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Abstract. We establish a canonical isomorphism between the second coho-
mology of the Lie algebra of regular differential operators on €* of degree <1,
and the second singular cohomology of the moduli space ﬁg_ . of quintuples
(C,p, z, L, [¢]), where Cis a smooth genus g Riemann surface, pa pointon C, za
local parameter at p, L a degree g— 1 line bundle on C, and [¢] a class of local
trivializations of L at p which differ by a non-zero factor. The construction uses
an interplay between various infinite-dimensional manifolds based on the
topological space H of germs of holomorphic functions in a neighborhood of 0
in C* and related topological spaces. The basic tool is a canonical map from
#,_ 1 to the infinite-dimensional Grassmannian of subspaces of H, which is the
orbit of the subspace H_ of holomorphic functions on €C* vanishing at co,
under the group Aut H. As an application, we give a Lie-algebraic proof of the
Mumford formula: A,=(6n>—6n-+1)4,, where 4, is the determinant line
bundle of the vector bundle on the moduli space of curves of genus g, whose
fiber over C is the space of differentials of degree n on C.

Introduction

Consider the Lie algebra 2* (F for finite) of regular differential operators of degree
less than or equal to 1 on €* and its subalgebra & of vector fields, so that

{zf, dj=z"" z} is a basis of 2" and {d;},.z is a basis of d". The Lie algebra 2"
jeZ

acts in a natural way on the space V, of regular differentials of degree n on €~ with
basis v, =z *dz", ke Z. This gives an inclusion

b D" —ag,

where a%, is the Lie algebra of matrices (a;)); ;.z such that a;;=0 for |i—j|>0. We
also consider the restriction of ¢, tod”:

JdF F
0,.d"—al, .
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One has the following 2-cocycle on a, [KP, DJKM]:
W(Eij’Eji)z“W(Eji,Eij)zl if i<0, j>0
W(E;;, E,)=0 otherwise,
whose cohomology class generates HZ  (af, C)=~C.

Another way of expressing this cocycle is the following. Given (a;;) e a’,, write
fzzwy=Y a;z" " 'w 7 and let

foi= _;Oaijzi_lw_j’ fro= _Zoaijziﬁlw_j'
1=
j>0 j<0

Both f, _ and f_, are polynomials, and given
g=Ybyz 'wl, (b)eal,,
we have
wllay) (b)) = Res(f- gy —g— 1 [1-).
w=0

Pulling back the cocycle p via ¢, we get a cocycle ¢j(y) on 2* which works out to
be

=i
; (6n*—6n+1),

f(‘P)(dja dy)= _5j, —k

or(p)(, 2 =0; _ ],
W), d)=—9; _ln—1)j(j—1).
Restricting to dF we get cocycles g¥(i) which satisfy the relation
ox(p)=(6n*—6n+1)o§(w). (0.1)

Recall that the cohomology class of g¥(1) generates H*(d¥, €)= C; a less well-
known fact is that H*(2*F, Q)= C>.

On the other hand, let n:%—S be a family of genus g compact Riemann
surfaces and let wy,s be the relative dualizing sheaf of n. Denote by 4, the
determinant line bundle of w5 on S. Then, as observed by Mumford [Mu], the
Grothendieck-Riemann-Roch theorem for the family 7 gives the following relation
between Chern classes:

¢(A,)=(6n%—6n+1)c,(4,). (0.2)

One of the main objectives of the present paper is to explain the coincidence of (0.1)
and (0.2). In order to achieve this it is therefore of central importance to us to find a
relationship between extensions of our Lie algebras and line bundles on moduli
spaces.

Let us briefly introduce the moduli spaces involved in our construction. First of
all the moduli space .#, of smooth curves of genus g, then the moduli space .#; of
triples (C, p, v) when C is a genus g Riemann surface, p a point on C, and v a non-
zero tangent vector to C at p. We also consider the moduli space %" of quadruples
(C,p,v, L), where L is a degree h line bundle on C and (C, p,v)e.#,.
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Furthermore, we construct an infinite dimensional complex manifold .7,
which is a moduli space of triples (C, p, z), where z 1s a local parameter at p. Finally,
we construct another infinite dimensional complex manifold %, parametrizing
quintuples (C, p, z, L, [ ¢]), where C, p, z, L are as above, ¢ is a local trivialization of
L at p and [¢] is the class of ¢ modulo non-zero multiplicative constants. Of
course, we have natural projections

My ly, M, T T

The first projection induces an isomorphism in second cohomology [actually,
Harer, Ann. Math. 121, 215-249 (1985), has proven that .#, has the same
cohomology as .4, for g large], the remaining two are homotopy equivalences.
By using the Kodalra Spencer deformation theory on the infinite dimensional
manifolds /Z’ and #,_, we get natural Lie algebra homomorphisms

d— Vect( g),
9—>Vect(ffgﬁ1),

where d and 2 are suitable analytic analogues of d” and 2" in which d" and 2" are
dense. The above homomorphisms have the property that for every xe.Z,
(respectively #,_,) the evaluation map

pd,x:d_)’l—;c('%g) (p»@x@—)n(%*l))

is surjective.

From this one gets that the tangent bundle T(,ﬂ ) (respectwely T( 1) is
canonically a quotient of the trivial bundie ,/% x d (respectively %, | x @). Slmllar
results have been obtained in [BMS].

This allows us to define a canonical homomorphism

u: Hz(r,@)aHl(Q1 J=Ext'(Ts, .0z, )

~-1?

(the case of u%g is analogous). The definition of u is as follows. Given a central
extension

0-—C—F->2—0
we can lift canonically the inclusion
P.=:Kerpy ., & @

to an inclusion

D, 9.
For this we use the following two facts:
1) 9.=12.2,]1,
i) 0lg. 1s the trivial extension.

Using the inclusion 2, ¢, & we can construct an extension of the tangent bundle
T(#,-,) whose fiber at x is 2/%,. Thus dualizing and passing to cohomology
classes we get L.
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On the other hand, we have a natural homomorphism
c:H 0%, )~Ext'(Ty, 0z )=H'(Qk, ),
associating to each line bundle L the class of the extension
0-0-2,-9 -0,

where 2| is the sheaf of differential operators of degree less than or equal to one on
L. One of our results is that ¢ and y have the same image.
Once this has been shown we get the following diagram:

HY0%) — Ext'(7;,0;) < HXd)
x 1 1
HY 0%, ) Ext!(74, .0z, )<~ HX2),

where the first two vertical arrows are induced by the canonical section ,/% —>F,_y,
associating to a triple (C, p, z) the quintuple (C, p, z, @((g — D)p), [z 7 1]). Thus we
obtain an explicit connection between the cohomology of 2 (respectively d) and
line bundles on 9‘72 —1 (respectively f%g). To see that pand ¢ have the same image, we
first notice that %, , and & are acted on by automorphisms t and ¢ defined by

(C.p,2, L,[¢1)=(C.p,z, LOw((2—2¢)p), [$z* " *dz]),

¢ (a(z) +b(z) %) =a(2)+b'(2)+(2g—2)z " 'b(z)+ b(z)gdg ,

which are related by the commutative diagram
72 T(F,)
t dt
Py PN
D=5 Ty Fy1)-

Using this diagram and the fact that H*(2) is a cyclic module over the group
{t*} .z with cyclic element v, = ¢§(— 1), we are reduced to show that u(i,) lies in
the image of ¢. Indeed, we consider the divisor 6 on y?r | consisting of quintuples
(C,p,z, L, [¢]) with L effective, and show that

o) =c(0). 0.4)

To prove this equality we use a global version of a construction due to Krichever
and analyzed in [SW], giving an analytic map

W%, —>Gr(H),
where Gr(H) is a suitably defined infinite dimensional Grassmannian. We then

have that O( — 8)is the pullback, via W, of the determinant line bundle .% on Gr(H).
On the other hand, we have the following commutative diagram

g 0 a_
T, ) — Ty Gr().
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By an argument similar to the one above we associate to the extension of a_, given
by the cocycle y an extension of 7 ¢y, by g, g which turns out to be the sheaf X',
of differential operators of degree less than or equal to 1 on .. We can then pull
back this extension to an extension of 7 & __, which by functoriality is the sheaf of
differential operators of degree less than or equal to one on @(—6). The above
diagram then gives (0.4).

Following diagram (0.3) and our analysis of the homomorphisms ¢ and © we
deduce that

c(A,)=(6n*—6n+)c(4,).

In fact, by use of a result of Harer [H], and a generalization of it for %, ; which we
explain in Sect. 5, we can then conclude:

Theorem. There are canonical homomorphisms, which are isomorphisms for g=5,
v: H{d)~H* (.4, T),

pHX2) > H*Z,,,0),
such that
(i) ulpo)=c,(0).
(il) The diagram
HX(9)— HYF]_,,0)

H*(d) — H*4,0),

where the vertical arrows are induced by the obvious projections, commutes.
(iii) The diagram
H*9) — HY(Z,_,©)
* *
H*Z) — H#,-,,C)
commutes.

The paper is organized as follows. In Sect. 11) we recall the basic facts about
moduli spaces of curves; in Sect. 111) we introduce a locally convex topological
vector space H which we believe gives the right setting for the study of the
Krichever construction. We then introduce the infinite dimensional Grassman-
nian Gr(H) and its determinant line bundle by adapting to our situation the
constructions given in [KP, SW, SP].

In Sect. 2 we compute the second cohomology of £ and study the action of the
automorphism ¢ on it.

In Sect. 3 we construct the infinite dimensional moduli spaces ,/% and 9’79_ "
define the global Krichever map and study its infinitesimal behaviour.

In Sect. 4 we give the above mentioned relation between line bundles on moduli
spaces and cohomology of 9.

In Sect. 5 we compute H(F, )= H*#,_,), using results of [H].

In the Appendix (Sect. 6) we classify the degenerate and the unitary highest
weight representations of the universal central extension of the Lie algebra 2%,

Some of the results of this paper were quoted in [AGR].
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1. Notation and Preliminaries

I) Curves and Their Moduli

For any family of smooth curves
.68, (1.1)

parametrized by an analytic space S, we shall denote by w5 the relative dualizing
sheaf of =. We shall denote by C, the fiber n~ !(s) over a point s in S. Given a line
bundle % on %, we recall that one may define a determinant line bundle det (%)
over S as follows [MK]. One takes an auxiliary line bundle M on % of very high
relative degree. A global section ¢ of M, which does not vanish identically on any
fiber of =, gives an exact sequence

057, -1 (FROM)=E->F=n(LOM|,_,)~R'n,L—0.

As E and F are locally free one sets

max max -1
det (&)= </\ E) ®<A F) ,
and then checks that this definition does not depend on the choice of M and o. One
then defines line bundles 4, on S by setting
AdS)=det (wy), neZ.

Often, when no confusion will arise, we shall drop the S and the = in the notation
and simply write det, w, and 7. The line bundle 4, is known as the Hodge bundle.
For any integer h we shall also consider the relative Picard variety

Pic*(n)—S

whose fiber over se S is Pic?(C,). Finally, associated to the relative Picard variety

Pic? !(n) is a relative theta-divisor 6, or simply 0, which is a line bundle on

Pic? !(n), whose restriction to Pic?”!(C,) is the theta-divisor ((@,) (for each s).
A family of pointed curves

%€ =S (1.2)

parametrized by S is a family of curves n equipped with a section ¢ of m. When
dealing with pointed curves we can define a canonical section of p: Pic"(m)—S:

E=¢.: 8 — Pic(n),

(1.3)
s (s, O (ho)),
canonical isomorphisms
n=n"*: Pic"(r) — Pick(n),
(1.4)
(s, L) (5, LU (k—h)a(s))),
and, for h=g—1, a translation isomorphism
T="1Ty,_,: Pic!”}{m)— Pic* !(n),

(1.5)

(8, L) = (s, L®wc,((2—2g)a(s))) -
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Consider the diagram

Pic? ™ L (m) -
o| ) (1.6)

€ S,

Consider the relative theta-divisor =0, on Pic?”'(n) and set
0,.=1t*"0, nel.

We have the following

nt=

n—1y2 (9
(1.7) Lemma. £*6 ~/1;1®w(2 Y (2), where J,=/,(S) and @ = 0*wy;. [Note
that (2n—1)* <§> degw is equal to the number of Weierstrass points for a)”.]

To give the straightforward proof of this isomorphism we recall the basic
properties of Poincaré bundles.
Given the family of pointed curves (1.6), construct first the fiber product

1 (G x s Pic? ! (1) —— Pic? Y (m) O

N

¢ " S,

~o_

o

where m,,04,p;, &, are the obvious maps and 1,((g, L)) =(g, 7(L)). A Poincaré line
bundle &, ,, or simply % is a line bundle on € x 3Pic? " !(r) such that

(1) Lle, =L,
(1i) o"fff=p*0'*(a)(g/s)=0'}"p’f(a)(g/s).
It follows from the definition that
det, (£)=6;" (1.8)
and that
S8 = wls(2n—1)(1 —g)4), (1.9)

where A is the image in € of the section . To prove the lemma we then notice that
ExO, .t =L = E* R det,, (F)
=det,({T71"L) =det, (wgs(2n—1)(1 —g)4)). (1.10)
On the other hand, one has
det, ol s(—~NA)=1,Qw G) (1.11)
[This formula is proved by induction from the exact sequence

0—det g s(— NA)—det wl(—(N — 1)) >det (wgs(— (N —1)4] -0,
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by noticing that the third term of this sequence is isomorphic to w"*¥~ '] The
lemma follows from (1.10) and (1.11). Q.E.D.

As a consequence we get the following relative version of the theorem of the
square.

=1 (4
(1.12) Corollary. Ong(n—l)z@Hr@@*1®p*</1n‘1®ﬂu,,‘1®cu8( D (2)>
Proof. By the theorem of the square we have
0nt=0(n—1)r®0r®9*1®p*$

for some line bundle % on S. To compute . apply &* to both sides in the above
equality and use Lemma (1.7). Q.E.D.

We end this subsection by recalling some standard notation and introducing
some terminology.

We denote by .#, the moduli space of curves of genus g. When g>1 we let
M C.4#, be the open set corresponding to automorphism free curves. The open set
# is the parameter space for a family of smooth genus g curves

LA A/

having the property that the fiber of = over a point x € .# is a smooth genus g curve
representing x.
A family of pointed curves with (non-zero) cotangent vector is a family of
pointed curves
% —>S

together with a nowhere vanishing section t of 6%(wys), i.€. a trivialization of
0*(wqs). Consider the functor

Analytic
spaces

f s,

Families of pointed curvesl
S-~» ¢ with a cotangent vector

parametrized by S J
Since there is no non-trivial automorphism of a Riemann surface of genus g>0
fixing a point and a non-zero (co)-tangent vector, one can see that this functor is
represented by a smooth quasi-projective variety .#, of dimension 3g—1 (here
g>1). This variety is equipped with a universal family of pointed curves with
cotangent vector

n” . . .
©" =My, Ta nowhere vanishing section of 6*(wg-; 4,) - (1.13)
a

Clearly, the open set .#" of .#, consisting of triples (C,p,v), where C is
automorphism free, can be identified with the €™ -bundle

W 4.4 — {0-section} —. 4V



Moduli Spaces of Curves and Representation Theory 9

II) A Locally Convex Topological Vector Space
and Its Associated Grassmann Manifold

In this subsection we shall introduce an infinite dimensional Grassmann manifold.
This Grassmannian, as well as the infinite dimensional manifolds that we shall
construct in the sequel, will be modelled on the topological vector spaces we
presently describe.

Fore>0let D,={zeC:|z|<e} and D,=D,— {0}. Let H be the complex vector
space of all germs at 0 of complex valued holomorphic functions possibly singular
at O:

H=lim 6(D,).

£=0

Let € denote the Riemann sphere. Let H_ be the space of all holomorphic
functions on €— {0} which vanish at co, and let H, be the space of germs of
holomorphic functions at 0:

H, =lm0D,) (=Tiz).

We then have a canonical decomposition
H=H ®H_. (1.14)
This follows from the elementary
(1.15) Lemma. There is a canonical decomposition
oD,)=H_®uD,).

Proof. Computing the cohomology of ¢ by using the covering {D,, € —{0}} gives
the exact sequence

0-HYC, 0)=C—~H"(C - {0}, )@ H"(D,, 0)~>H°(D,, ©)>H(T, 0©)=0.
We then get the exact sequence

0—C-2 H_ @CaOD,) — O(D,)— 0,
where ¢(a)=(0, q,a), proving the lemma. Q.E.D.
If a function f is defined and continuous on the circle |z]=c¢, we may define

I o= max|f(2).

This gives us a norm || |., for all ¢>0, on H_ giving H_ the usual Fréchet
topology. Given an open subset Y C C", denote by H(Y) the space of all continuous
functions on Y which are holomorphic on Y. With the norm || ||,, H(D,)is a Banach
space. We have H . = liné H(D,), and we give H, the direct limit topology. Thus H

becomes a locally convex topological space (with the product topology). Note also
that H, and H_ are (topological) dual of each other and that polynomials are
dense in both spaces.

Given topological vector spaces U and ¥ we denote by M (U, V) the space of all
continuous linear maps from U to V. We are now going to describe M(H ., H_)
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and M(H_, H ). Given a function f(z,w) holomorphic in a neighbourhood of
(0,0), we associate to it the operator

T,:H_ —H,,
h(z= ) Res,,_ f(z, wh(w™1).
Similarly, given a function g(z ™', w™') holomorphic on (€ —{0}) x(C—{0}) and
vanishing on ({00} x €)u(C x {c0}), we associate to it the operator
1,H, —-H_,
hz)— Res,_o,g(z L, w™ Yh(w).
It is easy to verify that these operators are continuous and that the space

M(H_,H,) (respectively M(H,,H_)) consist of operators of the form T,
(respectively T)) [R]. Setting then

H, =limHD,,) (=:C{zw}),
H_, ={g(z"L,w HeHE—{0})x (C—{0}): gloo,w™ H)=g(z" !, 00)=0},
we get identifications
MMH_,H)=H,_, MMH H_ )~H_,.

We think of H, _ as equipped with the direct limit topology and H _, with the
usual Fréchet topology. We then observe that, in these topologies, the maps of
finite rank are dense since polynomials in two variables are dense in both spaces.
Finally, we notice that also the spaces M(H_,H_) and M(H,,H,) may be
explicitly described, namely

M(H_,H )~H__={f(z"',w): f holomorphic in an open set
of (€ —{0}) x € containing (€ —{0}) x {0}
and vanishing on {0} x €},

M(H, . H,)~H, ,={f(z,w™"): f holomorphic in an open set
of € x (€ —{0}) containing {0} x (C—{0})
and vanishing on € x {o0}}.

Of course, H, , is isomorphic to H_ _ by exchanging z and w.
We shall denote by a_, the Lie algebra of all continuous endomorphisms of
H=H_@®H,. Every clement a of a,, can be written in the form

a,. a,_
a= ,
a_ . a_ _

where a, , e M{H ,, H.)and so on. By our previous descriptions every element of
a,, can be interpreted as an operator T,: H—H, where

f=f-E W@ wT D+ E@w faaEw ),
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where f, ., e H, , and so on. Explicitly
Tyh - +h.)= Res (fo L wh (w4 (27w Dh(w)

X fr-@wh-(w Y+ fi sz w™ D, (w).

(Notice that all terms make perfect sense.)
We now want to make a few remarks about composition and traces. First of
all, given two operators T, and 7; in a,,, we have

. . Tf ° 7; = Tf*g >
where f* g is the convolution

(/* £)(z w)= Res f(z, Dglt, ).
Secondly, notice that given operators

T, :H -H,, T, :H,—>H_

+

the compositions T, _oT, and T, _oT,, are both of trace class and their
trace is given by the formula

:Reiof,+(Z_I,W_1)f+‘(W,Z)= Begof-i‘-—(waz)f— +(Z~1:Wv1)' (116)

Using this we immediately get that a , carries a cocycle

wla,b)=Trace(b_,a, _—a_ b, ). (1.17)

Finally, we let 4., be the set of all continuous invertible operators a on H such
that a_ _ and a, , are Fredholm of index zero. One checks that this is a group
under multiplication which is the identity component of the group M(H, H)™.

We now define the Grassmannian Gr(H) as the set of closed subspaces W
of H such that p_: W—H _ is Fredholm of index 0. Here p _: H—H _ denotes the
projection operator on H _. We shall give Gr(H) the structure of a complex
manifold modelled on the space M(H _, H , ). In order to do that introduce the set *
of sequences of integers S={s,>s,>...} such that s,=—n for n>0, and the
associated subspaces Hg and Hg which are the closure of the linear spans of the
sets {z%: 5;€S (respectively s;¢S)} in H. Note that Hge Gr(H).

(1.18) Lemma (sec [PS]). Given We Gr(H) there exists a sequence S € X such that
the projection pg: W— Hg is an isomorphism.

Proof. Choose a basis of Kerp_|; of the form: z'* + higher order terms, z2 + higher
order terms, ..., z* + higher order terms, where i, > i, >...>i,20. Choose a basis
of H_modp (W) of the form: z*,...,z" such that 0>j,>j,>...>j. Then
S={iy,igs - usiy =1y ey 1s--rJs -+ } i3 the required sequence. Q.E.D.

For Se2 set
Gr3(H)={WeGr(H)|ps: W—Hg is an isomorphism} .
It is clear that we have a canonical identification

Gr8(H)~M(H _,H,)
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obtained by taking graphs, and by identifying H _ with Hgand H , with Hy in the
obvious way. One easily checks that this gives Gr(H) the structure of an infinite
dimensional complex manifold. We remark that the group 4, acts transitively on
Gr(H) making it a homogencous space.

We now turn to the construction of the determinant line bundle ¥ on Gr(H).
For We Gr(H) let Ky =Kerp_|y and Cy,=Cokerp_|y. Set

max max

Ly= N\ Ky® ) (C)*. (1.19)

(1.20) Lemma. Let We GrS(H); then we have a canonical isomorphism between Ly,
and Fy..

Proof. Notice that pg(Ky)CKy,. Since pg: W—Hg is an isomorphism, we can
identify K . with a subspace of W. On the other hand, we can identify Cp  with the
subspace of H_ spanned by the elements z', i <0, i¢ S. This gives us the following
sequence, whose exactness one casily proves:

0-Ky—Ky —~Cy,—~Cy—0,
and the lemma is proved. Q.E.D.

Using this lemma we can canonically identify the restriction of .# to Gr®(H)
with Gr¥(H) x ¥, getting a trivialization of .Z on the charts Gr¥(H). This gives
Z the structure of a holomorphic line bundle on Gr(H).

Set now

Gr{"={WeGr(H)|z"H_>W>z "H _}.
Note that we have a canonical isomorphism
Gr{" =Gr(2m,m).

Set
Gro= () Gri"CGr(H).
mz=0

Remark that Gr,nGr3(H) consists, under the canonical identification of Grj; with
M(H_, H.), of operators of the form T, where f is a polynomial in z and w. Thus
we obtain the following

(1.21) Lemma. Gr,, is dense in Gr(H). In particular, every holomorphic function on
Gr(H) is constant.

We are now going to define a central extension A of A, which will act on the
determinant bundle . First, we consider the subspace J, of M(H_,H_)
spanned by those continuous maps which factor through H ., ie. the maps of
theform T, _ o T, _.Itisclear that J,is an ideal. We then let J be the subgroup of
GL(H _) consisting of the invertible maps of the form 1+ with jeJ;. As we
remarked in (1.16) the elements of J, are of trace class, so that the elements in J
have a determinant. The extension 4, of A is defined as follows. Let & be the

group
g:{(aaq): aEAooa qEGL(H~)a a__ _qe‘]O}
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[to show that & is indeed a group, notice that given (a,g) and (¢, ¢') in &, then

(@a). _=a__a _+a_,d,_andthata_ _d _+a_.d,_ —qq=(a__—qda-_
+qg(a" _—q)+a_.a, _ belongs to J,]. Consider the homomorphism
det: J-C*,

let J, be its kernel, and set
A.=¢1J,,
where J; is thought of as the subgroup
{1,9), geJ} C&.

Clearly, A, is a central extension of 4, by €*. We leave it to the reader to verify (as
in [PS, p. 89]) that the Lie algebra of 4 isa, =a @ defined by the cocycle .

We are now going to define an action of 4, on .#. To do this we need some
preparation. Given We Gr(H) let us define an admissible isomorphism to be an

isomorphism
w:H_->W,

such that p_wis of the form 1 + j with jeJ,. We remark that given two admissible
isomorphisms for W, say w and w’, then w'~'weJ. To see that there exists an
admissible isomorphism for any given W, we can use Lemma (1.18) and choose a
sequence SeX such that WeGrS(H). We then get, by composition, an
isomorphism

W—oHy—H_ |
i 7

whose inverse w is easily seen to be admissible. In fact, for such a w we can choose
an integer n such that, in the decomposition H_=H, _,®H_. _,, where

HZ—n:{ _Z aiz;l}a H<—n={ Z biZ_l}s
i=-—1 i<—n

the matrix of p_w is of the form
A B
0 I/

In particular, the determinant of p_w is the determinant of the n x n matrix 4.
Furthermore, w gives us a way of identifying K, with Kerp_w and C, with
Cokerp _w. We then get the exact sequence

0— Ky —Hy -5 Hy _,—Cpy—0

which induces an identification
b, C—>Ly .

Suppose now given another admissible basis w’ f0£ W. Write w'=wgq, g€ J, then
h,.=h, detq. We can finally define an action of 4, on % by setting

(4,q) (W, )=(AW, h 4541 h,,-:(2))
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for any (4,9)eé, WeGr(H), 1e ¥, and for any choice of an admissible
isomorphism w. We leave it to the reader to verify that Awg ™" is admissible, that
the action does not depend on the choice of w and that it factors though the
quotient homomorphism & >4 .

2. The Lie Algebra of Differential Operators of Order
Less than or Equal to 1 in One Variable

Let H be the topological vector space considered in the preceding section. We let 0

d .
be the operator on H defined by of = jf— =f". It is easy, but important, to check
z
that ¢ is a continuous operator on H. Consider the Lie algebra & = Hd+ H and the
subalgebra d C %, d = Ho, with obvious Lie bracket. We shall denote by H*(g) the

continuous Lie algebra cohomology of the topological Lie algebra g.

(2.1) Proposition. 1) H{(2)=H'(d)=0.
2) HXd)~C and is generated by the cohomology class of the cocycle

o f0,g0)= R:eg fdg". (2.2)

3) H¥(9)= C> and is generated by the cohomology classes of the cocycles
a (f10+81, f20+g2)= B:egfldfzﬂ

a0, (f10+ 81, [0+ 82)= B:eg(fxdg/z —f2dgh) ¢ . (2.3)
23(f10+81, f20+82)= Res g,dg,

Proof. Let H'=C[z~!,z] C H. We have already noticed that H" is dense in H. So
9" =HY0+ H" and d" = H"0 are dense in & and d, respectively. Let d,=2""'0,
e,=z". The d,’s form a basis of d* and the d,’s and e,’s a basis for 2*. We have the
following relations:

[dns dm] = (m - n)dn +m> [dm em] =My iy, [em em] =0. (24)

From this it is immediate to verify that 27 =[2F, "], d" =[d", d’]. Using this and
the fact that 2% (respectively d¥) is dense in & (respectively d), 1) follows. To show
2), we let o be a two-cocycle for 27 and we set

U= Uy, &), Oy =0ddyy ), 2" =0ey,e,). (2.5)

Looking at a([d,, e, ], e,), 2([dy, d,.1, e.), o dy d,],d,,), using the relations (2.4) and
the cocycle rule, we get the following

ht+nm__ h+m,n

na

(n— Ry =me ™"l (26)

mo

(n_h)ah+n,m+(m_n)an+m,h+(h_m)ah+m,n20 .
The first of these relations immediately implies

o m=mé, _, o0 ", VY meZ. 2.7

n,—m
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As for the second, setting m=0 we deduce that
o?=0, VselZ. 2.8)
On the other hand, setting h=0, we get
(n+mot=mep*™, VnmelZ, (2.9)
and setting m= —h—n, we get:
(m—hoy "= —~m+h)o, "—a "), VYnheZ. (2.10)
Finally, the last of our relations gives, setting h=0,
(m—n)t, s o+ n+ma, =0, VnmeZ, (2.11)
and setting h= —n—m, we get:
Cn+mja_,, ,Fm—n, . o p—Cm+nja_, =0, VomeZ. (2.12)

Thus a general cocycle is completely determined by choosing values of o =%, oy !,

0y 2,0 gy 0p g, Oy Oy o, VREZ, h#0 [in fact, o™ ! determines o™ ™ via (2.7), of
determines o, n+m=0, via (2.9), «; ' and a3 * determine o, " via (2.10), o, o
determines a, ,,, n+m=+0 via (2.11), «; _; and a, _, determine «,_ _, via (2.12)].
For example:

m-—n

an,m=n+man+m,07 n—{—m:Q:O,
n(n*—4) n—n
[ A— - 3 (xl,—l 6 Ay -2

By a straightforward computation one can then see that a gencral 2-cocycle for 2
is of the form

A f10+8, [20+85)= RPS La, fidfy +a,(fidg, — frdgh)
+as3g.dg, +s(z)(fidf, —fdf1)

+uz)(f1dg,—f>dg.)] (2.13)
where a,, a,,a; € Cand s(z), t(z) € H. Of course, the g;’s and the coefficients of sand ¢
are linked to the constants o™ "', ay !, 05 %, oy _q, 0 5, 0, 0, 0. For example,

1 1 1
0228(20‘1,—1_“2,—2), SAzz_Edl.—l’ Sh—zz—ﬁ“*hyo’ h=+0,

where s(z)=2s,z". Notice also that all cocycles of the form s(z)(f,df,—f>df1),
Hz)(f1dg, — f,dg,) are coboundaries. Using this our claim for & follows immedi-
ately. As far as d is concerned the claim in this case follows immediately from the
above. Q.E.D.

Let us now consider the isomorphism

9>,
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defined by ¥
ts(f6+g)=f8+g+f’+s;, seC. (2.14)

We want to compute the action of the induced isomorphism
t*: H(2)-»H*2). (2.15)
(2.16) Lemma. For any s and s, t¥=t%.

Proof. It clearly suffices to show that the automorphism

6,:9->9
defined by o(f0+g)=/f 0+g+s£ induces the identity on H*2). To see this
notice that:

o¥(og) =0y

oo )(f10+ 81, [20+82)= Res|:f1 <f2 g2>/—f2 <f1+g1>:|
=R:eg(f1dg2 f2dg1)+Res—Sz (f1df> —f2df})

xaf(2) )

=0y + gzeg —sz*(fydf, — fodfi) ~ay,

S]nce fl <f2> fz <fl> <f1f2 f2f1>

0(a3)(f10+ 81, 20+ g,)= Res<£ +g1> (J{z‘f‘gz)

a5 5)

=a,+ Ress(?dgz— %dg1> + 5% Res — S d<f2> ~dy,

z=0 =0 Z
since
z=0 Z z z=0 2\ z z 2 z
= EL(f1df2 —fdfy). QED.

We can now prove the following
(2.17) Proposition. Let se C. Let t;: 99 be defined as above, then
(o) =2
t (o) =0ty + 204 . (2.18)

(o) =05 — oy —ay
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Proof. Using the above lemma we can assume s=0; let ¢, =1, then it is clear that
t*(o;)=a,. Let us compute:

H02)(/10+ 81, [0+ 82) = Res [ f1d(fy +82)—fod(/i' +82)]
=+ Res(fidfy —fodf) =+ 2ay
H(o3)(f10+ 81, /20 +82) = Res [(f1 +g1)d(f3+ 82)]
=03+ Res fidfy + Res(fidg, +g,df3)
=y — Res fidfy — Res(f1dg; ~ fdg3)
=a3—o,—o,. QE.D.

It will be convenient for what follows to introduce a new basis for H%(%) and
write t* with respect to this basis. Note that & acts naturally on H by

bo(fe+gh=fh +gh.
So we get a representation
$o:D—a,. (2.19)

In the preceding section we defined a canonical 2-cocycle v for a,. Let
Yo =¢F(—1). It is an easy computation to see that

LI
Yo=— ? + 7 + Oy .
We now take as a new basis for H*(9) the set {y, wo, t*p,}, where y= — Lo, It is
then immediate to verify the following

(2.20) Corollary. With respect to the basis {y, o, t*po} the homomorphism
t*: H*(9)— H*2) is represented by the matrix:

10 12
=10 0 —1]. (2.21)
01 2

In the sequel we shall also use the following basis of H*(%):

{wo: t*ll’o; f*ZWO} . (222)

Finally, notice that the Lie algebra d acts, by Lie bracket, on the ring of
pseudodifferential operators

Psd = {_i f:0", fieH},

and that it preserves the canonical filtration of Psd given by

Psd,,:{ 5 fia",f,-eH}.

i=—w
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We then get an action of d on the span of differentials of order n:

Q'=Hdz"=H0™ "=Psd,/Psd, ,
and hence a representation
0,.d—a_ . (2.23)

It is not hard to verify that ¢,=¢,ct"<i, where i:d—>2 is the inclusion. A
straightforward computation gives

o (w)=(6n"—6n+1)f(p)=0f _(v). (2.24)

3. The Basic Varieties and the Krichever Construction

We are now going to construct two infinite dimensional varieties ,%g and #,_,.
The first one will parametrize triples (C, p, z), where C is a smooth curve of genus g,
p a point on C, and z a local coordinate defined near p and vanishing at p. The
second one will parametrize quintuples (C, p, z, L, [ ¢ ]), where (C, p, z) are as above,
L is a degree g—1 line bundle on C, and [¢] is an equivalence class of local
trivializations of L near p, differing from each other by a non-zero multiplicative
constant.
Let us start with a definition. Consider a family

Eo T
[

of pointed curves of genus g parametrized by T. We say that & is a family of pointed
curves with local parameters if there exists a neighbourhood % of the section o(T)
and a holomorphic function Z on %, vanishing on a(T), such that for every t in T
the function z,= Z|; ¢, is a local coordinate around the point ¢(t) on the Riemann
surface &,. The notion of isomorphism between families of pointed curves with
local parameter is the obvious one. Notice also that given a smooth curve C a point
pon C and a local parameter z around p, the triple (C, p, z) admits only the trivial
automorphism. Therefore, we may define a deformation of the triple (C, p, z), simply
as a family of pointed curves with local parameters (£, n, T, ¢, Z) together with a
point t,e T and an identification of the “central data”

(Z 0(to), 2,) =(C, . 2), (3.1)

an isomorphism between deformations being simply an isomorphism between
families (of pointed curves with local parameters) which is compatible with the
identification of the central data.

Let us now consider a family of pointed curves

%—>8.

Given a point s € S choose a small neighbourhood V of s over which € trivializes in
the C* sense. Look at a tubular neighbourhood % of the section (V) %], and
think of it as a family discs parametrized by V. As such it must be holomorphically
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trivial. Let
Z:U—>AxV, A={zeC:|z|<e}

be a trivialization of % such that Z{o(v)) =(0,v), ve V. For every ve V the pointed
curve (4, o(v)) is then equipped with the local coordinate
zy=Zlg,~u -
Consider the vector space
H,={heH,: h0)=0, h'(0)+0}
and consider the space V x H', with its natural structure of infinite dimensional
variety. Suppose now that V’ is another neighbourhood of s over which %
trivializes, let %’ be a tubular neighbourhood of o(V') and Z2: %' -4 x V' a
holomorphic trivialization of %', vanishing on a(V’). Let 4’ C A be a disc such that
Z A x (V' aV))CUn'. Consider
ZZ A< (V' AV) > Ax(V AV,
(z,v) = (h(z,v),v);
we then get an analytic map
V'nV)xH, >(V'nV)xH,,
(v, {(2)) = (v, i(l(z), v).

Via this map we glue Vx H, to V'nH’, along (VnV')x H',. In this way we
construct an infinite dimensional variety S whose points may be interpreted as
pairs (s, z,), where se S and z, is a local coordinate on C, near a(s). The variety S is
equipped with a natural projection

f:85-8,
and the fibers of f are isomorphic to H',. Pulling back 4 to S yields a family
(%,%,8,8,2Z) of pointed curves with local parameters, parametrized by S.

Using now Kuranishi families of pointed curves as building blocks [ACGH]
we can construct byAan obvious patching process a smooth infinite dimensional
complex manifold .#, modelled on H, x €C**~*', whose points represent all the
triples of the form (C, p, z). Such a moduli space is equipped with a universal family
of pointed curves with local parameters

G s i, (3.2)
We also have a natural projection

A,
C C d
( ,P:Z)H ’pagz‘

and the fibers of p” are isomorphic to z+z*H, (i.e. to H, ) so that, in particular, p”
induces an isomorphism

() = H¥( ML) (3.3)
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We leave it to the reader to verify that .#, satisfies the obvious local
(respectively global) universal properties with respect to deformations (respec-
tively families) of pointed curves with local parameters.

Let us now introduce line bundles in our picture. Consider a pointed curve
(C,p). Let L be a line bundle on C, and (i(L) the corresponding O -module.
By a local trivialization ¢ of L at p we mean an isomorphism of (L), , with O¢ .
Given two line bundles L, and L, with local trivializations ¢, and ¢, at p, we say
that the pairs (L;, ¢,) and (L,, ¢,) are equivalent if there exists an isomorphism
o:L,—L, such that the homomorphism

4’20‘(151_1 :(QC,p_’(QC,p

is the identity. We shall denote by [L, ¢] the equivalence class of (L, ¢). Clearly,
the set of equivalence classes [L, ¢] form a group under multiplication

[Lla ¢1] [Lz’ (bz] = [L1 ®L,, ¢1®¢2]

with the identity given by [0, 1]. We denote this group by M(C). We denote by
MP®(C) the subgroup of M(C) consisting of pairs [ L, ¢] with deg L=0, and by M"*(C)
the subset of M(C) of pairs [L, ¢] with degL=h. Clearly, forgetting about the
trivialization yields the following commutative diagram of homomorphisms

M(C) - Pic(C)
%) g (34
MY(C) —> Pic®(C),

where the horizontal maps are surjective. Since C is complete, so that the only
global holomorphic functions on C are constant, we immediately get that the
kernel of 6 may be identified with the subgroup of invertible elementsin ¢ , whose
value at p is 1. Therefore, upon choosing a local parameter z on C at p vanishing at
p, we can identify O , with H, =€{z} and Kerd with the multiplicative group in
H . of elements of the form 1+4zf(z), f(z)e H ., and thus with H , itself. Starting
from the triple (C, p, z) we want to consider M°(C) as a quotient of H. To do this we
define a surjective homomorphism

u°(C,p,z): H->M°C) (3.5)

as follows. Given fe H, let % 0 be a small enough neighbourhood such that z and
f are defined on %. 1dentify % with a neighbourhood of p in C via z. Let

L=(C—p)x O x O/~ ,
where, given (q,0)e(C—p)x C, (¢, a)e¥ x C,
(@.0)~(q,a) = q=q', o =aexpf.

By definition L comes equipped with a canonical local trivialization which we
denote by ¢. We set

1C,p,2)(N)=[L, 4]

It is immediate to verify that u° is a surjective homomorphism whose kernel equals
O(C—p) which we may consider as a subspace of H using our trivialization.
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Furthermore, notice that we get a canonical bijection

7, MYUC)»M¥C), forany heZ (3.6)
given by y,([L, 1) =[L®O(hp), pz~*]. So we get a surjective map
#XC,p,z): H>M"(C). 3.7)
Let now "

be a family of pointed curves with local parameters.
Set
Fm)=Sx H/~,

where
6 I~E ) = s=5", @(Cya(s), 2)(f) = w(Cy, 0(5), 2)(f).-

Z,(n) is an infinite dimensional complex analytic space whose points represent
pairs (s, [ L, ¢]), where se S and [L, ¢] € M*C,). On Z,(n) natural projections are
defined:

[ F(m)-S,

q: ()~ Pict(n),
where Pic’(n) is the relative Picard variety of . The fiber of f over seS§ is
isomorphic to M°(C,) while the fiber of g over (s, L) e Pic"(r) is isomorphic to H , .
In particular,

H¥(F(n)) = H*(Pic*(n)). (3.8)
Consider now the universal family (3.2)
b U,
and set 4
By =y (). (338)
From (3.8) and (3.3) it follows that [cf. (1.13)]
H*(#,)~ H*Pic"(n")). (3.10)

Given a smooth curve C, a point pe C, a line bundle L on C, and a local
trivialization ¢ of L at p, we denote by [ ¢] the set of all trivialization of Lat p which
differ from ¢ by a non-zero (multiplicative) constant. It is then clear that points of
#,_, represent quintuples (C, p, z, L, [ ¢]) modulo isomorphisms. We leave it to the
reader to define the notion of family (respectively deformation) of quintuples
(C,p,z, L, [¢]), and verify that Z_l satisfies the obvious global (local) universal
property.

Pick a point x=(C, p,z, L,[¢]) in fﬁq_ .- Consider the space of sections of L on
the open set C—p. A trivialization ¢,c[¢] and the local parameter z make it
possible to identify I'(C —p, L) with a linear subspace of H. Set

W(x)=I(C—p,L)CH. (3.11)
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Following the argument of [SW], one checks’ that W(x) is a point in the infinite
dimensional Grassmannian Gr(H) defined in Sect. 2 and that the resulting

analytic map

W:.%, ,—Gr(H)
(3.12)
x+— W(x)

is injective. We call W the Krichever map.
Consider now the diagram [cf. (1.6)]

(31=12g—2

A

A~
> \)7(-@

¢ (3.13)

PR
C— M,,

IS

where
&(C,p,2)=(C,p,2,C((g—Dp), [z ")) } (3.14)
1(C, p, 2z, L, [¢1) =(C, p, 2, L (2 —2g)p), [pz? ~ *dz])
and define, by composition, the injective analytic maps
W,=Wt"¢: l,~Gr(H), neZ. (3.15)

Recall now the definition of the determinant line bundle ¥ on Gr(H) (Sect. 2).
From that definition and the exact sequence

0-I(C,Ly»W(x)—»H_->HYC,L}»0
it follows that
Wrg=0;". (3.16)

Using now Lemma (1.7) and the fact that the relative dualizing sheaf w is trivial on
My, and hence on .#,, we get

Wrx¥ =4, nelk. (3.17)
We are now going to study the diagram
{CF, > Gr(l)
cup (3.18)
%g P, Gr(H), neZ

from the infinitesimal point of view, relating this study to that of the algebras &
and d introduced in Sect. 2.

Thp first step in this analysis consists in describing the tangent bundles to f%g
and #,_,. To do this we are going to imitate the classical Kodaira-Spencer
construction as described, for instance in [ACGH]. Namely, given a local
universal family of curves

n€—> M,

! The fact that p_(W(x)) has index 0 follows from the Riemann-Roch theorem. This is a reason why
we use degree g—1 in the definition of Z,_,
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the relative Picard variety
p:Pic? N my—> M,

a point [C) e.# and a point (C, L)€ Pic?” *(n) over [C], the tangent space exact
sequence

0- T (Pic? " (C)) - Ti¢, 1(Pic? (1) > Tj o ) -0
can be identified with the cohomology sequence,
0-HYO)~>HY(2)»H (T )0,

where J is the tangent sheaf to C, and X, is the sheaf of differential operators of
order less than or equal to 1 acting on sections of L.

To carry out this analysis in the infinite dimensional case we consider the Lie
algebras d and 2 and points

x=(C,p,z L.[¢)eFy:,
y=px)=(C,p,2) e .,
A local trivialization ¢, € [¢] and the local parameter z give natural identifications
O0f2)=H,®H,0Cc2, 0(F)=H.,0cCd,

and natural Lie algebra inclusions

NC—p2)o2, I(C-pIJod.
We set

2,=I(C—p,2,), d,=I(C—p,T).
With this notation we have the following

(3.19) Proposition. For every xe %,_,, there is a commutative diagram

0—>@x—>@—9> T(#,-1)— 0
H ﬁ dpﬂdg (3.20)
0—> d, — d -2 T(H) —0

such that the horizontal sequences are exact, where o is the symbol map and i the
natural inclusion. Moreover, there is a commutative diagram

2, T{Z, )
’l l (3.21)
9 T(F, ),

where t=t,,_, and 1=1,, , are as in (1.5) and (3.14).

Proof By the universal property of / . we may identify the tangent space

T(#,-,) with the isomorphism classes of deformations of (C,p, z, L,[¢]) para-
Jat

metrized by SpecC[£]/(e?)=S. Let a(z) + b(z)ai € 9. Let U, be a small disc around
z
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p, where z and ¢ are defined and such that a(z) and b(z) are holomorphic in
Uy—{p}. Set U, =C—p. Define a family of pointed curves with local parameter

UyxS >
e
by setting S
C=UoxS)[[(U;y x8)/~,
(z,e)~(z+&b(z),e), zeU,nU,,

(3.22)

and p(z, &)=¢, and where jis the natural inclusion. Define then a line bundle . and
% by setting

&L= (Llyo x ) T (Lly, x S)/ ~,
(P, &)~ (P(1F2ea(2))6), zeUynU,.
This line bundle is equipped with the obvious trivialization (¢, £). The pair (4, .£) is

(3.23)

the deformation of (C, p, z, L, [ ¢) which we associate to a(z) + b(z) 6%‘ This defines

a homomorphism P, from & to Tx(fq_ ). It is a trivial matter to check that this
homomorphism is surjective; let us check that its kernel is &,. Suppose first that

J. . . . . .
a(z) + b(2) P isin the kernel. This means, in particular, that (%, #) as a deformation
A

of (C, L) is trivial. Thus by the Kodaira-Spencer theory a(z)+b(z)§ lies in the
image of the difference map z

D.®ONZ) — D

[in fact, by Mayer-Vietoris, Cokeru= H'(X,)]. But it also means, by looking at
the local parameter and at the local trivialization, that the isomorphism between
(€, %) and the trivial deformation must induce the identity on U, x S and {a non-
zero constant multiple of) the identity on L|y x S. This says that indeed a(z)

é . . . J ..
+b(z)52 lies in Z,. On the other hand, it is easy to check that if a(z) + b(z)g lies

in 2, the corresponding family is isomorphic to a trivial deformation of
(C,p,z, L, [¢]). The statements about the tangent space to .# , and the commutat-
ivity of the diagrams (3.20) and (3.21) follow in a completely analogous
way. Q.E.D.

Let us now consider the map

w: %, ,—~Gr(H),
and let x=(C, p,z,L,[$]) be a point in &, ; consider

AW: T(F,- )= DD .~ Ty (Gr(H)) = M(W(x), H/W(x)).
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Consider a tangent vectorve Tx(f:g_ Dlet A=a(z)+ b(z)ai be such that P,(A4)=v.
z
Recalling (3.22) and (3.23) we see that for f(z)e W(x) we have:
dh(v){(f(z))=¢&—coeff. of (1+¢ca(z))f(z +eb(z)) mod W(x)

~ )+ L7

= A(f) mod W(x).

We can therefore conclude with the following

mod W(x)

(3.24) Proposition. There is a commutative diagram
P aw
T(F;-1) — Ty(Gr(H))

g
Py IP%
bo

<z a,

where P, is the natural projection.

We summarize our infinitesimal analysis with the following commutative
diagram of vector bundles:

T(H) s T(F,_,) —— T(Gr(H))

dp
n[ @[ gJ (3.25)
o iXE ~ Po X W
dx My ——— Dx %, | —— a,xGr(H),
aXp

and we notice again that this diagram is compatible with the action of r and & and
Ton %,
-~ Pg -~
DxFy—> T(F, )
rwl Ml (3.26)
@Xffq—l -, T(‘g%g—l)'
We end this section by making a remark about the Krichever map linking the
geometry of the Schubert varieties on the infinite dimensional Grassmannian
with the gap sequences of Weierstrass points on Riemann surfaces. Given a line

bundle L on a Riemann surface C the Weierstrass gap sequence of a point pe C
with respect to L is the sequence of integers s,,s,, 53, ... defined by

dim HYC, L(—s,p))=k.
Recalling Lemma (1.18) we set
Zs={WeGr(H)|S is the minimal index set for which Pg: W—Hy is an iso}
={We Gr(H) PB?) RAWsz},
where
R; f(z)=f(4z).

2 should be thought of as a Schubert cell and Hy as its center. If S=(sy,s,,...),

s;= —i, >0, then )
codim2g= Y (s;+1).
i>1
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Consider now the Krichever map
w-#, _,—»Gr(H),

g
one can then observe that

W~ Zy)={(C,p.z,L,[¢]): p has Weierstrass sequence S with respect to L}.

Essentially this remark goes back to Mumford (see [Mu], and a letter from
Mumford to G. Segal) and could be of central importance in the understanding of
the cohomology ring of ..

4. Line Bundles on the Basic Varieties

In this section we shall relate the extensions of the Lie algebras d and £ with the
line bundles .#, and #,_,. We start with an easy result of a general nature.

(4.1) Lemma. Let X be a (‘possibly infinite-dimensional ) complex manifold. Denote
by Vect(X) the Lie algebra of analytic vector fields on X, and let g be a subalgebra
such that

1) Yxe X the evaluation map ¢,:g— T(X) is surjective,

i) g, = Kerg¢, is such that [g.g. 1=g..

Then for every Lie algebra continuous central extension

0-C-g—g—0,
which is trivial on g,, Yx€ X, we can associate a continuous extension
0-XxCoE->T(X)-0.
This defines a homomorphism

N Kerr,—»Ext!(7y, 0y), (4.2)

xeX

wherer,_: HX(g, €)— H*(g,, C) is induced by the restriction, and where T denotes the
tangent sheaf.

Proof. The evaluation maps and property 1) give a surjective homomorphism
X xg->T(X),
whose kernel is the vector bundle V having g, as fiber over x. Consider the diagram
0

|
XxC

!
Xxg
P g
¢ 7 !
/
0-V—- Xxg—->TX)—0
l
0.
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In order to define the homomorphism ¢ we need to find for every x € X a canonical
splitting of the preimage g, of g, in §. We know that forany xe X, g =h®C asa
Lie algebra in a possibly non-canonical way, where h is a closed subalgebra
isomorphic to g,. On the other hand, h contains the commutator subalgebra
(8.8, as a dense subspace. Thus the above splitting is canonically
defined. Q.E.D.

In order to apply this lemma to the case of Riemann surfaces we need the
following result:

(4.3) Lemma. Let C be an affine Riemann surface, and L a holomorphic line bundle
on C. Denote by x the pair (C, L), set d,=Vect(C) and let I, denote the algebra of
global differential operators of order <1 acting on sections of L. Then: [dd. }=d,,
(20 2:]=2,.

Proof. We shall prove the lemma only for %,, the proof for d, being similar and
casier. Since every line bundle on C is analytically trivial we can assume that
L=Cx(C,so that &, is the algebra of global differential operators of order less or
equal than one acting on functions. Choose a nowhere vanishing vector field ¢ on
C, so that any element of 2, can be written uniquely as [0+ g, f, g€ Oc. We first
notice that [Z,, Z,] is an O-module:

S[fO+g ho+k]=[sf0, ho+k]+[2f0+g, shd]. (4.4)

Then it suffices to show that the elements ¢ and 1 lie in [2,, %, ]. In case C is an
opensetin Al and 0= 5%/’ thisis clear since 0=1[0, z01],1 =[¢, z]. In general choose
two projections p,,p,:C—A' with disjoint ramification divisors. Then
0;=p¥ (682 , i=1,2, are rational vector fields with poles along the ramification

divisors, and no zeroes. Thus there exist regular functions f;, i=1,2 such that f,0,
are regular vector fields having zeroes at most along the ramification divisors. Set
then

fi0i=a,6, pHz)=z;, i=12.

We then have a;0(z;) =f;, hence
{a;0,z]=f;, alézdl=f0, i=1,2.
Since f; and f, are relatively prime the lemma is proved. Q.E.D.
Putting together the results of our previous section we get
(4.5) Theorem. There exist canonical homomorphisms
i HHD)>Ext! (T, 05, )=H'(QY, ),
vi HA() - Ext' (74, 05 )= HY(QY).

Proof. In order to apply Lemma (4.1) and more precisely the homomorphism (4.2),
we have to show that given any extensmn of & (respectively d) its restriction to &,
(respectively d,) is trivial for every xe %, (respectively xe., ,)- Now we have
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seen that a basis of H*(Z) is given by y, t*1p,, t*y, [cf. (2.22)] and that these are all
pullback of the extension p of a_. Since Z,, =(d1)%,,, it then suffices to show that
the extension 1 is trivial on ¢4(2,) for every x [recall (2.19)]. On the other hand,
$o(2,) is contained in the Lie algebra ay, =ay,,,Ca,,, which is the Lie algebra of
the stabilizer of W= W(x). Denote by 4y, the preimage of ay ina_ ;it then suffices to
show that @, is a trivial extension of a,,. Now the adjoint action of A, on 4,
factors through A, so that if W=gH _, then adg(a,_)=a, and adg(a, )=ay.
Since d,_ is a trivial extension of a;; _also 4, is a trivial extension of a,. Q.E.D.

(4.6) Lemma. [ay,a, |=a,, VWeGr(H).

Proof. It suffices to show this for a; . Assume there is a continuous Lie algebra
homomorphism

uay, —»C.

Restrict u to the elements in a;_ of type

a,,. 0 . 0 0 .
<0 0) with a++—<0 A)’ A finite .

Then by the finite dimensional result g restricts to a multiple of the trace. By
varying the size of A we see that this multiple is independent of the size of A. On the
other hand, a general element a, , has no trace (e.g. a; + =I). Reasoning in the
same way for the lower right block we conclude that x must vanish on the elements

of the form
a.,. 0
0 a__)’

Since the Lie algebra consisting of elements of the form

00
x 0
is contained in [ay_,a,_] the lemma follows. Q.E.D.

Applying the general Lemma (4.1) we can associate to the extension 4, an
extension 2 of T by Oy

(4.7) Lemma. X isthe sheaf X , of differential operators of order less then or equal
to 1 acting on sections of the determinant bundle % .

Proof. Consider

0-045,>2-T5,—0.

It is easy to see that the canonical action of &4, on ¥ is given by differential
operators of order less than or equal to 1. From this, and from the fact that the
global sections of 2 in 4, generate X, we get a homomorphism of sheaves

5,
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such that the diagram

00— 3 T ——0
0-—0—s3y——nT —0, o =0,

commutes. It is then easy to see that o, is non-zero. Since the only global
holomorphic functions on Gr(H) are constants, ¢, must be an isomorphism.
Thus ¢ too is an isomorphism. Q.E.D.

Of course we have a canonical homomorphism
H' (0%, )—Ext'(T; 0z, ), 4.8)

which associates to the isomorphism class of a line bundle Lon &%, _, the extension
class given by the sheaf X, of differential operators of order less than or equal to 1
acting on L. Similarly we have

c: H%@f,;g) — Ext' (74, Oa,) (4.9)
Notice tha} the h(zmomorphism (4.8) commutes with the action of the automor-
phism .., —»%,_,.
(4.10) Theorem. Consider the canonical homomorphisms
piHY ) — Ext' (T, .0z, )=H'(Q%, ),
viH*(d)— Ext' (7, .0 ;)=H'(Q}4).

Then, (¢f. the definition of v in Sect. 2)
i) plpo)=c(0),
i) pt*=1*p,
iti) Imp= Linear span of Ime,
1v) ve;(wo) = c(4,).
Proof. Consider the diagram (3.25)

T(#,-,)— T(Gr(H))

P@T IPam

2 x %, | — a,xGr(H).

Recall that w*(.# ~ )= 0. Then, by functoriality, the pullback via W of X, is X,.
On the other hand ¢F(—p) =, so that by Lemma (4.7) u(p) = c(0). The second
statement follows immediately from the commutativity of diagram (3.26). Since
H*(Z) considered as a Z-module via the action of t*, is cyclic with generator ,,, iii)
follows from i) and ii). Finally iv) follows from i), ii) and the commutativity of the
diagram

T(d) —=— T(F,_) ——s T(F,_,) ———s T(Gr(H))
[ [ BT
dx .4, DX Iy DX Fy_y a_ x Gr(H).

From iv) of the preceding theorem and (2.24) we get Q.E.D.



30 E. Arbarello, C. De Concini, V. Kac, and C. Procesi

(4.11) Corollary. c(4,)=(6n*—6n+1)c(2,).

As is well known, using the Grothendieck-Riemann-Roch theorem, Mumford
[M], shows that there is an equality of Chern classes

ey(A)=(6n2—6n+1)c,(1,). 4.12)

It is then natural to ask whether the preceding corollary implies this relation. This
is indeed so. Consider first the diagram

HY(07%,)— H'(Q),)

[

HY(0%)— H'\(QY,),

where the vertical arrows are induced by the natural projection and where, as
usual, given a line bundle L, defined by transition functions g,;, we have y([L])
=dlogg,;. Observe that p* is injective on Imy. In fact p is obtained as composition
p3

"

a°

- P p2
M,

g

"
M,

where pj is injective, p5(dlogg,s) =0 if and only if L is the dualizing sheaf w, and
pi(dlogg,s)=0if and only if Lis trivial, being .#,an H , -fibration over .4;. Now

the Chern class
cyt H%C”%)—»Hz(,/%g) (4.13)

is obtained by considering the de Rham class of dlogg,,;. Thus we need to prove
that dlogg,, is d-exact if it is J-exact. If .#, were complete we would have, by
Hodge theory, a natural inclusion H'(Q), )—»H?(.#,, ) (in fact we believe that
such an injection exists in our case). A possible way around this is given by Harer’s
theorem [H]. By this theorem L is a multiple of 4,, and 4, is positive on .Z,.
Suppose then that dlogg,, is 0-exact, hence d-exact on any compact curve in .,
Integrating dlogg,, over a compact curve contained in .#, we get zero, therefore
implying that L is trivial on .#, ie. dlogg,, is d-exact.

From our discussion we also get that, using Harer’s theorem, there is a
canonical isomorphism for g2 3

v: H¥(d)—> H.4,, ). (4.14)

Using the results of the next section, namely Corollary (5.7), we will also get a
canonical isomorphism for g =5

7% H%@)—»HZ(,ZW”

g—1>

0, 4.15)
where #;_, is the relative Picard variety of

i C My
5. A Cohomology Computation

Let .4, g2 5, be the moduli space of curves of genus g. Let .# .4, be the Zariski
open set corresponding to automorphism free curves. Let I, be the mapping class
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group. It is well known [H] that
H* (M, Z)=H*(M,Z)=H*(I). (5.1)
Let
VAW

be the universal family of curves over .# and let ¢ " .#'*) be the universal family
of pointed curves over .#"). Consider the relative Picard variety

Pic"(n) — .4V, (5.2)
When h=g-1, we have as in (1.5) the translation homomorphism
Py Ty

We are going to prove the following

(5.3) Theorem. H*(#,, Z)~Z*, H (%, Z)=0.
Proof. Inview of the isomorphism (1.4) we shall work with either h=0orh=g-—1.

We first exhibit four linearly independent elements in H*(Z,_ {, Z). To do this we

consider, as in the first section, the line bundles 8,6, 4, w on F,- 1, where A1s the
pull-back, via p, of the Hodge bundle A, on .# and w is the pull-back, via p, of
0 g4 With this notation the case n=2 of Corollary (1.12) together with the
relation 4, =134, gives
2Nl 12 S(g)

t*0,=0:R07T'RA 1 Ro . (5.4)

On the other hand one has
t*i=A1r*o=ouw,t*0=0, (by definition).

Therefore, if we denote by A the free abelian group Zao @ Z.QZDZE,, the matrix

of
¥ A4
is )
10 0 8<§>
010 —12
000 —1
00 1 2

Now, it is easily seen that this matrix is nilpotent with Jordan partition (3, 1) and
that
Ker(t* - 1)=Z/i1®Zw.
Consider now the map
c:A->HXZ,_,,Z)

given by the Chern class. Since ¢ induces a map on H*(%, _ ;) which is compatible
with ¢*, the kernel of ¢ is t*-stable, and hence contains a vector fixed by r*. This
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vector must then lie in ZA@Zw. On the other hand the existence of the section & in
(5.2) shows that the homomorphism

p*: HA M, Z) > HY(F, . Z)

is an injection with p*([4;])=c(4), p*([@_u),.4]) = c(®), and, as well known [AC],
H?(MV,Z) is freely generated by [1,] and [ 40,.4]. It follows that ¢ is an
injection. We now show that the number of generators of H*(%,, Z) is not greater
than 4. Let S be a topological compact oriented surface of genus g, and 7, = 7 (S)
the corresponding Teichmiiller space. Set n; = n,(S, q), H, = H,(S, Z). Consider the
mapping class group I;! of the pointed surface (S, g) and the extension I of I' by
H,, given by the natural action of I' on H,. Finally consider the fiber product

F —r
Lo
I

It is clear that " is an extension of I' by 7, x H, and that " acts quasi-freely on
Ty x AxC=X. (4={zeC: |z]=1}). Removing the points of X with nontrivial
isotropy yields, by factoring the action of I', an open set of %, whose complement
in %, has high codimension. Therefore

H (7, Z)y~H(,Z), i=1,2.
Consider the spectral sequence associated to the short exact sequence

lon,xH,»T'->I'->1, (5.5)
and recall that by [H],

H¥I',Z)=%Z, HYI,H,)=0, HNI,Z)=0.
Also notice that

H'(n))~H,, H*(n,\)=Z, H'(H,)~ H,, H(H,) > A*H, .
By Kunneth formula we get
H*n,xH)~Z®H,®H,)®A*H,,

where the action of I' on H, factors through the homomorphism of I' into
Sp(2g,Z). Thus an easy computation of invariants yields

HYI',H'(H))=0,
H(IH*(n, x H,)) 2 ZQZDZ.

The E? term of the Hochschild-Serre spectral sequence is

z ..
60 0
Z 0 Z

This shows at the same time that H'([, Z)=0 and that H¥I",Z) has at most 4
generators. Q.E.D.
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Consider now the family of pointed curves with tangent vector (1.13)
(g/l _i) rﬂg// ,
and let
F' = Pict(n").
A simple spectral sequence argument based on Theorem (5.3) yields the following

(5.7) Corollary. HY#,,Z)=0, H(F,!,Z)=Z>. Moreover the elements /.., 0.0, ur¢
linearly independent in HX(%;, Z) and the translation isomorphism t* of Z.;., ®Z0O
@ZO, into itself is given by the matrix

1 0 —12
00 -1
0 1 2

( Notice that the above matrix does not depend on g.) Furthermore the natural
projection induces identifications

Z), = HX ()= H M) = H{F!_ ). (5.8)
g9 g9 g

6. Appendix: A Representation Theory
of the Universal Central Extension of the Lie Algebra &*

Let 9 be the universal central extension of the Lie algebra Z*. Due to
Proposition 2.1 (3), the center of & is 3-dimensional and we can choose a basis
d,.z"(mell), c,c,, ¢, of D such that ¢, c,, ¢, is a basis of the center of &, and the
following commutation relations hold:

[dmadn]:(m_n)dm+n+T125m,fn(ms_m)c’ (61)

(2", 2] =m0y, —nCa> (6.2)

[z"d,]=mz"""—1/ —1m?$,, _.cs. (6.3)
d

m+1 "

dz’
The choice of the cocycle in (6.3) is the most convenient one for the study of unitary
representations of &. Note that & is also the universal central extension of the
semidirect product of Lie algebras (6.1) (the Virasoro algebra Vir) and (6.2) (the
oscillator algebra = affine algebra associated to the 1-dimensional Lie algebra) by
a 1-dimensional center, in a sharp contrast with the non-abelian case [in which
(6.2) is replaced by an affine algebra associated to a simple Lic algebra], when there
is no further non-trivial central extension.

Given a quintuple of real numbers (¢, h,c,, h,, ¢3), there exists a unique
irreducible representation of the Lie algebra &, denoted by R(c, h, ¢, h,, ¢5) such
that the central elements c,c,, and c¢; operate as scalars (denoted by the same

Note that in the quotient by the center, d,, may be identified with —z
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letters) and there exists a non-zero vector ve R(c, , ¢, h,, c;) with the property
d (=0 and z"(v)=0 for n>0; (6.4a)
do(v)=hv, 2°(W)=h,v. (6.4b)

A Verma module R(c, h, ¢,, h,, c;)is defined in the usual way. It carries a unique
Hermitian form ¢ -|-)> such that d¥=d_,, z"*=z"" and {v|v)=1 for a highest
weight vector v. This is called the contravariant Hermitian form. One has the
induced contravariant Hermitian form on

Rc,h,cph,c3)/Kerd |- >=R(c,h,c h,,cs). (6.5)

(6.6) Theorem. The representation R(c, h, c,, h,, c3) is unitary (i.e. the contravariant
Hermitian form is positive definite) in precisely the following cases:

1) ¢,=0; then ¢;=0, h,=0, and (c,h) is the highest weight of a unitary
representation of Vir (the list is well-known).

II) ¢,>0; then either

2 2 2
_120322’ h_ha+c3 >0,
ca clI
or
. 12¢3 6
e (m+2(m+3)’

where meZ ,, and

_hi+cd [m+3)r—(m+2)s]*—1
2, dm+2)(m+3)

with 1Ssgr<m+1,s,re.

h

One has the following cigenspace decomposition with respect to d:

since d,, is selfadjoint, the eigenspaces R, ., are orthogonal to each other. We
denote by det,(c, h, ¢,, h,, ¢5) the determinant of the contravariant form restricted
to R, , , (it is defined up to a positive constant factor depending on the choice of the

basis). Let ¥ p®P(m)q"= ] (1—¢" "2
n n=1

(6.7) Theorem 2. Introduce the following polynomials in the 5 variables ¢, h, c,, h,,
and c4:
Grs=[ch—Fhi —Fc3+ 25 (rP —1)(cc,—14c,~12¢3) + 3 (rs—1)c,]
[re s+ &2 =52 for r#s,
and
Gy o=ch—3h—%c3+ 7502 —1)(cc,—2¢c,—12¢3).

Then one has:
det,(c,h,c o hpcy)= ] ffsz ’(n—rs).

r.se€Zxo
1ZrsZn
ssr
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Proof. The proof of these two theorems is based on the following construction
from string theory.

Let L{c,, h,) be a highest weight representation of the oscillator algebra (6.2):
2"+ a,, (me Z). Given c; € R, this representation extends to the whole Lie algebra
9, provided that ¢, =0, as follows:

1 /1 .
d = <Ejeza_jan+j+/~1c3nan> if n#+0,

s
1 (hZ+c3
d0=—< S+ Y o).
Cq 2 j>0
This gives us
12 2 h2 2
L(ca,ha)=R<1+7ﬁ, “2+C3,ca,ha,c3>. (6.8)

Furthermore, a highest weight representation V{c, h) of Vir extends trivially to
9, giving

Vie,h)=R(c, h,0,0,0). (6.9)
From (6.8) and (6.9) we deduce, provided ¢,=+0:
12, 2 hZ 2
R(c, by ¢y gy ) = Licy, h)® V<c— P %) . (6.10)

Theorem 1 in the case ¢, + 0 follows from (6.10) and the known classification of
unitary highest weight representations of Vir. [We use also the trivial fact that
L{c,, h,) is unitary iff ¢,20.]

Theorem 2 follows from the analogue of (6.10) for Verma modules and the
known determinant formula for Vir. Now Theorem 1 in the case ¢,=0 follows
from Theorem 2 with ¢,=0. Q.E.D.

(6.11) Remark. Theorems 1 and 2 in the case ¢; =0 were obtained in [K], where
one can also find all the related references.
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