

Genus g = 4

H
hyp

1 (6) H odd
1 (6) H even

1 (6) H1(5, 1)

1

580608

1

37800

32

1913625

1

36750

H odd
1 (4, 2) H even

1 (4, 2) H1(4, 1, 1) H
nonhyp

1 (3, 3)

1

79380

1

107520

11

653184

1

51030

H
hyp

1 (3, 3) H1(3, 2, 1) H1(3, 1, 1, 1) H odd
1 (2, 2, 2)

1

992250

1

70875

62

5740875

31

4354560

H even
1 (2, 2, 2) H1(2, 2, 1, 1) H1(2, 1, 1, 1, 1) H1(1, ..., 1)

37

6804000

131

13608000

1

136080

377

67359600

8.5. Constants for the principal stratum H1(1, ..., 1). — The surface of genus g has

2g − 2 simple zeroes; o(1) = 2g − 2. The corresponding surface S′ ∈ H1(2, 1, ..., 1)

has 2g − 4 simple zeroes. The factor o(m1) (o(m1) − 1) /2 gives ( g − 1)(2g − 3), and

the factor (2m1 + 1) gives 3. Applying formula (18) we get
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Formula 8.3. — The constant for the number of saddle connections of multiplicity one joining

two distinct zeroes is equal to

c = 3( g − 1)(2g − 3) · Vol(H1(2,

2g−4
︷ ︸︸ ︷

1, ..., 1))

Vol(H1(1, ..., 1
︸ ︷︷ ︸

2g−2

))
.

In the table below we present some values of the constant in this case.

TABLE 2. — Principal stratum H1(1, ..., 1); values of the constants for saddle connections of multiplicity one joining

distinct zeroes

g = 2 g = 3 g = 4 g = 5 g = 6 g = 7 g = 8

c = 27

8

162

7

22275

377

2594700

23357

2954056635

16493303

13229971542

50280671

14740938123723

40593663941

c ≈ 3.375 23.14 59.08 111.1 179.1 263.1 363.1

9. Multiple homologous saddle connections. Connected strata

9.1. Principal boundary. — Consider a surface S ∈ H1(α) with a fixed pair of

zeroes z1 and z2 of orders m1 and m2 correspondingly. Suppose that we have a con-

figuration C (see Section 3) of precisely p homologous saddle connections γ1, ..., γp

joining z1 to z2 of length at most ε. Assume there are no other saddle connections

shorter than 3ε. A pair γi and γi+1 bounds a surface Si. The surfaces Si and Si+1

share the saddle connection γi+1. By convention the cyclic order of γi at z1 is clock-

wise in the orientation defined by the flat structure. The angle between γi and γi+1

at z1 is 2π(a′
i + 1); the angle between γi and γi+1 at z2 be 2π(a′′

i + 1).

Cut the surface S along all γi, i = 1, ..., p. Gluing together the two sides γi and

γi+1 of the boundary of Si we get a flat surface with two distinguished zeroes z′
i, z′′

i of

orders a′
i and a′′

i correspondingly joined by a saddle connection,
−→
z′

iz
′′
i = γ . When one

of a′
i, a′′

i is equal to zero the corresponding point is just a marked point. If a′
i = a′′

i = 0,

then both points are marked points.

By construction any resulting flat surface Si has a saddle connection γi shorter

than ε joining the pair of zeroes and does not have any other saddle connections ho-

mologous to it. Every other saddle connection is longer than 3ε. This implies that
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contracting the saddle connection γi to a point, see Section 8.2, we get a flat surface

S′
i with a distinguished zero (marked point) wi of order ai = a′

i + a′′
i and no saddle

connection shorter than 2ε.

Let S′
i ∈ H (α′

i). We say that ⊔p

i=1H (α′
i) is the principal boundary of this con-

figuration. Note that if ai = 0 we mark corresponding point on S′
i, so collection α′

i

contains 0 in this case. We use the notation α′ = ⊔α′
i , see Convention 5.

9.2. Slit construction. — We would like to reverse the above degeneration and

build surfaces with multiple homologous saddle connections out of surfaces in H (α′
i).

We need the following construction. Let S′ be a surface with a zero of order a ≥ 0.

Suppose there are no saddle connections of length shorter than 2ε. Let a′, a′′ ≥ 0 such

that a′ + a′′ = a. Let γ be a vector of length at most ε. If a′, a′′ �= 0 we may break up

the zero of order a into zeroes of orders a′, a′′ with a saddle connection determining γ

joining them, see Section 8.1. If a′ = 0 take a point z′ of the form w − γ (this means

along a geodesic from w in direction −γ and distance |γ |) and join it to z′′ = w on S′.
If a′′ = 0 we take a segment from z′ = w to z′′ = w + γ on S′.

In either case we may slit the resulting surface along the saddle connection join-

ing the two zeroes z′, z′′. In this way we build a surface with one boundary component

consisting of two arcs, denoted γ ′ and γ ′′, joining the endpoints of the slit. The angles

between γ ′ and γ ′′ at the points z′ and z′′ are 2π(a′ + 1) and 2π(a′′ + 1) correspond-

ingly.

Note that the flat structure on S′ fixes the choice of the orientation. By conven-

tion we give the “names” γ ′ and γ ′′ to the arcs in such a way that turning around z′

in a clockwise direction from γ ′′ to γ ′ we do not leave the surface.

Conversely, consider a flat surface with a single boundary component consisting

of two arcs joining a pair of vertices. The convention on the choice of the “names”

γ ′ and γ ′′ means that as soon as we know which of two vertices is z′, and which is z′′

we can determine which of two arcs is γ ′, and which is γ ′′.
We describe now how to build surfaces with multiple homologous saddle con-

nections using the slit construction.

9.3. Building surfaces with multiple homologous saddle connections. — Suppose S′ = S′
1 ⊔

...⊔ S′
p is a disconnected flat surface and on each S′

i there is a zero or a regular point

which we think of as a marked point wi of order ai. Assume no surface contains a saddle

connection shorter than 2ε. Given pairs a′
i, a′′

i with ai = a′
i + a′′

i , and a vector γ of

length smaller than ε, we perform the slit construction on each surface. We obtain

surfaces with one boundary component each of which consists of two arcs γ ′
i and γ ′′

i .

We glue γ ′
i to γ ′′

i+1, calling this curve γi+1, (and γ ′
p to γ ′′

1 ). This gives a closed surface S,

a pair of zeroes z1 and z2 of orders m1 and m2, where
∑

a′
i = m1 + 1 − p and

∑

a′′
i =

m2 + 1 − p, and a set of homologous curves γi, i = 1, ..., p joining z1 to z2. The angle

between γi and γi+1 at z1 is 2π(a′
i +1) and the angle between them at z2 is 2π(a′′

i +1).
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We denote this assignment by

(S′, γ, a′
i, a′′

i ) → (S, m1, m2, a′
i, a′′

i ).

The resulting surface (S, m1, m2, a′
i, a′′

i ) has no saddle connections shorter than

ε other than the γ ′
i . Our convention on the choice of γ ′

i , γ
′′
i (see the section above)

implies that the cyclic order · · · → γi−1 → γi → γi+1 → · · · is clockwise at z1 with

respect to the orientation defined by the flat structure.

Fix a basis for the relative homology on each surface S′
i. A relative homology

basis for S is given by:

• A relative homology basis of curves βi for S′.
• A curve connecting the two zeroes. The integral of ω along this curve is γ .

FIG. 5. — Multiple homologous saddle connections

We introduce ᾱ′
i as α′ from which we remove ai.

Having a collection α of integers we denote by |α| their sum, say, |α| = 2g − 2.

The construction above implies the following conditions on partitions α′
i and the

numbers a′
i, a′′

i .

Lemma 9.1. — An assignment (S′, γ, a′
i, a′′

i ) → (S, m1, m2, a′
i, a′′

i ) satisfies the following

necessary conditions on the collection (α′
i, a′

i, a′′
i ):
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a′
1 + · · · + a′

p = m1 + 1 − p

a′′
1 + · · · + a′′

p = m2 + 1 − p

ᾱ′
1 ⊔ · · · ⊔ ᾱ′

p ⊔ {m1} ⊔ {m2} = α

|ᾱ′
i| = a′

i + a′′
i (mod 2) for i = 1, ..., p.

Moreover, when the stratum H1(α) is connected, these conditions are sufficient: every surface S ∈
H1(α) with a configuration of p homologous saddle connections joining the pair of zeroes of length at

most ε and no other saddle connection with length smaller than 3ε can be obtained by an assignment

(S′, γ, a′
i, a′′

i ) → (S, m1, m2, a′
i, a′′

i ) with appropriate (S′, γ, a′
i, a′′

i ).

We shall introduce notation to describe the degeneration pattern for the sur-

faces Si.

Notation. — The integer represented as a sum of two integers corresponds to

ai represented as a′
i + a′′

i . Here the order of appearances of the summands a′
i + a′′

i is

significant. The cyclic order of the surfaces is represented by S1 ≻ S2 ≻ S3 ≻ · · · ≻
Sp ≻ S1.

Example 9.2. — Let S ∈ H1(4, 3, 2, 1); m1 = 3, m2 = 4; p = 3. There are

15 possible pictures for the three homologous saddle connections joining the zero of

order 3 to the zero of order 4 depending on the returning angles (Table 3). Thus for

example, the first line in table 3 refers to 3 surfaces in cyclic order. The first is a torus

(no zeroes) where we have broken up a marked point into (0 + 0); the second surface

has a single zero of order 2 which we have broken into two simple zeroes indicated

by (1 + 1), and the third surface has zeroes of 2, 1, 1, where we have broken one of

the simple zeroes into a simple zero and a zero of order 0.

9.4. Stratum interchange and γ → −γ symmetry. — In this section we discuss the

possible symmetries of the assignment

(S′, γ, a′
i, a′′

i ) → (S, m1, m2, a′
i, a′′

i ).

Let us first specify our problem.

Problem 1. — We assume that the zeroes z1, ..., zl of the surface S are numbered.

We fix the zeroes z1, z2 ∈ S, z1 �= z2, of orders m1 and m2 correspondingly.

We start with the case when we fix also the following data. We assume that the

zeroes z3, ..., zl1 belong to S1, the zeroes zl1+1, ..., zl1+l2 belong to S2, ..., the zeroes

zl1+···+lp−1+1, ..., zl1+···+lp belong to Sp. Here l1 −1 = card(α′
1) if a1 �= 0 and l1 = card(α′

1)

when a1 = 0 and for i > 1, li + 1 = card(α′
i), when ai �= 0, and li = card(α′

i), when

ai = 0. We have l = l1 + · · · + lp = card(α).
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TABLE 3. — Possible degenerations for S ∈ H1(4, 3, 2, 1) with m1 = 3, m2 = 4; p = 3

Degeneration pattern α′
1 α′

2 α′
3

(0 + 0) ≻ (1 + 1) ≻ (0 + 1, 2, 1) ≻ (0) (2) (2, 1, 1)
(1 + 1) ≻ (0 + 0) ≻ (0 + 1, 2, 1) ≻ (2) (0) (2, 1, 1)
(0 + 0) ≻ (0 + 0) ≻ (1 + 2, 2, 1) ≻ (0) (0) (3, 2, 1)
(0 + 2) ≻ (0 + 0) ≻ (1 + 0, 2, 1) ≻ (2) (0) (2, 1, 1)
(0 + 0) ≻ (0 + 2) ≻ (1 + 0, 2, 1) ≻ (0) (2) (2, 1, 1)
(1 + 1) ≻ (0 + 1, 1) ≻ (0 + 0, 2) ≻ (2) (1, 1) (2)
(0 + 0) ≻ (1 + 0, 1) ≻ (0 + 2, 2) ≻ (0) (1, 1) (2, 2)
(0 + 2) ≻ (1 + 0, 1) ≻ (0 + 0, 2) ≻ (2) (1, 1) (2)
(0 + 0) ≻ (1 + 2, 1) ≻ (0 + 0, 2) ≻ (0) (1, 3) (2)
(0 + 0) ≻ (0 + 1, 1) ≻ (1 + 1, 2) ≻ (0) (1, 1) (2, 2)
(1 + 1) ≻ (0 + 0, 2) ≻ (0 + 1, 1) ≻ (2) (2) (1, 1)
(0 + 0) ≻ (1 + 1, 2) ≻ (0 + 1, 1) ≻ (0) (2, 2) (1, 1)
(0 + 0) ≻ (0 + 0, 2) ≻ (1 + 2, 1) ≻ (0) (2) (1, 3)
(0 + 2) ≻ (0 + 0, 2) ≻ (1 + 0, 1) ≻ (2) (2) (1, 1)
(0 + 0) ≻ (0 + 2, 2) ≻ (1 + 0, 1) ≻ (0) (2, 2) (1, 1)

In this setting the only thing that is not determined is the case when S has ex-

actly two zeroes: z1 and z2. Then every S′
i either has a single zero of order ai or it

is a torus with a marked (regular) point. Note that we fix only the cyclic order of the

collection (a′
i, a′′

i ), but not the numbering of each of these pair of numbers. The nat-

ural action of the cyclic group of order p on the collection of ordered pairs (a′
i, a′′

i )

organized in a cyclic order, may have nontrivial stabilizer, which we denote by Γ. We

get symmetry of order |Γ|. This type of symmetry we call the stratum interchange.

Problem 2. — Now consider the problem with fewer constrains. We count the

number of occurrences of the following phenomenon: some zero of S of order m1 is

joined to some zero of order m2 by precisely p homologous saddle connections γ1, ..., γp

as above. We fix the type α′
i of the flat surface S′

i obtained as described above, but we

make no assumptions on the distribution of the zeroes z1, ..., zl by the surfaces S′
i. As

before we fix only the cyclic order of appearances of the surfaces Si.

Remark 9.3. — Problem 2 may be considered as generalization of Problem 1 to

the case when the zeroes of S and of S′
i are not numbered.

Remark 9.4. — In both settings the H1(α
′
i) might be nonconnected. We could

also specify the connected component of the H1(α
′
i) when this occurs. We prefer the

setting where this data is not specified.

Consider the natural action of the cyclic group of order p on the collection

(α′
1, a′

1, a′′
1) ≻ · · · ≻ (α′

p, a′
p, a′′

p ) ≻
organized in a cyclic order. (Recall the notation ≻ from the previous section). If it has

a nontrivial stabilizer we denote it by the same symbol Γ. We get a symmetry of order

|Γ| which we also call the stratum interchange.
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Example 9.5. — Let α = (27, 15, 1, 1), m1 = 27, m2 = 15. Consider the degen-

eration of S into 6 surfaces of the following types α′
1 ≻ · · · ≻ α′

6 ≻

(2) ≻ (7, 1) ≻ (12) ≻ (2) ≻ (7, 1) ≻ (12) ≻.

The possible symmetry in this case is a symmetry of order 2, where subgroup Γ is

a shift by 3.

The degeneration

(0 + 2) ≻ (4 + 3, 1) ≻ (7 + 5) ≻ (0 + 2) ≻ (4 + 3, 1) ≻ (7 + 5) ≻

possesses this symmetry, while the degeneration

(0 + 2) ≻ (3 + 4, 1) ≻ (7 + 5) ≻ (2 + 0) ≻ (4 + 3, 1) ≻ (7 + 5) ≻

does not.

When m1 = m2 we may have an additional symmetry in Problem 2. Let P, Q

be two zeroes of ω of order m1 = m2 joined by precisely p homologous saddle connec-

tions. Let the homology class of the saddle connection be represented by a vector γ .

Assigning the “names” z1 := P and z2 := Q to P and Q we get a decomposition

(S′
i, γ, α′

i, a′
i, a′′

i ).

Consider now the very same surface S with the same configuration of p homol-

ogous saddle connections joining the same two zeroes P and Q . We may declare now

that the correspondence of zeroes is inverse with respect to the previous assignment:

z1 := Q and z2 := P. Since our saddle connections are oriented (from z1 to z2) the

homology class of the same saddle connection (from P to Q ) is represented now by

the vector −γ . Since the cyclic order of “pieces” is determined by the cyclic order at

the point z1 the new identification reverses the cyclic order in the collection (α′
i), as

well as the order in the pairs (a′
i, a′′

i ).

We say, that we have a γ → −γ symmetry if and only if the assignment z1 := Q

and z2 := P gives a decomposition with the same (up to a cyclic reenumeration) col-

lection (α′
i, a′

i, a′′
i ) as before.

It is easy to see the following combinatorial criterion of the γ → −γ symme-

try. Interchange simultaneously all a′
i ↔ a′′

i , and change the cyclic order of the re-

sulting collection (α′
i, a′′

i , a′
i) to the opposite one. We possess a γ → −γ symmetry if

and only if the result of this operation gives us the initial collection (α′
i, a′

i, a′′
i ) up to

a cyclic reenumeration. We denote γ → −γ symmetry by Γ−, where |Γ−| = 2. We let

|Γ−| = 1 when there is no γ → −γ symmetry.

The condition m1 = m2 is an obvious necessary condition for γ → −γ symme-

try. It will be always assumed in the discussions of γ → −γ symmetry.

Under this condition every degeneration of multiplicity 1 possesses a γ → −γ

symmetry. There is a γ → −γ symmetry in multiplicity 2 if and only if at least one
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the following conditions is valid: either

– a′
1 = a′′

1 (and then a′
2 = a′′

2 automatically); or

– α′
1 = α′

2 and a′
1 = a′′

2 (and then a′′
1 = a′

2 automatically).

Example 9.6. — Let α = (11, 11). Consider degeneration of S into 4 surfaces

of the following types α′
1 ≻ α′

2 ≻ α′
3 ≻ α′

4:

(2) ≻ (6) ≻ (2) ≻ (6) ≻.

The degeneration

(0 + 2) ≻ (3 + 3) ≻ (2 + 0) ≻ (3 + 3) ≻

possesses the γ → −γ symmetry, but does not have the stratum interchange, so

|Γ−| = 2, |Γ| = 1.

The degeneration

(0 + 2) ≻ (4 + 2) ≻ (0 + 2) ≻ (4 + 2) ≻

does not have a γ → −γ symmetry, but allows the stratum interchange, so |Γ−| = 1,

|Γ| = 2.

The degeneration

(1 + 1) ≻ (3 + 3) ≻ (1 + 1) ≻ (3 + 3) ≻

has both symmetries: |Γ−| = 2, |Γ| = 2.

Remark 9.7. — Describing the assignments (S′, γ, a′
i, a′′

i ) → (S, m1, m2, a′
i, a′′

i )

one can consider all possible assignments, and then take into account corresponding

symmetries, or one can deal with the classes, eliminating the symmetry whenever it is

possible.

We have chosen the second way. For example the assignment

(2 + 0) ≻ (0 + 0) ≻ (0 + 1, 2, 1)

is not presented in the Table 3 since it is symmetric to the assignment

(0 + 0) ≻ (0 + 2) ≻ (1 + 0, 2, 1)

(which is in the list) by composition of γ → −γ symmetry with the stratum inter-

change.



MODULI SPACES OF ABELIAN DIFFERENTIALS: THE PRINCIPAL BOUNDARY 101

Let us return to the degeneration construction described in Section 9.1. To every

surface S in the thick part H
ε,thick

1 (α,C ) we associate a surface S′ = ⊔p

i=1S′
i. We denote

the corresponding stratum by H (α′), where α′ = ⊔α′
i , see Convention 5.

However, our consideration of the symmetries shows, that the surface S′ is de-

fined up to a finite symmetry. In other words, we may have a nontrivial symmetry

group Γ± acting on the stratum H (α′). This symmetry group is generated by the

subgroup Γ of stratum interchange symmetries and subgroup Γ− of γ → −γ symme-

tries. (Any of the subgroups, or both might be trivial.) The order |Γ±| of the symmetry

group Γ± is equal to the product of the orders |Γ| and |Γ−|.
Note that the symmetry group Γ± preserves the natural measure on H (α′). It

obviously preserves the area of the surface, hence Γ± preserves the “unit hyperboloid”

H1(α
′). Thus we get a natural volume element on the quotient H1(α

′)/Γ±.

The degeneration construction can be considered as a map

H
ε,thick

1 (α,C ) → (H1(α
′)/Γ±) × B(ε).

In the next section we shall study this map. This will allow us to compute the volume

of the thick part and thus compute the corresponding Siegel–Veech constant.

9.5. Siegel–Veech constants in higher multiplicity, connected strata. — Consider the set

H
ε,thick

1 (α,C ). It consists of surfaces S having exactly one collection of short homolo-

gous saddle connections. This collection is necessarily of the type C ; the saddle con-

nections from this collection (which are all of the same length) are shorter then ε; any

other saddle connection on S is longer then κ.

Actually, we shall need two variants of this set: the one, which we denote

H
ε,ε

1 (α,C ) corresponds to the value κ = ε of parameter κ; the other, denoted

H
ε,3ε

1 (α,C ), corresponds to κ = 3ε.

Clearly,

H
ε,3ε

1 (α,C ) ⊂ H
ε,ε

1 (α,C ).(19)

Lemma 9.8. — Consider the map

p : H
ε,ε

1 (α,C ) → H1(α
′)/Γ± × B(ε)

corresponding to the assignment (S′, γ, a′
i, a′′

i ) → (S, m1, m2, a′
i, a′′

i ). Let

F
′
2ε :=

(

H1(α
′) − H

2ε
1 (α′)

)

/Γ±.

1. The image of the map p contains the subset F ′
2ε × B(ε).

2. Let U := p−1
(

F ′
2ε × B(ε)

)

. The restriction p|U is a (ramified) covering of degree

M0 :=
p

∏

i=1

(ai + 1)(20)

where ai = a′
i + a′′

i is the degree of the distinguished zero on the surface S′
i.
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3. The map p|U is volume preserving: the volume element on U induced from d vol
′× dγ

on F ′
2ε × B(ε) coincides with the volume element d vol on U ⊂ H1(α).

4. The set U contains the set H
ε,3ε

1 (α,C ).

Proof. — In fact, the statement of the lemma is almost tautological reformulation

in geometric terms of the properties which we already know.

Part 1 follows immediately from the construction in the beginning of Section 9.3,

where having a surface S′ ∈ H1(α
′) − H

2ε
1 (α′) and a vector γ ∈ B(ε) we constructed

a surface S ∈ H
ε,ε

1 (α,C ). We have p(S) = S′.
The fact that p is nondegenerate almost everywhere follows immediately from

consideration of p in cohomological coordinates, so in this sense it is a (ramified) cov-

ering. To prove statement 2 it remains to compute the degree of this covering, i.e.

to prove that for almost all pairs (S′, γ) we can construct exactly M0 pairwise non-

isometric surfaces. For each surface S′
i there are ai + 1 ways to perform a slit con-

struction at a zero of order ai = a′
i + a′′

i of S′
i providing ai + 1 surfaces Si. Accord-

ing to Lemma 8.1 for almost all S′ ∈ F ′
2ε the resulting ai + 1 surfaces Si are pair-

wise nonisometric. For almost all S′ the surfaces Si and Sj corresponding to differ-

ent indices i �= j are nonisometric as well. Thus generically there are no isomor-

phisms between the resulting surfaces S which map the collection {γi} on one sur-

face to the collection {γi} on the other surface. Since by the choice of (S′, γ) such

a collection is unique on each of the M0 surfaces S, they are generically pairwise non-

isometric.

Statement 3 follows immediately from the fact that as a basis of cycles in

H1(S, {P1, ..., Pk}; Z) we can choose a union of basic cycles for S′
i and one of the ho-

mologous saddle connections γi, where by definition hol(γi) = γ . Thus, this statement

is completely analogous to the corresponding statement in multiplicity one.

Statement 4 follows from the fact that the surgery, which associates a surface

S′ to a surface S either does not change the holonomy of saddle connections differ-

ent from γi or changes it by holonomy of γi. Since |γi| < ε it means that a saddle

connection, which is longer than 3ε would stay longer than 2ε after the surgery. ⊓⊔
Corollary 9.9. — Suppose that the stratum H (α) is connected; let C be an admissi-

ble configuration of saddle connections joining a pair of distinct zeroes of orders m1 and m2; let

(S′, γ, a′
i, a′′

i ) → (S, m1, m2, a′
i, a′′

i ) be the corresponding assignment. Then

Vol
(

H
ε

1 (α,C )
)

= M · Vol(H1(α
′)) · πε2 + o(ε2),

where the integer constant M is defined as

M =
∏p

i=1(ai + 1)

|Γ−| · |Γ| .(21)

Here ai = a′
i + a′′

i ; |Γ−| = 2 if the assignment has γ → −γ symmetry and |Γ−| = 1 otherwise;

|Γ| is the order of the “stratum interchange” symmetry.
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Proof. — Combining statement 4 of the Lemma above with the obvious inclu-

sions (19) we obtain the following inclusions

H
ε,thick

1 (α,C ) = H
ε,3ε

1 (α,C ) ⊂ U ⊂ H
ε

1 (α,C ).

Hence, by Corollary 7.2

Vol
(

H
ε

1 (α,C )
)

= Vol(U ) + o(ε2).

On the other hand, by statements 2 and 3 of the lemma above,

Vol(U ) = M0 · Vol(F ′
2ε) · Vol(B(ε)).

The volume of the disc B(ε) equals πε2. The volume of the quotient over a finite

group of isometries equals to the volume of the total space divided by the order of

the group. Since |Γ±| = |Γ−| · |Γ|, and the set F ′
2ε is defined as

F
′
2ε :=

(

H1(α
′) − H

2ε
1 (α′)

)

/Γ±

we obtain

Vol(F ′
2ε) =

(

Vol(H1(α
′)) − Vol

(

H
2ε

1 (α′,C )
))

/(|Γ−| · |Γ|).

It follows from Lemma 7.1 that Vol(H 2ε
1 (α′)) = O(ε2). Hence,

Vol(F ′
2ε) = Vol(H1(α

′))/(|Γ−| · |Γ|) + O(ε2).

Summarizing the above arguments we obtain the statement of the corollary. ⊓⊔

Now everything is ready to compute the Siegel–Veech constant c(C ). Note that

we work in the setting where we fix the partition of numbered zeroes of S by compo-

nents S′
i (see Problem 1 in Section 9.4). We assume that H1(α) is connected. Applying

Proposition 3.3 we get the following value of the c(C ):

c(C ) = M · Vol(H1(α
′))

Vol(H1(α))
.

Using expression (21) for M and Formula (12) from Section 6.2 for the volume of

a nonprimitive stratum H1(α
′) we finally obtain the following formula:

c = 1

|Γ|
1

|Γ−| ·
p

∏

j=1

(aj + 1) · 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

d

2
− 2

)

! ·
∏p

i=1 Vol(H1(αi))

Vol(H1(α))
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where

di = dimR H1(α
′
i).(22)

Note, that if ai = 0, the corresponding surface S′
i has a marked point, so α′

i contains 0.

Note also, that by convention when S′
i is a torus, we use the point which is already

marked, so α′
i = 0.

Let us study now the constant c in the setting where we do not specify which

zeroes S are to be joined. (see Problem 2 in Section 9.4). This counting problem can

be reduced to the previous one by a purely combinatorial computation. Consider m �=
m1, m �= m2, m �= ai, i = 1, ..., p. Then these zeroes are all “inherited” by the surfaces

Si. Since all the zeroes z1, z2, ..., zl are named, the number of ways to distribute o(m)

zeroes of order m into groups of o1(m), ..., op(m) zeroes equals

o(m)!
∏p

i=1 oi(m)! .

If m �= m1 and m �= m2 but m = aj for some j then one of the oj(m) zeroes of order m

which lives on Sj is newborn; that is, arising from the degeneration, while the other

oj(m) − 1 zeroes of order m come from the corresponding zeroes of order m on S.

Thus the corresponding factor in the denominator becomes (oj(m) − 1)!. Multiplying

numerator and denominator by oj(m) we get the following factor:

o(m)!
∏p

j=1 oj(m)! ·
∏

j | aj=m

oj(m).

(Equivalently, we may say that we have performed the slit construction at the

first “named” zero of order aj on Sj . The rest of the zeroes of that order inherit their

names on S, but then we count the number of ways of merging the names from dif-

ferent Si onto S.) Consider now the case when m = m1 or m = m2. When m1 �= m2

and m = m1 (resp. m = m2) we have the arrangements of the other o(m1) − 1 (resp.

o(m2) − 1) zeroes of order m. When m1 = m2 we have an arrangement of the other

o(m1) − 2 zeroes of order m. This changes the numerator in the formula above by the

corresponding factorial. However, in these cases we have to count the number of ways

to choose a zero of degree m1 and a zero of degree m2 on the initial surface S. This

number is equal to o(m1) · o(m2) if m1 �= m2 and o(m1)(o(m1) − 1) if m1 = m2. Thus

for zeroes of these degrees we have this extra factor o(m1) · o(m2) which combined

with previous considerations gives o(m)! in this case as well. Taking into account the

possible symmetries (see Section 9.4), we finally get the following expression for the

constant c in the setting where the zeroes of S are not numbered (see Problem 2 in

Section 9.4).
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Formula 9.1.

c = 1

|Γ−| · 1

|Γ| ·
∏

m∈α

(

o(m)!
∏p

j=1 oj(m)!

)

·
p

∏

j=1
aj �=0

oj(aj) ·(23)

·
p

∏

j=1

(aj + 1) · 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

d

2
− 2

)

! ·
∏p

i=1 Vol(H1(αi))

Vol(H1(α))
.

We give some examples of this formula in the case of connected strata H1(α).

Example 9.10. — Stratum H1(3, 1); The multiplicity is p = 2. After degeneration

we get a surface S′
1 of genus 2 with a single zero of order a1 = 2, where now a′

1 = 2,

a′′
1 = 0, and we get a torus S′

2, with a2 = a′
2 = a′′

2 = 0.

The saddle connections γ1 and γ2 partition the cone angle 8π at z1 in two sec-

tors with angles 2π and 6π; they partition the cone angle 4π at z2 in two sectors with

angles 2π and 2π. There is no stratum interchange, so |Γ| = 1. We get

c = 3 · 1

2
· 3! · 1!

5!
Vol(H1(2)) · Vol(H1(0))

Vol(H1(3, 1))
= 567

1024
≈ 0.554.

Example 9.11. — Stratum H1(2, 1, 1); genus g = 3, multiplicity p = 2. First

suppose that we have a pair of homologous saddle connections joining the zero of

degree m1 = 2 with one of two zeroes of degree m2 = 1. After degeneration we get

two surfaces S′
1 ∈ H1(a1, 1), and S′

2 ∈ H1(a2), where a1 + a2 = m1 + m2 + 2 − 2p = 1.

Thus a1 = 1, a2 = 0. There is no stratum interchange, so |Γ| = 1. Altogether we get

c = 4 · 1

2
· 4! · 1!

6! · Vol(H1(1, 1)) Vol(H1(0))

Vol(H1(2, 1, 1))
= 28

45
≈ 0.622.

Suppose now that we have a pair of homologous saddle connections joining two

simple zeroes. After degeneration we get two surfaces S′
1 ∈ H (a1, 2), and S′

2 ∈ H (a2),

where a1+a2 = m1+m1+2−2p = 0. Thus S′ is genus 2 with a marked point and with

a zero of degree 2, while S′
2 is a torus with a marked point. Here we have a′

i = a′′
i = 0,

i = 1, 2.

There is no stratum interchange, so |Γ| = 1. We now get

c = 1

2
· 1 · 4! · 1!

6! · Vol(H1(2)) Vol(H1(0))

Vol(H1(2, 1, 1))
= 7

40
= 0.175.



106 ALEX ESKIN, HOWARD MASUR, ANTON ZORICH

9.6. Principal stratum. — The cone angle at any simple zero equals 4π. Thus

for the principal stratum we may have at most two homologous saddle connections

joining a pair of distinct zeroes. Hence in the higher multiplicity case, the surface S,∈
H1(1, ..., 1) of genus g degenerates to a pair of surfaces S′

1, S′
2 of genera g1 + g2 = g.

Each of S′
1, S′

2 has only simple zeroes and one additional marked point. We always

have the γ → −γ symmetry, so |Γ−| = 2. When g1 = g2 we have a symmetry |Γ| = 2

due to the stratum interchange; there is no other symmetry otherwise.

Applying formula (23) and (22) we finally get the following answer.

Formula 9.2. — The constant for the number of saddle connections of multiplicity two

joining two distinct zeroes in the principal stratum is

c = 1

2|Γ| · (2g − 2)!
(2g1 − 2)!(2g2 − 2)! · 1 · 1 · 1

22−1
· (4g1 − 3)!(4g2 − 3)!

(4g − 5)!

· Vol(H1(

2g1−2
︷ ︸︸ ︷

1, ..., 1)) Vol(H1(

2g2−2
︷ ︸︸ ︷

1, ..., 1))

Vol(H1(1, ..., 1
︸ ︷︷ ︸

2g−2

))
=

= 1

4|Γ| · (2g − 2)! (4g1 − 3)! (4g2 − 3)!
(2g1 − 2)! (2g2 − 2)! (4g − 5)! ·

· Vol(H1(

2g1−2
︷ ︸︸ ︷

1, ..., 1)) Vol(H1(

2g2−2
︷ ︸︸ ︷

1, ..., 1))

Vol(H1(1, ..., 1
︸ ︷︷ ︸

2g−2

))

where g1 + g2 = g, g1, g2 ≥ 1, |Γ| =
{

1 when g1 �= g2

2 when g1 = g2.

FIG. 6. — Saddle connection of multiplicity 2 on a surfaces from the principal stratum H1(1, ..., 1)

Table 4 presents the numerical values for these constants. More values are pre-

sented in Table 8 in the Appendix. (We present only approximate values of constants

in Table 8 just to save the space.)
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TABLE 4. — Principal stratum; values of the constants for saddle connections of multiplicity two joining a pair of dis-

tinct zeroes

g2 = 1 g2 = 2 g2 = 3 g2 = 4 g2 = 5

g1 = 1
5

8

6

7

315

377

19604

23357

13897415

16493303

g1 = 2
6

7

30

377

1680

23357

686140

16493303

9529656

351964697

g1 = 3
315

377

1680

23357

154350

16493303

352872

50280671

389127620

121780991823

g1 = 4
19604

23357

686140

16493303

352872

50280671

336277214

365342975469

435911877856

704782787198207

g1 = 5
13897415

16493303

9529656

351964697

389127620

121780991823

435911877856

704782787198207

19865637635886

249020069093788675

10. Strata having several connected components

The analysis of admissible assignments, structure of local surgeries, and most of

the elements of our constructions are basically the same for the strata having several

connected components. However, we need to establish the correspondence between

connected components and parts of the boundary of the stratum they are adjacent to.

In other words we need to describe the admissible constructions, which lead to the

flat surfaces in the prescribe connected component.

10.1. Parity of the spin structure in the slit construction. — We start with outlining the

relation between the parities of spin structures of the resulting surface and its compo-

nents in the slit construction.

Lemma 10.1. — Suppose S constructed above has only even zeroes so has a spin structure.

Then each component surface S′
i has only even zeroes and so also has a spin structure. The parity of

the spin structure φ(S) is equal to the sum of the parities of the spin structures of the components:

φ(S) =
p

∑

i=1

φ(S′
i) (mod 2).(24)

Proof. — For each S′
i, all the zeroes except the distinguished one come from the

corresponding zeroes on S unchanged; in particular they have the same degrees as the
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initial zeroes of S. Thus for each S′
i all the zeroes but at most one, have even degrees.

Note that the total sum of the degrees of the zeroes of S′
i is even: it equals 2gi + 2,

where gi is the genus of the surface S′
i. Hence the remaining zero has even degree as

well. (By usual convention we consider a marked point as a “zero of degree 0”.)

For each surface S′
i consider a collection of 2gi smooth simple closed curves on

S′
i representing the canonical basis of cycles. Breaking up the zero zi we make a local

surgery of the flat structure, i.e., we do not change the flat structure outside of a small

domain U′
i ⊂ S′

i containing the zero zi. Thus for each i we can deform if necessary

the curves from the corresponding collection in such a way that they stay outside of

a neighborhood of the zero zi. Thus we may assume that for each i = 1, ..., p none of

the chosen curves on S′
i intersect U′

i. This means that all the curves survive under the

surgery, moreover, the union of collections for all i gives us a canonical basis on S. By

construction the index of any resulting curve in the flat structure ω is the same as the

index of the corresponding curve in the flat structure ω′
i. Hence we get the desired

relation (24). The lemma is proved. ⊓⊔
Lemma 10.2. — Let S belong to one of the components H odd

1 (α) or H even
1 (α). Suppose

that α �= ( g − 1, g − 1). Then the surface S can be obtained by an assignment (S′, γ, a′
i, a′′

i ) →
(S, m1, m2, a′

i, a′′
i ), where m1, m2 ∈ α, if and only if the collection (α′

i, a′
i, a′′

i ) satisfies the condi-

tions of Lemma 9.1, all α′
i are even, and the parities of the spin structures of S′

i satisfy the condition

of Lemma 10.1.

10.2. Admissible assignments for surfaces from hyperelliptic components. — Note that the sur-

faces S′
i from the hyperelliptic component H

hyp

1 (2g − 2) and from the hyperelliptic com-

ponent H
hyp

1 ( g − 1, g − 1), where g is odd, also have parity of the spin structure

(see formulae (8), (9)). In general these surfaces are also involved in assignments from

Lemma 10.2 producing nonhyperelliptic components H even
1 (α) and H odd

1 (α). However, in

the exceptional case of α = ( g−1, g−1) with odd g some assignments lead to surfaces

S from the hyperelliptic connected component H
hyp

1 ( g − 1, g − 1). These assignments

are classified in the lemma below.

Lemma 10.3. — Let a flat surface S from the hyperelliptic connected component

H
hyp

1 ( g − 1, g − 1) be obtained by an assignment

(S′, γ, a′
i, a′′

i ) → (S, g − 1, g − 1, a′
i, a′′

i ).

Then for almost every S the assignment has one of the following two types:

– The multiplicity is 1; the flat surface S′ belongs to the hyperelliptic component H
hyp

1 (2g−2),

and a′ = a′′ = g − 1.

– The multiplicity is 2; the flat surfaces S′
i, i = 1, 2 belong to the hyperelliptic components

H hyp(2gi − 2), where g1 + g2 = g, and a′
i = a′′

i = gi − 1, i = 1, 2.

The assignment is |Γ| to 1 and is onto the corresponding set of hyperelliptic surfaces.
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Proof. — The set of hyperelliptic structures such that the involution interchanges

some components has positive codimension, so we may disregard these and assume

the involution fixes each component. This implies that all flat surfaces S′
i belong to

components H hyp(2gi − 2). Since the hyperelliptic involution sends a vector v to −v,

but does not change the orientation of the surface, if the multiplicity is greater than

one, it cannot map any of the γ ′
i or γ ′′

i to themselves. It must therefore interchange

γ ′
i and γ ′′

i for each i. This implies that p = 2. ⊓⊔

Corollary 10.4. — Almost any flat surface S from the hyperelliptic connected component

H
hyp

1 ( g − 1, g − 1) has no saddle connections of multiplicity greater then two.

10.3. Constants for the components of the stratum H1( g − 1, g − 1). — We start with

the stratum H1( g − 1, g − 1) which is exceptional: it has the hyperelliptic connected

component.

10.3.1. Hyperelliptic connected component H
hyp

1 ( g−1, g−1). — The admissible assign-

ments for the surfaces from the hyperelliptic connected component H
hyp

1 ( g − 1, g − 1)

are described by Lemma 10.3. The possible multiplicities are one and two. In multipli-

city one modifying (18) in accordance with Lemma 10.3 we get the following formula.

Formula 10.1. — The constant for the number of saddle connections of multiplicity one

joining distinct zeroes in H
hyp

1 ( g − 1, g − 1) is given by

c = (2g − 1) · Vol
(

H
hyp

1 (2g − 2)
)

Vol
(

H
hyp

1 ( g − 1, g − 1)
) .

In other words, collapsing a saddle connection of multiplicity one on a surface

S ∈ H
hyp

1 ( g−1, g−1) we get a surface S′ from the hyperelliptic connected component

H
hyp

1 (2g − 2). Breaking up the zero of a surface S′ ∈ H
hyp

1 (2g − 2) we necessarily get

a surface S from the hyperelliptic component H
hyp

1 ( g − 1, g − 1).

Example 10.5. — Component H
hyp

1 (1, 1). In genus g = 2 the component

H
hyp

1 (1, 1) coincides with the whole principal stratum H1(1, 1). The formula above

gives the same constant as Formula 8.3 for the principal stratum in genus g = 2:

c = 3 · Vol
(

H
hyp

1 (2)
)

Vol
(

H
hyp

1 (1, 1)
) = 3 · Vol(H1(2))

Vol(H1(1, 1))
= 27

8
= 3.375.

Example 10.6. — Component H
hyp

1 (2, 2). In genus 3 we have the connected

component H
hyp

1 (2, 2). After collapsing zeroes we obtain a hyperelliptic surface
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TABLE 5. — Hyperelliptic component H
hyp

1 ( g−1, g−1); values of the constants for saddle connections of multiplicity

one joining distinct zeroes

g = 2 g = 3 g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

c = 27

8

225

32

6125

512

297675

16384

3361743

131072

9018009

262144

372683025

8388608

59836330125

1073741824

c ≈ 3.375 7.03125 11.9629 18.1686 25.6481 34.401 44.4273 55.7269

S′ ∈ H
hyp

1 (4). We get

c = 5 · Vol
(

H
hyp

1 (4)
)

Vol
(

H
hyp

1 (2, 2)
) = 225

32
≈ 7.03.

We present more values in Table 5.

Consider now multiple saddle connections for a flat surface S from the con-

nected component H
hyp

1 ( g − 1, g − 1). By Lemma 10.3 we only have p = 2 in the

higher multiplicity, and S′
i ∈ H hyp(2gi − 2), i = 1, 2, where g1 + g2 = g. Here we

always have the γ → −γ symmetry, so |Γ−| = 2. When g1 = g2 we also have the stra-

tum interchange symmetry, so |Γ| = 2, and |Γ| = 1 otherwise. Thus, after appropriate

modification of formula (23) we get the following constant

Formula 10.2. — The constant in multiplicity 2 for saddle connections joining distinct zeroes

in H
hyp

1 ( g − 1, g − 1) is given by

c = (2g1 − 1)(2g2 − 1)

2|Γ| · (2g1 − 1)!(2g2 − 1)!
(2g − 1)! ·

· Vol
(

H
hyp

1 (2g1 − 2)
)

Vol
(

H
hyp

1 (2g2 − 2)
)

Vol
(

H
hyp

1 ( g − 1, g − 1)
) .

Example 10.7. — Component H
hyp

1 (1, 1). Saddle connections of multiplicity two

joining distinct zeroes on a surface from H
hyp

1 (1, 1) = H1(1, 1) were actually, already

considered in the section treating the principal stratum. Here after decomposition we

get a pair of tori S′
1, S′

2 each with a marked point. We get the following value for the

corresponding constant:

c = 1 · 1

2 · 2
· 1! · 1!

3! · Vol(H1(0)) Vol(H1(0))

Vol(H1(1, 1))
= 5

8
= 0.625.
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TABLE 6. — H
hyp

1 ( g−1, g−1); values of the constants for saddle connections of multiplicity two joining distinct zeroes

g2 = 1 g2 = 2 g2 = 3 g2 = 4 g2 = 5 g2 = 6

g1 = 1
5

8

63

32

375

128

67375

16384

361179

65536

1867635

262144

g1 = 2
63

32

567

512

22275

8192

441441

131072

1083537

262144

10496871

2097152

g1 = 3
375

128

22275

8192

96525

65536

875875

262144

4027725

1048576

1187146125

268435456

g1 = 4
67375

16384

441441

131072

875875

262144

14889875

8388608

2083228875

536870912

18432519875

4294967296

g1 = 5
361179

65536

1083537

262144

4027725

1048576

2083228875

536870912

8749561275

4294967296

74923166241

17179869184

g1 = 6
1867635

262144

10496871

2097152

1187146125

268435456

18432519875

4294967296

74923166241

17179869184

624359718675

274877906944

Example 10.8. — Component H
hyp

1 (2, 2). Consider saddle connections of multi-

plicity two joining distinct zeroes on a surface from H
hyp

1 (2, 2). After decomposition

we get a surface S′
1 ∈ H1(2) of genus 2 with a single zero of order 2 and a torus

S′
2 ∈ H (0) with a marked point. The cone angle between γ1 and γ2 is the same at z1

and z2; it equals 2π. The cone angle between γ2 and γ1 is also the same at z1 and z2,

but now it equals 4π. The constant is given by

c = 3 · 1

2 · 1
· 3! · 1!

5! · Vol(H1(2)) Vol(H1(0))

Vol
(

H
hyp

1 (2, 2)
) = 63

32
≈ 1.97.

We present more values in Table 6 and in Table 9 in the Appendix.

10.3.2. Connected component H
nonhyp

1 ( g − 1, g − 1); Even Genus. — For g ≥ 4, g even,

the stratum H1( g−1, g−1) has exactly two connected components: H
hyp

1 ( g−1, g−1)

and H
nonhyp

1 ( g −1, g −1). Thus, dealing with the connected component H
nonhyp

1 ( g −1,

g − 1) we have to exclude all the assignments producing surfaces S in the stratum

H1( g −1, g −1) those that actually belong to the component H
hyp

1 ( g −1, g −1). The

latter problem has already been solved. Thus we get the following answers.

Formula 10.3. — For any even genus g ≥ 4 any flat surfaces S from the connected com-

ponent H
nonhyp

1 ( g − 1, g − 1) having a saddle connection of multiplicity one joining distinct zeroes
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may be obtained from the corresponding surface S′ from one of the components H even
1 (2g − 2),

H odd
1 (2g − 2).

The corresponding constant is equal to

c = (2g − 1) · Vol
(

H even
1 (2g − 2)

)

+ Vol
(

H odd
1 (2g − 2)

)

Vol
(

H
nonhyp

1 ( g − 1, g − 1)
) =

= (2g − 1) · Vol(H1(2g − 2)) − Vol
(

H
hyp

1 (2g − 2)
)

Vol(H1( g − 1, g − 1)) − Vol
(

H
hyp

1 ( g − 1, g − 1)
) .

We proceed with multiplicity two. Here we get the formula analogous to For-

mula 10.2 for the component H
hyp

1 ( g − 1, g − 1).

Formula 10.4. — The constant for multiplicity 2 joining two zeroes in the stratum
H nonhyp( g − 1, g − 1) is given by

c = (2g1 − 1)(2g2 − 1)

2|Γ| · (2g1 − 1)!(2g2 − 1)!
(2g − 1)! ·

· Vol(H1(2g1 − 2)) Vol(H1(2g2 − 2)) − Vol
(

H
hyp

1 (2g1 − 2)
)

Vol
(

H
hyp

1 (2g2 − 2)
)

Vol
(

H
nonhyp

1 ( g − 1, g − 1)
) .

For multiplicity p ≥ 3 it is easy to account for the impact of the hyperelliptic

component (see Corollary 10.4). We get the following particular case of formula (23)

in the case of H nonhyp( g − 1, g − 1)

Formula 10.5.

c = 1

2|Γ| ·
p

∏

i=1

(2gi − 1) ·
∏p

i=1(2gi − 1)!
(2g − 1)! ·

∏p

i=1 Vol(H1(2gi − 2))

Vol
(

H
nonhyp

1 ( g − 1, g − 1)
) .

10.3.3. Components H even( g − 1, g − 1) and H odd( g − 1, g − 1). — We consider

the multiplicity one case first. Assume that S belongs to one of the nonhyperelliptic

components H even( g−1, g−1) or H odd( g−1, g−1). Contracting the saddle connection

joining the two zeroes, we merge the two zeroes into one and we get a surface S′

in H even(2g − 2) or H odd(2g − 2) correspondingly. Conversely breaking up a single

zero of a surface S′ from a nonhyperelliptic connected component H even(2g − 2) or

H odd(2g − 2) into two zeroes of degrees g − 1 we get a surface from the component

H even( g − 1, g − 1) or H odd( g − 1, g − 1) correspondingly. Thus we have to modify

formula (18) in the following way.
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Formula 10.6. — The constant is equal to

c = (2g − 1) · Vol
(

H even
1 (2g − 2)

)

Vol
(

H even
1 ( g − 1, g − 1)

)

c = (2g − 1) · Vol
(

H odd
1 (2g − 2)

)

Vol
(

H
odd

1 ( g − 1, g − 1)
) .

Example 10.9. — Component H odd(2, 2). After collapsing zeroes we obtain a sur-

face S′ ∈ H odd(4). We get

c = 5 · Vol
(

H odd
1 (4)

)

Vol
(

H
odd

1 (2, 2)
) = 80

9
≈ 8.89.

Remark 10.10. — Note that the similar nonhyperelliptic connected components

with even parity of the spins structure do not exist in genus g = 3.

Now we consider higher multiplicity. We again have to consider multiplicity two

separately because some assignments in multiplicity two produce surfaces from the hy-

perelliptic connected component H hyp( g − 1, g − 1), see Lemma 10.1. We again get

the formula analogous to Formula 10.2 for the component H hyp( g − 1, g − 1) and to

Formula 10.4 for the component H nonhyp( g − 1, g − 1).

It will be convenient to introduce the following notation. We introduce a func-

tion δ(α, φ) which has values 0 or 1. It is equal to 1 when all of the following three

conditions are satisfied: all the zeroes of α (if any) have even degrees; H (α) contains

the hyperelliptic component H hyp(α); the parity of the spin structure of H hyp(α) co-

incides with φ. Otherwise δ(α, φ) = 0.

Formula (8) for the parity of the spin structure of H hyp(α′) shows that

δ(α, φ) =

























1 when α = (2g − 2) and

[

g + 1

2

]

= φ (mod 2)

1 when α = ( g − 1, g − 1), g is odd,

and

(

g + 1

2

)

= φ (mod 2)

0 otherwise.

(25)

We shall also use the following convention: the volume of a nonexistent com-

ponent is equal to zero. In this notation we get the following six “dummy” volumes

for the strata in small genera:
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Vol
(

H
odd

1 (0)
)

= 0 Vol
(

H
odd

1 (2)
)

= 0 Vol
(

H
even

1 (4)
)

= 0

Vol
(

H
even

1 (0)
)

= 0 Vol
(

H
even

1 (2)
)

= 0 Vol
(

H
even

1 (2, 2)
)

= 0(26)

and also we have

Vol(H hyp(α)) = 0 if α �= (2g − 2), ( g − 1, g − 1).

Formula 10.7. — A surface S from one of the nonhyperelliptic connected components

H even( g − 1, g − 1) or H odd( g − 1, g − 1) may have a saddle connection of multiplicity two

joining the two distinct zeroes if and only if it can be obtained from surfaces S′
1 and S′

2 of genus

g1, g2 where g1 + g2 = g and where the following additional requirements are satisfied. At least one

of the surfaces S′
1, S′

2 does not belong to the hyperelliptic component H hyp(2gi − 2), i = 1, 2; the

parities of the spin structures of the surfaces satisfy relation (24): φ(S′
1) + φ(S′

2) = φ(S). For

S ∈ H odd( g − 1, g − 1) the spin structures of S′
1, S′

2 should have opposite parities. This means

in particular that there is no longer a stratum interchange symmetry. For g1 �= g2

c = (2g1 − 1)(2g2 − 1)

2
· (2g1 − 1)!(2g2 − 1)!

(2g − 1)! · 1

Vol
(

H odd
1 ( g − 1, g − 1)

) ·
(

(
(

Vol
(

H
even

1 (2g1 − 2)
)

+ δ((2g1 − 2), even) Vol
(

H
hyp

1 (2g1 − 2)
))

·

·
(

Vol
(

H
odd

1 (2g2 − 2)
)

+ δ((2g2 − 2), odd) Vol
(

H
hyp

1 (2g2 − 2)
))

)

+

+
(
(

Vol
(

H
odd

1 (2g1 − 2)
)

+ δ((2g1 − 2), odd) Vol
(

H
hyp

1 (2g1 − 2)
))

·

·
(

Vol
(

H
even

1 (2g2 −2)
)

+ δ((2g2 −2), even) Vol
(

H
hyp

1 (2g2 −2)
))

)

−
− δ((2g1 − 2), even)δ((2g2 − 2), odd) Vol

(

H
hyp

1 (2g1 − 2)
)

·
· Vol

(

H
hyp

1 (2g2 − 2)
)

− δ((2g1 − 2), odd)δ((2g2 − 2), even) ·

· Vol
(

H
hyp

1 (2g1 − 2)
)

Vol
(

H
hyp

1 (2g2 − 2)
)
)

.

For g1 = g2 = g/2, where g is even, we get

c = (2g1 − 1)2

2
·
(

(2g1 − 1)!
)2

(2g − 1)! · 1

Vol
(

H odd
1 ( g − 1, g − 1)

) ·

·
(

Vol
(

H
even

1 (2g1 − 2)
)

+ δ((2g1 − 2), even) Vol
(

H
hyp

1 (2g1 − 2)
))

·
·
(

Vol
(

H
odd

1 (2g2 − 2)
)

+ δ((2g2 − 2), odd) Vol
(

H
hyp

1 (2g2 − 2)
))

.

Example 10.11. — Component H odd(2, 2). From Formula 10.7 we know that the

degeneration of multiplicity 2 of a surface from H (2, 2) has the form
(

0 + 0
)

≻
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(

1 + 1
)

≻. Since the strata H (0) and H (2) are (hyper)elliptic the resulting surface

in H (2, 2) is also hyperelliptic, see Lemma 10.3. Hence degeneration of multiplicity

2 is not realizable for flat surfaces from H odd(2, 2).

The expression for the constant for the surfaces from H even( g −1, g −1) is anal-

ogous to the one above with the only exception that now we get the stratum inter-

change symmetry |Γ| = 2 for g1 = g2:

c = (2g1 − 1)(2g2 − 1)

2|Γ| · (2g1 − 1)!(2g2 − 1)!
(2g − 1)! · 1

Vol
(

H
even

1 ( g − 1, g − 1)
) ·

(
(
(

Vol
(

H
even

1 (2g1 − 2)
)

+ δ((2g1 − 2), even) Vol
(

H
hyp

1 (2g1 − 2)
))

·

·
(

Vol
(

H
even

1 (2g2 − 2)
)

+ δ((2g2 − 2), even) Vol
(

H
hyp

1 (2g2 − 2)
))

)

+

+
(
(

Vol
(

H
odd

1 (2g1 − 2)
)

+ δ((2g1 − 2), odd) Vol
(

H
hyp

1 (2g1 − 2)
))

·

·
(

Vol
(

H
odd

1 (2g2 − 2)
)

+ δ((2g2 − 2), odd) Vol
(

H
hyp

1 (2g2 − 2)
))

)

−
− δ((2g1 − 2), even)δ((2g2 − 2), even) Vol

(

H
hyp

1 (2g1 − 2)
)

·
· Vol

(

H
hyp

1 (2g2 − 2)
)

− δ((2g1 − 2), odd)δ((2g2 − 2), odd) ·

· Vol
(

H
hyp

1 (2g1 − 2)
)

Vol
(

H
hyp

1 (2g2 − 2)
)
)

.

Finally, for from multiplicity at least three it is easy to account for the impact of

the hyperelliptic component (see Corollary 10.4). We get the following particular case

of formula (23):

Formula 10.8. — Almost every surface in H even( g −1, g −1) or in H odd( g −1, g −1)

having saddle connections of multiplicity p ≥ 3 joining two zeroes can be obtained by assignment
(

( g1 − 1)) + ( g1 − 1)
)

≻ · · ·
(

( gp − 1) + ( gp − 1)
)

≻
where gi ≥ 1, i = 1, ..., p, and g1 + · · · + gp = g. The corresponding constant equals

c = 1

|Γ| ·
p

∏

i=1

(2gi − 1) · 1

2p−1
·
∏p

i=1(2gi − 1)!
(2g − 1)! · 1

Vol
(

H
φ

1 ( g − 1, g − 1)
) ·

·
∑

φ1,...,φp∈{even,odd}
φ1+···+φp=φ (mod 2)

p
∏

i=1

(

Vol
(

H
φi

1 (2gi − 2)
)

+ δ((2gi − 2), φi) ·

· Vol
(

H
hyp

1 (2gi − 2)
)
)

.
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Note that here we always have the γ → −γ symmetry, |Γ−| = 2, which is cancelled

by o(m)! = o( g − 1)! (see (23)). Note that in this particular case we prefer to use

summation over all combinations of parities φi producing the proper parity of the sum.

Thus the stratum interchange symmetry Γ depends only on the collection of gi, and

on their cyclic order.

Example 10.12. — Component H odd(2, 2). Consider a saddle connection joining

the two zeroes of a surface S ∈ H odd(2, 2), and suppose that the saddle connection

has multiplicity 3. Each of S′
i, for i = 1, 2, 3 is a torus with a marked point. The

angle between any consecutive saddle connections at z1 and z2 equals 2π. There is

a symmetry of order 3 coming from stratum interchange, so |Γ| = 3. Taking into

consideration 1/4 from 1/2p−1 we get

c = 1

3
· 1

4
· 1! · 1! · 1!

5! ·
(

Vol(H1(0))
)3

Vol
(

H odd
1 (2, 2)

) = 1

9
≈ 0.111.

Remark 10.13. — Let g ≥ 4 be odd. We see that the maximal multiplicity of

a saddle connection joining the distinct zeroes of a surface from the stratum H ( g−1,

g−1) is different for different connected components: it equals 2 for almost all surfaces

from H hyp( g − 1, g − 1), it equals g − 1 for almost all surfaces in H even( g − 1, g − 1);

it equals g for almost all surfaces in H odd( g − 1, g − 1).

10.4. Other strata. — The description for all other strata H (α), where all the

entries of α are even, is similar to the one just presented.

Formula 10.9. — The constant for the nonhyperelliptic connected component H φ(α), φ ∈
{even, odd}, α �= ( g − 1, g − 1), is given by

c = 1

|Γ−| · 1

|Γ| ·
∏

m∈α

(

o(m)!
∏p

j=1 oj(m)!

)

·
p

∏

j=1
aj �=0

oj(aj) ·
p

∏

j=1

(aj + 1) ·

· 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

d

2
− 2

)

! · 1

Vol
(

H
φ

1 (α)
) ·

·
∑

φ′
1,...,φ

′
p∈{even, odd}

φ′
1+···+φ′

p=φ (mod 2)

p
∏

i=1

(

Vol
(

H
φi

1 (α′
i)
)

+ δ(α′
i, φ

′
i) Vol

(

H
hyp

1 (α′
i)
)
)

.

Example 10.14. — Stratum H even(4, 2). In multiplicity one, after collapsing zeroes

we obtain a surface S′ ∈ H (6), where either of the two components H hyp(6) and
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H even(6) having even parity of the spin structure are possible. We get

c = 7 ·
(

Vol
(

H
hyp

1 (6)
)

+ Vol
(

H even
1 (6)

))

Vol
(

H even
1 (4, 2)

) = 253001

18225
≈ 13.88.

In multiplicity two we get two surfaces S′
1 ∈ H (α′

1), S′
2 ∈ H (α′

2), where α′
1 +

α′
2 = m1 + m2 − p = 4.

There are two possibilities. In the first case α′
1 = α′

2. Note that any S′ ∈ H (2)

has odd parity of the spin structure, see (8). Thus the parity of the resulting flat struc-

ture S is even, see Lemma 10.1.

The saddle connections γ1 and γ2 partition the cone angle 10π at z1 in two

sectors with angles 6π and 4π; they partition the cone angle 6π at z2 in two sectors

with the angles 4π and 2π. Here a′
1 = 2, a′′

1 = 0 while a′
2 = a′′

2 = 1 so that while

H (α′
1) = H (α′

2) = H (2), there is no stratum interchange since a′
1 �= a′

2. Thus

|Γ| = 1. We get

c = 9 · 1

2
· 3! · 3!

7! ·
(

Vol(H1(2))
)2

Vol
(

H even
1 (4, 2)

) = 6

25
= 0.24.

In the second case after degeneration we get S′
1 ∈ H1(0), S′

2 ∈ H1(4). Since

H (0) has odd parity of the spin structure, S′
2 ∈ H odd

1 (4) in order to result in a surface

S ∈ H even(4, 2) (see Lemma 10.1).

The saddle connections γ1 and γ2 partition the cone angle 10π at z1 in two

sectors with the angles 2π and 8π; they partition the cone angle 6π at z2 in two

sectors with the angles 2π and 4π. We get

c = 5 · 1

2
· 1! · 5!

7! · Vol(H1(0)) Vol
(

H odd
1 (4)

)

Vol
(

H
even

1 (4, 2)
) = 640

729
≈ 0.8779.

Multiplicity 3 is not realizable in the component H even(4, 2) (see the next sub-

section).

Example 10.15. — Stratum H odd(4, 2). This component is similar in many as-

pects to the previous one, so we skip those details of calculations which are common

for both components.

The first case is H odd(4, 2) with multiplicity p = 1. After collapsing zeroes we

obtain a surface S′ ∈ H (6), the only component that results is H odd(6). We get

c = 7 · Vol
(

H odd
1 (6)

)

Vol
(

H odd
1 (4, 2)

) = 147

10
= 14.7.

Consider multiplicity 2. The case of degeneration to two surfaces S′
1, S′

2 ∈ H (2)

does not take place here, since the surface S ∈ H (4, 2) obtained from two surfaces

from H (2) has even parity of spin structure.
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Thus, the only possibility is S′
1 ∈ H1(0); S′

2 ∈ H1(4), a′
2 = 3, a′′

2 = 1. Since

H (0) has odd parity of the spin structure, S′
2 must be in components of H (4) hav-

ing even parity of spin structure in order to result a surface S ∈ H odd(4, 2) (see

Lemma 10.1). There is only one such component: H hyp(4).

Thus we get

c = 5 · 1

2
· 1! · 5!

7! · Vol(H1(0)) Vol
(

H
hyp

1 (4)
)

Vol
(

H
odd

1 (4, 2)
) = 15

64
≈ 0.2344

(see analogous calculation for the component H even(4, 2).

Consider now multiplicity 3. It is not hard to check that S′
1 ∈ H (2), S′

2, S′
3 ∈

H (0). Note that both H (0) and H (2) have odd parity of the spin structure. Thus

the resulting surface S ∈ H (4, 2) always has odd parity of the spin structure, see

Lemma 10.1.

The saddle connections γ1, γ2, γ3 partition the cone angle 10π at z1 in three

sectors with the angles 6π, 2π, and 2π; they partition the cone angle 6π at z2 in

three sectors with the angles 2π. We find

c = 3 · 1

4
· 3! · 1! · 1!

7! · Vol(H (2))
(

Vol(H1(0))
)2

Vol
(

H odd
1 (4, 2)

) = 21

320
≈ 0.06563.

Part 2. Saddle connections joining a zero to itself

In this part we consider the second problem of this paper: we count closed sad-

dle connections joining a zero to itself.

11. Approaching the principal boundary by shrinking closed geodesics

11.1. Configurations of closed saddle connections and corresponding surface decompositions. — We

have already indicated in Section 3.2 that together with a closed saddle connection

γ1 joining a zero to itself some other saddle connections γ2, ..., γp homologous to γ1

might be present on a surface S, see Figure 7. There might be also some metric cylin-

ders filled with regular closed geodesics homologous to γ1; such cylinders are bounded

by the singular closed geodesics from the collection γ1, ..., γp. Suppose that the curves

γj with indices from a set J = {i1, ..., il} ⊂ {1, ..., p} bound q cylinders. The comple-

ment of the union of the curves γj and the cylinders splits into p = m − q disjoint

surfaces S1, ..., Sp. For example, the surface S presented in Figure 7 is composed of

p = 4 surfaces Sj and of q = 2 cylinders, where one cylinder joins S2 to S3 and the

other cylinder joins S3 to S4. When p ≥ 2 the boundary of the closure S̄j of any sur-

face Sj ⊂ S is a union of two singular closed geodesics γj−1 ∪ γj .
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The sum of the genera of the Sj is g − 1. The surfaces Sj are attached in some

cyclic order. Thus, for any j the “next surface” Sj+1 and the “previous surface” Sj−1

make sense mod p. We use the following convention for the cyclic order: let �n be

the vector orthogonal to �γj and pointing from Sj to Sj+1. Then the frame (�n, �γj) cor-

responds to the canonical orientation of the surface induced by the complex struc-

ture.

We distinguish two types of surfaces Sj.

If the boundary of the closure S̄k of Sk ⊂ S has two connected components, we

get a surface of the first type. In this case the boundary ∂S̄k is formed by two disjoint

singular closed geodesics γ ′′ = γk−1 and γ ′ = γk. The surfaces S1 and S2 in Figure 7

are of that type. The closed geodesics γ ′′ contains a single conical point zk the closed

geodesics γ ′ contains a single conical point wk. We denote by (2b′
k + 3)π the cone

angle at wk inside S̄k, and by (2b′′
k + 3)π the cone angle at zk inside S̄k.

Suppose now that the boundary of the closure S̄k of Sk ⊂ S has a single con-

nected component produced by two singular closed geodesics sharing the same conical

point P. Cut S̄k at this conical point. If the boundary of the resulting surface now has

two connected components, that means that the surface S̄k is obtained from a surface

described in the paragraph above by identification of the conical points w ∼ z, and

we do not distinguish a surface of this type from those discussed above.

We also put in the first group the surface S1 if S̄1 = S; that is, if we have a sin-

gular closed geodesic γ1 of multiplicity one which does not bound a cylinder of regular

closed geodesics. Cutting S by γ1 we again obtain a surface with two disjoint bound-

ary components γ ′ �= γ ′′ as above. The initial unique conical point P ∈ γ1 produces

two distinct conical points; one on each of the two boundary components.

Consider now the remaining case. Suppose that the boundary of S̄i has a sin-

gle connected component produced by two singular closed geodesics γi−1 = γ ′′ and

γi = γ ′ sharing the same conical point P. If the boundary of the surface S̄i cut at P still

has a single connected component, we say that we get a surface of the second type.

For example, the surfaces S3 and S4 at Figure 7 are of that type. The curves γ ′, γ ′′

bound angles 2(a′
i + 1)π and 2(a′′

i + 1)π inside Si at the conical point P. The two

boundary curves γ ′ and γ ′′ are joined together at the zero forming a “figure eight”.

Therefore we get two types of surfaces Sk, Si; a boundary of each surface is pro-

duced by a pair of singular closed geodesics γ ′, γ ′′. Altogether the configuration con-

sists of the data

( J, a′
i, a′′

i , b′
k, b′′

k ).

We will show how to metrically shrink the boundary components of each Si to

produce a closed surface. For surfaces of the first type the boundary curves will shrink

to zeroes of orders b′
k, b′′

k and for surfaces of the second type to a single zero of order
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a′
i + a′′

i . Each such closed surface will then lie in a stratum H (α′
i) and the union of

these strata comprises the principal boundary.

FIG. 7. — Homologous closed geodesics of high multiplicity. Topological picture

The goal of the rest of this section is to describe how, for each Si, one can natu-

rally “shrink” the boundary components γ ′, γ ′′ to obtain a closed regular flat surface.

We start with surfaces of the second type.

11.2. Shrinking a pair of adjacent holes. — Suppose that the boundary of S̄i has a sin-

gle connected component produced by two singular closed geodesics γ ′, γ ′′ sharing

the same conical point P; the boundary of such surface has a form of figure eight.

By assumption the surface Si is of the second type, so cutting S̄i at P we get a sur-

face with a connected boundary. The surgery corresponding to cutting S̄i at P is il-

lustrated at Figure 10. We start with the surface presented on the right of Figure 10

(there is an extra flat cylinder drawn in the picture, this flat cylinder will be discussed

later) and we get the surface presented in the middle of Figure 10. By construction,

the boundary of the surface obtained after the surgery is made up of two parallel

geodesic segments of the same length (coming from γ ′ and γ ′′) joining two singular

points P1, P2 (obtained by breaking P into two distinct points). The cone angles inside

Si at these points are denoted by 2π(a′
i + 1) and 2π(a′′

i + 1). Now we identify the two

geodesic segments which form the boundary; see the left picture at Figure 10. We get

a closed surface with a saddle connection γ joining the two zeroes. By construction

this saddle connection has direction γ1 and length |γ1|; moreover, by construction the

resulting surface does not have any other saddle connections homologous to γ . Thus,

if the initial surface S belongs to H
ε, thick

1 (α) then the surface obtained from Si by our



MODULI SPACES OF ABELIAN DIFFERENTIALS: THE PRINCIPAL BOUNDARY 121

surgery does not have any other short saddle connections, except γ . Hence, following

the construction of Section 8.2 we can collapse the saddle connection γ into a single

zero of order ai = a′
i + a′′

i . We have proved that for any S from H
ε, thick

1 (α) there is

a canonical way to associate to every component Si of the second type a closed flat

surface S′
i.

In other words, we have proved that for a surface Si of the second type (one hav-

ing boundary formed by two small adjacent holes) there is a canonical way to shrink

metrically the holes, obtaining as a result a closed flat surface S′
i.

11.3. Transporting a small hole along a flat surface. — Intuitively one can interpret the

surgery described in the previous section as annihilation of a “+” and a “−” hole

which are joined together. In this section we show how one can continuously deform

the location of an isolated small hole on a flat surface. In the next section we consider

a flat surface with a pair of small holes located at different places on the surface. Using

the hole-transport construction we move “+” and “−” holes in such way that they

become adjacent to each other and then we make them annihilate as was described

in the previous section.

In this section we consider the case of multiplicity one. Moreover, we assume

that the short closed saddle connection γ of multiplicity one does not bound a metric

cylinder. Choose some orientation of γ ; let �v = hol(γ). Let ∆ be the length of the

shortest saddle connection different from γ . Assume that ∆ ≫ ε = |γ |. Now cut the

surface S along γ . Since γ is not homologous to zero, we get a connected surface

S1 with boundary having two connected components. Each component is formed by

a single geodesic segment containing exactly one conical point. By construction the

size ε of the holes is small with respect to the scale of the surface S1, and the holes

are located relatively far away one from the other.

Choose one of the holes, say, the positive one for which the orientation induced

by the natural orientation of the boundary coincides with the chosen orientation of γ .

We denote this hole as γ+. Let P be the unique singularity point located on γ+. Con-

sider the set D∆(P) ⊂ S1 of points in S1 located at distance less than or equal to ∆

from P. Denote the cone angle at P by (2b +3)π; it is easy to see that the cone angle

is always an odd multiple of π, with b being some nonnegative integer. The set D∆(P)

is composed of 2b + 1 regular sectors, isometric to metric half-discs of radius ∆ and

of one irregular sector. The irregular sector can be constructed metrically as follows:

superpose two copies of metric half-discs of radius ∆; then shift one with respect to

the other by ε in direction of the common diameter; finally, take the union of the re-

sulting metric half-discs and identify the centers of the two diameters, see Figure 8.

The distinguished sector contains the hole, see Figure 8, so its impact on the cone

angle at P is 2π instead of π. We choose the boundaries of the sectors to have direc-

tions ±�v. We denote the distinguished sector by Ω0; we enumerate the other sectors

Ω1, ...,Ω2b+1 in a cyclic order.
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FIG. 8. — Neighborhood D∆(P) of a boundary singularity P is composed of a special sector Ω0 and of 2b + 1 regular

sectors Ω1, ...Ω2b+1. The cone angle at P is (2b + 3)π

Consider a geodesic segment τ ⊂ D∆(P) having the conical point P as one of

the endpoints; let P′ be the other endpoint of τ ; let δ be the length of τ . We assume

that δ < ∆ − ε, so P′ is located in the interior of D∆(P). Our goal is to “move the

hole” to the point P′. We treat separately the four cases listed below which describe all

possible locations of τ . Each time we modify some sectors Ωi or the identification of

the boundaries of the sectors in such way that after regluing of the modified sectors

a neighborhood of the boundary of the modified domain D′
∆
(P) stays isometric to

a neighborhood of the boundary of the initial domain D∆(P). In this way we can

cut D∆(P) out of the flat surface; make a surgery on D∆(P) and then metrically paste

back the modified domain D′
∆
(P) into the surface. Here is a complete list of possible

locations of τ (see also Figure 9); as usual indices are taken modulo the largest one,

so Ω−1 = Ω2b+1.

I. τ ⊂ Ω0 and τ has direction ±�v;
II. τ ⊂ Ω0 and τ has direction different from ±�v;

III. τ ⊂ Ω±1 and τ has direction different from ±�v;
IV. τ ⊂ Ωi where i �= −1, 0, 1.

I. Moving the hole along �v
To move the hole in direction �v it is sufficient to modify the identification of the

boundary of Ω0 with the boundary of Ω1. Similarly, to move the hole in direction −�v
it is sufficient to modify the identification of the boundary of Ω0 with the boundary of

Ω−1. The first case is illustrated at Figure 9, case I. We identify the segments [P, P′]
on Ω0 and on Ω1 (this is exactly our geodesic segment τ of length δ). Then we leave

a segment of length ε on Ω0 without identification, but we identify its endpoints get-

ting a single point P′. This is the new hole. Then we identify the remaining segments

of length ∆ − δ (the ones to the right of the point P′ at Figure 9, case I) on Ω0 and

on Ω1.
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FIG. 9. — Transporting a hole from P to P′ along τ and tunnelling it to a nonadjacent sector.

I. τ ⊂ Ω0 and τ has direction ±�v;
II. τ ⊂ Ω0 and τ has direction different from ±�v;
III. τ ⊂ Ω±1 and τ has direction different from ±�v;
IV. τ ⊂ Ωi and i �= −1, 0, 1.

Note that we do not change the metric outside of the neighborhood
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In other words, our surgery consists of marking a superfluous segment of length

ε on the boundary of Ω0 at the distance δ to the right (correspondingly to the left) of

the initial location.

II. Moving the hole inside the distinguished sector

Consider a parallelogram Π in Ω0 having γ and τ as a pair of sides (see Fig-

ure 9, II); let γ ′ and τ ′ be the other two sides of Π parallel to γ and τ correspond-

ingly. We can think of τ ′ as of a parallel translation of τ by γ . Cut Π out of Ω0 and

identify the opposite sides τ and τ ′ in Ω
′
0 = Ω0 − Π. Perform the initial identification

of the boundaries of the sectors using Ω
′
0 instead of Ω0. As a result of this surgery we

get a new domain D′
∆
(P) with a hole located at the point P′. Note that performing

this surgery we have reduced the area of the surface by the area of the parallelogram

Π which was cut out.

III. Moving the hole inside one of the two adjacent sectors Ω−1,Ω1

If the segment τ transversal to the direction �v is located in one of the sectors

Ω−1, Ω1 we can perform an operation inverse to the one presented above. Suppose

that, say, τ ⊂ Ω1. Consider a parallelogram Π in the Euclidean plane with a pair of

sides having the same lengths and directions as γ and τ correspondingly. Slit Ω1 along

τ from P to P′; let τ and τ ′ be the sides of the resulting slit. Identify the corresponding

sides of Π with τ and τ ′. We have modified the sector Ω1 in the following way: the

modified sector Ω
′
1 = Ω1 + Π has an extra segment γ at the base, where hol(γ) = �v,

and a new hole γ ′ at the point P′, where hol(γ ′) = �v. Perform the initial identification

of the boundaries of the sectors using Ω
′
1 instead of Ω1; add a new one identifying the

segment γ of length ε at the base of Ω
′
1 with the segment γ of length ε at the base of

Ω0. As a result of this surgery we get a new domain D′
∆
(P) with a hole located at the

point P′. Note that performing this surgery we have increased the area of the surface

by the area of the parallelogram Π which was pasted in.

IV. Tunnelling the hole to a nonadjacent sector

If the segment τ is located in a sector Ωi where i �= −1, 0, 1 we first “push the

hole” either to Ωi or to its neighbor. This reduces the situation to one of the cases

I–III. We push the hole to the sector Ωj , where j = i if i is even and j = i − 1 if i is

odd. To do this we change the identifications of the boundary segments of the sectors

Ω0, ...,Ωj as indicated at Figure 9, case IV. The operation of tunnelling the hole to

a nonadjacent sector does not change the area of the surface.

11.4. Shrinking a pair of nonadjacent holes. — To simplify the construction above we

assumed that the path τ , along which we have transported the hole, is a geodesic

segment which is shorter than the shortest saddle connection. It is quite clear how to

generalize the construction in several ways.

A geodesic segment τ transversal to �v can be replaced by a path τ transversal

to �v; the result of the surgery depends only on the homotopy class of τ , where the



MODULI SPACES OF ABELIAN DIFFERENTIALS: THE PRINCIPAL BOUNDARY 125

homotopy is performed with the fixed endpoints; the path remains transversal to �v
during the homotopy; the homotopy is performed inside the surface with punctured

singularities.

We can invert our construction: having a hole located close to a zero we can

move it to the zero.

The segment (path) τ need not be necessarily short: an appropriate surgery can

be performed using a finite covering of τ by domains D∆(P0), D∆1
(P1), ..., D∆s

(Ps).

However, we require that τ is either a segment parallel to �v or a segment (path) trans-

versal to �v. We also require that τ does not have self-intersections, and, moreover, that

it does not make “almost loops” when a pair of points located far one from another

with respect to parameterization of τ by length occur to be close to each other on the

surface.

Finally, we can consider a situation when τ is a broken line of geodesic segments

joining singularities P0, P1, ..., Ps. We can consecutively move the hole along the first

segment τ01 from singularity P0 to singularity P1; perform if necessary tunnelling of the

hole from one sector at P1 to another; move the hole along the second segment τ12

from singularity P1 to singularity P2; etc, and finally bring the hole to the appropriate

sector of Ps.

We can now return to our original problem. We have a surface S1 with two

small holes which we want to shrink metrically. We move one hole to another and then

apply the construction of shrinking a pair of adjacent holes.

Note that the operation of moving a hole from P0 to P1 typically changes the

area of the surface. However, the change of the area is at most the product of the

length of circumference of the hole γ by the length of the path τ .

12. Constructing surfaces with homologous closed saddle connections

Our objective now is to reverse the shrinking operation to show how to build

homologous saddle connections with associated configuration ( J, a′
i, a′′

i , b′
k, b′′

k ) out of

simpler surfaces. We shall start with a collection of closed surfaces and via a “figure

eight” and “creating a pair of holes construction” build a closed surface with a curve

or set of homologous curves joining a zero to itself.

Fix 0 < r < 1/4 and let F ′ denote a compact simply connected subset of

H1(⊔α′
i) such that for S′ ∈ F ′ every saddle connection has length at least 2εr . By

Lemma 7.1 its complement has volume O(ε2r). Choose a homology basis βi that is

valid for all S′ ∈ F ′.

12.1. Figure eight construction. — Given a surface S′
i, a zero (or a marked point) zi of

order ai, and a pair of numbers a′
i + a′′

i = ai we may break up the zero and perform

the slit construction. We may then identify the two endpoints of the slit. This gives
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FIG. 10. — Here we applied the figure eight construction with a′ = 0 and a′′ = 4 to a zero of order a = a′ + a′′ = 4,

and then we glued in a cylinder. The degree of the resulting zero is 6

a surface with two circular boundary components γ ′
i , γ

′′
i , which are joined at a point,

see Figure 10. The two circular boundary components separate the total angle at the

point into angles 2π(a′
i + 1) and 2π(a′′

i + 1). By convention on the choice of γ ′
i , γ

′′
i

(see Section 9.2) turning around zi in a clockwise direction from γ ′′
i to γ ′

i inside the

surface S′
i we turn by the angle 2π(a′

i + 1).

Recall that we may break the zero of order ai up in ai +1 ways. Thus the figure

eight construction is not uniquely defined; the construction gives ai + 1 surfaces.

12.2. Creating a pair of holes. — In this construction we are given a pair of distinct

points and a vector. We shall “open” the surface at the two points using the vector to

build a surface with two boundary components. The construction depends on choos-

ing a path between the two points, and so is not quite canonical. Suppose then that

z and w are zeroes of orders b′, b′′ ≥ 0 on a surface S′, γ is a vector of length ε. Let

ρ be the shortest path joining z and w. It consists of saddle connections. On a set of

surfaces of full measure none of the saddle connections are in the direction γ . The

endpoints of the segments are located at conical points. We need first to estimate the

length of ρ and establish a few simple properties of the path. We use Corollary 5.7

from paper [MS] (in which we adjusted the notations).

Proposition (H. Masur, J. Smillie). — Let S be a closed flat surface with diameter d . Let

γ be any geodesic segment joining singularities whose length is minimal among all geodesic segments

that join singularities. Assume that γ is not a simple closed curve which bounds a metric cylinder.

Let ∆ be the length of the shortest geodesic element β joining singularities not equal to γ . Then there

is a constant C depending only on the genus of the surface M such that d ≤ C/∆.

From the assumption on F ′, and the above proposition |ρ| ≤ Cε−r for a new

constant C. Since ρ is the shortest path it does not have any self-intersections, so

a conical point Pi may have at most two segments of ρ adjacent to it. If ρ comes
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within ε + ε2r of a singularity other than at its endpoints, we may modify ρ choos-

ing a broken line going through that singularity, increasing the length of ρ by at most

2(ε + ε2r). Since the shortest loop on the surface has length at least εr , and there are

at most 2g − 2 conical points, for small ε, after at most 2g − 2 replacements we can

assume that the new path ρ does not pass within ε + ε2r of any singularity except at

its endpoints. The total increase in length is at most 2g(ε + ε2r) and so its length is

bounded by Cε−r for a slightly different C. (The path might now be not shortest).

Proposition 12.1. — (1) Any line segment of length ε+ε2r in direction �v through any point
on ρ does not meet ρ again.

(2) For small ε and any saddle connection β, the algebraic intersection |ρ · β| ≤ |β|ε−2r.

Proof. — To prove (1) notice that if the intersections points Q 1, Q 2 of the line

segment with ρ were further than (2g +1)(ε+ ε2r) apart on ρ, we could shorten ρ by

more than 2g(ε + ε2r) following the line segment between Q 1 and Q 2 instead of ρ,

which is impossible. If Q 1, Q 2 are within 2g(ε+ε2r) of each other on ρ we have a loop

of length at most (2g + 1)(ε + 2ε2r) < 2εr for small ε, which is also a contradiction.

The proof of (2) is similar. ⊓⊔

Now returning to the problem of creating a pair of holes, suppose we are given

a pair of separatrices leaving z and w in direction γ . The notion of z′ as the point

z + γ makes sense for small γ . Perform the figure eight construction using the points

z and z′ creating a surface with a pair of holes joined at a point P.

We can now transport a hole from P to w along ρ as was described in the pre-

vious section. Conclusion 1) of the Proposition says that the hole transport is well-

defined. We get a surface with two holes. We may then tunnel the hole at w so that it

is adjacent to the given separatrix. Note that the operation of creating a pair of holes

typically changes the area of the surface. However, the change of the area is at most

the product of the length of circumference of the hole γ by the length of the path ρ.

Our estimates show that the change of the area is bounded by Cε1−r .

We note that the resulting flat structure depends on the choice of the separatri-

ces leaving each zero, on the homotopy class of the path ρ as well as on the other

given data. From (2) we see that for any saddle connection β, the length of β on the

new surface is at least |β| − ε|β · ρ| ≥ |β|(1 − ε1−2r) and since |β| ≥ ε2r on S′, on the

new surface β must have length at least εr .

12.3. Admissible constructions. — We formalize the above construction as follows.

Consider the following data:

• For 1 ≤ i ≤ p: surfaces S′
i ∈ H (α′

1) with area S′
i < 1 and no saddle connections

shorter than 2εr .

• A vector γ ∈ R2, with |γ | < ε.
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• For 1 ≤ i ≤ p: a pair of points zi, wi ∈ S′
i which are zeroes of orders b′

i, b′′
i

or marked points. The points may coincide. If they are distinct, we are also

given a broken line ρi joining zi and wi. For any β including those in a fixed

homology basis,

|β · ρi| ≤ |β|ε−2r(27)

where β · ρi is the algebraic intersection number.

• |ρi| ≤ Cε−r , where C is a constant.

• If wi = zi is a zero of order ai, then a pair of numbers a′
i, a′′

i with ai = a′
i + a′′

i .

• A subset J = {i1, ..., iq} ⊂ {1, ..., p}, where 0 ≤ q ≤ p. By convention, when

J = ∅ we let q = 0.

• For 1 ≤ j ≤ q: a number hij > 0 such that
∑

hij |γ | + area Sij < 1.

• For 1 ≤ j ≤ q: a number tij with 0 ≤ tij < |γ |.
Given the above data we construct a flat surface S with homologous saddle con-

nections of multiplicity m with associated data ( J, a′
i, a′′

i , b′
k, b′′

k ). Namely, for each i, if

zi = wi we use the figure eight construction and if zi �= wi we use the construction of

creating a pair of holes giving two boundary curves γ ′
i and γ ′′

i . For each i either glue

γ ′
i directly to γ ′′

i+1 or, if i = ij ∈ {i1, ..., iq} = J glue in cylinders Cij of “width” |γ |,
“height” hij and “twist” tij to connect γ ′

i to γ ′′
i+1 (i + 1 considered mod p).

The resulting surface S also depends on the data hij , tij and ρi. Denote by S′ the

union of the pieces S′
i, h the vector of hij , t the vector of tij and ρ the collection of ρi.

Then we have an admissible construction

(S′, J, a′
i, a′′

i , b′
i, b′′

i , ρ, γ, h, t) → S.

A relative homology basis for S is given by:

• A relative homology basis of curves β for each component S′
i of S′.

• If one of the zi, wi is a marked point, the curve ρi. If both are marked points,

then in addition to ρ a curve from some singularity on S′
i to zi (or to wi) unless

S′
i is a torus.

• A closed curve in the homology class of γi. The holonomy along this curve

is γ .

• For each cylinder a curve joining its boundary singularities. The holonomy of

this curve is h + it.

We summarize the discussion as follows.

Lemma 12.2. — Suppose that we

– either use at least one construction of creating a pair of holes; or

– if we use only figure eight constructions, we use at least one cylinder.

Then the resulting surface S is a nondegenerate flat surface with no saddle connections other

than the γi shorter than εr and thus it lies in H ε,εr

(α,C ).
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The holonomy vectors vS(β) on S of those curves β, which correspond to the original homology

basis on S′
i are given by

vS(β) = vS′(β) + (β · ρi)γ.(28)

FIG. 11. — In this example we apply the construction of creating a pair of holes simultaneously to two tori (represented by

large parallelograms with identified opposite sides) and then glue in a pair of cylinders (represented by the narrow

stripes with identified opposite sides)

Example 12.16. — In the example presented at Figure 11 we take two flat tori.

In the picture they are represented by the large parallelograms with identified opposite

sides a1 to a1, b1 to b1, and a2 to a2, b2 to b2. In fact, the zeroes z1, w1, and z2, w2 are

fake here: all these points are just marked points of the tori. In this example we choose

the vector �γ to be vertical.

We cut a rectangular domain out of the interior of each of the two tori in such

way that the vertical side of each of the two removed rectangles is equal to �γ . Then we

identify the horizontal sides d1 to d1 and d2 to d2. We get a pair of tori, each provided

with a pair of holes.

Finally, we join the hole w1w′
1 on the first torus to the hole z2z′

2 on the second

torus by a cylinder (in the picture the cylinder is represented by a narrow stripe with

identified opposite sides c1 to c1); we also join the hole w2w′
2 on the second torus to

the hole z1z′
1 on the first torus by a cylinder (in the picture this second cylinder is

represented by a narrow stripe with identified opposite sides c2 to c2).

We get a flat surface of genus g = 3 with four simple zeroes. By construction

the surface contains two cylinders filled with closed regular homologous geodesics with

holonomy �γ (these cylinders are represented by narrow stripes with horizontal sides c1
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and c2). In other words the saddle connection represented by γ has multiplicity 2.

Note that the two cylinders would survive under any sufficiently small deformation of

the surface, which means that this configuration is generic.

Now we return to the discussion at the beginning of part II. We are given a set

of homologous saddle connections γi and a surface S ∈ H ε,3ε(α,C ). We may cut S

along the γi to form a collection of surfaces Si, each with a pair of boundary com-

ponents. We may then choose a path τi in each Si joining the cone points and shrink

the boundary circles giving surfaces S′
i in H (α′

i). An analysis similar to that given in

the section on creating a pair of holes shows that we may choose the τi so that the

resulting surfaces lie in F ′.
Our main objective is now to show that the degeneration of a surface to a point

on the principal boundary and the admissible construction of a surface from a point

on the principal boundary are essentially inverse operations. This will allow us to

compute the constants for the counting problem. The complicating issue is that the

degeneration depends on the paths τi, while the admissible construction depends on

the choice of ρi and these curves might be not the same. In particular, since lengths

of curves may change by ε during the construction, the shortest curve may change.

However, changing from one path to another amounts to a change of basis and can

be described.

Recall that we have fixed a homology basis βi valid for all S′ ∈ F . The holon-

omy along the basis allows one to define a metric d(·, ·) on F ′. The length of the βi

satisfy |βi| ≤ Cε−r for a fixed constant C. Fix a pair of zeroes of a given S′
i and a path

ρi joining them which does not pass within ε+ε2r of a singularity or of itself. We may

find a ball of radius ε2r about Si in the metric d such that for all other surfaces in

the ball we may perform the admissible construction using the same paths ρi since for

any surface in the ball the corresponding paths do not come within ε of a singularity

or themselves. Thus we can find a finite collection of balls B(xj, rj) centered at such

points xj of radius ε2r that cover F ′ such that for each B(xj, rj), for each component

S′
i of S′ for which zi �= wi there is a fixed curve ρi,j joining zi to wi and so that we

may form the admissible construction for each x ∈ xj .

We may use the cover to define a partition of F ′ by a finite collection of sets

Uj ⊂ B(xj, rj). Now we can give a well defined assignment

σ : F
′ → H

ε,εr

1 (α,C ).

Namely each S′ belongs to a unique Uj. Then use ρi,j to assign to S′ a closed

surface S = σ(S′) by the admissible construction.

As in the previous section, we have the possibility of a construction for −γ coin-

ciding with a construction with γ and also the possibility of stratum interchange. How-

ever, even without considering these symmetries, it is possible because of the change of

transversals from one set Uj to another, that the construction is not 1 − 1. We prove
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Proposition 12.4. — There is E′ ⊂ F ′ such that

• Vol(F ′ − E′) = O(ε1−3r),

• On a subset of E′ of full volume, σ is 1 − 1 except for the γ → −γ and stratum

interchange symmetries.

• Vol(H
ε,εr

1 (α,C ) − σ(E′)) = o(ε2).

Proof. — Define E′ to be the set of points which are at least Cε1−3r, from the

boundary of any ball. This means that if S′ ∈ E′ ∩ Uj then the Cε1−3r neighborhood

of S′ is contained in Uj . It also implies

Vol(F ′ − E′) = O(ε1−3r).

We prove σ is 1 − 1 on almost all of E′ except for possible stratum interchange

and γ → −γ symmetries. If S′
1 �= S′

2 belong to the same Uj then the collection of

surfaces σ(S′
1) and σ(S′

2) are constructed with the same broken curve and yet differ

on holonomy for a set of basis curves. The surfaces can be isomorphic only if the iso-

morphism does not preserve the basis. If the set of configuration curves are preserved

then we have the stratum interchange or γ → −γ symmetry. If they are not pre-

served, then S′ contains a curve of length at most ε and this possibility has been ruled

out by the definition of F ′. The remaining possibility is if for a fixed S′ two or more

of the remaining surfaces in σ(S′) are isomorphic by an isomorphism that preserves

the set of curves in the configuration. But such an isomorphism must arise from an

automorphism of S′ and such S′ have volume 0.

If S′
1, S′

2 ∈ E′ belong to different Uj, then their distance apart in the metric d is

at least 2Cε1−3r so their holonomy on some basis curve βi differs by at least 2Cε1−3r.

However by (28) the change in holonomy in passing to σ(S′) from S′ and σ(S′′) from

S′′ is at most ε|βi ·ρi,j| ≤ ε|βi|ε−2r ≤ Cε1−3r and so again σ(S′
1) and σ(S′

2) again differ

on βi and we have the same conclusion as before.

We now show the third statement. Given the transversals τi, let E be the subset

of H
ε,3εr

1 (α,C ) consisting of those S whose degeneration yields surfaces S′ which are

at least 3Cε1−3r from the boundary of any ball. We have

Vol
(

H
ε,3εr

1 (α,C ) − E
)

= o(ε2).

For some j, the resulting surface S′ ∈ Uj ∩ B(xj, rj − 3ε1−3r). However since it may not

be the case that τi = ρi,j , it may not be true that σ(S′) = S. Now we claim that there

is some S′′ ∈ E′ such that S = σ(S′′). To prove the claim, notice that since B(xj, rj)

is a ball and since |β · τi| ≤ Cε−3r, |β · ρi,j| ≤ Cε−3r , and |γ | ≤ ε, the point in Rn′

defined by the collection of vectors

vS′(β) + (
∑

i

(β · τi) − (β · ρi,j))γ



132 ALEX ESKIN, HOWARD MASUR, ANTON ZORICH

as β runs over the homology basis, corresponds to the holonomy for a unique S′′ ∈
B(xj, rj − Cε1−3r). so that S′′ ∈ E′. But now by (28), σ(S′′) has the same holonomy as

S along the basis and so is isomorphic to it, proving the claim. The third statement

now follows from the estimate Vol(H
ε,εr

1 (α,C )−H
ε,3εr

1 (α,C )) = o(ε2), which follows

from Lemma 7.1. ⊓⊔

13. Computing the Siegel–Veech constants for connected strata

Recall that q is the number of cylinders we shall attach. Let ni = dimR H (αi).

We also define di to be equal to ni except in the following situations. If Si has a single

marked point which is not a zero and Si is not the torus, we have di = ni + 2. If there

is a pair of marked points, and the surface is not the torus di = ni + 4. If the surface

is a torus then di = ni + 2. Then,

dimR H (α) = 2q + 2 +
p

∑

i=1

di,

where α is the stratum such that S ∈ H (α).

13.1. Computation of the constants. — Recall that dν(S) is the measure in H (α) and

dν(S′
i) is the measure in H (αi). As in Part I we will obscure the distinction between

γ a saddle connection and its holonomy so that we will use γ to refer to a vector as

a variable of integration in a disc of radius ε. We let M be the number which com-

putes of fixed data (S′, J, a′
i, a′′

i , b′
k, b′′

k , γ, h, t) the number of S = σ(S) that can be built.

This number will be computed in the next sections. We first assume that H (α) is con-

nected. If we choose a homology basis βi for the S′
i, and let holS(βi) be the holonomy

of βi on the surface S, then the measure dν restricted to the image σ(E′) under the

admissible construction is the product measure of Mdγ dtidhi and
∏

d(holS(βi)). Since

|γ | ≤ ε, by (28)

∏

d(holS(βi)) = dν′ + O(εr)

and again since |γ | ≤ ε, we can write

dν(S) = Mdγ

p
∏

i=1

dν′(S′
i)

q
∏

i=1

dhidti + o(ε2)

except for the following situations. If zi is a marked point and wi is a zero then we

have the additional factor dz(Si) in the term dνi. If zi is a zero and wi is a marked

point we have dw(Si). If wi = zi is a marked point, we have dz(Si) and if zi �= wi are

both marked points we have the factor dz(Si) dw(Si).
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Note that we could also consider strata with one or two marked points. The

stratum would be a fiber space over the stratum H1(α). The fiber over a point would

be the flat surface if there is one marked point or product of flat surfaces if there

are two, the flat surface representing that point in H1(α). The measure on the fiber

space is then locally the product measure of the base with the area (or product of area

measures) on the fiber.

Now for each Si we either perform the figure eight or creating a pair of holes

construction. In the latter case we remove or add a parallelogram Pi. Thus area S =
∑

i(area Si) + hi|γ | ± area Pi, (where area Pi = 0 if we perform the figure eight con-

struction). If S ∈ C(H
ε,3εr

1 (α,C )) then the normalization says that |γ | ≤ ε
√

(area S).

Hence,

|γ |2 ≤ ε2(
∑

i

(area Si + hi|γ | ± area Pi)),

i.e.

∑

i

hi ≥ |γ |
ε2

−
∑

i(area Si ± area Pi)

|γ | .

The expression on the left is positive when |γ | > ε
√

(
∑

i area Si ± area Pi).

Let

W =
∏

i

Vol(H1(αi)).

For s > 0, let D(s) = {(r1, ..., rp) : ∑

i r2
i < s}. Then since area Pi = O(ε1−r), Proposi-

tion 12.4, the fact that Vol(
∏

i H1(αi) − F ′) = O(ε2r) and |γ | ≤ ε, we have

ν
(

C
(

H
ε,εr

1 (α)
))

= WM ·

·
(∫

D(1)

( p
∏

i=1

r
di−1
i dri

)∫

γ∈B(ε
√

∑

i r2
i )

∫

0≤∑

i hi≤
1−∑

i r2
i

|γ |

q
∏

i=1

(∫ |γ |

0

dti dhi

)

dγ +

+
∫

D(1)

p
∏

i=1

r
di−1
i dri

∫

γ∈B(ε)−B(ε
√

∑

i r2
i )

∫

|γ |
ε2 −

∑

i r2
i

|γ | ≤∑

i hi≤
1−∑

i r2
i

|γ |

|γ |q
q

∏

i=1

dhi dγ

)

+ o(ε2) =

= WM ·
(∫

D(1)

p
∏

i=1

r
di−1
i dri

∫

γ∈B(ε
√

∑

i r2
i )

1

q!
(

1 −
∑

i

r2
i

)q
dγ +

+
∫

D(1)

p
∏

i=1

r
di−1
i dri

∫

γ∈B(ε)−B(ε
√

∑

i r2
i )

1

q! ·

·
[
(

1 −
∑

i

r2
i

)q −
( |γ |2

ε2
−

∑

i

r2
i

)q]

dγ

)

+ o(ε2).
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Performing the integral over γ we obtain

ν
(

C
(

H
ε,εr

1 (α,C )
))

=

= πε2WM

q!

∫

D(1)

(
p

∏

i=1

r
di−1
i

) (

1 −
∑

i

r2
i

)q (

∑

i

r2
i

)

∏

i

dri +

+ πε2WM

q!

∫

D(1)

(
p

∏

i=1

r
di−1
i

)(

1 −
∑

i

r2
i

)q (

1 −
∑

i

r2
i

)

∏

i

dri −

− πWM

q!

∫

D(1)

(
p

∏

i=1

r
di−1
i

)
∫ ε

ε
√

∑

i r2
i

(

s2

ε2
−

∑

i

r2
i

)q

2s ds
∏

i

dri+o(ε2)=

= πε2WM

q!

∫

D(1)

(
p

∏

i=1

r
di−1
i

) (

1 −
∑

i

r2
i

)q
∏

i

dri −

− πε2WM

(q + 1)!

∫

D(1)

(
p

∏

i=1

r
di−1
i

)(

1 −
∑

i

r2
i

)q+1
∏

i

dri + o(ε2)

where we have used the change of variable u = (s2/ε2 −∑

r2
i ) in the last line. We now

make the change of variable xi = r2
i . Let bi = di/2 − 1, so that r

di−1
i dri = (1/2)x

bi

i dxi.

Then,

ν
(

C
(

H
ε,εr

1 (α,C )
))

= πε2WM

2p

∫

∑

i xi≤1

x
b1

1 ...x
bp

p

[
1

q!

(

1 −
∑

i

xi

)q

−

− 1

(q + 1)!

(

1 −
∑

i

xi

)q+1 ]

dx1...dxp + o(ε2).

Evaluating the integral from the inside out via repeated application of the identity

∫ u

0

xa(u − x)b dx = a! b!
(a + b + 1)!u

a+b+1

yields

ν
(

C
(

H
ε,εr

1 (α,C )
))

=

= πε2WM

2p

[
b1!...bp!

(b1 + · · · + bp + p + q)! −

− b1!...bp!
(b1 + · · · + bp + p + q + 1)!

]

+ o(ε2) =
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= πε2WM

2p

b1!...bp!
(b1 + · · · + bp + p + q − 1)! ·

· 1

b1 + ... + bp + p + q + 1
+ o(ε2).

Since b1 + · · · + bp + p + q + 1 = n/2, we have

ν
(

C
(

H
ε,εr

1 (α,C )
))

= πε2WM

2p−1

b1!...bp!
n( n

2
− 2)! + o(ε2).

Now taking the limit as ε → 0, we get

c = lim
ε→0

ν1

(

C
(

H
ε,εr

1 (α,C )
))

πε2ν1(H1(α))
=

= M · 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

n

2
− 2

)

! ·
∏p

i=1 Vol(H1(α
′
i))

Vol(H1(α))
.

In order to compute the combinatorial constant M let us study in more detail

how, given the admissible construction (S′, J, a′
i, a′′

i , b′
k, b′′

k , ρ, γ, h, t) → S, the resulting

flat surface S is made up of subsurfaces. The resulting surface S has two groups of

zeroes: the ones inherited from the components S′
i without any changes, and the new-

born ones. Every newborn zero has at least one curve γi passing through it; the curves

γi do not pass through the zeroes of the first group. Actually, it is easy to see from our

construction, that the collection of curves γij passing through a zero of S has the form

γi, γi+1, ..., γi+s, with consecutive indices (where as usual p + 1 is identified with 1, so

p is followed by 1). It is easy to give a description of the nature of the corresponding

set {i, i + 1, ..., i + s}.
Any newborn zero is formed by one of the following three constructions. The

reader may refer to Figure 10.

• Type I. There is a chain of consecutive surfaces Sjr+1 → Sjr+2 → · · · → Sjr+s

glued directly. To each surface of the chain we apply the figure eight construction.

The first surface of the chain Sjr+1 is glued to the preceding surface Sjr by a cylinder

and similarly for the last surface of the chain Sjr+s and its successor. In our notation

we have jr + s = jr+1, where both jr, jr+1 ∈ J, and s ≥ 0.

In this case the newborn zero has order
s

∑

k=1

(ajr+k + 2),(29)

where ajr+k = a′
jr+k + a′′

jr+k. By convention s = 0 stands for the case when multiplicity p

is equal to 1, J = {1}, and we have a single surface S1 to which we apply figure eight

construction and glue in a cylinder.
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The left drawing in Figure 10 illustrates the situation when s = 2. The figure

eight construction is applied to each of the two surfaces and they are glued to each

other directly. Each is glued to another surface by a cylinder.

FIG. 12. — Newborn zeroes of three different types

• Type II. Now we have the following chain of surfaces Sjr+1, Sjr+2, ..., Sjr+s+1

glued directly. We apply the figure eight construction to all surfaces except the last,

to which we apply the construction of creating a pair of holes. The first surface Sjr+1

of the chain is glued to Sjr by a cylinder. The value s = 0 is allowed: in this case we

have a single surface Sjr+1 to which we apply a construction of creating a pair of holes,

and then attach a cylinder to the zero zjr+1 of order b′
jr+1 +1. In this case the newborn

zero has order
s

∑

k=1

(ajr+k + 2) + (b′′
jr+s+1 + 1).(30)

We may have the symmetric picture, when the surface Sj to which we apply the con-

struction of creating a pair of holes is at the beginning of the chain, then we glue

directly the surfaces Sj+1, ..., Sj+s to which we apply figure eight construction, and to

the last surface Sj+s (where j + s ∈ J equals some jr ) we glue a cylinder. We have

a symmetric formula for the order of the zero:

(b′
j + 1) +

s
∑

k=1

(aj+k + 2).

The middle drawing in Figure 10 illustrates this with s = 2. A figure eight con-

struction is applied to the genus 1 surface and a construction of creating a pair of

holes to the genus 2 surface. The first surface is glued to a cylinder.
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• Type III. Finally, we may have surfaces Sk, ..., Sk+s+1 to which we apply the

construction of creating a pair of holes boarding both ends of the chain; we apply the

figure eight construction to all interior surfaces Sk+1...Sk+s; we glue all surfaces directly.

The value s = 0 is admissible: by convention it means that we have only two surfaces

Sk and Sk+1 in the chain to which we apply the construction of creating a pair of

holes and then glue directly γ ′′
k to γ ′

k+1. In this case we get the newborn zero of the

following order

(b′
k + 1) +

s
∑

i=1

(ak+i + 2) + (b′′
k+s+1 + 1).(31)

The last drawing in Figure 10 illustrates this situation with s = 2. A construction

of creating a pair of holes is applied to one torus and the surface of genus 2. The

figure eight construction is applied to the middle torus. One boundary component

of it is glued to a boundary component of the genus 2 surface; the other boundary

component glued to a boundary component of the other torus.

We now adopt the following notation to describe how the surfaces are put to-

gether.

Notation. — The symbol → corresponds to direct gluing of the surfaces; the

symbol ⇒ corresponds to a cylinder joining two consecutive surfaces. If a number is

written as a sum of two numbers a′
i + a′′

i with a bar over the sum, we apply the figure

eight construction to a zero of order ai = a′
i + a′′

i breaking it up into zeroes of order

a′
i and a′′

i ; if there are two multiplicity numbers, b̄′
i, b̄′′

i , we apply the construction of

creating a pair of holes. By convention b′
i is the left one, b′′

i is the right one. Say, in

(4, 3̄, 2, 1̄) we have b′
1 = 3, b′′

1 = 1, and in (0 + 0) we have a2 = a′
2 = a′′

2 = 0.

Example 13.1. — Consider the following collection of flat surfaces organized in

a cyclic order

→ (4, 3̄, 2, 1̄) → (0 + 0) → (4 + 2, 2) → (9̄, 8, 7̄) ⇒ (5̄, 3̄) → (2 + 2, 2) → (5, 1 + 2) ⇒ (1 + 0, 1) → (2, 0 + 0) →
→ S1 → S2 → S3 → S4 ⇒ S5 → S6 → S7 ⇒ S8 → S9 →

In the example above we glue S5 to S6 with a cylinder, and S7 to S8 with a cylin-

der; all the other gluings are direct. Thus in this example we have p = 9, and J =
{5, 7}. The chain S1 → S2 → S3 → S4 gives a newborn zero of type III. It has order

(1+1)+
(

(0+2)+(6+2)
)

+(9+1) = 22; there are 3 separatrix loops γ1, γ2, γ3 passing

through this newborn zero. The loops γ1 and γ2 bound the surface S2 and bound an-

gles 2π with each other. The loops γ2, γ3 bound S3 with angles 10π and 6π. The next

chain S4 → S5 gives a newborn zero of type III; it has order (7 + 1) + (5 + 1) = 14;

there is only one separatrix loop γ4 passing through this zero. The next chain is S5 ⇒.

It is of type II; it gives a newborn zero of order 3 + 1 = 4 with a separatrix loop γ5
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passing through it. The next chain ⇒ S6 → S7 ⇒ gives a newborn zero of order

(4 + 2) + (3 + 2) = 11 of type I, and three separatrix loops γ6, γ7, γ8 passing through

it. The surface S6 is bounded by γ6 and γ7 which make angles 8π and 4π at the zero

of order 11, while S7 is bounded by γ7 and γ8 which make angles 6π and 4π at the

zero. Finally, the last chain ⇒ S8 → S9 → S1 produces a newborn zero of type II. Its

order is (1 + 2) + (0 + 2) + (3 + 1) = 9; there are three separatrix loops γ9, γ10, γ11

passing through it. The loops γ9 and γ10 bound the surface S8 making angles 4π and

2π with each other while γ10 and γ11 bound S9 making angles 2π and 2π with each

other.

The resulting surface inherits the zeroes of orders 4, 2, 2, 8, 2, 5, 1, 2 which are

coming unchanged from the components Si (the integers which are not barred.) It also

has the newborn zeroes of orders 22, 14, 4, 11, 9. Thus the resulting surface S belongs

to the stratum H (22, 14, 11, 9, 8, 5, 4, 4, 2, 2, 2, 2, 1).

13.2. Stratum interchange and γ → −γ symmetry. — In this section we discuss the

possible symmetries of the admissible construction

(S, a′
i, a′′

i , b′
k, b′′

k , ρ, γ, h, t) → S.

In many aspects these symmetries are analogous to the symmetries discussed in

Section 9.4. We again consider two settings: the first one with more restrictions, the

second one with fewer restrictions.

Problem 1. — We assume that all zeroes z1, ..., zl of the surface S are numbered.

We fix the zeroes z1, ..., zr ∈ S, zi �= zj , for i �= j, of orders m1, ..., mr correspond-

ingly. We assume that the flat surface S possesses exactly s loops of saddle connections

γ1, ..., γs homologous to some fixed loop γ . We assume that every loop γi starts and

ends at one of the zeroes z1, ..., zr .

Cutting along the loops γi, i = 1, ..., r we perform the surgery as described

above decomposing S into the collection S′
i. The collection is organized in a cyclic

order as described above.

We fix the types α′
i of the surfaces S′

i, the distinguished zeroes (marked points)

wi, zi ∈ S′
i, and the numbers (a′

i, a′′
i ), (b′

k, b′′
k ) where both types of pairs are ordered.

We fix, whether S′
j is joined to S′

j by a cylinder, or directly.

We start with the case when we fix also the following data. We assume that

z1, ..., zr are the newborn zeroes numbered with respect to this cyclic order. We as-

sume that the zeroes zr+1, ..., zl1 lie in S1, the zeroes zl1+1, ..., zl1+l2 lie in S2, ..., the

zeroes zl1+···+lp−1+1, ..., zl1+···+lp lie in Sp. Here l = l1 + · · · + lp = card(α).

Problem 2. — Now consider the problem with fewer constraints. We count the

number of occurrences of configurations of loops of saddle connections described in

the previous problem with the only difference that now we assume all the zeroes to
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be “anonymous”. In other words, we keep all geometric information on configuration

(number r of zeroes involved; number s of loops of homologous saddle connections;

types α′
i of the surfaces S′

i, and the cyclic order of their appearances; numbers (a′
i, a′′

i ),

(b′
j, b′′

j ), where both types of pairs are ordered; the way (by means of a cylinder or

directly) S′
i is joined to S′

i+1).

However, if we have two zeroes Pi, Pj of the same degree on the surface S, and,

neither of them is “newborn”, in the setting of Problem 2 we do not distinguish cases,

when Pi lies in S′
q and Pj gets to S′

t , and the opposite case.

Remark 13.2. — Problem 2 may be considered as generalization of Problem 1

to the case when the zeroes of S and of S′
i are not numbered.

Remark 13.3. — In both settings the H (α′
i) may be disconnected. We could

also specify the connected component of the H (α′
i) when this occurs. We prefer the

setting where this data is not specified.

Consider the natural action of the cyclic group of order p on the elements of

the assignment organized in a cyclic order. If it has a nontrivial stabilizer we denote

it by the same symbol Γ as before. We get a symmetry of order |Γ| which we again

call the stratum interchange. Note that this symmetry might be different in the settings of

Problem 1 and Problem 2.

Example 13.4. — The assignment

(1̄, 1̄, 2) → (1̄, 1̄) ⇒ (1̄, 1̄, 2) → (1̄, 1̄) ⇒

does not possess the stratum interchange symmetry in the setting of Problem 1 since

the unchanged zeroes of order 2 are named, and so they identify the components

of the type (2, 1, 1). However, in the setting of Problem 2 this configuration has the

stratum interchange symmetry of order 2.

The assignment

(1̄, 1̄) → (1̄, 1̄) ⇒ (1̄, 1̄) → (1̄, 1̄) ⇒

possesses the stratum interchange symmetry of order 2 in both settings.

Recall that for saddle connections joining distinct zeroes we also might also have

the γ → −γ symmetry. It could appear only when m1 = m2, for in this case we

have no invariant way of choosing the orientation of the saddle connection. When

we have only saddle connections joining a zero to itself, there is no geometric way

of choosing the orientation of saddle connections. The two different choices of the

orientation give two decompositions of S. Thus we get the action of the group Z/2Z

on the collection of assignments. We call this action the γ → −γ symmetry. This action

is easily described in combinatorial terms: one has to change the cyclic order in the
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assignment to the opposite one, as well as the order in each pair (a′
i, a′′

i ) and (b′
j, b′′

j ).

Some assignments may stay invariant under this operation. In this case we say that

they have γ → −γ symmetry. This property also depends whether we consider the

assignments in the setting of Problem 1 or of Problem 2.

Example 13.5. — None of the assignments in Example 13.4 have the γ → −γ

symmetry.

An assignment of multiplicity 1 has γ → −γ symmetry if and only if a′ = a′′

when we apply the figure eight construction and if and only if b′ = b′′ when we the

apply the creating a hole construction.

The assignment

(2̄, 2̄, 2) ⇒ (2̄, 2̄, 2) ⇒

has the γ → −γ symmetry in both settings, while the assignment

(2̄, 2̄, 2) ⇒ (2̄, 2̄, 2) ⇒ (2̄, 2̄, 2) ⇒

has the γ → −γ symmetry only in the setting of Problem 2.

Remark 13.6. — In describing the construction (S′, J, a′
i, a′′

i , b′
i, b′′

i , τ, γ, h, t) → S

one can consider all possible assignments, and then take into account corresponding

symmetries, or one can deal with the classes, eliminating the symmetry whenever it is

possible.

We have chosen the second way. For example, the assignment (1̄, 0̄, 1) → (see

Section 13.4) is symmetric to the assignment (0̄, 1̄, 1) → by the γ → −γ symmetry.

13.3. Combinatorial factor, connected strata. — We now compute the combinatorial

factor M, which computes for fixed data (S′, J, a′
i, a′′

i , b′
k, b′′

k , γ, h, t) the number of S =
σ(S′) that can be built. We start with the setting of Problem 1 in Section 13.2. We

first suppose that the stratum H (α) is connected.

Consider a surface S′
i such that zi = wi is a zero of order ai = a′

i + a′′
i . We

apply the figure eight construction by breaking zi = wi into zeroes of orders a′
i and a′′

i .

There are ai + 1 ways of doing this, see Section 12.1. The corresponding boundary

components are denoted γ ′
i , γ

′′
i . The component γ ′

i is attached to Si+1 (directly or by

means of a cylinder depending on whether or not i ∈ J); the component γ ′′
i is attached

to Si−1 (directly or by means of a cylinder depending on whether or not i − 1 ∈ J).

If zk �= wk we perform the construction of creating a pair of holes. The orders

of the zeroes are b′′
k and b′

k correspondingly, so there are b′′
k + 1 ways of choosing the

vector γ at zk and b′
k+1 ways of choosing the vector γ at wi so this gives (b′

k+1)(b′′
k +1)

choices.
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We may have the stratum interchange symmetry or (and) γ → −γ symmetry,

see Section 13.2. Thus the resulting combinatorial factor in the setting of Problem 1

in Section 13.2 equals

c = 1

|Γ−| · 1

|Γ| ·
∏

1≤i≤p
zi=wi

(ai + 1) ·
∏

1≤k≤p
zk �=wk

(b′
k + 1)(b′′

k + 1).

We now compute the combinatorial factor in the setting of Problem 2 in

Section 13.2. For each integer m, let o(m) denote its multiplicity. For each i, i = 1, ..., p,

let oi(m) denote the multiplicity of m in α′
i .

Consider an integer m different from the order of any newborn zero on S (see

formulae 29, 30, 31), and different from any ai or b′
k, b′′

k . Since all the zeroes z1, z2,

..., zl of S are numbered, the number of ways to arrange o(m) zeroes of order m into

groups of o1(m), ..., op(m) zeroes equals

o(m)!
∏p

i=1 oi(m)!

where we let 0! = 1 by convention.

Let now s ≥ 1 be the number of the newborn zeroes in S of order m, and sup-

pose that m is different from any ai, b′
k, b′′

k . Now we have to choose s of o(m) numbered

zeroes to be the newborn ones, and then we have to arrange the remaining o(m) − s

ordered zeroes into groups of o1(m), ..., op(m) zeroes. For such m we get the factor

o(m)(o(m) − 1) · · · · · (o(m) − s + 1) · (o(m) − s)!
∏p

i=1 oi(m)! = o(m)!
∏p

i=1 oi(m)!

which coincides with the previous one. Hence, we do not need to distinguish this case

from the previous one.

If m is different from any b′
k, b′′

k , but is equal to some ai, then there are only

oi(m) − 1 zeroes of order m on S′
i inherited from S. Thus the corresponding factor in

the denominator in the formula above equals (oi(m)−1)!. Multiplying numerator and

denominator by oi(m) we get the following factor for such m:

o(m)!
∏p

i=1 oi(m)! ·
∏

1≤i≤p
ai=m
zi=wi

oi(m).

We have to make a similar correction for those m which coincide with some b′
k or

b′′
k . In the case when m equals one of the b′

k �= b′′
k the correction is completely anal-

ogous to the previous one. In the case when for some k we have m = b′
k = b′′

k , we
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get only o(m) − 2 zeroes of order m on S′
k, inherited from S. Thus the corresponding

factor in the denominator in the formula above equals (ok(m) − 2)!. Multiplying nu-

merator and denominator by ok(m)(ok(m) − 1) and collecting all the correction terms

we finally get the following combinatorial factor for the setting of Problem 2 in Sec-

tion 13.2.

M = 1

|Γ−| · 1

|Γ| ·
∏

m∈α

(
o(m)!

∏p

i=1 oi(m)!

)

·

·
∏

1≤i≤p
zi=wi
ai �=0

oi(ai) ·
∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′
k �=0

ok(b
′
k) ·

∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′′
k �=0

ok(b
′′
k ) ·

∏

1≤k≤p
zk �=wk

b′
k=b′′

k �=0

ok(b
′
k)(ok(b

′
k) − 1) ·

·
∏

1≤i≤p
zi=wi

(ai + 1) ·
∏

1≤k≤p
zk �=wk

(b′
k + 1)(b′′

k + 1).

Note that in general the symmetry groups Γ and Γ− corresponding to possible stra-

tum interchange symmetry and to γ → −γ symmetry are different in Problems 1

and 2, see Section 13.2.

There will also be additional factors coming from the spin structures and the

hyperelliptic strata. We shall discuss these separately.

We finally get the following expression for the constant c in the setting where

the zeroes of S are not numbered (see Problem 2 in Section 13.2):

Formula 13.1. — The list of possible configurations of homologous saddle connections joining

zeroes to themselves is the same for almost all surfaces in any connected stratum H (α). The possible

configurations are described in Section 12.3. The constant in the quadratic asymptotics for the number

of saddle connections with associated data ( J, a′
i, a′′

i , b′
k, b′′

k ) is presented by the following formula:

c = 1

|Γ−| · 1

|Γ| ·
∏

m∈α

(
o(m)!

∏p

i=1 oi(m)!

)

·(32)

·
∏

1≤i≤p
zi=wi
ai∈α

oi(ai) ·
∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′
k∈α

ok(b
′
k) ·

∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′′
k ∈α

ok(b
′′
k ) ·

∏

1≤k≤p
zk �=wk

b′
k=b′′

k ∈α

ok(b
′
k)(ok(b

′
k) − 1) ·

·
∏

1≤i≤p
zi=wi

(ai + 1) ·
∏

1≤k≤p
zk �=wk

(b′
k + 1)(b′′

k + 1) ·

· 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

d

2
− 2

)

! ·
∏p

i=1 Vol(H1(α
′
i))

Vol(H1(α))
.
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13.4. Examples: Constants for strata in genus 3. Stratum H (3, 1)

→ (1, 0, 1) →
The first possibility is multiplicity 1 with no cylinder. After degeneration we get

a genus 2 surface with a distinguished simple zero, a marked point and another simple

zero. We have d1 = 12. We employ the parallelogram construction to the distinguished

simple zero and marked point producing two circles which we glue directly. Since

1 = b′
1 �= b′′

1 = 0 we do not have the γ → −γ symmetry. Thus M = (b′
1 + 1)(b′′

1 + 1)

= 2. We have

c = 2 · (5 + 1 − 1)!
(7 − 2)! · Vol(H1(1, 1))

Vol(H1(3, 1))
= 105

16
· 1

ζ(2)
≈ 3.990.

⇒ (1 + 0, 1) ⇒
The next possibility is multiplicity 1 with a cylinder where the other side also

returns to the zero of order 3. After degeneration we get a surface of genus 2 with

a distinguished simple zero on which we perform the figure eight construction, gluing

in a cylinder. Since 1 = a′
1 �= a′′

1 = 0 we do not have the γ → −γ symmetry. Thus

M = (a1 + 1) = 2. Now d1 = 10 so

c = 2 · (5 − 1)!
(7 − 2)! · Vol(H1(1, 1))

Vol(H1(3, 1))
= 21

16
· 1

ζ(2)
≈ 0.7979.

⇒ (2, 0) ⇒
If the other side returns to the simple zero, then after degeneration, we get

a genus 2 surface with a double zero and a marked point on which we perform the

creating a hole construction. Again d1 = 10. Since 2 = b′
1 �= b′′

1 = 0 we do not have

the γ → −γ symmetry. Thus M = (b′
1 + 1)(b′′

1 + 1) = 3. We have

c = 3 · (4 + 1 − 1)!
(7 − 2)! · Vol(H1(2))

Vol(H1(3, 1))
= 567

256
· 1

ζ(2)
≈ 1.346.

⇒ (0 + 0) → (0, 0) ⇒
Now we consider multiplicity 2 in this stratum. Then we have a cylinder whose

boundary components are curves returning to the zero of order 3 and zero of order

one. The homologous curve returns to the zero of order 3. The degenerating surfaces

are tori, one with a single marked point, the other with 2 marked points. On the torus

with one point, we perform the figure eight construction and on the other the creating

a hole construction. We glue in one cylinder and one pair of circles is glued directly.

There is no γ → −γ symmetry in this case.
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In this case we get

c = 1 · 1

22−1
· (3 − 1)! · (2 − 1)!

(7 − 2)! · Vol(H1(0)))2

Vol(H1(3, 1))
= 105

256
· 1

ζ(2)

≈ 0.2493.

Stratum H (2, 1, 1)

→ (1, 1, 0, 0) →
The multiplicity 1 case with no cylinder degenerates to a genus 2 surface with 2

marked points. We apply the parallelogram construction to the marked points, gluing

the circles directly to each other. There is the γ → −γ symmetry.

We get

c = 1

2
· (5 + 2 − 1)!

(8 − 2)! · Vol(H1(1, 1))

Vol(H1(2, 1, 1))
= 7

3
· 1

ζ(2)
≈ 1.418.

⇒ (1, 1, 0 + 0) ⇒
For the case of a cylinder with multiplicity 1 where the other side returns to

the double zero the degenerating surface has genus 2 with a single marked point. We

apply the figure eight construction at the marked point. We have the γ → −γ sym-

metry.

c = 1

2
· (5 + 1 − 1)!

(8 − 2)! · Vol(H1(1, 1))

Vol(H1(2, 1, 1))
= 7

18
· 1

ζ(2)
≈ 0.2364.

⇒ (1, 1, 0) ⇒
If the other side of the cylinder returns to a simple zero, then after degeneration

we get a surface of genus 2 with a marked point and a simple zero (as well as another

simple zero on the surface). We apply the creating a pair of holes construction at the

marked point and a zero gluing in a cylinder. Now we have b′
1 = 0, b′′

1 = 1. Since

b′
1 �= b′′

2 we do not have a γ → −γ symmetry.

c = 4 · (5 + 1 − 1)!
(8 − 2)! · Vol(H1(1, 1))

Vol(H1(2, 1, 1))
= 28

9
· 1

ζ(2)
≈ 1.891.

⇒ (2, 0, 0) ⇒
If the cylinder joins two simple zeroes, then after degeneration we get a surface

of genus 2 with a zero of order 2 and two marked points. We apply the parallelogram

construction at the marked points. We have b′
1 = b′′

1 = 0. Here we have γ → −γ

symmetry.

c = 1 · (4 + 2 − 1)!
(8 − 2)! · Vol(H1(2))

Vol(H1(2, 1, 1))
= 7

8
· 1

ζ(2)
≈ 0.5319.
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⇒ (0, 0) → (0, 0) ⇒
There are two multiplicity p = 2 cases. The first is if there is a cylinder with

boundary curves returning to the simple zeroes and a homologous curve returning to

the double zero. We get 2 tori each with 2 marked points so p = 2, d1 = d2 = 6.

We perform the parallelogram construction on each and then glue in one cylinder

and glue two circles directly. We have the γ → −γ symmetry, and we do not have

a stratum interchange.

c = 1 · 1

22−1
· (3 − 1)! · (3 − 1)!

(8 − 2)! · Vol(H1(0))2

Vol(H1(2, 1, 1))
= 7

36
· 1

ζ(2)

≈ 0.1182.

⇒ (0, 0) ⇒ (0 + 0) ⇒
The second case is if there are 2 cylinders. In that case, after degeneration, we

get a torus with 2 marked points and a torus with one marked point. We apply the

figure eight construction to the torus with one marked point and the parallelogram

construction to the other. We then glue in cylinders to each pair of circles. Again we

have the γ → −γ symmetry, and we do not have a stratum interchange.

c = 1 · 1

22−1
· (3 − 1)! · (2 − 1)!

(8 − 2)! · Vol(H1(0))2

Vol(H1(2, 1, 1))
= 7

72
· 1

ζ(2)

≈ 0.05910.

13.5. Principal stratum. — Since any figure eight construction produces a “new-

born” zero of order at least two, here we cannot have any figure eight constructions.

All the surfaces S′
i, belong to the principal strata in lower genera gi; there are a pair

of marked points zi �= wi on each surface, and we always apply the parallelogram

construction with b′
i = b′′

i = 0. All the curves γi bound cylinders.

13.5.1. Saddle connections of multiplicity 1. — In multiplicity one there is a single

surface S′ ∈ H (α′) of genus g −1 and S′ has two marked points z �= w. We recover S

from S′ by applying the parallelogram construction followed by gluing in a cylinder;

α′ is the partition of 2( g − 1) − 2 into ones.

We always have the γ → −γ symmetry, so |Γ−| = 2 in all cases. We use the

setting of Problem 2 of Section 13.2. The combinatorial constant is

M = 1

2
· (2g − 2)!
(2g − 4)! · (0 + 1)(0 + 1).

Applying (32) we get the following value for the constant c:

c = (2g − 2)(2g − 3)

2
· ((4g − 3 − 2) − 1)!

((4g − 3) − 2)! · Vol(H1(α
′))

Vol(H1(α))
.
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Thus, finally,

c = ( g − 1)(2g − 3)

4g − 5
· Vol(H1(

2g−4
︷ ︸︸ ︷

1, ..., 1))

Vol(H1(1, ..., 1
︸ ︷︷ ︸

2g−2

))
.

In the table below we present the values of the constant for saddle connections of

multiplicity one joining a zero to itself, for flat surfaces living in the principal strata in

small genera.

TABLE 7. — Principal stratum H (1, ..., 1); values of the constants in the quadratic asymptotics for the number of

closed geodesics of multiplicity one

g = 2 g = 3 g = 4 g = 5 g = 6 g = 7 g = 8

c · ζ(2) = 5

2

36

7

3150

377

274456

23357

250153470

16493303

6531347988

351964697

8007196856750

365342975469

c ≈ 1.51982 3.12648 5.07950 7.14344 9.22041 11.2812 13.3239

13.5.2. Higher multiplicity in the principle stratum. — The surface S breaks up into

a union of p surfaces Si of genus gi. The Si have simple zeroes. Let αi denote the

partition of 2gi − 2 into ones. Each Si has two marked points zi and wi.

We reconstruct S by the creating a pair of holes construction and then by gluing

in cylinders Ci to connect the boundary circles.

There is again always a factor of 1/2 due to the symmetry γ → −γ since all

points are marked points. The combinatorial factor is

M = 1

2|Γ|
(2g − 2)!

∏p

i=1(2gi − 2)! .

If all Si lie in the same stratum then we have the further stratum interchange

symmetry

S1 → S2 → ...Sp →
and we need to further divide by p in this case.

Thus applying our formula with M as above, we have

c = M

2p−1(4g − 5)! Vol(H1(α))

p
∏

i=1

(4gi − 2)! Vol(H1(αi)).

To complete this section we present some examples of these computations.
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Example 13.7. — Stratum H (1, 1, 1, 1). In the stratum H (1, 1, 1, 1) in genus 3,

the only higher multiplicity is p = 2 so S′
1, S′

2 have genus 1. We have the stratum

interchange symmetry factor of |Γ| = 2; as in all these cases we also have the γ → −γ

symmetry, |Γ−| = 2. Hence we have the combinatorial factor

M = 1

2
· 1

2
· 4!

0! · 0! = 6.

Thus

c = 6 · 1

22−1
· 2! · 2!

7! ·
(

Vol(H1(0))
)2

Vol(H1(1, 1, 1, 1))
= 3

14
· 1

ζ(2)
≈ 0.1303.

Example 13.8. — Stratum H (1, 1, 1, 1, 1, 1). Now g = 4, and we have two

different nontrivial partitions of g −1 = 3 arranged in a cyclic order: in multiplicity 2,

a surface of genus 2 and a surface of genus 1 and in multiplicity 3 yielding three tori.

In the first case we do not have the stratum interchange symmetry, |Γ| = 1. Hence

we get the following combinatorial factor

M = 1

2
· 6!

0! · 2! .

Thus

c = 6!
4

· 1

22−1
· 2! · 6!

11! · Vol(H1(0)) Vol(H1(1, 1))

Vol(H1(1, 1, 1, 1, 1, 1))
= 90

377
· 1

ζ(2)

≈ 0.1451.

In the second case we have the stratum interchange symmetry, |Γ| = 3. Hence

we get the following combinatorial factor

M = 1

2
· 1

3
· 6!

0! · 0! · 0! = 5!.

Thus

c = 5! · 1

23−1
· 2! · 2! · 2!

11! ·
(

Vol(H1(0))
)3

Vol(H1(1, 1, 1, 1, 1, 1))
= 5

754
· 1

ζ(2)

≈ 0.004031.

Example 13.9. — Stratum H (1, 1, 1, 1, 1, 1, 1, 1). Proceeding to genus 5 we get

the following nontrivial partitions of g − 1 = 4 arranged in a cyclic order: in multipli-

city 2 giving a surface of genus 1 and one of genus 3; in multiplicity 2 yielding two

surfaces of genus 2, in multiplicity 3 yielding two tori and a genus 2 surface and in

multiplicity 4 yielding 4 tori.
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In the first case we do not have any stratum interchange symmetry, |Γ| = 1.

Hence we get the following combinatorial factor

M = 1

2
· 8!

0! · 4! .
Thus

c = 8!
2 · 4! · 1

22−1
· 2! · 10!

15! · Vol(H1(0)) Vol(H1(1, 1, 1, 1))

Vol(H1(1, 1, 1, 1, 1, 1, 1, 1))
=

= 4200

23357
· 1

ζ(2)
≈ 0.1093.

For the other multiplicity 2 case α′
1 = α′

2 = (1, 1). We have the stratum inter-

change symmetry, |Γ| = 2. Hence we get the following combinatorial factor

M = 1

2
· 1

2
· 8!

2! · 2! .
Thus

c = 8!
16

· 1

22−1
· 6! · 6!

15! ·
(

Vol(H1(1, 1))
)2

Vol(H1(1, 1, 1, 1, 1, 1, 1, 1))
= 720

23357
· 1

ζ(2)

≈ 0.01874.

For the third case we do not have any stratum interchange symmetry, |Γ| = 1.

Hence we get the following combinatorial factor

M = 1

2
· 8!

0! · 0! · 2! .
Thus

c = 8!
4

· 1

23−1
· 2! · 2! · 6!

15! ·
(

Vol(H1(0))
)2

Vol(H1(1, 1))

Vol(H1(1, 1, 1, 1, 1, 1, 1, 1))
=

= 120

23357
· 1

ζ(2)
≈ 0.003123.

In the last case we have stratum a interchange symmetry, |Γ| = 4. Hence we

get the following combinatorial factor

M = 1

2
· 1

4
· 8!

0! · 0! · 0! · 0! = 7!.
Thus

c = 7! · 1

24−1
· 2! · 2! · 2! · 2!

15! ·
(

Vol(H1(0))
)4

Vol(H1(1, 1, 1, 1, 1, 1, 1, 1))
=

= 5

46714
· 1

ζ(2)
≈ 0.00006507.
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14. Strata that are not connected

14.1. Parity of the spin structure of the compound surface. — Consider a flat surface S

constructed in the previous section. Throughout this section we suppose that all zeroes

of ω are of even orders, so the resulting flat surface S has a spin structure. In this

section we discuss the conditions on components S′
i , and on the gluing rules between

them which allow us to obtain a surface S with even α. We also compute the parity of

the spin structure of S. This will allow us to find constants in the case of components

with spin structures.

Lemma 14.1. — Let a nondegenerate flat surface S be obtained from a collection S′
i by

applying the figure eight and parallelogram constructions. The resulting flat surface S has zeroes of

even orders if and only if the following conditions are valid:

– All zeroes of those surfaces S′
i to which we apply the figure eight construction have even

orders;

– If there is at least one surface to which we apply the parallelogram construction, then there

is the following additional alternative. Either

– all zeroes of all surfaces are of even order and every newborn zero of S is of type III;

or

– the orders b′
k, b′′

k of all zeroes zk �= wk to which we apply the creating a pair of holes

construction are odd while all the other zeroes of any Si are even.

Proof. — First note that all zeroes inherited by S from S′
i without changes are of

even orders. Thus, if we apply to S′
i the figure eight construction, than all the zeroes

of S′
i different from zi must have even orders. Since the total sum of orders equals

2gi + 2, it means that ai – the order of zi – is even as well.

Suppose now that there is a surface S′
k to which we apply the creating a pair

of holes construction with at least one of b′
k, b′′

k even. Without loss of generality we

may assume that b′
k is even. By the same arguments as above all zeroes of S′

k different

from zk and wk have even orders. Since the total sum 2gk + 2 of all orders is even, the

remaining zero has even order b′′
k as well.

Consider the newborn zero of S induced from w′
k. It is of one of the types II or

III. If it were of type II, then by (30) it would have odd order. Thus this newborn zero

is of the type III. Let S′
k+s+1 be the surface, to which we apply creating a pair of holes

construction, at the opposite end of the chain from S′
k. By (31) b′

k+s+1 is even. Repeat-

ing our arguments we show that all zeroes of all S′
i are even, and that all newborn

zeroes are of the type III.

The remaining part of the alternative now becomes obvious. ⊓⊔

Let us calculate the parity of the spin structure of the resulting surface S in all

possible cases described above.
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Lemma 14.2. — Suppose that we use only figure eight constructions to glue a nondegenerate

surface S. Suppose that all αi are even. The parity of the spin structure of the resulting surface S is

defined by the parities of the spin structures of the components, and by the parities of the numbers a′
i

in the following way:

φ(S) = 1 +
p

∑

i=1

φ(S′
i) +

∑

(a′
i + 1) (mod 2).

Proof. — For each surface Si consider a collection of 2gi smooth simple closed

curves on S′
i representing a canonical basis of cycles. As usual we may assume that

the curves stay outside a neighborhood of the zeroes and the marked points of S′
i.

We may construct now the following canonical basis of cycles on the resulting

surface S. Let g be the genus of S. First take all the cycles represented by the basic

curves on components. They give us g − 1 pairs of cycles. By construction they form

incomplete canonical basis of cycles on S.

Since we are using only figure eight constructions we have to use at least one

cylinder to obtain a nondegenerate surface S. As a cycle Ag we may use the cycle

γ represented by the waist curve of this cylinder. By construction it is independent

from the previous ones, and it does not intersect them. To complete the construction

of the basis we have to choose a cycle Bg dual to Ag. Consider the following curve

representing Bg :

– On any cylinder it follows the direction transversal to γ .

– On the surface S′
i the curve starts at the boundary component γ ′′

i , then follows

in the clockwise direction an arc in a small neighborhood of zi, and finally

arrives at the boundary component γ ′
i in direction transversal to γ .

The canonical basis of cycles of S is constructed. By construction of this basis

the index of any basic curve Ai, Bi, i = 1, ..., g − 1 in the flat structure S does not

depend on the way in which we applied the prescribed combination of figure eight

constructions. Thus we have

g−1
∑

k=1

(

ind(Ak) + 1
)(

ind(Bk) + 1
)

=
p

∑

i=1

∑

ji

(

ind(Aji) + 1
)(

ind(Bji) + 1
)

=

=
p

∑

i=1

φ(Si).

Recall that the cycle Ag is represented by the waist curve of a cylinder. The tan-

gent vector to the waist curve of the cylinder is constant in the flat structure ω. Thus
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ind(Ag) = 0, which implies that

φ(S) =
g

∑

k=1

(

ind(Ak) + 1
)(

ind(Bk) + 1
)

=

= 1 · (ind(Bg) + 1) +
g−1
∑

k=1

(

ind(Ak) + 1
)(

ind(Bk) + 1
)

=

= ind(Bg) + 1 +
p

∑

i=1

φ(Si) (mod 2).

It remains to compute the index ind(Bg). By the construction of Bg, we may

assume that the tangent vector to the corresponding curve does not turn in the flat

structure ω while it crosses the cylinders. It makes a turn by the angle 2π(a′
i + 1)

while it follows a small arc joining two holes of a “figure eight” at the point zi = wi.

This shows that ind(Bg) = ∑

(a′
i + 1) (mod 2). ⊓⊔

Lemma 14.3. — Suppose α is even so S has a spin structure. If there is some S′
k to which

we apply the parallelogram construction and at least one of the points zk, wk is a zero (marked point)

of even order, then all α′
i are even, and the parity of the spin structure of the flat surface S is equal

to the sum of the parities of the spin structures of the components

φ(S) =
p

∑

i=1

φ(Si).

Proof. — We use the canonical basis on S similar to the one used in the lemma

above. To construct the first g − 1 pairs of curves we again use the curves living on

the component surfaces S′
i. In addition to previous assumptions we require that when

we apply creating a pair of holes construction to some Si, the basic curves do not

approach the transversal ρi chosen to join zi to wi. We extend the description of the

curve representing the cycle Bg to the surfaces to which we apply the creating a pair

of holes construction as follows: on such surfaces S′
i the curve starts at the boundary

component γ ′′
i in a direction transversal to γ and arrives at the boundary component

γ ′
i in direction transversal to γ . We choose this curve in such way that it does not

intersect any basic curves on S′
i.

It follows from Lemma 14.1 that all the zeroes are of type III; we do not have

any glued in cylinders: all the gluings are direct. As a curve representing the cycle Ag

we now use a small smooth deformation γ̃ ⊂ S′
k of the boundary curve γ ′

i , such that

γ̃ does not pass through any zeroes of ω′
i. We get ind(Ag) = ind(γ̃ ) = (b′

i + 1). Since

the number b′
i is even, we see that ind(Ag) + 1 = 0 (mod 2). Thus the impact of the
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last pair of cycles to the sum

φ(S) =
g

∑

i=1

(

ind(Ai) + 1
)(

ind(Bi) + 1
)

equals to zero, and

φ(S) =
g−1
∑

i=1

(

ind(Ai) + 1
)(

ind(Bi) + 1
)

=

=
p

∑

i=1

∑

ji

(

ind(Aji) + 1
)(

ind(Bji) + 1
)

=
p

∑

i=1

φ(Si).

Lemma 14.3 is proved. ⊓⊔
Note that there is a discrete freedom left in the figure eight or in the creating

a pair of holes construction. When we perform a figure eight construction at a zero

of order a = a′ + a′′ with fixed a′, a′′ there are actually a + 1 ways to perform a fig-

ure eight construction, (see Section 12.1). Similarly, when we perform a parallelogram

construction at a pair of zeroes of orders b′
i, b′′

i we, actually obtain (b′
i + 1) · (b′′

i + 1)

different surfaces. Thus, even when we fix all the elements of the collection

(S′, J, a′
j, a′′

j , b′
k, b′′

k )

we usually get numerous surfaces S defined by such assignment though some freedom

may be cancelled by the symmetry. The collection α of degrees of zeros of the resulting

flat structure S is, of course, invariant, but a spin structure may vary.

Lemma 14.4. — Let N be the total number of surfaces S ∈ H (α) obtained by the

assignment

(S′, J, a′
j, a′′

j , b′
k, b′′

k , γ, ρ, h, t) → S

with fixed (S′, J, a′
j , a′′

j , b′
k, b′′

k , γ, ρ, h, t). Suppose α is even so every such S has a spin structure.

If there is some S′
k to which we apply the creating a pair of holes construction, and one of the points

zk, wk is an odd order zero, then exactly N/2 of the resulting surfaces have even spin structure and

N/2 have odd spin structure.

Proof. — Note that if one of b′
k, b′′

k is odd, the other one is odd as well.

Consider a canonical basis of cycles similar to one constructed in Lemma 14.3.

The only difference is that now we may have some cylinders glued in. As in Lem-

ma 14.2 we assume that the curve representing the cycle Bg stays transversal to the

direction of γ while passing through the cylinders.

By the choice of this canonical basis of cycles the index of any basic curve rep-

resenting Ai, Bi, i = 1, ..., g − 1 in the flat structure S does not depend on the way

in which we applied the prescribed combination of figure eight and creating a pair of
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holes constructions. Thus the number

φ0 :=
g−1
∑

i=1

(ind(Ai) + 1)(ind(Bi) + 1)

is invariant of the discrete freedom in the assignment

(S′, J, a′
j, a′′

j , b′
k, b′′

k , γ, ρ, h, t) → S.

We construct a representative of the cycle Ag as in Lemma 14.3 using a small

smooth deformation γ̃ ⊂ S′
k of the curve γ ′

k . We get ind(Ag) = ind(γ̃ ) = (b′
k +1). Since

the number b′
k is odd, we see that ind(γ̃ )+ 1 = 1 (mod 2). Thus the parity of the spin

structure of S computed in the constructed canonical basis is represented as follows:

φ(S) = φ0 + (ind(Ag) + 1)(ind(Bg) + 1) = φ0 + ind(Bg) + 1 (mod 2).(33)

Let zi �= wi be the odd zero of ω′
i to which we apply creating a pair of holes

construction. Since the conical angle at zi is 2(b′′
i + 1)π, there are an even number

r = b′′
i + 1 of distinct points P1, ..., Pr of the form zi + γ . We number the points

in the natural cyclic order. Fix all the other elements of the construction leaving the

only freedom in the choice of the point Pj to perform the slit ziPj. We get r = b′′
i + 1

surfaces S. We claim that r/2 of them have even parity of the spin structure, while

another r/2 have odd parity of the spin structure.

To see this compare the surfaces obtained from the slits along ziPj and along

ziPj+1. The two surfaces S share the same collection of curves representing the cycles

Ai, Bi, i = 1, ..., g − 1, and Ag. The curves representing the cycle Bg differ only near

the point zi: the tangent vector to one of the curves makes an extra turn by the angle

2π. Thus by equation (33) these two flat surfaces have opposite parities of the spin

structures. ⊓⊔

14.2. Decomposition of surfaces from hyperelliptic components. — In this section we consider

possible decompositions of flat surfaces S from hyperelliptic components corresponding

to possible configurations of homologous saddle connections joining a zero to itself. In

the next section we compute the constants in the quadratic asymptotics for the number

of configurations of each type.

We start with the stratum H
hyp

1 (2g − 2).

Lemma 14.5. — Surfaces S in the hyperelliptic component H
2g−2

1 (α), g ≥ 3 are obtained

by an assignment

(S′, J, a′
j, a′′

j , b′
k, b′′

k , γ, ρ, h, t) → S

of one of the following three types:

i) ( g − 2, g − 2) →
The multiplicity is 1; the flat surface S′ belongs to the hyperelliptic component

H
hyp

1 ( g −2, g −2); we apply the creating a pair of holes construction gluing the bound-
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aries directly; the points z + γ , w + γ in the creating a pair of holes construction are

chosen to be symmetric with respect to the hyperelliptic involution on S′. For fixed data

there precisely g − 1 surfaces S that can be built.

ii) (( g − 2) + ( g − 2)) ⇒
The multiplicity is 1; the flat surface S′ belongs to the hyperelliptic component

H
hyp

1 (2g−4); we apply the figure eight construction gluing in a cylinder; a′ = a′′ = g−2.

There are 2g − 3 surfaces S that can be built.

iii) (( g1 − 1) + ( g1 − 1)) → ( g2 − 1, g2 − 1) →
The multiplicity is 2; the flat surfaces belong to the hyperelliptic components S′

1 ∈
H hyp(2g1 − 2), S′

2 ∈ H hyp( g2 − 1, g2 − 1), where g1 + g2 = g − 1. We apply

the figure eight construction with a′
1 = a′′

1 = g1 − 1 to the first surface and the creating

a pair of holes construction with b′
2 = b′′

2 = g2 − 1 to the second one gluing both pairs

of components directly. The points z2 + γ , w2 + γ ∈ S′
2 are chosen to be symmetric with

respect to the hyperelliptic involution on S′
2. There are g2(2g1 − 1) surfaces that can be

built.

The surfaces can be related by a stratum interchange or by a γ → −γ symmetry.

The proof is analogous to the proof of Lemma 10.3.

Decompositions of the flat surfaces from the hyperelliptic connected component

H
hyp

1 ( g − 1, g − 1) are described by the following lemma.

Lemma 14.6. — Surfaces S in the hyperelliptic component H
hyp

1 ( g−1, g−1) are obtained

by an assignment

(S′, J, a′
j, a′′

j , b′
k, b′′

k , γ, ρ, h, t) → S

of one of the following two types.

i) ( g − 2, g − 2) ⇒
The multiplicity is 1; S′ ∈ H

hyp

1 ( g −2, g −2). We apply the parallelogram construction

gluing in a cylinder; b′
1 = b′′

1 = g − 2. The points z + γ , w + γ in the parallelogram

construction are chosen to be symmetric with respect to the hyperelliptic involution on S′.
For fixed data there are precisely g − 1 surfaces S that can be built.

ii) (( g1 − 1), ( g1 − 1)) → ( g2 − 1, g2 − 1) →
The multiplicity is 2; S′

i ∈ H hyp( gi − 1, gi − 1). where g1 + g2 = g − 1. We apply

two creating a pair of holes constructions gluing the components directly. The points zi +γ ,

wi+γ in the creating a pair of holes constructions are chosen to be symmetric with respect to

the hyperelliptic involution on each S′
i, i = 1, 2. For the fixed data the number of surfaces

S that can be built is g1 · g2 for g1 �= g2 and g1 · g2/2 for g1 = g2.

Surfaces can be related by a stratum interchange or by a γ → −γ symmetry.

The proof is analogous to the proof of Lemma 10.3.
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14.3. Constants for the hyperelliptic connected components. — The computation of the con-

stants is based essentially on (32). However, since the flat surfaces in the hyperelliptic

components have extra symmetry we have to make necessary adjustments.

14.3.1. Hyperelliptic component H
hyp

1 (2g−2). — The admissible assignments for this

component are described in Lemma 14.5. We always have the γ → −γ symmetry for

all three assignments. We never have any stratum interchange symmetry.

The only modification which we need to make in equation (32) is as follows.

Applying the parallelogram constructions in this case we need to choose the points

zi + γ , wi + γ to be symmetric with respect to hyperelliptic involution on each Si (see

Lemma 14.5). Note that for this component we always have b′
k = b′′

k in any assignment

containing a creating a pair of holes construction. Thus we have to replace each factor

(b′
k + 1)(b′′

k + 1) by the corresponding factor (b′
k + 1). We get the following

Formula 14.1. — For almost all flat surfaces in a hyperelliptic connected component

H
hyp

1 (2g − 2), g ≥ 3, there are only three possible types of configurations of saddle connections

joining zero to itself. The constants in the quadratic asymptotics for the number of saddle connections

of each type are presented by the following formulae:

i) Assignment ( g − 2, g − 2) →

c = g − 1

2
· Vol

(

H
hyp

1 ( g − 2, g − 2)
)

Vol
(

H
hyp

1 (2g − 2)
) .

ii) Assignment (( g − 2) + ( g − 2)) ⇒

c = 1

2
· 2g − 3

2g − 2
· Vol

(

H
hyp

1 (2g − 4)
)

Vol
(

H
hyp

1 (2g − 2)
) .

iii) Assignment (( g1 − 1) + ( g1 − 1)) → ( g2 − 1, g2 − 1) →

c = (2g1 − 1)g2

4
· (2g1 − 1)! (2g2)!

(2g − 2)! ·

· Vol
(

H
hyp

1 (2g1 − 2)
)

Vol
(

H
hyp

1 ( g2 − 1, g2 − 1)
)

Vol
(

H
hyp

1 (2g − 2)
)

where g1 + g2 = g − 1.

Example 14.7. — Stratum H (2). This stratum is connected; it coincides with its

hyperelliptic component. Flat surfaces from this stratum have a single zero of order 2.

It is easy to see that in genus g = 2 only multiplicity one is realizable.
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→ (0, 0) →
In this case is a single saddle connection returning with angle 3π so that there

is no cylinder. After collapsing this saddle connection we get a torus with two marked

points to which we apply the parallelogram construction, gluing the circles directly.

Here we have

c = 2 − 1

2
· Vol(H1(0))

Vol(H1(2))
= 10

3
· 1

ζ(2)
≈ 2.026.

⇒ (0) ⇒
The other possibility is that the saddle connection returns at angle π. Then

there is a whole cylinder filled with homologous closed geodesics. In particular, there

is another saddle connection returning at the angle π homologous to the initial one.

After collapsing the cylinder we get a torus with a single marked point. We apply the

figure eight construction.

c = 1

4
· Vol(H1(0))

Vol(H1(2))
= 5

3
· 1

ζ(2)
≈ 1.013.

Example 14.8. — Component H hyp(4). In genus g = 3 all three possible assign-

ments (see Lemma 14.5) are already admissible.

→ (1, 1) →
The first represents the multiplicity 1 case of a saddle connection returning at

angle 5π.

c = 3 − 1

2
· Vol(H (1, 1))

Vol(H hyp(4))
= 224

27
· 1

ζ(2)
≈ 5.044.

⇒ (1 + 1) ⇒
If there is a cylinder, by symmetry, the spacing of the angles between the bound-

aries of the cylinders is 4π. Then after degeneration, we get a single zero of order 2

on a surface of genus 2. We apply the figure eight construction with a′
1 = a′′

1 = 1, and

glue in a cylinder. We get

c = 1

2
· 3

4
· Vol(H (2))

Vol(H hyp(4))
= 7

2
· 1

ζ(2)
≈ 2.128.
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→ (0 + 0) → (0, 0) →
In the multiplicity p = 2 case we have two homologous curves, both returning

to z0 at angles 3π. After degeneration we get two tori, one with two marked points,

the other with one. We perform the figure eight construction on one torus and the

creating a pair of holes construction on the other, gluing the boundaries directly to

each other.

c = (2 · 1 − 1) · 1

4
· (2 · 1 − 1)! (2 · 1)!

(6 − 1)! · Vol(H (0))2

Vol(H hyp(4))
= 70

27
· 1

ζ(2)

≈ 1.576.

14.3.2. Hyperelliptic component H hyp( g − 1, g − 1). — The admissible assignments

for this component are described by Lemma 14.6. We always have the γ → −γ sym-

metry for both assignments. We have the stratum interchange symmetry in the second

assignment if and only if g1 = g2.

The only modification which we need to make in the equation (32) is as follows.

Applying the parallelogram constructions in this case we need to choose the points

zi +γ , wi +γ to be symmetric with respect to hyperelliptic involution on each (Si, ωi)

(see Lemma 14.6). This means that we have to replace each factor (b′
k + 1)(b′′

k + 1) by

the corresponding factor (b′
k + 1). Thus we get the following

Formula 14.2. — For almost all flat surfaces in the hyperelliptic connected component

H hyp( g − 1, g − 1), g ≥ 3, there are only two possible types of configurations of saddle con-

nections joining any of two zeroes to itself. The constants in the quadratic asymptotics for the number

of saddle connections of each type are presented by the following formulae:

i) Assignment ( g − 2, g − 2) ⇒

c = ( g − 1)

(2g − 1)
· Vol

(

H
hyp

1 ( g − 2, g − 2)
)

Vol
(

H
hyp

1 ( g − 1, g − 1)
) .

ii) Assignment (( g1 − 1), ( g1 − 1)) → ( g2 − 1, g2 − 1) →

c = g1g2

2|Γ| · (2g1)! (2g2)!
(2g − 1)! ·

· Vol
(

H
hyp

1 ( g1 − 1, g1 − 1)
)

Vol
(

H
hyp

1 ( g2 − 1, g2 − 1)
)

Vol
(

H
hyp

1 ( g − 1, g − 1)
)

where g1 + g2 = g − 1, and

|Γ| =
{

1 when g1 �= g2

2 when g1 = g2.
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Example 14.9. — Stratum H (1, 1). In genus g = 2 the stratum H (1, 1) is the

principal stratum. It is connected, and it coincides with the hyperelliptic component

H (1, 1) = H hyp(1, 1).

Since g = g1 + g2 + 1, and gi ≥ 1, we see that multiplicity two does not occur in

genus g = 2. The value

c = 1

3
· Vol(H

hyp

1 (0))

Vol(H
hyp

1 (1, 1))
= 5

2

of the constant in multiplicity one was computed in Section 13.5.

Example 14.10. — Component H hyp(2, 2).

⇒ (1, 1) ⇒
In the multiplicity 1 case there is a cylinder returning to the other zero. Here

we get

c = 2

5
· Vol(H1(1, 1))

Vol
(

H
hyp

1 (2, 2)
) = 14

3
· 1

ζ(2)
≈ 2.837.

→ (0, 0) → (0, 0) →
In the multiplicity 2 case we have homologous curves, neither of which bounds

a cylinder, one returning to each zero. The degenerating surfaces are tori each with 2

marked points on each. We perform the parallelogram construction, gluing the circles

pairwise directly. Since g1 = g2 we get not only the γ → −γ but also the stratum

interchange, |Γ| = 2.

c = 1 · 1

2 · 2
· (2 · 1)! (2 · 1)!

(2 · 3 − 1)! · Vol(H1(0))2

Vol
(

H
hyp

1 (2, 2)
) = 35

24
· 1

ζ(2)
≈ 0.8866.

14.4. Connected component H nonhyp( g−1, g−1); even genus g. — When the genus g ≥ 4

is even, the stratum H ( g −1, g −1) has two connected components: the hyperelliptic

one, H hyp( g − 1, g − 1), which we considered in the previous section, and the nonhy-

perelliptic connected component H nonhyp( g − 1, g − 1). The description of admissible

constructions for the connected component H nonhyp( g − 1, g − 1) for even g ≥ 4 is

completely analogous to the case of connected strata. However, in the following two

assignments

( g − 2, g − 2) ⇒
and

(( g1 − 1), ( g1 − 1)) → ( g2 − 1, g2 − 1) →
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we have interference with the hyperelliptic components. Thus in these two cases we

have to modify the general Formula 13.1 by subtracting the correction term corres-

ponding to the constructions leading to hyperelliptic flat surfaces, see Formula 14.2.

Formula 14.3. — For almost all flat surfaces in a nonhyperelliptic connected component

H nonhyp( g − 1, g − 1) for even g ≥ 4, the constants in the quadratic asymptotics for the num-

ber of saddle connections of each of the following two types are presented by the following formu-

lae:

i) Assignment ( g − 2, g − 2) ⇒

c = ( g − 1)2

(2g − 1)
· Vol

(

H1( g − 2, g − 2)
)

Vol
(

H
nonhyp

1 ( g − 1, g − 1)
) − ( g − 1)

(2g − 1)
·

· Vol
(

H
hyp

1 ( g − 2, g − 2)
)

Vol
(

H
nonhyp

1 ( g − 1, g − 1)
)

ii) Assignment (( g1 − 1), ( g1 − 1)) → ( g2 − 1, g2 − 1) →

c = ( g1)
2( g2)

2

2|Γ| · (2g1)! (2g2)!
(2g − 1)! ·

· Vol(H1( g1 − 1, g1 − 1)) Vol(H1( g2 − 1, g2 − 1))

Vol
(

H
nonhyp

1 ( g − 1, g − 1)
) −

− g1g2

2|Γ| · (2g1)! (2g2)!
(2g − 1)! ·

· Vol
(

H
hyp

1 ( g1 − 1, g1 − 1)
)

Vol
(

H
hyp

1 ( g2 − 1, g2 − 1)
)

Vol
(

H
nonhyp

1 ( g − 1, g − 1)
)

where g1 + g2 = g − 1, and

|Γ| =
{

1 when g1 �= g2

2 when g1 = g2.

iii) The constants for all other assignments are given by equation (32), with α = ( g − 1,

g −1) where Vol(H ( g −1, g −1)) in the denominator of the rightmost fraction should be replaced

by Vol(H
nonhyp

1 ( g − 1, g − 1)).

As an example of this formula we present the list of possible generic degenera-

tions of a flat surface S ∈ H nonhyp(3, 3) in Appendix B.
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Remark 14.11. — Note, that one can represent the constant corresponding to

the two exceptional assignments in the formula above as

c = cregular − chyp · Vol
(

H hyp( g − 1, g − 1)
)

Vol
(

H nonhyp( g − 1, g − 1)
).

Here chyp in the correctional term is the constant for the corresponding assignment for

the hyperelliptic component H hyp( g − 1, g − 1), see Formula 14.2.

14.5. Nonhyperelliptic components with a spin structure. — Let now α be even and let

S belong to one of the nonhyperelliptic components H even
1 (α) or H odd(α). The ad-

missible assignments for such flat surfaces are described by the general Lemmas 14.2,

14.3, 14.4.

When α is one of the two partitions (2g − 2), ( g − 1, g − 1) there are special as-

signments where there might be interference with hyperelliptic components, see Lem-

mas 14.5, and 14.6.

In the formula below we use a function δ(α′, φ′) which is equal to 1 when the

stratum H (α′) contains a hyperelliptic component, and when, moreover, this hyper-

elliptic component has parity φ′ of the spin structure. This function is equal to zero

otherwise (see (25) for the explicit definition). By convention we let the volume of sev-

eral “missing” components in small genera and the volume of nonexisting hyperelliptic

components be equal to zero (see (26) for the complete list).

Formula 14.4. — Let all the integers in α be even, and let α be different from any of the

partitions (2g − 2), ( g − 1, g − 1).

For almost all flat surfaces in the connected component H φ(α) the constants in the quadratic

asymptotics for the number of saddle connections joining some zero to itself are presented by the fol-

lowing formulae:

– If the assignment contains only figure eight constructions

c = 1

|Γ−| · |Γ| ·
∏

m∈α

(
o(m)!

∏p

i=1 oi(m)!

)

·
∏

1≤i≤p
ai∈α

oi(ai) ·
∏

1≤i≤p

(ai + 1) ·

· 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

d

2
− 2

)

! · 1

Vol
(

H
φ

1 (α)
) ·

·
∑

φ′
1,...,φ

′
p∈{even, odd}

(φ′
1+···+φ′

p)+
+(a′

1++̇a′
p)+

+p+1≡φ (mod 2)

p
∏

i=1

(

Vol
(

H
φi

1 (α′
i)
)

+ δ(α′
i, φ

′
i) Vol

(

H
hyp

1 (α′
i)
)
)
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– If the assignment contains at least one parallelogram construction with even b′
i

c = 1

|Γ−| · 1

|Γ| ·
∏

m∈α

(
o(m)!

∏p

i=1 oi(m)!

)

·

·
∏

1≤i≤p
zi=wi
ai∈α

oi(ai) ·
∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′
k∈α

ok(b
′
k) ·

∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′′
k ∈α

ok(b
′′
k ) ·

∏

1≤k≤p
zk �=wk

b′
k=b′′

k ∈α

ok(b
′
k)(ok(b

′
k) − 1) ·

·
∏

1≤i≤p
zi=wi

(ai + 1) ·
∏

1≤k≤p
zk �=wk

(b′
k + 1)(b′′

k + 1) · 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

d

2
− 2

)

! ·

· 1

Vol
(

H
φ

1 (α)
) ·

·
∑

φ′
1,...,φ

′
p∈{even, odd}

(φ′
1+···+φ′

p)≡φ (mod 2)

p
∏

i=1

(

Vol
(

H
φi

1 (α′
i)
)

+ δ(α′
i, φ

′
i) Vol

(

H
hyp

1 (α′
i)
)
)

– If the assignment contains at least one parallelogram construction with odd b′
i

c = 1

|Γ−| · 1

|Γ| ·
∏

m∈α

(
o(m)!

∏p

i=1 oi(m)!

)

·

·
∏

1≤i≤p
zi=wi
ai∈α

oi(ai) ·
∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′
k∈α

ok(b
′
k) ·

∏

1≤k≤p
zk �=wk

b′
k �=b′′

k

b′′
k ∈α

ok(b
′′
k ) ·

∏

1≤k≤p
zk �=wk

b′
k=b′′

k ∈α

ok(b
′
k)(ok(b

′
k) − 1) ·

·
∏

1≤i≤p
zi=wi

(ai + 1) ·
∏

1≤k≤p
zk �=wk

(b′
k + 1)(b′′

k + 1) ·

· 1

2
· 1

2p−1
·
∏p

i=1

(
di

2
− 1

)

!
(

d

2
− 2

)

! ·
∏p

i=1 Vol(H1(α
′
i))

Vol(H
φ

1 (α))
.

Proof. — The formula above is obtained by elementary adjustment of form-

ula (32).

First suppose that the assignment under consideration does not involve any par-

allelogram constructions with odd zeroes. Then by Lemma 14.2 and Lemma 14.3

the spin structure of S is determined by the spin structures of S′
i and by the pari-

ties of a′
i. Thus the combinatorial constant is exactly the same as in equation (32).

The numerator of the volume term is the sum over those products of Vol(H even(αi)),
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Vol(H odd(αj)), and Vol(H hyp(αi)) (when appropriate) that satisfy the relevant relation

between spin structures of component surfaces and the spin structure of the resulting

surface, see Lemma 14.2 and Lemma 14.3 correspondingly. In the denominator of the

volume term we have the volume of the component under consideration.

If there is a parallelogram construction with odd b′
k involved in the assignment,

then by Lemma 14.4 we have to multiply c by 1/2 to account for the fact that half

of the constructions produce flat surfaces with even spin structure and another half

of the constructions produce a flat surface with odd spin structure. Thus we need to

divide by 2 the combinatorial factor in equation (32). In this case the numerator of

the volume term is same as in (32): it is a product of Vol(H1(αi)), where we take the

total volume of all connected components in the stratum. In the denominator of the

volume term we again have the volume of the component under consideration. ⊓⊔

We complete this section considering the exceptional strata.

Formula 14.5. — Let α = (2g − 2), or let α = ( g − 1, g − 1) where g is odd. Let

g ≥ 4, or let g = 3 and φ = odd .

For almost all flat surfaces in the connected component H φ(α) the constants in the quadratic

asymptotics for the number of saddle connections joining some zero to itself are presented by the fol-

lowing formulae:

– If the assignment is different from any of the assignments listed in Lemmas 14.5, and 14.6,

then the constant is the same as in Formula 14.4.

– For any of the assignments listed in one of the Lemmas 14.5, and 14.6 the constant is

equal to

c = cregular − chyp · Vol(H hyp(α))

Vol(H φ(α))
.

Here cregular is given by Formula 14.4, and chyp is the constant for the corresponding assignment for

the hyperelliptic component H hyp(α), see Formulae 14.1 and 14.2.

Proof. — For nonexceptional assignments the proof is exactly the same as for

Formula 14.4. For the exceptional assignments, which may lead to the flat surfaces

from hyperelliptic components one makes appropriate adjustment, see the proof of

Formula 14.3 and Remark 14.11 after this proof. ⊓⊔

Example 14.11. — Component H odd(4). Recall that the stratum H (4) has only

one nonhyperelliptic connected component H odd(4). Every flat surface in H (4) hav-

ing even parity of the spin structure belongs to H hyp(4). We have d = dimR H (4)

= 12. Consider possible assignments for the flat surfaces from the component H odd(4).

We start with assignments of multiplicity one.



MODULI SPACES OF ABELIAN DIFFERENTIALS: THE PRINCIPAL BOUNDARY 163

→ (2, 0) →
We have a single saddle connection that does not bound a cylinder. It returns

at angle 3π. After degeneration we get a surface of genus 2 with a zero of order 2

and with a marked point. We apply the parallelogram construction gluing the cir-

cles directly. Since b′
1 = 2, and b′′

1 = 0 are even, by Lemma 14.3 the parity of the

spin structure of the resulting surface coincides with the parity of the spin structure

of a surface from H (2), so it is really odd, see (8). Since b′
1 �= b′′

2 we do not have a

γ → −γ symmetry. Thus,

c = 3 · (5 − 1)!
(6 − 2)! · Vol(H (2))

Vol(H odd(4))
= 81

8
· 1

ζ(2)
≈ 6.155.

→ (1, 1) →
Here we again have a single saddle connection that does not bound a cylinder,

but now it returns at angle 5π. After degeneration we get a surface of genus 2 with

a pair of simple zeroes. We apply the parallelogram construction gluing the circles

directly. Since b′
1 = 1, and b′′

1 = 1 we get N = (b′
1 + 1)(b′′

1 + 1) = 4 surfaces, but only

half of them have odd parity of the spin structure, see Lemma 14.4. Now we have

a γ → −γ symmetry, |Γ−| = 2.

c = 1 · (5 − 1)!
(6 − 2)! · Vol(H (1, 1))

Vol(H odd(4))
= 3 · 1

ζ(2)
≈ 1.824.

⇒ (0 + 2) ⇒
Suppose now that the saddle connection returns at angle π. Then it bounds

a cylinder filled with homologous closed geodesics. In particular, there is another sad-

dle connection returning at the angle π homologous to the initial one. Since the sur-

face is not hyperelliptic, the angle between the saddle connections on the opposite

sides of the cylinder is 6π. After degeneration we get a single zero of order 2 on a sur-

face of genus 2. We apply the figure eight construction, breaking the zero of order 2

into a zero of order 2 and one of order 0. This corresponds to spacings of 2π and 6π,

or, in our notation to the choice a′
1 = 0, a′′

1 = 2. We glue in an intervening cylinder.

By Lemma 14.2 the parity of the spin structure of the resulting flat surface equals

1 + φ(S′
1) + (0 + 1) = 1 since φ(S′

1) = 1, see (8). Since a′
1 �= a′′

1 we do not have the

γ → −γ symmetry.

c = 3 · (4 − 1)!
(6 − 2)! · Vol(H (2))

Vol(H odd(4))
= 81

32
· 1

ζ(2)
≈ 1.539.

⇒ (0 + 0) → (0 + 0) ⇒
We now consider multiplicity 2. We have a cylinder and a homologous curve

that does not bound a cylinder. The degenerated surfaces S′
1, S′

2 are a pair of tori,
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each with a marked point. We apply the figure eight construction giving a pair of cir-

cles on each torus. We glue one pair of circles directly and put an intervening cylin-

der between the other pair. Though α′
1 = α′

2 we do not have a stratum interchange,

|Γ| = 1, but we have the γ → −γ symmetry.

c = 1

2
· 1

22−1
· (2 − 1)! · (2 − 1)!

(6 − 2)! · Vol(H (0))2

Vol(H odd(4))
= 15

32
· 1

ζ(2)
≈ 0.2850.

Example 14.12. — Component H odd(2, 2).

→ (2, 0, 0) →
In the multiplicity 1 case with no cylinder, the degenerating surface is genus 2

with a pair of marked points and a zero of order 2. We perform the creating a pair of

holes construction on the marked points, gluing the circles directly. Since b′
1 = b′′

1 = 0

is even, by Lemma 14.3 the parity of the spin structure equals φ(S′), which is odd for

S′ ∈ H (2).

c = 1 · (4 + 2 − 1)!
(7 − 2)! · Vol(H1(2))

Vol
(

H odd
1 (2, 2)

) = 6 · 1

ζ(2)
≈ 3.648.

⇒ (2, 0 + 0) ⇒
In the case of a cylinder with multiplicity 1, if the other side returns to the same

zero, we get a genus 2 surface with a single marked point and a double zero. We

perform the figure eight construction at the marked point, gluing in a cylinder to the

two circles. We have a′
1 = a′′

1 = 0. Thus, by Lemma 14.2 φ(S) = 1+φ(S′)+ (0+1) =
1 + 1 + 1 = 1 mod 2. Now |Γ−| = 2.

c = 1 · (4 + 1 − 1)!
(7 − 2)! · Vol(H1(2))

Vol
(

H
odd

1 (2, 2)
) = 6

5
· 1

ζ(2)
≈ 0.7295.

⇒ (1, 1) ⇒
If the other side of the cylinder returns to the other zero, after degeneration we

get 2 simple zeroes. We perform the parallelogram construction gluing in a cylinder.

Now b′
1 = b′′

1 = 1 is odd. Thus we get N = (b′
1 + 1)(b′′

1 + 1) = 4 surfaces, but by

Lemma 14.4 only N/2 = 2 of them have odd parity of the spin structure. There is

also the γ → −γ symmetry.

c = 2 · (5 − 1)!
(7 − 2)! · Vol(H1(1, 1))

Vol
(

H odd
1 (2, 2)

) = 32

15
· 1

ζ(2)
≈ 1.297.
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⇒ (0 + 0) ⇒ (0 + 0) ⇒
In the multiplicity 2 case we have a pair of cylinders. The two sides of each

cylinder return to different zeroes. The result is a pair of tori, each with a single

marked point. We perform the figure eight construction creating two pairs of circles

to which we glue intervening cylinders. We have |Γ| = |Γ−| = 2.

c = 1

2
· 1

22−1
· (2 − 1)! (2 − 1)!

(7 − 2)! · Vol(H1(0)) Vol(H1(0))

Vol
(

H odd
1 (2, 2)

) = 1

6
· 1

ζ(2)

≈ 0.1013.
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Appendix. Values of the constants

Appendix A. Saddle connections joining distinct zeroes

A.1. Connected strata in genus 4. — In the tables below we consider all connected

strata in genus g = 4. For each stratum we present the complete list of all possible

topological configurations of geodesic saddle connections. To make calculations trace-

able we present for every configuration the orders of possible symmetries Γ and Γ−,

the combinatorial constant M, and the result: the Siegel–Veech constant in quadratic

asymptotics for the number of saddle connections (closed geodesics) of that type. The

notations were introduced in Section 9.2 and Section 12.3.

Stratum H (5, 1).

Degeneration pattern |Γ−| |Γ| M c c approx.

(1 + 5) ≻ 1 1 7
4311167

373248
11.5504

(0 + 0) ≻ (0 + 4) ≻ 1 1 5
38125

93312
0.408576

(0 + 2) ≻ (0 + 2) ≻ 1 2
9

2

21

512
0.0410156
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Stratum H (4, 1, 1).

(1 + 1, 4) ≻ 2 1 3
2403

616
3.90097

(1 + 4, 1) ≻ 1 1 12
186624

9625
19.3895

(0 + 0) ≻ (0 + 0, 4) ≻ 2 1 1
61

616
0.099026

(0 + 0) ≻ (0 + 3, 1) ≻ 1 1 8
1024

1925
0.531948

(0 + 2) ≻ (0 + 1, 1) ≻ 1 1 12
108

1375
0.0785455

Stratum H (3, 2, 1).

(1 + 2, 3) ≻ 1 1 4
368

63
5.84127

(1 + 3, 2) ≻ 1 1 5
55625

7168
7.76018

(2 + 3, 1) ≻ 1 1 6
81

7
11.5714

(0 + 0) ≻ (0 + 2, 2) ≻ 1 1 3
765

3584
0.213449

(0 + 0) ≻ (0 + 1, 3) ≻ 1 1 2
10

63
0.15873

(0 + 0) ≻ (1 + 2, 1) ≻ 1 1 4
20

63
0.31746

(0 + 0, 2) ≻ (0 + 2) ≻ 1 1 3
27

1024
0.0263672

(0 + 2) ≻ (1 + 0, 1) ≻ 1 1 6
3

64
0.046875

(1 + 1) ≻ (0 + 1, 1) ≻ 1 1 6
3

64
0.046875

(0 + 0) ≻ (0 + 0) ≻ (0 + 1, 1) ≻ 1 1 2
5

288
0.0173611

Configurations of geodesic saddle connections.
Stratum H (3, 1, 1, 1).

Degeneration pattern |Γ−| |Γ| M c c approx.

(1 + 1, 3, 1) ≻ 2 1 9
729

62
11.7581

(1 + 3, 1, 1) ≻ 1 1 15
185625

7936
23.3902

(0 + 0) ≻ (0 + 0, 3, 1) ≻ 2 1 3
15

62
0.241935
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(0 + 0) ≻ (0 + 2, 1, 1) ≻ 1 1 9
2025

3968
0.510333

(0 + 2) ≻ (0 + 0, 1, 1) ≻ 1 1 9
405

7936
0.0510333

(0 + 1, 1) ≻ (0 + 1, 1) ≻ 1 2 12
3

62
0.0483871

Stratum H (2, 2, 1, 1).

(1 + 1, 2, 2) ≻ 2 1 3
4101

1048
3.91317

(1 + 2, 2, 1) ≻ 1 1 16
3072

131
23.4504

(2 + 2, 1, 1) ≻ 2 1 5
6875

786
8.74682

(0 + 0) ≻ (0 + 0, 2, 2) ≻ 2 1 1
85

1048
0.0811069

(0 + 0) ≻ (0 + 1, 2, 1) ≻ 1 1 8
200

393
0.508906

(0 + 0) ≻ (1 + 1, 1, 1) ≻ 2 1 3
25

131
0.19084

(0 + 0, 2) ≻ (0 + 0, 2) ≻ 2 2 1
3

524
0.00572519

(0 + 0, 2) ≻ (0 + 1, 1) ≻ 1 1 8
16

393
0.0407125

(1 + 1) ≻ (0 + 0, 1, 1) ≻ 2 1 3
5

262
0.019084

(0 + 1, 1) ≻ (1 + 0, 1) ≻ 2 1 8
128

3537
0.0361889

(0 + 0) ≻ (0 + 0) ≻ (0 + 0, 1, 1) ≻ 2 1 1
25

3537
0.00706814

Stratum H (2, 1, 1, 1, 1).

(1 + 1, 2, 1, 1) ≻ 2 1 18
1179

50
23.58

(1 + 2, 1, 1, 1) ≻ 1 1 16
15872

675
23.5141

(0 + 0) ≻ (0 + 0, 2, 1, 1) ≻ 2 1 6
2

5
0.4

(0 + 0) ≻ (0 + 1, 1, 1, 1) ≻ 1 1 8
56

135
0.414815

(0 + 0, 2) ≻ (0 + 0, 1, 1) ≻ 2 1 6
1

50
0.02

(0 + 0, 1, 1) ≻ (0 + 1, 1) ≻ 1 1 24
16

225
0.0711111
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TABLE 8. — Principal stratum H (1, ..., 1). Approximate values of the constants c for saddle connections of multipli-

city two joining a pair of distinct zeroes

H (

2g1−2
︷ ︸︸ ︷

1, ..., 1, 0 + 0) ≻ H (

2g2−2
︷ ︸︸ ︷

1, ..., 1, 0 + 0) ≻ g1 + g2 = g

g2 = 1 g2 = 2 g2 = 3 g2 = 4 g2 = 5 g2 = 6

g1 = 1 0.6250 0.8571 0.8355 0.8393 0.8426 0.8435

g1 = 2 0.8571 0.07958 0.07193 0.04160 0.02708 0.01896

g1 = 3 0.8355 0.07193 0.009358 0.007018 0.003195 0.001651

g1 = 4 0.8393 0.04160 0.007018 0.9204 · 10−3 0.6185 · 10−3 0.2454 · 10−3

g1 = 5 0.8426 0.02708 0.003195 0.6185 · 10−3 0.7978 · 10−4 0.5011 · 10−4

g1 = 6 0.8435 0.01896 0.001651 0.2454 · 10−3 0.5011 · 10−4 0.6383 · 10−5

g1 = 7 0.8430 0.01398 0.9350 · 10−3 0.1100 · 10−3 0.1822 · 10−4 0.3840 · 10−5

g1 = 8 0.8418 0.01072 0.5675 · 10−3 0.5415 · 10−4 0.7420 · 10−5 0.1315 · 10−5

g1 = 9 0.8406 0.008475 0.3638 · 10−3 0.2872 · 10−4 0.3309 · 10−5 0.5001 · 10−6

g1 = 10 0.8393 0.006864 0.2438 · 10−3 0.1618 · 10−4 0.1590 · 10−5 0.2072 · 10−6

g1 = 11 0.8382 0.005670 0.1694 · 10−3 0.9585 · 10−5 0.8122 · 10−6 0.9226 · 10−7

g1 = 12 0.8372 0.004762 0.1213 · 10−3 0.5921 · 10−5 0.4372 · 10−6 0.4366 · 10−7

g1 = 13 0.8363 0.004056 0.8909 · 10−4 0.3790 · 10−5 0.2461 · 10−6 0.2177 · 10−7

g1 = 14 0.8354 0.003495 0.6691 · 10−4 0.2503 · 10−5 0.1440 · 10−6 0.1136 · 10−7

g1 = 15 0.8347 0.003043 0.5122 · 10−4 0.1697 · 10−5 0.8712 · 10−7 0.6173 · 10−8

g1 = 16 0.8340 0.002673 0.3986 · 10−4 0.1179 · 10−5 0.5431 · 10−7 0.3474 · 10−8

g1 = 17 0.8334 0.002367 0.3149 · 10−4 0.8358 · 10−6 0.3476 · 10−7 0.2017 · 10−8

g1 = 18 0.8329 0.002110 0.2520 · 10−4 0.6038 · 10−6 0.2278 · 10−7 0.1204 · 10−8

g1 = 19 0.8324 0.001893 0.2041 · 10−4 0.4436 · 10−6 0.1525 · 10−7 0.7378 · 10−9

g1 = 20 0.8319 0.001708 0.1670 · 10−4 0.3308 · 10−6 0.1041 · 10−7 0.4624 · 10−9

g1 = 21 0.8315 0.001549 0.1380 · 10−4 0.2501 · 10−6 0.7226 · 10−8 0.2960 · 10−9

g1 = 22 0.8312 0.001411 0.1150 · 10−4 0.1915 · 10−6 0.5098 · 10−8 0.1931 · 10−9

g1 = 23 0.8308 0.001290 0.9663 · 10−5 0.1482 · 10−6 0.3650 · 10−8 0.1282 · 10−9

g1 = 24 0.8305 0.001185 0.8177 · 10−5 0.1160 · 10−6 0.2648 · 10−8 0.8649 · 10−10

g1 = 25 0.8302 0.001091 0.6966 · 10−5 0.9163 · 10−7 0.1946 · 10−8 0.5923 · 10−10

g1 = 26 0.8299 0.001009 0.5971 · 10−5 0.7304 · 10−7 0.1446 · 10−8 0.4113 · 10−10

g1 = 27 0.8297 0.9353 · 10−3 0.5147 · 10−5 0.5870 · 10−7 0.1086 · 10−8 0.2893 · 10−10

g1 = 28 0.8294 0.8695 · 10−3 0.4461 · 10−5 0.4754 · 10−7 0.8236 · 10−9 0.2060 · 10−10

g1 = 29 0.8292 0.8104 · 10−3 0.3885 · 10−5 0.3878 · 10−7 0.6305 · 10−9 0.1483 · 10−10

g1 = 30 0.8290 0.7571 · 10−3 0.3400 · 10−5 0.3184 · 10−7 0.4869 · 10−9 0.1079 · 10−10
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TABLE 9. — Connected component H hyp( g −1, g −1); approximate values of the constants for saddle connections of

multiplicity two joining distinct zeroes; g1 + g2 = g

H
hyp

1

(

( g1 − 1) + ( g1 − 1)
)

≻ H
hyp

1 (( g2 − 1) + ( g2 − 1)) ≻
g2 = 1 g2 = 2 g2 = 3 g2 = 4 g2 = 5 g2 = 6 g2 = 7 g2 = 8 g2 = 9 g2 =10

g1 = 1 0.6250 1.9687 2.9297 4.1122 5.5112 7.1245 8.9513 10.991 13.244 15.709

g1 = 2 1.9687 1.1074 2.7191 3.3679 4.1334 5.0053 5.9792 7.0526 8.2244 9.4935

g1 = 3 2.9297 2.7191 1.4729 3.3412 3.8411 4.4225 5.0749 5.7932 6.5745 7.4168

g1 = 4 4.1122 3.3679 3.3412 1.7750 3.8803 4.2917 4.7662 5.2948 5.8725 6.4961

g1 = 5 5.5112 4.1334 3.8411 3.8803 2.0372 4.3611 4.7134 5.1173 5.5653 6.0526

g1 = 6 7.1245 5.0053 4.4225 4.2917 4.3611 2.2714 4.7983 5.1083 5.4619 5.8527

g1 = 7 8.9513 5.9792 5.0749 4.7662 4.7134 4.7983 2.4849 5.2016 5.4798 5.7955

g1 = 8 10.991 7.0526 5.7932 5.2948 5.1173 5.1083 5.2016 2.6821 5.5776 5.8309

g1 = 9 13.244 8.2244 6.5745 5.8725 5.5653 5.4619 5.4798 5.5776 2.8663 5.9309

g1 = 10 15.709 9.4935 7.4168 6.4961 6.0526 5.8527 5.7955 5.8309 5.9309 3.0396

g1 = 11 18.387 10.860 8.3192 7.1637 6.5763 6.2764 6.1434 6.1170 6.1642 6.2652

g1 = 12 21.277 12.322 9.2807 7.8740 7.1344 6.7305 6.5198 6.4315 6.4266 6.4821

g1 = 13 24.379 13.881 10.301 8.6259 7.7255 7.2128 6.9221 6.7710 6.7143 6.7250

g1 = 14 27.694 15.536 11.379 9.4190 8.3487 7.7223 7.3487 7.1334 7.0243 6.9906

g1 = 15 31.221 17.288 12.516 10.253 9.0032 8.2577 7.7983 7.5170 7.3547 7.2764

g1 = 16 34.961 19.135 13.710 11.127 9.6885 8.8184 8.2697 7.9205 7.7040 7.5806

g1 = 17 38.913 21.078 14.962 12.041 10.404 9.4038 8.7624 8.3431 8.0710 7.9019

g1 = 18 43.077 23.116 16.271 12.994 11.150 10.014 9.2757 8.7839 8.4548 8.2390

g1 = 19 47.453 25.251 17.638 13.987 11.926 10.647 9.8091 9.2425 8.8547 8.5913

g1 = 20 52.042 27.481 19.062 15.020 12.731 11.304 10.362 9.7183 9.2702 8.9580

g1 = 21 56.842 29.807 20.543 16.092 13.566 11.985 10.935 10.211 9.7007 9.3385

g1 = 22 61.856 32.229 22.081 17.203 14.430 12.689 11.527 10.720 10.146 9.7325

g1 = 23 67.081 34.746 23.677 18.354 15.323 13.416 12.138 11.246 10.606 10.140

g1 = 24 72.518 37.359 25.329 19.544 16.245 14.166 12.768 11.788 11.079 10.559

g1 = 25 78.168 40.067 27.039 20.772 17.197 14.939 13.417 12.345 11.567 10.992

g1 = 26 84.030 42.871 28.806 22.040 18.177 15.735 14.085 12.919 12.069 11.436

g1 = 27 90.104 45.770 30.630 23.347 19.186 16.553 14.771 13.508 12.584 11.893

g1 = 28 96.391 48.766 32.510 24.692 20.224 17.394 15.475 14.113 13.113 12.361

g1 = 29 102.89 51.856 34.448 26.077 21.291 18.257 16.198 14.733 13.655 12.842

g1 = 30 109.60 55.042 36.443 27.500 22.387 19.143 16.939 15.369 14.210 13.334
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Appendix B. Saddle connections joining a zero to itself

B.1. Connected strata in genus 4. — In the tables below we consider all connected

strata in genus g = 4. For each stratum we present the complete list of admis-

sible constructions (= all possible topological configurations of homologous closed

geodesics). To make calculations traceable we present for every configuration the

orders of possible symmetries Γ and Γ−, the combinatorial constant M, and the

result: the constant in quadratic asymptotics for the number of saddle connections

(closed geodesics) of this type.

Stratum H (5, 1).
Configurations of closed geodesics.

Degeneration pattern |Γ−| |Γ| M c · ζ(2) c · ζ(2) approx.

⇒ (0, 4) ⇒ 1 1 5
38125

15552
2.45145

→ (0, 3; 1) → 1 1 4
2240

243
9.21811

⇒ (0 + 3; 1) ⇒ 1 1 4
320

243
1.31687

⇒ (1 + 2; 1) ⇒ 1 1 4
320

243
1.31687

→ (1, 2; 1) → 1 1 6
175

18
9.72222

→ (0 + 0) ⇒ (0, 2) → 1 1 3
35

288
0.121528

→ (0, 0) ⇒ (0 + 2) → 1 1 3
35

576
0.0607639

→ (0, 0) ⇒ (1 + 1) → 1 1 3
35

576
0.0607639

→ (0, 0) ⇒ (2 + 0) → 1 1 3
35

576
0.0607639

→ (0 + 0) → (0, 1; 1) → 1 1 2
175

486
0.360082

→ (0, 0) → (0 + 1; 1) → 1 1 2
35

243
0.144033

→ (0 + 0) ⇒ (0 + 1; 1) → 1 1 2
35

486
0.0720165

→ (0 + 0) ⇒ (1 + 0; 1) → 1 1 2
35

486
0.0720165

→ (0 + 0) → (0 + 0) ⇒ (0, 0) → 1 1 1
175

7776
0.0225051
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Stratum H (4, 1, 1).
Configurations of closed geodesics.

Degeneration pattern |Γ−| |Γ| M c · ζ(2) c · ζ(2) approx.

⇒ (0, 0; 4) ⇒ 2 1 1
61

88
0.693182

⇒ (0, 3; 1) ⇒ 1 1 8
1024

275
3.72364

→ (0, 2; 1, 1) → 1 1 3
432

55
7.85455

⇒ (0 + 2; 1, 1) ⇒ 1 1 3
54

55
0.981818

⇒ (1 + 1; 1, 1) ⇒ 2 1
3

2

27

55
0.490909

→ (1, 1; 1, 1) → 2 1 2
224

55
4.07273

→ (0, 0) ⇒ (0, 2) → 1 1 6
27

275
0.0981818

⇒ (0, 0) ⇒ (0 + 2) ⇒ 1 1 6
27

1100
0.0245455

⇒ (0, 0) ⇒ (1 + 1) ⇒ 2 1 3
27

2200
0.0122727

→ (0 + 0) → (0, 0; 1, 1) → 2 1
1

2

6

55
0.109091

→ (0, 0) → (0 + 0; 1, 1) → 2 1
1

2

2

55
0.0363636

→ (0 + 0) ⇒ (0 + 0; 1, 1) → 1 1 1
2

55
0.0363636

→ (0 + 0) ⇒ (0, 1; 1) → 1 1 4
8

55
0.145455

→ (0, 0) ⇒ (0 + 1; 1) → 1 1 4
16

275
0.0581818

→ (0, 0) ⇒ (1 + 0; 1) → 1 1 4
16

275
0.0581818

→ (0 + 0) → (0, 0) ⇒ (0, 0) → 2 1 1
1

110
0.00909091

→ (0 + 0) ⇒ (0, 0) ⇒ (0 + 0) → 2 1 1
1

220
0.00454545

Stratum H (3, 2, 1).
Configurations of closed geodesics.

Degeneration pattern |Γ−| |Γ| M c · ζ(2) c · ζ(2) approx.

⇒ (0, 2; 2) ⇒ 1 1 3
765

512
1.49414

→ (0, 0; 3, 1) → 2 1
1

2

20

9
2.22222
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⇒ (0 + 0; 3, 1) ⇒ 2 1
1

2

5

18
0.277778

⇒ (0, 1; 3) ⇒ 1 1 2
10

9
1.11111

→ (0, 1; 2, 1) → 1 1 2
25

4
6.25

⇒ (0 + 1; 2, 1) ⇒ 1 1 2
25

32
0.78125

⇒ (1, 2; 1) ⇒ 1 1 6
75

32
2.34375

→ (0 + 0) ⇒ (0, 0; 2) → 1 1 1
25

512
0.0488281

→ (0, 0) ⇒ (0 + 0; 2) → 1 1 1
5

256
0.0195313

→ (0, 0) ⇒ (2, 0) → 1 1 3
15

256
0.0585938

⇒ (0 + 0) ⇒ (0, 2) ⇒ 1 1 3
15

512
0.0292969

→ (0, 0) → (0, 1; 1) → 1 1 2
25

144
0.173611

→ (0 + 0) ⇒ (1, 0; 1) → 1 1 2
25

288
0.0868056

→ (0, 0) ⇒ (1, 1) → 1 1 4
5

72
0.0694444

⇒ (0 + 0) ⇒ (0 + 1; 1) ⇒ 1 1 2
5

288
0.0173611

→ (0, 0) → (0 + 0) ⇒ (0, 0) → 1 1 1
25

2304
0.0108507

→ (0 + 0) ⇒ (0 + 0) ⇒ (0, 0) → 1 1 1
25

4608
0.00542535

Stratum H (3, 1, 1, 1).
Configurations of closed geodesics.

Degeneration pattern |Γ−| |Γ| M c · ζ(2) c · ζ(2) approx.

⇒ (0, 0; 3, 1) ⇒ 2 1 3
60

31
1.93548

⇒ (0, 2; 1, 1) ⇒ 1 1 9
2025

496
4.08266

→ (0, 1; 1, 1, 1) → 1 1 2
1575

248
6.35081

⇒ (0 + 1; 1, 1, 1) ⇒ 1 1 2
175

248
0.705645

⇒ (0, 0) ⇒ (0, 2) ⇒ 1 1 18
405

7936
0.0510333
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→ (0 + 0) ⇒ (0, 0; 1, 1) → 1 1 3
225

1984
0.113407

→ (0, 0) ⇒ (0 + 0; 1, 1) → 1 1 3
75

1984
0.0378024

→ (0, 0) ⇒ (0, 1; 1) → 1 1 12
75

496
0.15121

⇒ (0, 0) ⇒ (0 + 1; 1) ⇒ 1 1 12
15

496
0.0302419

→ (0 + 0) ⇒ (0, 0) ⇒ (0, 0) → 1 1 6
75

7936
0.0094506

Stratum H (2, 2, 1, 1).
Configurations of closed geodesics.

Degeneration pattern |Γ−| |Γ| M c · ζ(2) c · ζ(2) approx.

⇒ (0, 0; 2, 2) ⇒ 2 1 1
85

131
0.648855

→ (0, 0; 2, 1, 1) → 2 1 1
600

131
4.58015

⇒ (0 + 0; 2, 1, 1) ⇒ 2 1 1
200

393
0.508906

⇒ (0, 1; 2, 1) ⇒ 1 1 8
1600

393
4.07125

⇒ (1, 1; 1, 1) ⇒ 2 1 4
5600

3537
1.58326

→ (0, 0) ⇒ (0, 0; 2) → 1 1 4
25

393
0.0636132

⇒ (0 + 0) ⇒ (0, 0; 2) ⇒ 2 1 2
25

1572
0.0159033

⇒ (0, 0) ⇒ (0 + 0; 2) ⇒ 2 1 2
5

786
0.00636132

→ (0, 0) → (0, 0; 1, 1) → 2 1 1
100

1179
0.0848176

→ (0, 0) ⇒ (1, 0; 1) → 1 1 8
400

3537
0.11309

⇒ (0 + 0) ⇒ (0 + 0; 1, 1) ⇒ 2 1 1
25

3537
0.00706814

⇒ (0 + 0) ⇒ (0, 1; 1) ⇒ 1 1 8
200

3537
0.0565451

⇒ (0, 0) ⇒ (1, 1) ⇒ 2 1 8
80

3537
0.022618

→ (0, 0) → (0, 0) ⇒ (0, 0) → 2 1 2
25

3537
0.00706814

→ (0, 0) ⇒ (0 + 0) ⇒ (0, 0) → 2 1 2
25

7074
0.00353407

⇒ (0 + 0) ⇒ (0 + 0) ⇒ (0, 0) ⇒ 2 1 2
25

14148
0.00176703
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Stratum H (2, 1, 1, 1, 1).
Configurations of closed geodesics.

Degeneration pattern |Γ−| |Γ| M c · ζ(2) c · ζ(2) approx.

⇒ (0, 0; 2, 1, 1) ⇒ 2 1 6
18

5
3.6

→ (0, 0; 1, 1, 1, 1) → 2 1
1

2

7

3
2.33333

⇒ (0 + 0; 1, 1, 1, 1) ⇒ 2 1
1

2

7

30
0.233333

⇒ (0, 1; 1, 1, 1) ⇒ 1 1 8
56

15
3.73333

⇒ (0, 0) ⇒ (0, 0; 2) ⇒ 2 1 12
1

40
0.025

→ (0, 0) ⇒ (0, 0; 1, 1) → 1 1 12
2

15
0.133333

⇒ (0 + 0) ⇒ (0, 0; 1, 1) ⇒ 2 1 6
1

30
0.0333333

⇒ (0, 0) ⇒ (0 + 0; 1, 1) ⇒ 2 1 6
1

90
0.0111111

⇒ (0, 0) ⇒ (0, 1; 1) ⇒ 1 1 48
4

45
0.0888889

→ (0, 0) ⇒ (0, 0) ⇒ (0, 0) → 2 1 12
1

180
0.00555556

⇒ (0 + 0) ⇒ (0, 0) ⇒ (0, 0) ⇒ 2 1 12
1

360
0.00277778

Stratum H (1, 1, 1, 1, 1, 1).
Configurations of closed geodesics.

Degeneration pattern |Γ−| |Γ| M c · ζ(2) c · ζ(2) approx.

⇒ (0, 0; 1, 1, 1, 1) ⇒ 2 1 15
3150

377
8.35544

⇒ (0, 0) ⇒ (0, 0; 1, 1) ⇒ 2 1 180
90

377
0.238727

⇒ (0, 0) ⇒ (0, 0) ⇒ (0, 0) ⇒ 2 3 120
5

754
0.0066313

B.2. Closed geodesics for nonconnected strata in genus 4

Component H hyp(6).

Degeneration pattern |Γ−| |Γ| c · ζ(2) c · ζ(2) approx.

→ (2, 2) → 2 1
384

25
15.36

⇒ (2 + 2) ⇒ 2 1
6

1
6.
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→ (0, 0) → (1 + 1) → 2 1
84

25
3.36

→ (0 + 0) → (1, 1) → 2 1
896

225
3.98222

Component H even(6).

→ (0, 4) → 1 1
30375

4096
7.41577

⇒ (0 + 4) ⇒ 1 1
10125

8192
1.23596

⇒ (1 + 3) ⇒ 1 1
875

256
3.41797

→ (2, 2) → 2 1
405

128
3.16406

→ (1, 3) → 1 1
15

1
15.

→ (0 + 0) → (0, 2) → 1 1
2835

2048
1.38428

→ (0, 0) → (0 + 2) → 1 1
2835

4096
0.692139

→ (0 + 0) ⇒ (1 + 1) → 1 1
2835

8192
0.346069

Component H odd(6).

→ (0, 4) → 1 1
350

27
12.963

⇒ (0 + 4) ⇒ 1 1
175

81
2.16049

⇒ (1 + 3) ⇒ 1 1
25

32
0.78125

⇒ (2 + 2) ⇒ 2 1
175

162
1.08025

→ (2, 2) → 2 1
105

16
6.5625

→ (1, 3) → 1 1
256

27
9.48148

→ (0 + 0) ⇒ (0 + 2) → 1 1
7

32
0.21875

→ (0 + 0) ⇒ (2 + 0) → 1 1
7

32
0.21875

→ (0 + 0) → (1, 1) → 2 1
7

27
0.259259

→ (0 + 0) → (0 + 0) → (0, 0) → 2 1
35

432
0.0810185

→ (0 + 0) → (0 + 0) ⇒ (0 + 0) → 2 1
35

864
0.0405093
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Configurations of closed geodesics.
Component H hyp(3, 3).

Degeneration pattern |Γ−| |Γ| c · ζ(2) c · ζ(2) approx.

⇒ (2, 2) ⇒ 2 1
15

2
7.5

→ (0, 0) → (1, 1) → 2 1
35

9
3.88889

Component H nonhyp(3, 3).

Degeneration pattern |Γ−| |Γ| c · ζ(2) c · ζ(2) approx.

⇒ (2, 2) ⇒ 2 1
3699

1120
3.30268

→ (0, 1; 3) → 1 1
64

5
12.8

⇒ (0 + 1; 3) ⇒ 1 1
64

35
1.82857

→ (0 + 0) ⇒ (2, 0) → 1 1
27

80
0.3375

→ (0, 0) → (1, 1) → 2 1
1

5
0.2

→ (0, 0) → (0 + 0) ⇒ (0 + 0) → 2 1
1

32
0.03125

Component H even(4, 2).

Degeneration pattern |Γ−| |Γ| c · ζ(2) c · ζ(2) approx.

→ (0, 0; 4) → 2 1
4

3
1.33333

⇒ (0 + 0; 4) ⇒ 2 1
4

21
0.190476

→ (0, 2; 2) → 1 1
256

45
5.68889

⇒ (0 + 2; 2) ⇒ 1 1
256

315
0.812698

⇒ (1 + 1; 2) ⇒ 2 1
8

9
0.888889

⇒ (1, 3) ⇒ 1 1
32768

8505
3.85279

→ (1, 1; 2) → 2 1
128

27
4.74074

→ (0 + 0) → (0, 0; 2) → 2 1
8

27
0.296296

→ (0, 0) → (0 + 0; 2) → 2 1
16

135
0.118519
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→ (0, 0) → (0, 2) → 1 1
32

45
0.711111

⇒ (0 + 0) ⇒ (1 + 1) ⇒ 2 1
2

45
0.0444444

→ (0 + 0) ⇒ (1, 1) → 1 1
256

1215
0.2107

Component H odd(4, 2).

Degeneration pattern |Γ−| |Γ| c · ζ(2) c · ζ(2) approx.

→ (0, 0; 4) → 2 1
49

18
2.72222

⇒ (0 + 0; 4) ⇒ 2 1
7

18
0.388889

→ (0, 2; 2) → 1 1
147

16
9.1875

⇒ (0 + 2; 2) ⇒ 1 1
21

16
1.3125

⇒ (1 + 1; 2) ⇒ 2 1
3

10
0.3

⇒ (1, 3) ⇒ 1 1
128

45
2.84444

→ (1, 1; 2) → 2 1
7

2
3.5

→ (0 + 0) ⇒ (0 + 0; 2) → 1 1
7

80
0.0875

⇒ (0 + 0) ⇒ (0 + 2) ⇒ 1 1
21

320
0.065625

→ (0 + 0) ⇒ (1, 1) → 1 1
7

45
0.155556

→ (0 + 0) → (0, 0) → (0, 0) → 2 1
7

144
0.0486111

→ (0 + 0) ⇒ (0 + 0) ⇒ (0 + 0) → 2 1
7

576
0.0121528

Component H even(2, 2, 2).

→ (0, 0; 2, 2) → 2 1
180

37
4.86486

⇒ (0 + 0; 2, 2) ⇒ 2 1
45

74
0.608108

⇒ (1, 1; 2) ⇒ 2 1
225

37
6.08108

→ (0, 0) → (0, 0; 2) → 2 1
225

296
0.760135

⇒ (0 + 0) ⇒ (1, 1) ⇒ 2 1
5

37
0.135135
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Component H odd(2, 2, 2).

→ (0, 0; 2, 2) → 2 1
252

31
8.12903

⇒ (0 + 0; 2, 2) ⇒ 2 1
63

62
1.01613

⇒ (1, 1; 2) ⇒ 2 1
144

31
4.64516

⇒ (0 + 0) ⇒ (0 + 0; 2) ⇒ 2 1
9

155
0.0580645

⇒ (0 + 0) ⇒ (1, 1) ⇒ 2 1
16

155
0.103226

→ (0, 0) → (0, 0) → (0, 0) → 2 3
4

93
0.0430108

⇒ (0 + 0) ⇒ (0 + 0) ⇒ (0 + 0) ⇒ 2 3
1

186
0.00537634
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