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Abstract

Moduli Spaces of Dynamical Systems on Pn

Alon Levy

This thesis studies the space of morphisms on Pn defined by polyno-

mials of degree d and its quotient by the conjugation action of PGL(n+

1), which should be thought of as coordinate change. First, we con-

struct the quotient using geometric invariant theory, proving that it is

a geometric quotient and that the stabilizer group in PGL(n + 1) of

each morphism is finite and bounded in terms of n and d. We then

show that when n = 1, the quotient space is rational over a field of any

characteristic.

We then study semistable reduction in this space. For every com-

plete curve C in the semistable completion of the quotient space, we

can find curves upstairs mapping down to it; this leads to an abstract

complete curve D with a projective vector bundle parametrizing maps

on the curve. The bundle is trivial iff there exists a complete curve D

in the semistable space upstairs mapping down to C; we show that for

every n and d we can find a C for which no such D exists. Finally,

in the case where D does exist, we show that, whenever it lies in the

stable space, the map from D to C is ramified only over points with

unusually large stabilizer, which for a fixed rational C will bound the

degree of the map from D to C.
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Chapter 1

Introduction and Notation

A rational map from Pn to itself is determined by an (n+ 1)-tuple of polynomials in

n + 1 variables, all homogeneous of the same degree d. If this map is a morphism,

it will be finite of degree dn. In the sequel, we will refer to a rational map defined

by such polynomials as a degree d map on Pn by abuse of terminology. The space

of degree d maps on Pn is projective, with homogeneous coordinates coming from

monomials of degree d. There are
(
n+d
d

)
such monomials, so that this space has

dimension
(
n+d
d

)
(n+ 1)− 1. We write Nn

d for the dimension of this space, or N when

d and n are clear; in the sequel, we will invariably refer to this space as PN .

The case of interest is morphisms on Pn. In the sequel, we refer to the polynomials

defining the map as q0, q1, . . . , qn. Then a map (q0 : . . . : qn) is a morphism if and

only if the qi’s share no common geometric root. The qi’s only share a common root

if (q0 : . . . : qn) lies on a hypersurface of PN , which we call the resultant subvariety

and which is defined over Z; we denote its complement by Homn
d .

The space PN of rational maps comes equipped with an action of PGL(n + 1)

by conjugation. The conjugation action A · ϕ = AϕA−1, fixes the resultant, which
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gives an action of PGL(n+ 1) on Homn
d . We study the quotient of this action, which

we denote Mn
d , or Md when n = 1. We will show that this quotient is geometric

in the sense of geometric invariant theory [10], and compute the largest stable and

semistable loci Homn,s
d and Homn,ss

d , which satisfy Homn
d ⊂ Homn,s

d ⊂ Homn,ss
d ⊂ PN .

Therefore our first task will be to recap the results of geometric invariant theory,

which we will do in section 2.

Knowing that the quotient Mn
d is well-behaved is often necessary to answer ques-

tions about the geometry of families of dynamical systems. In [12], Petsche, Szpiro,

and Tepper prove that Mn
d exists as a geometric quotient in order to show that isotrivi-

ality is equivalent to potential good reduction for morphisms of Pn over function fields,

generalizing previous results in the one-dimensional case. In [3], DeMarco uses the ex-

plicit description of the space M2 in order to study iterations of quadratic maps on P1,

and one can expect similar results in higher dimension given a better understanding

of the structure of Mn
d .

By now the theory of morphisms on P1 is the standard example in dynamical

systems. For a survey of the arithmetic theory, see [16]; also see a recent paper by

Manes [7] about moduli of morphisms on P1 with a marked point of period n, which

functions as a dynamical level structure. In the complex case, see an overview by

Milnor [9], and the work of DeMarco [2] [3] about compactifications of the space Md

that respect the iteration map. Despite this, the higher-dimensional theory remains

understudied. The only prior result in the direction of moduli of morphisms on Pn is

the proof in [12] that,



3

Theorem 1.0.1. Every ϕ ∈ Homn
d is stable.

Remark 1.0.2. This is equivalent to the statement that Mn
d exists as a geometric

quotient.

Unfortunately, the proof does not lend itself well to finding the stable and semistable

spaces for the action of PGL(n + 1) on PN . We construct two alternative proofs of

the fact that the quotient Mn
d is geometric, first by explicitly describing the sta-

ble and semistable loci, and second by finding a uniform bound for the size of the

stabilizer group in PGL(n+1). The former we will do in section 3.1, using the Hilbert-

Mumford criterion for stability and semistability. We will see that the complements

of both Homn,s
d and Homn,ss

d are equal to a finite union of linear subvarieties and their

PGL(n + 1)-conjugates; this contrasts with the n = 1 case, when the complement is

the PGL(2)-orbit of only one linear subvariety. In section 3.2 we will provide a second

alternative proof by proving:

Theorem 1.0.3. The stabilizer of every point in Homn
d , d > 1, is a finite group of

order bounded in terms of n and d.

Many of the above results are a natural generalization of the study of morphisms

on P1 in [15], which refers to the space of morphisms as Ratd and its quotient as Md,

and which proves that M2
∼=Spec Z A2 using the theories of fixed points and multipliers.

Specializing to the case where n = 1, we will prove in section 3.3 that,

Theorem 1.0.4. Md is rational over any field of definition.
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The proof is based on showing that Md is birational to a vector bundle over the

space M0,d+1 of d+ 1 unmarked points on P1, which is known to be rational.

Unfortunately, we do not see any easy generalization of rationality to Mn
d . The

obstruction is that the space of unmarked points on Pn is not known to be rational.

Clearly Homn
d is rational, so Mn

d is unirational, which for some applications, such as

the density of points defined over a number field K, is enough. However, in order to

investigate the structure of Mn
d we need more than that. We do not expect a result

along the lines of that in [15], that M2
∼= A2, but we do expect rationality of Mn

d .

Afterward, we investigate semistable reduction in Homn,ss
d . It is known from

geometric invariant theory that,

Theorem 1.0.5. If C is a complete curve with K(C) its function field, and if ϕK(C) is

a semistable rational map on PnK(C), then there exists a curve D mapping finite-to-one

onto C with a Pn-bundle P(E) on D with a self-map Φ such that,

1. The restriction of Φ to the fiber of each x ∈ D, ϕx, is a semistable rational

self-map.

2. Φ is a semistable map over K(D), and is equivalent to ϕK(D) under coordinate

change.

This comes from the following general result:

Theorem 1.0.6. Let R be a discrete valuation ring with fraction field K, and let

ϕK ∈ Mn,ss
d × SpecK. Then for some finite extension K ′ of K, with R′ the integral
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closure of R in K ′, ϕK has an integral model over R′ with semistable reduction modulo

the maximal ideal. In other words, for ϕK ∈ Homn,ss
d × SpecK, we can find some

A ∈ PGL(n+ 1, K) such that AϕKA
−1 has semistable reduction.

Although this is a standard proof from geometric invariant theory, we include a

proof for completeness in section 4.1, as well as a more explicit coordinate-wise proof

for n = 1 in section 4.2 in order to find a bound for the degree of the field extension.

We investigate a stronger statement than semistable reduction, claiming that for

every C we obtain a complete D in Homn,ss
d mapping finite-to-one onto C; in the

formulation of Theorem 1.0.5, this is equivalent to the existence of a trivial bundle

class. Such a result is false, and we provide a counterexample for every n and d,

which in the case n = 1 is the curve xd + c, and for higher n is one of the obvious

generalizations, namely (xd0 +cxd1 : xd1 : . . . : xdn). We show this in sections 4.3 and 4.4.

In principle, we would expect almost all curves C to admit a complete D upstairs.

This is because the unstable locus in PN has very high codimension, and therefore

the preimage of C in PN should not intersect it, or should intersect it in a high-

codimension locus. However, it turns out that in Mss
2
∼= P2, almost all lines would

not admit a complete D upstairs. To do this, we prove the following results, valid for

a general geometric invariant theory setting:

Proposition 1.0.7. Let X be a projective variety over an algebraically closed field

with an action by a geometrically reductive linear algebraic group G. Using the ter-

minology of geometric invariant theory, let D be a complete curve in the stable space

Xs whose quotient by G is a complete curve C; say the map from D to C has degree
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m. Suppose the stabilizer is generically finite, of size h, and either D or C is normal.

Then there exists a finite subgroup SD ⊆ G, of order equal to mh, such that for all

x ∈ D and g ∈ G, gx ∈ D iff g ∈ SD.

Corollary 1.0.8. With the same notation and conditions as in Proposition 4.1.5, the

map from D to C is ramified precisely at points x ∈ D where the stabilizer group is

larger than h, and intersects SD in a larger subgroup than in the generic case.

These results constrain the possibilities of D too much, and using intersection

numbers, we can derive a contradiction for most lines in Mss
2 . This only works because

we know the isomorphism class of Mss
2 , so it cannot extend so easily to higher n and

d.
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Chapter 2

A Review of Geometric Invariant

Theory

When a geometrically reductive linear algebraic group G has a linear action on a

projectivized vector space P(V ), we have,

Definition 2.0.9. A point x ∈ V is called semistable (resp. stable) if any of the

following equivalent conditions hold:

1. There exists a G-invariant homogeneous section s such that s(x) 6= 0 (resp.

same condition, and the action of G on x is closed).

2. The closure of G · x does not contain 0 (resp. G · x is closed).

3. Every one-parameter subgroup T acts on x with both nonnegative and nonpos-

itive weights (resp. negative and positive weights).

Remark 2.0.10. The last condition in the definition is equivalent to having nonpositive

(resp. negative) weights. This is because if we can find a subgroup acting with only

negative weights, then we can take its inverse and obtain only positive weights.
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Observe that for every nonzero scalar k, x is stable (resp. semistable) if and only

if kx is. So the same definitions of stability and semistability hold for points of P(V ).

The definitions also descend to every G-invariant projective variety X ⊆ P(V ); in

fact, in [10] they are defined for X in terms of a G-equivariant line bundle L. When

L is ample, as in the case of Homn
d and its projective closure, this reduces to the

above definition.

The importance of stability is captured in the following prior results:

Proposition 2.0.11. The space of all stable points, Xs, and the space of all semistable

points, Xss, are both open and G-invariant.

Theorem 2.0.12. There exists a quotient Y = Xss//G, called a good categorical

quotient, with a natural map π : X → Y , satisfying the following properties:

1. π is a G-equivariant map, where G acts on Y trivially.

2. Every G-equivariant map X → Z, where G acts on Z trivially, factors through

π.

3. π is an open submersion.

4. π(x1) = π(x2) iff the closures of G · x1 and G · x2 intersect.

5. For every open U ⊆ Y , OU = O(π−1(U))G.

In addition, Y is proper.

Theorem 2.0.13. There exists a quotient Z = Xs//G, called a good geometric quo-

tient, with a natural map π : X → Z satisfying all enumerated conditions of a good

categorial quotient, as well as the following:
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1. π(x1) = π(x2) iff G · x1 = G · x2.

2. Z is naturally an open subset of Xss//G.

Theorem 2.0.14. On Xs, the dimension of the stabilizer group StabG(x) is constant.

Returning to our case of self-maps of Pn, we write the stable and semistable

spaces for the conjugation action as Homn,s
d and Homn,ss

d . This involves a fair amount

of abuse of notation, since those two spaces are open subvarieties of PN and as we

will show properly contain Homn
d , which consists only of regular maps.

We use the Hilbert-Mumford criterion, which is the last condition in Defini-

tion 2.0.9. In more explicit terms, the criterion for semistability (resp. stability)

states that for every one-parameter subgroup T ≤ SL(n + 1), the action of T on

ϕ can be diagonalized with eigenvalues taI and at least one aI is nonpositive (resp.

negative). Trivially, we may replace T with T−1, so that semistability requires both a

nonpositive weight and a nonnegative weight, and stability requires both a negative

weight and a positive weight.

Remark 2.0.15. The best way to interpret the Hilbert-Mumford criterion is as follows:

if there exist a positive weight and a negative weight, then T · x ⊂ V looks like a

hyperbola, so that it is closed. If there exist positive weights and a zero weight, then

T · x looks like a punctured line, with an extra closure that is not zero. And if there

exist only positive weights, then T · x will go to zero in the limit.

If n = 1, we have a relatively simple description, due to Silverman [15]:
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Theorem 2.0.16. ϕ ∈ PN is unstable (resp. not stable) iff it is equivalent under

coordinate change to a map (a0x
d + . . .+ ady

d)/(b0x
d + . . .+ bdy

d), such that:

1. ai = 0 for all i ≤ (d− 1)/2 (resp. <).

2. bi = 0 for all i ≤ (d+ 1)/2 (resp. <).

The description for n = 1 can be thought of as giving a dynamical criterion for

stability and semistability. A point ϕ ∈ PN is unstable if there exists a point x ∈ P1

where ϕ has a bad point of degree more than (d + 1)/2, or ϕ has a bad point of

degree more than (d − 1)/2 where it in addition has a fixed point. Following Rahul

Pandharipande’s unpublished reinterpretation of [15], we define “bad point” as a

vertical component of the graph Γϕ ⊆ P1 × P1, and “fixed point” as a fixed point of

the unique non-vertical component of Γϕ. When n = 1, d = 2, this condition reduces

to having a fixed point at a bad point, or alternatively a repeated bad point.

The conditions for higher n are not as geometric. However, if we interpret fixed

points liberally enough, there are still strong parallels with the n = 1 case. One

can show that the unstable space for n = 2 and d = 2 consists of two irreducible

components, which roughly generalize the n = 1, d = 2 condition of having a fixed

point at a bad point; in this case, one needs to define a limit of the value of ϕ(x) as x

approaches the bad point, though this limit can be defined purely in terms of degrees

of polynomials, without needing to resort to a specific metric on the base field.
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Chapter 3

The Spaces Homn
d and Mn

d

3.1 The Construction of Mn
d

The space Homn
d of degree-d morphisms on Pn arises as the subset of PN = {(q0 :

q1 : . . . : qn)}, defined by the condition that the qi’s share no common root. In order

to give this space an algebraic structure, we investigate its complement. We will

show the following result, proven by Macaulay [6] and reinterpreted here in modern

language (see also [4] for a more complete treatment):

Theorem 3.1.1. The maps on Pn of degree d such that the qi’s share a nonzero root

form a closed, irreducible subvariety of PN of codimension 1, which is defined over Z.

Proof. Consider the variety V = Pn × PN . We think of V as representing a set of

polynomials (q0 : q1 : . . . : qn) acting on the point (x0 : x1 : . . . : xn). Consider the

resultant subvariety U ⊂ V defined by the condition that qi(x) = 0 for all i. This

variety clearly has codimension at most n+ 1. If we denote the variables defining PN

as ai
ji
0j

i
1...j

i
n

with ji0 + . . .+ jin = d, representing the x
ji
0

0 . . . x
ji
n
n monomial of qi, then we

see that U is defined by equations that are bihomogeneous of degree 1 in the aiJ ’s and
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d in the xi’s.

We claim that U is irreducible. The claim follows from a generalization of the fact

that a primitive polynomial is irreducible over a domain whenever it is irreducible

over its fraction field. More precisely, let R be a domain with fraction field K, and

let I be an ideal of R[y1, . . . , ym] that is not contained in any prime of R. We have

a natural map f from SpecK[y1, . . . , ym] to SpecR[y1, . . . , ym]. If V (I) is reducible

over R, say V (I) = V1 ∪ V2 with Vi nonempty, then either V (I) is reducible over

K, or one f−1(Vi), say f−1(V1), is empty. In the latter case, I(V1) may not contain

nonconstant polynomials, so it contains at least one prime constant. This contradicts

the assumption that I is not contained in any prime of R; hence, V (I) is reducible

over K.

With the above generalization, suppose that U is reducible. Then it is also re-

ducible as a subvariety of An+1 × AN+1. Further, by letting R = Z[x0, . . . , xn] and

K be its fraction field, we see that either U is contained in a prime of R, or U is

reducible in AN+1
K . The former case is impossible since U is not contained in any

prime of Z or any relevant prime ideal of the ring of polynomials over Z, and the

latter is impossible since it is defined by linear equations in the aiJ ’s. Either way this

is a contradiction, so U is irreducible and the claim is proven.

Finally, the maps on Pn of degree d whose polynomials have a common nonzero

root arise as the projection of U onto the second factor of Pn × PN . It is irreducible

because the projection map is surjective. It is closed because the map is proper. It

has codimension at most 1 because almost all polynomials in U share just one root, so
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that the dimension of U and its image are equal. It has exact codimension 1 because

some maps, for instance qi = xdi , are morphisms. And it is defined over Z because

every construction we have made in this proof is defined over Z.

We call the image of U the resultant subvariety of PN ; we call its generating

polynomial the Macaulay resultant and denote it by Resnd . Macaulay proved the

theorem by constructing the resultant explicitly for homogeneous polynomials pi of

arbitrary degrees, and showing that it has integer coefficients and is irreducible. His

explicit construction shows that if the polynomials p0, p1, . . . , pn are homogeneous of

degrees d0, d1, . . . , dn, then the resultant is (n+ 1)-homogeneous in the coefficients of

each polynomial pi of degree
∏

j 6=i dj. In our case, all the degrees are equal to d, so

that the resultant is (n + 1)-homogeneous in the coefficients of each qi of degree dn.

In particular, the resultant subvariety is a hypersurface of degree (n+ 1)dn.

Theorem 3.1.1 shows that the space of morphisms is the complement of the re-

sultant subvariety, and is therefore affine and of dimension N ; we will refer to it as

Homn
d , and to the resultant subvariety as Resnd by abuse of notation. Silverman [15],

who only considers the case n = 1, denotes the space of morphisms by Ratd, and

Petsche, Szpiro, and Tepper [12] denote the space of morphisms by Endnd .

The action of PGL(n+ 1) on Pn leads to a conjugation action on Homn
d , wherein

A ∈ PGL(n+ 1) acts on a rational map ϕ by sending it to AϕA−1. The property of

being ill-defined at a point is stable under both the left action mapping ϕ to Aϕ and

the right action mapping ϕ to ϕA−1; hence, the conjugation action is well-defined on

Homn
d . The space of endomorphisms of Pn defined by degree-d polynomials may be
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regarded as the quotient of Homn
d by the conjugation action.

A priori, we only know that over an algebraically closed field, the quotient exists

as a set. In order to give it algebraic structure, we need to pass to the stable or

semistable space in geometric invariant theory. Fortunately, we have the following

result:

Theorem 3.1.2. Every ϕ ∈ Homn
d is stable.

Proof. We use the Hilbert-Mumford criterion. To do that, we pull back the action of

PGL(n + 1) on PN to the action of SL(n + 1) on AN+1, and consider one-parameter

subgroups of SL(n + 1). Recall that a point lies in the stable space Homn,s
d (respec-

tively, the semistable space Homn,ss
d ) iff for every such subgroup, its action on the

point can be diagonalized with diagonal elements taI , and at least one aI is negative

(resp. non-positive).

Note that the action of A ∈ SL(n + 1) on ϕ ∈ AN+1 is conjugate to the action

of BAB−1 on BϕB−1. In particular, it will have the same eigenvalues, so the action

of a one-parameter subgroup T = Gm will have the same aI ’s. Therefore, we may

conjugate T to be diagonal, which will be enough to give us criteria for stability

and semistability up to conjugation. So from now on, we assume T is the diagonal

subgroup whose ith diagonal entry is tai , ai ∈ Z. Here we label the rows and columns

from 0 to n, in parallel with the label for the qi’s. We have a0 + . . .+an = 0. We may

also assume that a0 ≥ a1 ≥ . . . ≥ an, after conjugation if necessary, and that the ai’s

are coprime.

The action of T on AN+1 is already diagonal. We denote the xd coefficient of qi
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by cd(i); then T multiplies cd(i) by tait−(a0d0+...+andn). A point ϕ is not stable (resp.

unstable) if for some choice of T , all the cd(i)’s for which a0d0 + . . .+andn > ai (resp.

a0d0 + . . .+andn ≥ ai) are zero. Let us observe that this means that, for d > 1, every

xd0 coefficient has to be zero, as we will have da0 > a0 ≥ ai for every i. This means

that ϕ has no xd0 term, so that the qi’s have a nontrivial zero at (1 : 0 : . . . : 0), and

ϕ /∈ Homn
d . The property of not being a morphism is preserved under conjugation,

proving the theorem.

Since Homn
d is stable, it has a natural geometric quotient induced by the PGL(n+1)

action on PN , which we denote by Mn
d ; as Homn

d is affine, Mn
d is affine, with struc-

ture sheaf OSL(n+1)
Homn

d
. We may also write Mn,s

d for the quotient of the stable space and

Mn,ss
d for the quotient of the semistable space. The latter quotient is only categorical,

rather than geometric, but will be proper over Spec Z (all spaces in question, as well

as SL(n+ 1), are defined over Z; hence, so are the quotients), so it can be written as

ProjOSL(n+1)

PN .

In the n = 1 case, T depends only on a0, which may be taken to be 1. This

gives us only one criterion for stability (resp. semi-stability), which means that the

not-stable (resp. unstable) space is irreducible (in fact, it will be a linear subvariety

and its orbit under PGL(2)-conjugation). The only T has a0 = 1, a1 = −1, so

a0d0 + a1d1 = d0 − d1 = 2d0 − d. When d is even, 2d0 − d is always even, so

the conditions a0d0 + a1d1 > ai and a0d0 + a1d1 ≥ ai coincide, and the stable and

semistable spaces are the same. This is the proof given in [15] for Theorem 2.0.16.

When n > 1, T depends on multiple variables, and we can find many infinite
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families of coprime ai’s that sum to 0 and are in decreasing order. However, the

not-stable (resp. unstable) space will still be a union of finitely many linear sub-

varieties and their orbits under conjugation by PGL(n + 1), where the number of

linear subvarieties generally grows with d and n. This is because there are only 2N+1

linear spaces defined by conditions of the form cd(i) = 0 for a collection J of (d, i)

pairs. For each such space, either there exists a T such that (d, i) ∈ J if and only if

a0d0 + . . . + andn > ai (resp. a0d0 + . . . + andn ≥ ai), or there doesn’t. Of course,

a given J may correspond to infinitely many T , which will in general have ratios

a0 : . . . : an that are close in the archimedean metric.

We omit the calculation of the linear subvarieties that occur as the not-stable

(resp. unstable) space for each d and n, as well as the number of such varieties. We

will just note that there are far fewer than 2N+1 such varieties: for a start, we have

already seen that ((d, 0, . . . , 0), i) ∈ J for all i. One more constraint that follows

trivially from the definition of the ai’s is that if (d, i) ∈ J , then so is (d, j) for j > i.

Put another way, not being stable (resp. instability) imposes more conditions on qj

than on qi for j > i. It may also be shown that for each T the number of conditions

is roughly between one half and e−1 times N ; we omit the proof, as this result will

not be relevant in the remainder of this thesis.

Unlike in the case of n = 1, we have:

Proposition 3.1.3. For all d, n > 1, we have Homn,s
d ( Homn,ss

d .

Proof. First, observe that if we set a0 = 1, an = −1, and ai = 0 for i 6= 0, n, we

obtain a0d0 + . . . + andn = d0 − dn, which may take any value between −d and d
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inclusive. Hence, the conditions a0d0 + . . .+andn > ai and a0d0 + . . .+andn ≥ ai will

not coincide.

Now, suppose that ϕ is a point that is not stable, with cd(i) = 0 if and only if

d0 − dn > ai with ai as above. If ϕ is unstable, then we can find some T such that if

a0d0 + . . .+andn ≥ a0 then d0−dn > 1, and if a0d0 + . . .+andn ≥ ai for i 6= 0, n, then

d0−dn > 0. If for that T we have a1 ≥ 0, then looking at the x0x
d−1
1 monomial, we get

a0d0 + . . .+andn = a0 +(d−1)a1 ≥ a0 but d0−dn = 1, a contradiction. If a1 < 0, then

we must have ai < 0 for all i > 0, so a0+an > 0. For d = 2k+1, we consider the xk+1
0 xkn

monomial, for which a0d0+. . .+andn = k(a0+an)+a0 > a0 but d0−dn = 1; for d = 2k,

we consider the xk0x
k
n monomial, for which a0d0 + . . . + andn = k(a0 + an) > 0 > a1

but d0 − dn = 0. Either way, we have a contradiction, so ϕ is semistable but not

stable.

We will conclude this section with the following strict containment:

Proposition 3.1.4. Homn
d ( Homn,s

d .

Proof. Observe that the linear subvarieties defined above are invariant under conju-

gation by every upper triangular matrix, at least when we ensure a0 ≥ a1 ≥ . . . ≥ an.

Hence, the codimension of the not-stable space is equal to the codimension of the

largest linear subvariety, minus n(n + 1)/2. It suffices to show this codimension is

more than 1, or, in other words, that every linear subvariety has codimension at least

n(n+ 1)/2 + 2. We will consider two cases.

Case 1. a1 ≥ 0. When d0 > 0, the xd00 x
d1
1 monomial has a0d0 + a1d1 > a1, so it is

zero for all qi’s except q0; when d0 > 1 it is also zero for q0, since a0d0 + a1d1 ≥ 2a0.
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This gives us a total codimension of n2 + (n− 1), which is larger than n(n+ 1)/2 + 1

for all n ≥ 2. When n = 1 this case is impossible because we need to have a0 +a1 = 0.

Case 2. a1 < 0. We have a0 = −(a1 + . . . + an) > −ai for all i; therefore, the

xd−1
0 xi monomial is zero in every qj except q0; the xd0 monomial is always zero. This

gives us a codimension of n2 + n+ 1, which is large enough for all n.

Remark 3.1.5. The larger spaces Homn,s
d and Homn,ss

d are more interesting in the

study of moduli spaces more than in that of dynamical systems. The problem is that

we cannot always iterate rational maps which are not morphisms, even if they are

stable: the image may not be dense, and may eventually map to a locus on which

the map is ill-defined. A map of the form (q : 0 : 0 : . . . : 0) with q(1, 0, . . . , 0) = 0

will be impossible to iterate. For general q, it will also be stable for large d, because

we will have a0d0 + . . . + andn > a0 for many different d’s no matter how we choose

the ai’s, even after conjugation. When n = 1, it suffices to have d ≥ 4, because then

ϕ is unstable only if it is of the form (p : q) with p and q sharing a common root of

multiplicity at least (d− 1)/2, and we may pick a map (q : 0) with q having distinct

roots. For one approach for giving a completion of Homn
d in a way that permits

iteration at the boundary, see [2].

3.2 Stabilizer Groups

Each morphism in Homn
d , and more generally each rational map, has a well-defined

stabilizer group in PGL(n + 1). This group remains well-defined up to conjugation

after descent to Mn
d , or more generally Mn,ss

d . This stabilizer will be finite, at least on
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Mn,s
d , from standard facts from geometric invariant theory. We will study the possible

subgroups of PGL(n + 1) that may occur as stabilizers of morphisms. We gain very

little by assuming Theorem 3.1.2, so we might as well not assume it a priori ; this will

provide an alternative proof for it.

Note that the resultant is a PGL(n + 1)-invariant section of a PGL(n + 1)-

linearizable divisor on PN that is nonzero on Homn
d . Therefore, on Homn

d stability

is equivalent to having closed fibers, which is equivalent to having a stabilizer group

of the lowest possible dimension (see chapter 1 of [10]). Hence, to provide a second

proof of Theorem 3.1.2, it suffices to show that the stabilizer of every ϕ ∈ Homn
d is

finite. This was done in [12]. We will prove a stronger result:

Theorem 3.2.1. The stabilizer of every point in Homn
d , d > 1, is a finite group of

order bounded in terms of n and d.

Proof. Note that if A ∈ Stab(ϕ), then BAB−1 ∈ Stab(BϕB−1). Therefore, when con-

sidering individual stabilizing matrices, we may assume they are in Jordan canonical

form. We use the following result:

Lemma 3.2.2. If A ∈ Stab(ϕ), and ϕ is not purely inseparable, then A is diagonal-

izable.

Proof. In characteristic zero, this is trivial given Theorem 3.1.2. However, it is not

trivial in characteristic p; the proof works for every characteristic, so we lose nothing

from not using Theorem 3.1.2.

We will assume that A is not diagonalizable and derive a contradiction. It suffices

to assume that A is a Jordan matrix whose largest Jordan block is of size r > 1. After
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conjugation and scaling, we may assume that the first Jordan block is also the largest,

and has eigenvalue 1. We will label the rows and columns from 0 to n, in parallel

with the labels for the qi’s. We will also write ϕ = (q0 : q1 : . . . : qn), ki = aii for the

eigenvalue in the ith position, and ri for the size of the Jordan block containing aii.

We have r0 = r, k0 = 1, ri ≤ r.

Note that the inverse of the first Jordan block is the matrix with zeroes below

the main diagonal and aij = (−1)i−j on or above it. Therefore, each vector x =

(x0, x1, . . . , xn) is transformed to:

x′ = (x0 − x1 + . . .± xr−1, x1 − x2 + . . .∓ xr−1, . . . , xr−1, . . . ,
1

kn
xn)

We write q′i(x) = qi(x
′). Similarly, A transforms ϕ = (q0, . . . , qn) to:

ϕ′ = (q′0 + q′1, q
′
1 + q′2, . . . , q

′
r−1, . . . , knq

′
n)

Since A stabilizes ϕ, we need ϕ′ to be a scalar multiple of ϕ.

For each d ∈ Zn+1, we denote the xd coefficient of qi (respectively q′i) by cd(i)

(resp. c′d(i)). We suppress trailing zeroes for simplicity, so that cd denotes the xd0

coefficient. We are looking for the largest i such that cd(i) 6= 0; such an i exists, or

else (1 : 0 : . . . : 0) is a common root of all the qi’s. As the only xd0 term in x′d

comes from x′d0 , we have c′d(j) = cd(j) for all j. Now in ϕ′, the ith term is either q′i or

q′i + kiq
′
i+1, so that its xd0 coefficient is kicd(i). This implies that the scaling factor is

ki, i.e. ϕ′ = kiϕ.

Now, assume that i is not at the beginning of its Jordan block, that is that
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ai−1,i = 1. Then ki−1 = ki, and the fact that ϕ′ = kiϕ implies that:

ki−1c
′
d(i− 1) + c′d(i) = kicd(i− 1)

This reduces to cd(i) = 0, a contradiction. Therefore, i is at the beginning of its

Jordan block.

Let us now consider the xd−1
0 x1 coefficients, and assume throughout that all indices

are in the same Jordan block as i. We have c′d−1,1(j) = cd−1,1(j)− dcd(j). For j > i,

this reduces to c′d−1,1(j) = cd−1,1(j). Conversely, the corresponding term to cd−1,1 in

ϕ′ = kiϕ will be kic
′
d−1,1(j) + c′d−1,1(j+ 1) = kicd−1,1(j). When j > i, this implies that

c′d−1,1(j + 1) = 0, so that cd−1,1(j) = 0 for j > i + 1; conversely, for i + 1, we obtain

kic
′
d−1,1(i) + c′d−1,1(i + 1) = kicd−1,1(i), which reduces to cd−1,1(i + 1) = kidcd(i) 6= 0.

This shows that i + 1 is the largest index with a nonzero xd−1
0 x1 coefficient, at least

in the Jordan block containing i.

We may apply induction on s(d) = d1 +2d2 + . . .+(r−1)dr−1, and find that in the

Jordan block containing i, the largest index with a nonzero xd coefficient is i+ s(d).

Note that the Jordan block has ri ≤ r elements, but the number of monomial indices

attached to the first Jordan block is (r−1)d+1, which is strictly greater than r when

d, r > 1. This is a contradiction: the last element of the Jordan block has kic
′
d = kicd

for all d, i.e. cd(i+ ri − 1)′ = cd(i+ ri − 1), but that last equality is only true when

s(d) ≤ ri, which is not the case for all d. Since we are assuming d > 1, we must have

r = 1, and we are done.

The careful reader may note that the proof that i + s is the largest index with a
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nonzero xd coefficient for s(d) = s makes an assumption about the characteristic we

are working in. In characteristic zero, d 6= 0 and there is no problem. In characteristic

p, we need to treat separately the case when p < d. Then for example we may have

p | d, so that c′d−1,1(j) = cd−1,1(j) for all j, and cd−1,1(i + 1) may be zero. Note that

the number of monomial indices containing xd−2
0 attached to the first Jordan block is

2(r − 1) + 1, which is strictly greater than r when r > 1; when p - d(d− 1), we may

restrict ourselves to such monomials, and the proof proceeds as in characteristic zero.

When p | d − 1, we may restrict ourselves to monomials containing xd−1
0 , and

proceed with the proof. We will only encounter an obstruction if ri = r and only

at the end of the Jordan block, where the existence of a nonzero xd−1
0 xr−1 monomial

does not guarantee that of xd−2
0 x1xr−1. However, the action of A on qi+r−1 takes it

to kiq
′
i+r−1, and we must have c′d(i + r − 1) = cd(i + r − 1) for all d. If we write

d − 1 = plm,m - p, then we see that xd−1
0 xr−1 is transformed to ki(x0 − x1 + . . . ±

xr−1)
d−1xr−1 = ki(x

pl

0 − . . .± x
pl

r−1)
mxr−1 which shows that the x

pl(m−1)
0 xp

l

1 monomial

does not satisfy c′d(i+ r − 1) = cd(i+ r − 1). This yields a contradiction.

Finally, when p | d, we may write d = plm with p - m. When m > 1, we apply

exactly the same proof as in characteristic zero, except that we write m instead of d

and mj = dj/p
l instead of dj; then we define s(d) = m1 + . . .+(r−1)mr−1, and in the

Jordan block containing i, the largest index with a nonzero xd coefficient is i+ s(d).

As m > 1, we have (r − 1)m + 1 > r for r > 1, and we have the same contradiction

as in the characteristic zero case. Note that when m = 1, we may derive the same

contradiction from any nonzero monomial not of the form xdj , which must exist if ϕ
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is not purely inseparable. Hence, if ϕ has a non-diagonalizable stabilizer then it is

purely inseparable and we are done.

With the above lemma, we know that any abelian subgroup of Stab(ϕ) ∈ GL(n+1)

will be simultaneously diagonalizable, unless ϕ is purely inseparable. We will prove

the following uniform bound on the size of abelian stablizing subgroups:

Lemma 3.2.3. Every diagonal subgroup stabilizing ϕ ∈ Homn
d is of size at most dn+1.

Proof. A diagonal matrix A with diagonal entries (a0, a1, . . . , an) acts on each qi by

multiplying cd(i) by ai/
(
ad00 . . . adn

n

)
. Our case of interest will be the xdj coefficients.

Each has to be nonzero for at least one i, which induces the equation ai = adj . Note

that we may set the scaling factor k to be 1, since the scalar matrix k1/(1−d) multiplies

every coefficient by k.

Now, we have at least n + 1 different relations ai = adj . We may drop relations

until each j has just one i such that such a relation holds; dropping relations will

increase the size of the group, so by bounding the size of the larger group, we will

bound the size of any automorphism group.

We obtain a function j 7→ i. If the function is bijective, we may write it as a

product of disjoint cycles, and conjugate to get the cycles to be (0 1 . . . s1−1) . . . (n−

sk + 1 . . . n), where here ri denotes the length of the ith cycle, and has nothing to

do with the definition in Lemma 3.2.2. Then ad
r1

0 = a0 and a0 is a root of unity of

order dividing dr1 − 1, the choice of which uniquely determines ai, 0 ≤ i ≤ r1− 1. We

have similar results for ar1 , . . . , an−rk+1; since
∑
ri = n + 1, this bounds the size of
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the group by dn+1.

In general, of course, the function j 7→ i may not be bijective, so we can only

write it as a product of precycles, whose cycles are disjoint. Here a precycle means a

cycle and zero or more tails. The above discussion applies to the cycles. For the tails,

suppose without loss of generality that (0 1 . . . r) is a tail where r and no element

before it is part of a cycle; then the choice of ar determines a choice of d possibilities

for ar−1 and in general ds for ar−s subject to the obvious compatibility condition. This

clearly respects the bound of dn+1: if m is the total number of elements in cycles,

then we have at most mn+1 possibilities for the cycles, each of which gives us exactly

(d−m)n+1 possibilities for the tails.

The bound dn+1 works for abelian stabilizing subgroups in the purely inseparable

case as well. We may view a purely inseparable ϕ as the action of raising every

coefficient to the dth power followed by the matrix B. Then AϕA−1 = ϕ if and only

if ABA−1
d = B, where Ad is the image of the matrix A under the homomorphism of

raising every entry to the dth power; we need to show that the group of such A, which

we will write as Stab(B), is finite. Since A and Ad are conjugate, all eigenvalues of

A are in Fd.

We may conjugate an abelian stabilizing subgroup G to obtain a block diagonal

group with each block upper triangular and with its (i, j) entry depending only on

j − i. We may also fix one element, C to be in Jordan canonical form, in which case

we will have Cd = C and thus BC = CB. Then B is in block form; labeling the

blocks by r, s and the rth block of C by Cr, we see that the Brs is nonzero if and only
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if the blocks r and s are of the same size and equal for every element of Stab(B), and

in any case Brs commutes with Cr = Cs, so it is upper triangular with its (i, j) entry

depending only on j − i. In particular, it commutes with every Ar = As, so that B

commutes with G. Hence for all A ∈ G, we have AB = BA and ABA−1
d = B, so

that A = Ad and A has entries in Fd. Furthermore, for each block in G of size r, we

have r positive possibilities for j − i, inducing dr possible blocks, and dn+1 possible

matrices in G.

Note that we may have additional stabilizing matrices in PGL(n+1). These occur

when there exists an automorphism of the set {0, 1, . . . , n} that does not leave the

diagonal vector a = (a0, . . . , an) ∈ An+1 fixed, but does fix a = (a0 : . . . : an) ∈ Pn.

Since the automorphism has to fix a0a1 . . . an, we see that it must send each ai to

ζai where ζ is a root of unity of order at most n + 1; hence there are at most n + 1

possibilities for such an automorphism, modulo automorphisms that fix a ∈ An+1 and

are hence simultaneously block-diagonalizable with A.

We will rely on one final bound, due to G. A. Miller [8]:

Proposition 3.2.4. The size of a finite group is bounded in terms of the size of its

largest abelian subgroup.

Proof. It suffices to show this for p-groups. For each n, we let k(n) be the minimal

exponent of the largest abelian subgroup of any p-group of exponent n. Furthermore,

for each l ≤ n, we let k(n, l) be the minimal exponent subject to the restriction that

Z = Z(G) have exponent l, so that k(n) = min{k(n, l)}. It is enough to show that

limn→∞ k(n) =∞.
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It is trivial to show that k(2) = 2. In general, for a p-group of exponent n and

center of exponent l, let g be such that g /∈ Z, gp ∈ Z, and gZ ∈ Z(G/Z). Unless

G is abelian, in which case the result is trivial, we may take g to be a preimage of a

nontrivial element in the socle of G/Z, i.e. a nontrivial element of Z(G/Z) of order

p. For every h ∈ G, hgh−1 = gz for some z ∈ Z; we obtain a group homomorphism

h 7→ z from G to Z. The homomorphism has kernel K of exponent at least n− l and

center containing 〈Z, g〉. Any abelian subgroup of K will be an abelian subgroup of

G, so that we obtain k(n, l) ≥ k(n− l, l + 1). It easily follows that k(n) ≥ 2
√
n.

The bound in the above proposition is very weak. It is known that for odd p we

have k(n) ≤ (n + 4)/3 and for p = 2 we have k(n) ≤ 2(n + 3)/5 [1], but little more.

However, we can show,

Proposition 3.2.5. The bound in Theorem 3.2.1 is sub-exponential in dn+1.

Proof. The fact that k(n) ≥ 2
√
n is equivalent to the fact that for a fixed r = k(n),

n ≤ r(r + 1)/2. Now if G is a finite group, and for every p dividing the order of G,

the largest abelian p-subgroup of G has size prp , then |G| ≤
∏
prp(rp+1)/2. Trivially,

we have rp ≤ log2 p
rp ≤ log2 |G|, and trivially we have

∏
prp ≤ |G|; therefore, |G| is

bounded by (
∏
prp)(1+log

∏
prp )/2.

Now, let us return to the notation of the main theorem, where n is the ambient

dimension rather than the exponent of a group. We list all the primes dividing (n+1),

d, and di−1 for 1 ≤ i ≤ n+1, together with the maximal multiplicities with which they

could divide the order of an abelian stabilizer that is bounded by (n+1)dn+1. It would
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be enough to list the primes and multiplicities dividing (n+ 1)dn+1
∏

ij≤n+1(d
i − 1)j.

Now we have,

(n+ 1)dn+1
∏

ij≤n+1

(di − 1)j ≤ (n+ 1)dn+1d(n+1)(1+ 1
2
+...+ 1

n+1
) ≤ (n+ 1)d(n+1)(2+logn)

Using the bound for a general G above, we can bound the stabilizer by,

(
(n+ 1)d(n+1)(2+logn)

) 1+log((n+1)d(n+1)(2+log n))
2

The logarithm of this expression grows roughly as log2
(
(n+ 1)d(n+1)(2+logn)

)
, which

grows more slowly than dn+1. Hence the bound is sub-exponential.

Note that there is no way to make the bound polynomial in d without improving

the bound in Proposition 3.2.4 to k(n) ≥ n/r for a fixed r.

Note also that proposition 3.2.4 does not show a priori that the group has to be

finite, only that if it is finite then its size is bounded. We may use Theorem 3.1.2

and finish. However, with little additional effort, we may prove finiteness directly,

providing an alternative proof that all morphisms are stable. The fact that finite im-

plies uniformly bounded means that it is enough to show that every finitely generated

stabilizing subgroup is finite. More precisely:

Proposition 3.2.6. Every finitely generated subgroup of PGL(n) contained in finitely

many finite-order conjugacy classes is finite.

Proof. Let R be the Z-algebra generated by the finitely many coefficients of the

generators. Then the group is contained in PGL(n,R), and we may project it into
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the finite group PGL(n,R/m) where m is a maximal ideal in R; we will show the map

can be chosen to be injective. In fact, each non-unipotent conjugacy class i contains

two different eigenvalues, ai1 , ai2 ; therefore, if we choose m not to contain ai1 − ai2 ,

which we can since there are only finitely many such elements, then the map will

have unipotent kernel. In characteristic 0, the only finite-order unipotent matrix is

the identity, so the map is injective and we are done.

In characteristic p, we obtain a finite-index and hence finitely generated unipotent

group. We may conjugate it by some matrix P to be upper triangular; then matrix

multiplication is equivalent to addition of the (r, r+ 1) entry for any r, and the finite

generation implies that the set of all (r, r+1) entries lies in a finitely generated Z/pZ-

vector space, which is finite. For the matrices with all (r, r + k) entries for all k ≤ l,

matrix multiplication corresponds to addition of (r, r+ l+1) entries, and we may add

those entries to our vector space, which will remain finite. We may now construct m

to avoid the finite vector space and the determinant of P , as well as the eigenvalue

differences described above. The map will then be injective.

Note that in the proof of proposition we make no assumption on the base ring.

Of course, the argument in the proposition applies to GL(n + 1), and shows that

the answer to Burnside’s problem, which asks whether a finitely generated group

of bounded exponent is necessarily finite, is yes when restricted to subgroups with

faithful finite-dimensional representations over some field.

For each stabilizer group G ∈ PGL(n + 1), there is a closed subscheme Fix(G) ∈

Homn
d consisting of all ϕ with stabilizer group containing G. Theorem 3.2.1 states
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that every G with nonempty Fix(G) is finite and of bounded order. Furthermore,

each nontrivial stabilizing matrix is, up to conjugation, one of the dn+1 possibilities

for each of the (n+ 1)n+1 functions on the set {0, 1, . . . , n}. We may strengthen this

result as follows:

Corollary 3.2.7. There are only finitely many G with nonempty Fix(G) up to con-

jugation. In particular, on an open dense set of Homn
d , which descends to Mn

d , the

stabilizer group is trivial.

Remark 3.2.8. The statement that there are only finitely many such G up to con-

jugation is stronger than the statement that there are only finitely many G up to

isomorphism, which follows trivially from the bound on the size of G.

Proof. Since the size of G is bounded, it suffices to show that each stabilizing subgroup

has finitely many projective n+ 1-dimensional representations up to conjugacy. This

is always true when the representation is completely reducible, which will be true

if the ambient characteristic p does not divide |G|. But when Fix(G) is not purely

inseparable, every element will be diagonalizable, so it will have order not divisible

by p, so that G has order not divisible by p. In the purely inseparable case, we have

PGL(n+ 1) acting on itself stably and with finite stabilizers, so that each orbit is of

dimension (n+ 1)2 − 1 and thus consists of all of PGL(n+ 1). In other words, every

purely inseparable map is, up to conjugation, (xd0 : . . . : xdn), so that its stabilizer

group is conjugate to PGL(n+ 1,Fd).

It remains to be shown that the complement of
⋃
G⊃I Fix(G) is dense; its openness

follows from the fact that the condition AϕA−1 = ϕ is closed. It suffices to show that
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each Fix(G) is a proper subset of Homn
d . We lose nothing if we ignore purely separable

maps. From the proof of Lemma 3.2.3, each of the finitely many elements that may

occur in G, a diagonal matrix with ith entry ai, multiplies cd(i) by ai/a
d, and hence

induces the relation cd(i) = 0 outside a set of (d, i)’s for which ai/a
d is constant.

If ai/a
d is constant for all (d, i), then we have ai = kad; choosing a constant d, we

see that ai is constant, so A is a scalar matrix. Hence no non-trivial A fixes all of

Homn
d .

Note that when n = 1, [15] has an explicit bound on the size of Stab(ϕ) of

n1!n2!n3!, where the ni’s are indices for which there exist periodic points for ϕ of

exact order ni. The technique we use improves on that bound. Following the proof

of Lemma 3.2.3, we have three possibilities for the map j 7→ i up to conjugation:

(1, 2) 7→ (1, 2), (1, 2) 7→ (2, 1), and (1, 2) 7→ (1, 1). In the first case, a0 = ζ id−1 and

a1 = ζjd−1, where we use ζi to denote an ith root of unity; modulo multiplying both

a0 and a1 by some ζd−1, we obtain a cyclic group of order d− 1. In the second case,

we have a0 = ζ id2−1, a1 = ad0, and modulo multiplying both by ζd+1
d2−1, we obtain a

cyclic group of order d + 1. In the third case, a0 = ζd−1 and ad1 = a0, and modulo

multiplying both by ζd−1, we obtain a cyclic group of order d.

Thus every diagonalizable abelian subgroup A of Stab(ϕ) will be cyclic of size di-

viding d−1, d, or d+1. Furthermore, the only non-diagonalizable element commuting

with A can be the matrix M corresponding to the automorphism permuting x0 and

x1; we have M−1 = M and MAM = A in PGL(2) if and only if a1/a0 = a0/a1, or,

equivalently, ai = ±1 for i = 0, 1. In other words, the only possible non-diagonalizable
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abelian subgroup A is Z/2Z× Z/2Z.

Now, the only finite subgroups of PGL(2) are, up to conjugation, cyclic, dihedral,

tetrahedral, octahedral, or icosahedral [14]. The last three groups are of order at

most 60; only the first two are infinite families. Since the largest abelian subgroup

of the dihedral group of order 2k is of order k, we see that for large d, the order of

Stab(ϕ) is bounded by 2(d+ 1).

We conclude this section with a remark that Mn
d(k), consisting of all k-rational

points in Mn
d(k), is not the same as the quotient Homn

d(k)/PGL(n+ 1, k). The latter

parametrizes morphisms of Pnk up to conjugation defined over k, the former up to

conjugation defined over k. There exist maps defined over k which are conjugate over

k but not over k itself. For examples, see [15] and §§4.7-4.10 of [16].

3.3 Rationality of Md

In this section, we show that when n = 1, the variety Md = M1
d is rational. This partly

generalizes Silverman’s result in [15] that M2 ≡ A2 over Z. We do so by parametrizing

fixed points of ϕ. The fixed point set of ϕ, Fix(ϕ), is the intersection of two curves

in P1×P1, the graph Γϕ and the diagonal embedding ∆. As ∆ is irreducible and not

contained in Γϕ for d > 1, this is a proper intersection of divisors of type (1, 1) and

(d, 1), so it has d+ 1 points, counting multiplicity. We have:

Theorem 3.3.1. Md is birational to the total space of a rank-d vector bundle on

M0,d+1, the space of unmarked d+ 1 points on P1. Since M0,d+1 is rational, it follows

that Md is rational.
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Proof. We explicitly write ϕ(x : y) = (p : q) where p(x, y) = adx
d + . . . + a0y

d and

q(x, y) = bdx
d + . . .+ b0y

d. The fixed points of ϕ are those for which (p : q) = (x : y),

which are the roots of the homogeneous degree-(d + 1) polynomial py − qx. The

polynomial py − qx induces a map from Ratd to (P1)d+1/Sd+1 where Sd+1 acts by

permutation of the factors. We will call this map Fix. We use the following lemma:

Lemma 3.3.2. The map Fix is surjective, and has rational fibers.

Proof. A point (x : y) is fixed if and only if we have py = qx, i.e. adx
dy+. . .+a0y

d+1 =

bdx
d+1 + . . . + b0xy

d. This is a homogeneous linear condition in the coefficients of

ϕ, and we have d + 1 such conditions compared with 2d + 2 variables. Once we

show surjectivity, from elementary linear algebra, we have a solution space of linear

dimension d + 1, or projective dimension d; it is a linear subvariety of P2d+1, so it is

rational.

We can also show that the fibers will not be contained in the resultant locus. We

fix a set of fixed points and write r for the polynomial having those fixed points as

roots. We need to show r is of the form py− qx for some p and q sharing no common

root. By conjugating, we may assume neither (0 : 1) nor (1 : 0) is a root of r, so

that it has a nonzero xd+1 coefficient, which we may take to be 1, and a nonzero yd+1

coefficient. Now we let q = −xd so that r+qx is divisible by y, yielding p = (r+qx)/y.

Now r+ qx has a nonzero yd+1 coefficient, so p has a nonzero yd coefficient; therefore,

p does not have (0 : 1) as a root, so it shares no root with y.

Now, Fix descends to a rational map Fix′ : Md → (P1)d+1/Sd+1 PGL(2) where

PGL(2) acts diagonally; we are restricting to the open set of Md whose fixed points are
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in the stable space of the action of PGL(2) on (P1)d+1/Sd+1. With this restriction, the

image is M0,d+1, so it suffices to show the general fiber of Fix′ is rational. Lemma 3.3.2

says that the fiber of Fix is rational, so it suffices to show that the automorphism

group of the general point in (P1)d+1/Sd+1 is small enough that the quotient of the

fiber by it is still rational. Using Noether’s problem [11] [13], we will show a stabilizer

of size 4 or 6 is small enough.

Lemma 3.3.3. Let d > 1. The automorphism group of a general configuration of

d+ 1 unmarked points in P1 is trivial, unless d = 2, in which case it is S3, or d = 3,

in which case it is Z/2Z× Z/2Z.

Proof. We will use inhomogeneous coordinates. For d = 2, we can conjugate the

three points to be 0, 1,∞; the set is then stabilized by every permutation in S3, so it

has size 6. For d > 3, we will show that the stabilizer is generically trivial, and on

the way show that for d = 3 the stabilizer is generically of order 4, consisting of all

elements in S4 of cycle type (2, 2). This will be enough to prove the theorem.

First, note that if a (d+ 1)-cycle stabilizes the set of points, then by conjugation

we may assume it sends 0 to 1, 1 to λ, µ to ∞, and ∞ to 0. The cycle, regarded

as an element of PGL(2), is of the form (ax + b)/(cx + e); then b/e = 1, a = 0,

(a + b)/(c + e) = λ, and cµ + e = 0. These equations together imply that λ =

e/(c+e) = e/(e− e
µ
) = µ/(µ−1). For a generic choice of µ, λ, this can never happen,

so no (d+ 1)-cycle is in the stabilizer. This remains true for d = 3, in which case we

are forced to have λ = µ, since generically λ 6= λ/(λ− 1).

Observe that if an automorphism of cycle type (c1, . . . , ck) stabilizes the set, then
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each subset corresponding to the ith cycle is stabilized by a ci-cycle. Therefore, the

above discussion shows that no cycle of length 4 or more stabilizes a generic set. We

have reduced to the case when all cycles are of size 1, 2, or 3. Now, if we have a

stabilizing automorphism which includes a 3-cycle, we may conjugate the 3-cycle to

be (0 1 ∞), forcing it to act on P1 as 1/(1 − x). Generically, if λ is a fourth point,

none of the points in the set (including λ) will be 1/(1− λ). We are left with cycles

of size 1 or 2. If we have a stabilizing automorphism with two 2-cycles, then up to

conjugation we may assume the element acts on four points as (0 ∞)(1 λ), so that

it maps x to λ/x. If d = 3 then this will stabilize the set regardless of what λ is. If

d > 3 then we have an additional point µ, and generically λ/µ will not be in our set.

We are left with automorphisms that act as single 2-cycles, fixing d − 1 points.

For d ≥ 4, they will fix 3 points and therefore act trivially. For d = 3, we may

assume by conjugation that the element acts as (0 1) and fixes ∞; this forces it to

be the automorphism 1 − x, which generically does not fix λ. This leaves us with

automorphisms consisting only of 1-cycles, i.e. the identity.

We will return to Noether’s problem now. Let us work over a fixed field k. Recall

[11] that if K = k(x1, . . . , xm) is a purely transcendental field, and G is a finite group

of size 2, 3, 4, or 6 permuting the xi’s, then KG is purely transcendental as well. In

particular, if R is the graded k-algebra k[x1, . . . , xm], and G acts on it by permutation

of the xi’s, then ProjRG is rational. We will show this to be the case when R is the

fiber of Fix in the d = 2 and d = 3 cases, by finding an orbit y1, . . . , ym generating R

over k.
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When d = 2, we have a 2-dimensional fiber. Explicitly, we have six homogeneous

variables ai, bi, 0 ≤ i ≤ 2, on which the automorphism group PGL(2) acts linearly.

The fiber we are interested in consists of maps fixing the points 0, 1,∞, corresponding

to the linear conditions a0 = 0, a0 + a1 + a2 = b0 + b1 + b2, b2 = 0, respectively.

The values of a2, a1, b0 uniquely determine that of b1, so we may write the fiber as

Proj k[a2, a1, b0]. The group S3 acts linearly and faithfully on the k-vector space

spanned by a2, a1, b0. Let us consider the action of the automorphism (0 ∞) = 1/x:

ϕ(x) =
a2x

2 + a1x

b1x+ b0

1

ϕ(1/x)
=
b0x

2 + b1x

a1x+ a2

a2 7→ b0

a1 7→ b1 = a2 + a1 − b0

b0 7→ a2

Observe that this automorphism fixes a2 + b0. Let us also consider the action of the

automorphism (0 1) = 1− x:

1− ϕ(1− x) = 1− a2(1− x)2 + a1(1− x)

b1(1− x) + b0

=
−a2(1− x)2 + (b1 − a1)(1− x) + b0

b1(1− x) + b0

a2 7→ −a2

a1 7→ 2a2 + a1 − b1 = a2 + b0

b0 7→ b0 + b1 = a2 + a1
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This automorphism does not stabilize a2 + b0; hence, a2 + b0 has stabilizer of order 2,

and orbit of size 3. By repeating the maps 1− x and 1
x
, we can compute the orbit as

{a2 + b0, a1, a2 + a1 − b0}. This generates R as long as char k 6= 2. When char k = 2,

the automorphism 1− x fixes a2, whose orbit is then {a2, b0, a2 + a1}. In either case,

we can construct the action of S3 as an action of generators, reducing the quotient to

Noether’s problem.

When d = 3, we similarly obtain a 3-dimensional fiber, fixing the points 0, 1, λ,∞.

We obtain the linear conditions:

a0 = 0

b3 = 0

a3 + a2 + a1 = b2 + b1 + b0

λ2a3 + λa2 + a1 = λ2b2 + λb1 + b0

We may write R as k[a3, a2, b1, b0]. We look at the automorphism (0 ∞)(1 λ) = λ/x:

ϕ(x) =
a3x

3 + a2x
2 + a1x

b2x2 + b1x+ b0

λ

ϕ(λ/x)
=

λ
a3λ3+a2xλ2+a1x2λ
b2xλ2+b1x2λ+b0x3

=
b0x

3 + b1λx
2 + b2λ

2x

a1x2 + a2λx+ a3λ2

a3 7→ b0

a2 7→ λb1

b1 7→ λa2

b0 7→ λ2a3
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We may scale down by a factor of λ to obtain (λ−1b0, b1, a2, λa3), which is equivalent

to picking the representative function
√
λ/(
√
λ−1x). Let us also consider the action

of the automorphism (0 λ)(1 ∞) = (x− λ)/(x− 1):

ϕ

(
x− λ
x− 1

)
=
a3(x− λ)3 + a2(x− λ)2(x− 1) + a1(x− λ)(x− 1)2

b2(x− λ)2(x− 1) + b1(x− λ)(x− 1)2 + b0(x− 1)3

We obtain:

a3(x− λ)3 + (a2 − λb2)(x− λ)2(x− 1) + (a1 − λb1)(x− λ)(x− 1)2 − λb0(x− 1)3

a3(x− λ)3 + (a2 − b2)(x− λ)2(x− 1) + (a1 − b1)(x− λ)(x− 1)2 − b0(x− 1)3

a3 7→ a3 + a2 + a1 − λ(b2 + b1 + b0)

We will show the orbit of a3 generates R. But first, note that a3 +a2 +a1 = b2 +b1 +b0

implies that a1 = b2+b1+b0−a2−a3, and then λ2a3+λa2+a1 = λ2b2+λb1+b0 implies

that (λ2−1)a3 +(λ−1)a2 = (λ2−1)b2 +(λ−1)b1, that is, b2 = a3 +(a2− b1)/(λ+1).

We have (x − λ)/(x − 1) mapping a3 to a3 + a2 + a1 − λ(b2 + b1 + b0). Now we

have:

a3 +a2 +a1−λ(b2 +b1 +b0) = (1−λ)(b2 +b1 +b0) = (1−λ)(a3 +b0 +(a2 +λb1)/(λ+1))

If we then apply the map λ/x, we obtain (1−λ)(λ−1b0 +λb3 +(b1 +λa2)/(λ+1)). The

orbit is, up to scaling, {a3, b0, a3+b0+(a2+λb1)/(λ+1), λ−1b0+λb3+(b1+λa2)/(λ+1)},

which generates R. Again, we apply Noether’s problem and obtain a rational quotient,

as desired.
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Unfortunately, this proof does not seem to generalize to Mn
d . Although Lemma 3.3.3

is true for all n, d > 1, there are two significant obstructions. First, the dimension of

the target space of the map Fix will be n(1 + d + . . . + dn), which is larger than Nn
d

unless n and d are very small. This means that the map will not be surjective, though

the fibers are still rational whenever they are nonempty. And second, even for small

n and d the base space for the vector bundle is not M0,d+1, which is relatively tame,

but rather the space of 1 + d + . . . + dn points on Pn, a much more complex object.

All we can say at this stage is that Mn
d is unirational, which follows trivially from the

fact that it is covered by Homn
d .
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Chapter 4

Semistable Reduction

4.1 Introduction and the Proof of Semistable Re-

duction

The semistable reduction theorem states the following, answering in the affirmative

a conjecture for P1 in [17]:

Theorem 4.1.1. If C is a complete curve with K(C) its function field, and if ϕK(C)

is a semistable rational map on PnK(C), then there exists a curve D mapping finite-to-

one onto C with a Pn-bundle P(E) on D with a rational map Φ : P(E)→ P(E) such

that,

1. The restriction of Φ to the fiber of each x ∈ D, ϕx, is a semistable rational

self-map.

2. Φ is a semistable map over K(D), and is equivalent to ϕK(D) under coordinate

change.

This can be seen by using an alternative formulation. Semistable reduction can be

thought of as extending a rational map defined over a field K to a rational map
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defined over a discrete valuation ring R whose fraction field is K, in a way that is not

too degenerate. The reason a discrete valuation ring suffices is that once we know we

can extend to a discrete valuation ring, we can extend to some larger integral domain.

We thus obtain the following equivalent formulation of semistable reduction, stated

in full generality for any geometrically reductive G acting on a complete variety X:

Theorem 4.1.2. Let R be a discrete valuation ring with fraction field K, and let

xK ∈ Xs
K. Then for some finite extension K ′ of K, with R′ the integral closure

of R in K ′, xK has an integral model over R′ with semistable reduction modulo the

maximal ideal. In other words, we can find some A ∈ G(K) such that A · xK has

semistable reduction. If xK ∈ Xss
K , then the same result is true, except that xR′ could

be an integral model for some x′K′ mapping to the same point of Xss//G such that

x′K′ /∈ G · xK.

Proof. Let C be the Zariski closure of xK in Xss
R //G, and reduce it modulo the

maximal ideal to obtain xk, where k is the residue field of R. Observe that C is

a one-dimensional subscheme of Xss
k
//G which is isomorphic to SpecR, and is as

a result connected. Since G is connected, the preimage π−1(C) is also connected:

when xK is stable it follows from the fact that π−1(C) is the Zariski closure of G · xK

in Xss, and even when it is not, π−1(C) is the union of connected orbits whose

closures intersect. Since further π−1(C) surjects onto C, we can find an integral

one-dimensional subscheme mapping surjectively to C. This subscheme necessarily

maps finite-to-one onto C by dimension counting, so it is isomorphic to some finite

extension ring R′, giving us K ′ as its fraction field.
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This leads to the natural question of which vector bundle classes can occur for

each C, and more generally for each choice of n and d. One interesting subquestion

is whether, for every C, we can choose the bundle to be trivial. Equivalently, it asks

whether for each C we can find a proper D ⊆ Homn,ss
d that maps finite-to-one onto C.

For most curves upstairs, the answer should be positive, by simple dimension counting:

as demonstrated in [15] and [5], the complement of Homn,ss
d has high codimension,

equal to about half of N . However, it turns out that the answer is sometimes negative,

and in fact, for every n and d we can find a C with only nontrivial bundle classes.

More precisely:

Theorem 4.1.3. For every n and d, there exists a curve with no trivial bundle class

satisfying semistable reduction.

Remark 4.1.4. An equivalent formulation for Theorem 4.1.3 is that for every n and

d we can find a curve C ⊆ Mn,ss
d such that there does not exist a curve D ⊆ Homn,ss

d

mapping onto C under π.

Although most curves in Homn,ss
d can be completed, it does not imply we can find

a nontrivial bundle on an open dense set of the Chow variety of Mn,ss
d . In fact, as we

will see in section 4.5, there exist components of the Chow variety of Mn,ss
d where, at

least generically, a nontrivial bundle is required.

Our study of bundle classes will now split into two cases. In the case of curves sat-

isfying semistable reduction with a trivial bundle, the reformulation of Remark 4.1.4,

in its positive form, means that we can study D directly as a curve in PN . We can

bound the degree of the map from D to C in terms of the stabilizer groups that occur
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on D. Let us restate Propositions 1.0.7 and 1.0.8:

Proposition 4.1.5. Let X be a projective variety over an algebraically closed field

with an action by a geometrically reductive linear algebraic group G. Using the ter-

minology of geometric invariant theory, let D be a complete curve in the stable space

Xs whose quotient by G is a complete curve C; say the map from D to C has degree

m. Suppose the stabilizer is generically finite, of size h, and either D or C is normal.

Then there exists a finite subgroup SD ⊆ G, of order equal to mh, such that for all

x ∈ D and g ∈ G, gx ∈ D iff g ∈ SD.

Corollary 4.1.6. With the same notation and conditions as in Proposition 4.1.5, the

map from D to C is ramified precisely at points x ∈ D where the stabilizer group is

larger than h, and intersects SD in a larger subgroup than in the generic case.

If the genus of C is 0, then the only way that the map from D to C could have

high degree is if it ramifies over many points; therefore, Corollary 4.1.6 forces the

degree to be small, at least as long as C is contained in the stable locus.

In the case of curves that only satisfy semistable reduction with a nontrivial bun-

dle, we do not have a description purely in terms of coordinates. Instead, we will

study which bundle classes can be attached to every curve C. The question of which

bundles occur is an invariant of C; therefore, it is essentially an invariant that we

can use to study the scheme Hom(C,Mn,ss
d ). In the sequel, we will study the scheme

using the bundle class set and height invariants.

For the study of which nontrivial bundle classes can occur, first observe that fixing

a D for which a bundle exists, we can apply the reformulation of Theorem 4.1.2 to
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obtain a unique extension of ϕ locally. This can be done at every point, so it is true

globally, so we have,

Proposition 4.1.7. Using the notation of Theorem 4.1.1, the bundle class P(E)

depends only on D and its trivialization Ui, Ui ↪→ Homn,ss
d .

Note that the bundle class does not necessarily depend only on D, regarded as an

abstract curve with a map to C. The reason is that a point of D may not be stable,

which means it may correspond to one of several different orbits, whose closures

intersect. However, there are only finitely many orbits corresponding to each point,

so the bundle class depends on D up to a finite amount; if C happens to be contained

in the stable locus, then it depends only on D.

Thus we can study which bundle classes occur for a given C. We will content

ourselves with rational curves, for which there is a relatively easy description of all

projective bundles. Recall that every vector bundle over P1 splits as a direct sum of

line bundles, and that the bundle
⊕

iO(mi) is projectively equivalent to
⊕

iO(l+mi)

for all l ∈ Z. In other words, a Pn-bundle over P1 can be written as O ⊕ O(m1) ⊕

. . . ⊕ O(mn); if the mi’s are in non-decreasing order, then the expression uniquely

determines the bundle’s class. We will show that,

Proposition 4.1.8. There exists a curve C for which multiple non-isomorphic bundle

classes can occur. In fact, suppose C is isomorphic to P1, and there exists some

U ⊆ Homn,ss
d mapping finite-to-one into C such that U is a projective curve minus

a point. Then there are always infinitely many possible classes: if the class of U is
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thought of as splitting as P(E) = O ⊕O(m1)⊕ . . .⊕O(mn), where mi ∈ N, then for

every integer l the class O ⊕O(lm1)⊕ . . .⊕O(lmn) also occurs.

Proposition 4.1.8 frustrated our initial attempt to obtain an easy classification of

bundles based on curves. However, it raises multiple interesting questions instead.

First, the construction uses a rational D mapping finite-to-one onto C, and going

to higher m involves raising the degree of the map D → C. It may turn out that

bounding the degree bounds the bundle class; we conjecture that if we fix the degree

of the map then we obtain only finitely many bundle classes. Furthermore, in analogy

with the consequences of Corollary 4.1.6, we should conversely be able to bound the

degree of the map in terms of C and the bundle class, at least for rational C.

Second, it is nontrivial to find the minimal mi’s for which a bundle splitting as

O ⊕ O(m1) ⊕ . . . ⊕ O(mn) would satisfy semistable reduction; the case of n = 1

could be stated particularly simply, as the question would be about the minimal m

for which O ⊕O(m) occurs.

4.2 A Coordinate-Based Proof of Semistable Re-

duction

In this section, we will reprove Theorem 4.1.2 specifically for rational maps on P1

using the explicit coordinate form. This will let us bound the degree of the finite

extension we need to take.

Fix the following notation in this section: K is a local field with valuation ring R,

uniformizer t, and residue field R/(t) = k. ϕK is a rational map of degree d on P1
K ;
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then ϕK has a minimal model over R, which in the sequel we will identify with ϕK .

We can then speak of the reduction of ϕK modulo t, ϕk. We have:

Theorem 4.2.1. Fix n = 1. Then under the conjugation action of PGL(2, K) on

Ratssd (K), there exists a model for ϕK, over K, which remains semistable after re-

duction modulo the maximal ideal.

Proof. Assume ϕk is unstable. In other words, writing ϕk as fk(x, y)/gk(x, y), there

exists a root αx − βy appearing in both fk and gk to multiplicity at least d
2

+ 1, or

appearing to multiplicity d
2

with ϕk(αx − βy) = αx − βy. We call this root the bad

point of ϕk; such a root is unique if it exists, because if two bad points exist, then

fk = gk = 0, which is impossible.

The map ϕk is unstable iff upstairs we can find a sufficient number of roots of

fK and gK that reduce to the same root mod t. We may assume after conjugating

downstairs by some matrix in PGL(2, k) that this shared root is y, i.e. that there are

roots to the required multiplicity, all of the form tapx− y with a ∈ Q+ and p ∈ R×.

The condition for instability can now be phrased without the word “or”: ϕK has

unstable reduction iff fK has at least d
2

roots of the form tapx− y with a > 0 and gK

has at least d
2

+ 1 such roots.

Let us now eliminate the bad point y by conjugating ϕK by a diagonal matrix,

with diagonal entries (tc, 1), with c ∈ Q. This will replace every instance of x with

t−cx as well as multiply fK by tc. The model for ϕK we get may not be integral. To

get an integral form, we need to replace every root of the form tapx − y for which

a < 0 with x − t−ap−1y, multiplying the polynomial it appears in (f or g) by ta;
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we may need to multiply both f and g by some power of t to get an integral form

with nonzero reduction. Observe that the process of scaling involves no choice–it is

determined purely by which point of Ratssd we choose as a model.

Now, there is a minimal power tc conjugating by which removes just the right

number of powers of t from x to ensure that, after reduction mod t, y is no longer a

bad point. All we need to do now is ensure that this does not create new bad points.

If we conjugate by tc where c is very large, then we instead make x bad: we will

get too many roots of the form x− tapy with a > 0. But if c is the minimal number

for which y is no longer a bad point, then this will not happen. If we conjugate by

tc−ε for any ε > 0, then by definition y occurs to multiplicity at least d
2

in fk and

d
2

+ 1 in gk. None of these roots will actually be conjugated to x downstairs: they’ll

either remain at y or go to x− sy with s ∈ k×. Now if x is a bad point then it occurs

in fk to multiplicity d
2

+ 1 and in gk to multiplicity d
2

+ 1, which is impossible unless

fk = gk = 0.

We will now show that we can make sure ϕk is not unstable because of any other

point. If x = sy, s ∈ k× is a bad point, then it means that the corresponding roots

of fK and gK agree beyond the first term of their power series expansions. In that

case, we conjugate the bad point to be y = 0 using triangular matrices with 1s on

the diagonal, and repeat the above process of conjugating by tc; we pick c based on

the new roots, not the old roots.

The above-described process is bound to terminate. The reason is that conjugating

by tc multiplies or divides a power series by some power of t, but does not affect
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agreement to higher order. The other process, of moving the bad point, does not

affect agreement at all – it only turns the first term of the power series, on which the

roots agree, to 0; effectively, it moves the problem to the next term. After finitely

many steps, we will necessarily remove a common root of fk and gk, or else the power

series are equal and ϕK is unstable. Those removed common roots will automatically

go to x = 0 after conjugation by tc, and this process will not collapse different roots

mod t to the same root anywhere else. Thus we will eventually obtain some ϕk which

is semistable.

Remark 4.2.2. The proof invokes power series, as if K = k((t)). Although this is the

motivating case of interest, this is equally true for p-adic fields. The power series are

invoked as a way of writing down elements, without properties unique to power series

rings such as that k ⊂ K.

Remark 4.2.3. This should generalize to maps over Pn with n > 1. While we do not

have a linear factorization of the polynomials for higher n, the steps could potentially

be done by looking at the coefficients of the polynomials. The second step could

easily be replaced by conjugation by a unipotent matrix. The first step, involving tc,

seems harder to generalize. The correct generalization of bad points seems to be bad

flags, which would require a good notion of what it means for ϕ to be unstable with

respect to multiple flags.

The bound for the degree of the extension K ′/K comes from bounding the de-

nominator of c. Since c depends only on the valuations of the roots of f and g, the

minimal t that makes the valuation of enough roots nonnegative has denominator
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bounded by 1/d. We need to repeat this process at most r times, where r is the

maximal power of t such that ϕK has unstable reduction over R/(tr). There are at

most dr terms, so we get:

Corollary 4.2.4. Suppose ϕK has semistable reduction modulo tr. Then it has an

integral model over K ′, a field extension of K of degree at most rdr, with semistable

reduction modulo t.

Remark 4.2.5. We can do better in cases where roots of f and g not only coincide

modulo high powers of t, but also are highly t-divisible, because then we can conjugate

by one tc and get rid of a high power of t at once. The worst case as far as [K ′ : K]

goes seems to be when the roots that coincide are defined over fields of high degree

over K, and then the roots resulting after the first conjugation are again defined over

fields of high degree over K, and so on.

4.3 Examples of Nontrivial Bundles

The space Rat2 = Hom1
2 and its quotient M2 have been analyzed with more success

than the larger spaces, yielding the following prior structure result [9] [15]:

Theorem 4.3.1. M2 = A2; Ms
2 = Mss

2 = P2. The first two elementary symmetric

polynomials in the multipliers of the fixed points realize both isomorphisms.

Recall that within PN = P5, a map (a0x
2 + a1xy + a2y

2)/(b0x
2 + b1xy + b2y

2) is

unstable iff it is in the closure of the PGL(2)-orbit of the subvariety a0 = b0 = b1 = 0.

In other words, it is unstable iff there the map is degenerate and has a double bad

point, or a fixed point at a bad point.
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Definition 4.3.2. A map on P1 is a polynomial iff there exists a totally invariant

fixed point. Taking such a point to infinity turns the map into a polynomial in the

ordinary sense. In Ratd, or generally in PN = P2d+1, a map is polynomial iff it is in

the closure of the PGL(2)-orbit of the subvariety defined by zeros in all coefficients

in the denominator except the yd-coefficient.

Remark 4.3.3. A totally invariant fixed point is not necessarily a totally fixed point.

A totally invariant fixed point is one that is totally ramified. A totally fixed point is

the root of the fixed point polynomial when it is unique, i.e. when the polynomial

is a power of a linear term. In fact by an easy computation, a map has a totally

invariant, totally fixed point x iff it is degenerate linear with a multiplicity-d− 1 bad

point at x, in which case it is necessarily unstable.

The polynomial maps define a curve in Mss
2 (in fact a line in P2); we will show,

Proposition 4.3.4. The polynomial curve in Mss
2 only satisfies semistable reduction

with nontrivial bundles.

Proof. First, note that in P5, the polynomial maps are those that can be conjugated

to the form (a0x
2 + a1xy + a2y

2)/b2y
2, in which case the totally invariant fixed point

is ∞ = (1 : 0). We will call the polynomial map locus X. If a0 = 0 then the map

is unstable; we will show that every curve in X contains a map for which a0 = 0.

Clearly, the set of all maps with a given totally invariant fixed point is isomorphic

to P3, and the unstable locus within it is isomorphic to P2 as a linear subvariety, so

for there to be any hope of a trivial bundle, a curve in X cannot lie entirely over one

totally invariant point.
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Now, the fixed point equation for a map of the form f/g is fy − gx; the homo-

geneous roots of this equation are the fixed points, with the correct multiplicities.

For our purposes, when the totally invariant point is ∞, the fixed point equation is

a0x
2y + (a1 − b2)xy2 + a2y

3. We get that a0 = 0 iff the totally invariant point is a

repeated root of the fixed point equation.

There exists a map from X to P1×P2, mapping ϕ to its totally invariant point in

P1, and to the two elementary symmetric polynomials in the two other fixed points

in P2. Write (x : y) for the image in P1 and (a : b : c) for the image in P2. Now

(x : y) is a repeated root if ax2 + bxy + cy2 = 0. The equation defines an ample

divisor, so every curve in P1 × P2 will meet it. Finally, a curve in X maps either to

a single point in P1 × P2, in which case it must contain points with a0 = 0 as above,

or to a curve, in which case it intersects the divisor ax2 + bxy + cy2 = 0. In both

cases, the curve contains unstable points. Thus there is no global semistable curve D

in Homn,ss
d mapping down to C.

Note that in the above proof, maps conjugate to x2 have two totally invariant

points, so a priori the map from X to P1 × P2 is not well-defined at them. However,

for any curve D in X, there is a well-defined completion of this map, whose value at

x2 on the P1 factor is one of the two totally invariant points. Thus this complication

does not invalidate the above proof.

Let us now compute the vector bundle classes that do occur for the polynomial

curve. We work with the description x2 + c, which yields an affine curve that maps

one-to-one into C, missing only the point at infinity, which is conjugate to x2−x
0

. To
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hit the point at infinity, we choose the alternative parametrization cx2−cx+1, which,

when c = ∞, corresponds to the unique (up to conjugation) semistable degenerate

constant map. For any c, this map is conjugate to x2−cx+c and thence x2+c/2−c2/4,

using the transition function [c,−1/2; 0, 1]. Thus the bundle splits as O ⊕O(1).

This bundle depends on the choice of D. In fact, if we choose another parametriza-

tion for D, for example c2x2 − c2x + 1, then the transition function [c2,−1/2; 0, 1],

which leads to the bundle O ⊕O(2). This is not equivalent to O ⊕O(1). This then

leads to the question of which classes of bundles can occur over each C. In the exam-

ple we have just done, the answer is every nontrivial class: for every positive integer

m, we can use cmx2 − cmx + 1 as a parametrization, leading to O ⊕ O(m), which

exhausts all nontrivial projective bundle classes.

Recall the result of Proposition 4.1.8:

Proposition 4.3.5. Suppose C is isomorphic to P1, and there exists U ⊆ Homn,ss
d

mapping finite-to-one into C such that U is a projective curve minus a point. Then

there are always infinitely many possible classes: if the class of U is thought of as

splitting as P(E) = O ⊕O(m1)⊕ . . .⊕O(mn), where mi ∈ N, then for every integer

l the class O ⊕O(lm1)⊕ . . .⊕O(lmn) also occurs.

Proof. Imitating the analysis of the polynomial curve above, we can parametrize C

by one variable, say c, and choose coordinates such that the sole bad point in the

closure of U corresponds to c = ∞. Now, we can by assumption find a piece U ′

above the infinite point with a transition function determining the vector bundle

O⊕O(m1)⊕ . . .⊕O(mn). Now let V be the composition of U ′ with the map c 7→ cl.



52

Then U and V determine a vector bundle satisfying semistable reduction, of class

O ⊕O(lm1)⊕ . . .⊕O(lmn), as required.

The example in Theorem 4.3.4, of polynomial maps, is equivalent to a multiplier

condition. When d = 2, a map is polynomial iff it has a fixed point whose multiplier

is zero; see the description in the first chapter of [16]. One can imitate the proof that

semistable reduction does not hold for a more general curve, defined by the condition

that there exists a fixed point of multiplier t 6= 1. In that case, the condition b1 = 0

is replaced by b1 = ta0, and the point is a repeated root of the fixed point equation

iff a0 = b1, in which case we clearly have a0 = b1 = 0 and the point is unstable.

When the multiplier is 1, the fixed point in question is automatically a repeated

root, with b1 = a0. The condition that the point is the only fixed point corresponds

to b2 = a1, which by itself does not imply that the map fails to be a morphism, let

alone that it is unstable.

Instead, the condition that gives us b1 = a0 = 0 is the condition that the fixed

point is totally invariant. Specifically, the fixed point’s two preimages are itself and

one more point; when the fixed point is ∞, the extra point is −b2/b1. Now we can

map X to P1 × P1 where the first coordinate is the fixed point and the second is

its preimage. This map is well-defined on all of X because only one point can be

a double root of a cubic. Now the diagonal is ample in P1 × P1, so the only way a

curve D can avoid it is by mapping to a single point; but in that case, D lies in a

fixed variety isomorphic to P3 where the unstable locus is P2, so it will intersect the

unstable locus.



53

The fact that any condition of the form “there exists a fixed point of multiplier

t” induces a curve for which semistable reduction requires a nontrivial bundle means

that there is no hope of enlarging the semistable space in a way that ensures we

always have a trivial bundle. We really do need to think of semistable reduction as

encompassing nontrivial bundle classes as well as trivial ones.

Specifically: it is trivial to show that the closure of the polynomial locus in Rat2

includes all the unstable points (fix ∞ to be the totally invariant point and let a0 go

to zero). At least some of those unstable points will also arise as closures of other

multiplier-t conditions. However, different multiplier-t conditions limit to different

points in Mss
2 \M2.

4.4 The General Case

So far we have talked about nontrivial classes in M2. But we have a stronger result,

restating Theorem 4.1.3:

Theorem 4.4.1. For all n and d, over any base field, there exists a curve with no

trivial bundle class satisfying semistable reduction.

Proof. In all cases, we will focus on polynomial maps, which we will define to be

maps that are PGL(n + 1)-conjugate to maps for which the last polynomial qn has

zero coefficients in every monomial except possibly xdn.

Lemma 4.4.2. The set of polynomial maps, defined above, is closed in Homn
d = PN .

Proof. Clearly, the set of polynomial maps with respect to a particular hyperplane

– for example, xn = 0 – is closed. Now, for each hyperplane a0x0 + . . . + anxn = 0,
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we can check by conjugation to see that the condition that the map is polynomial

corresponds to the condition that a0q0 + . . .+ anqn = c(a0x0 + . . .+ anxn)d, where c

may be zero. As Pn is proper, it suffices to show that the condition “ϕ is polynomial

with respect to a0x0 + . . .+ anxn = 0” is closed in (Pn)∗ × PN .

Now, we may construct a rational function f from (Pn)∗ × PN to Symd(Pn) ×

Symd(Pn) by ((a0x0 + . . . + anxn), ϕ) 7→ ((a0x0 + . . . + anxn)d, a0q0 + . . . + anqn).

The map ϕ is polynomial with respect to a0x0 + . . . + anxn = 0 iff f is ill-defined at

((a0x0 + . . .+anxn), ϕ) or f((a0x0 + . . .+anxn), ϕ) ∈ ∆, the diagonal subvariety. The

ill-defined locus of f is closed, and the preimage of ∆ is closed in the well-defined

locus.

In fact, the condition of ϕ being polynomial with respect to any number of distinct

hyperplanes in general position – in other words, the condition that ϕ is conjugate

to a map for which qi = cix
d
i for all i > 0 (or i > 1, etc.) – is more or less closed as

well. It is not closed, but a sufficiently good condition is closed. Namely:

Lemma 4.4.3. For each 1 ≤ i ≤ n, consider the PGL(n + 1)-orbit of the space of

maps in which, for each j ≥ i, qj has zero coefficients in every monomial containing

any term xk with k < j. This orbit is closed in PN .

Proof. Observe that the above-defined space of maps consists of maps that are poly-

nomial with respect to xn = 0, such that the induced map on the totally invariant

hyperplane xn = 0 is polynomial with respect to xn−1 = 0, and so on until we reach

the induced map on the totally invariant subspace xi+1 = . . . = xn = 0.
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Now we use descending induction. Lemma 4.4.2 is the base case, when i = n.

Now suppose it is true down to i. Then for i− 1, the condition of having no nonzero

xk term in qi−1 with k < i− 1 is equivalent to the condition that the induced map on

the totally invariant subspace xi = xi+1 = . . . = xn = 0 is polynomial; this condition

is closed in the space of all maps that are polynomial down to xi, which we assume

closed by the induction hypothesis.

Definition 4.4.4. We call maps of the form in the above lemma polynomial with

respect to B, where B is the Borel subgroup preserving the ordered basis of condi-

tions. In the case above, B is the upper triangular matrices.

We need one final result to make computations easier:

Lemma 4.4.5. Let X be a curve of polynomial maps, all with respect to a Borel

subgroup B, and let ϕ be a semistable map in PGL(n+ 1) ·X. Then ϕ ∈ B ·X.

Proof. Let C be the closure of the image of X in Mn,ss
d . By semistable reduction,

there exists some affine curve Y 3 ϕ mapping finite-to-one to C, i.e. dominantly. We

need to find some open Z ⊆ Y containing ϕ and some f : Z → PGL(n + 1) such

that f(ϕ) is the identity matrix, and Z ′ = {(f(z) · z)} consists of maps which are

polynomial with respect to B. Such a map necessarily exists: we have a map h from

Y to the flag variety of Pn sending each y to the subgroup with respect to which it is

polynomial (possibly involving some choice if generically y is polynomial with respect

to more than one flag), which then lifts to G, possibly after deleting finitely many

points. Generically, a point of X maps to a point of C that is in the image of Z;
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therefore, picking the correct points in X, we get that ϕ ∈ B ·X.

With the above lemmas, let us now prove the theorem with n = 1, which is slightly

easier than the higher-n case, where the more complicated Lemma 4.4.3 is needed.

We will use the family xd + c, where c ∈ A1. In projective notation, this is a0xd+ady
d

bdyd ,

which is a one-dimensional family modulo conjugation. We have,

Lemma 4.4.6. Let V be the closure of the PGL(2)-orbit of the family a0xd+ady
d

bdyd in

PN . Then:

1. In characteristic 0 or p - d, every ϕ ∈ V is actually in the PGL(2)-orbit of the

family, or else it is a degenerate linear map, conjugate to ad−1xy
d−1+ady

d

bdyd .

2. In characteristic p | d, with pm || d and pm 6= d, every ϕ ∈ V is in the PGL(2)-

orbit of the family or is a degenerate map conjugate to
ad−pmxyd−pm

+ady
d

bdyd .

3. In characteristic p with d = pm, set V to be the closure of the orbit of the

family a0xd+ad−1xy
d−1

bdyd ; then every ϕ ∈ V is actually in the orbit of the family, or

else it is a degenerate linear map, conjugate to ad−1xy
d−1+ady

d

bdyd , and furthermore

ad−1 = bd.

Proof. Observe that the first two cases are really the same: case 2 is reduced to case

1 viewed as a degree- d
pm map in (xp

m
: yp

m
). So it suffices to prove case 1 to prove

2; we will start with the family a0xd+ady
d

bdyd and see what algebraic equations its orbit

satisfies. As polynomials are closed in Ratd, every point in the closure of the orbit is a

polynomial. We may further assume it is polynomial with respect to y = 0; therefore,

by Lemma 4.4.5, it suffices to look at the action of upper triangular matrices. Further,
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the condition of being within the family a0xd+ady
d

bdyd is stabilized by diagonal matrices;

therefore, it suffices to look at the action of matrices of the form [1, t; 0, 1].

Now, the conjugation action of [1, t; 0, 1] fixes bdy
d and maps a0x

d + ady
d to

a0(x− ty)d + (ad + tbd)y
d. Clearly, there is no hope of obtaining any condition on bd

or ad. Now, the conditions on the terms a0, . . . , ad−1 are that for some t, they fit into

the pattern a0(x
d − dtxd−1y + . . .± dtd−1xyd−1), i.e. ai = (−t)i

(
d
i

)
a0. To remove the

dependence on t, note that when i + j = k + l, we have
(
d
i

)(
d
j

)
aiaj =

(
d
k

)(
d
l

)
akal, as

long as i, j, k, l < d.

Let us now look at what those conditions imply. Setting j = i, k = i− 1, l = i+ 1,

we get conditions of the form
(
d
i

)2
a2
i =

(
d
i−1

)(
d
i+1

)
ai−1ai+1, whenever i + 1 < d. If

a0 6= 0, then the value of a1 uniquely determines the value of a2 by the condition with

i = 1; the value of a2 uniquely determines a3 by the condition with i = 2; and so

on, until we uniquely determine ad−1. In this case, choosing t = − a1

da0
will conjugate

this map back to the family a0xd+ady
d

bdyd . If a0 = 0, then the equation with i = 1 will

imply that a1 = 0; then the equation with i = 2 will imply that a2 = 0; and so on,

until we set ad−2 = 0. We cannot ensure ad−1 = 0 because ad−1 always appears in

those equations multiplied by a different ai, instead of squared. Hence we could get

a degenerate-linear map.

In case 3, we again look at the action of matrices of the form [1, t; 0, 1]. Such

matrices map a0xd+ad−1xy
d−1

bdyd to a0xd+ad−1xy
d−1+(−a0td−ad−1t+bdt)y

d

bdyd . Now the only way a

map of the form a0xd+ad−1xy
d−1+ady

d

bdyd could degenerate is if the image of the polynomial

map t 7→ −a0t
d − ad−1t + bdt misses ad, which could only happen if the polynomial
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were constant, i.e. a0 = 0 and ad−1 = bd, giving us a degenerate-linear map.

Remark 4.4.7. The importance of the lemma is that in all degenerate cases, the map

is necessarily unstable, since d − 1 (or, in case 2, d − pm) is always at least as large

as d/2.

We can now prove the theorem for n = 1. So if we can always find a D ⊆ Homn,ss
d

that works globally, we can find one over a family in which every map is conjugate to

a0xd+ady
d

bdyd , or, in characteristic p with d = pm, a0xd+ad−1xy
d−1

bdyd . It suffices to show that

there exists a map with a0 = 0. For this, we use the fixed point polynomial, which

is well-defined on this family. If the polynomial is fixed, then all maps in the family

may be simultaneously conjugated to the form a0xd+ady
d

bdyd (or a0xd+ad−1xy
d−1

bdyd ), and then

one map must have a0 = 0. If the polynomial varies, then some map will have the

point at infinity colliding with another fixed point. This will force the map to be

ill-defined at infinity; recall that totally invariant points are simple roots of the fixed

point polynomial, unless they are bad. This will force a0 to be zero, again.

For higher n, the proof is similar. The lemma we need is similar to the lemma we

use above, but is somewhat more complicated:

Lemma 4.4.8. Let V be the closure of the PGL(n + 1)-orbit of the family

(c0x
d
0 + bxd1 : q1 : . . . : qn), where qi is xj-free for all j < i.

1. If the characteristic does not divide d, then every ϕ ∈ V is actually in the

PGL(n + 1)-orbit of the family, or else it is a degenerate map, whose only

possible nonzero coefficients in q0 are those without an x0 term and those of the

form x0p0 where there is no nonzero x0-term in p0.
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2. If the characteristic p satisfies p | d, with d 6= pm || d then the same statement

as in case 1 holds as long as each qi is in terms of xp
m

j , but with x0p0 replaced

by xp
m

0 p0.

3. If the characteristic p satisfies d = pm then, changing the family to (c0x
d
0 +

bx0x
d−1
1 : q1 : . . . : qn), with qi in terms of xdj as in case 2, the same statement

as in case 1 holds.

Proof. As in the one-dimensional case, case 2 is reducible to case 1 with d replaced

with d
pm and xi with xmi . By Lemma 4.4.5, we only need to conjugate by upper

triangular matrices. Further, we only need to conjugate by just matrices of the

family E, with first row (1, t1, . . . , tn) and other rows the same as the identity matrix.

This is because we can control the diagonal elements because the condition of being

in the family is diagonal matrix-invariant, and we can control the rest by projecting

any curve Z of unipotent upper triangular matrices onto E.

Set ad to be the xd-coefficient in q0. For all vectors i, j, k, l with i + j = k + l,

we have
(
d
i

)(
d
j

)
aiaj =

(
d
k

)(
d
l

)
akal, as long as none of i, j, k, or l is in the span of ei for

i > 0. Note that i and i are two separate quantities, one an index of coordinates and

one an index of monomials.

As in the one-dimensional case, we may set j = i and k = i − e0 + ei. If c0 =

a(d,0,...,0) 6= 0, then by the same argument as before, the values of the xd−1
0 xi-coefficients

determine all the rest, and we can conjugate the map back to the desired form. And

if c0 = 0, then the value of every coefficient that can occur as i in the above construct

is zero; the only coefficients that cannot are those with no x0 component and those
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with a linear x0 component.

In case 3, we restrict to matrices of the same form as in case 1, and observe that

those matrices only generate extra xdi and xix
d−1
1 in q0. The statement is vacuous if

c0 = 0, so assume c0 6= 0. For i = 1, this is identical to the one-dimensional case,

so if c0 6= 0 then we can find an appropriate t1. For higher i, if b 6= 0 then we can

extract ti from the xix
d−1
1 coefficient, which will necessarily work for the xdi coefficient

as well, making the map conjugate to the family; if b = 0, then the same equations

as for i = 1 hold for higher i, and we can again find ti’s conjugating the map to the

family.

While we could also control the terms involving a linear (or p-power) x0 coefficient

in the above construction, it is not necessary for our purposes.

To finish the proof of the theorem, first note that in the closure of the family

above, any map for which c0 = 0 is unstable. Indeed, the one-parameter subgroup

of PGL(n + 1) with diagonal coefficients t0 = n, ti = −1 for i > 0, shows instability.

Recall that a map is unstable with respect to such a family if ti > t0d0 + . . . + tndn

whenever the xd00 . . . xdn
n -coefficient of qi is nonzero. With the above one-parameter

subgroup, we have t0d0 + . . .+ tndn = −d < −1 for the only nonzero monomials in qi

with i > 0; in q0, the maximal value of t0d0+. . .+tndn is t0+ti(d−1) = n−(d−1) < n.

Now we need to show only that for some map in the family, c0 will indeed be zero.

So suppose on the contrary that c0 is never zero. Then all maps are, after conjugation,

in the family (c0x
d
0 + bxd1 : q1 . . . : qn), where the linear subvariety qi = qi+1 = . . . = qn

is totally invariant. Now look at the action on the line x2 = . . . = xn = 0. Every
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morphism will induce a morphism on this line, so there will be three fixed points on

it, counting multiplicity. We now imitate the proof in the one-dimensional case: the

totally invariant fixed point on this line, (1 : 0 : . . . : 0), will collide with another

fixed point, so the map will be ill-defined at it. This means that (1 : 0 : . . . : 0) is a

bad point, which cannot happen unless c0 = 0.

Trivially, the above theorem for curves shows the same for higher-dimensional

families in Mn,ss
d . An interesting question could be to generalize semistable reduction

to higher-dimensional families, for which we may get projective vector bundles as in

the case of curves. Trivially, if we have two proper subvarieties of Mn,ss
d , V1 ⊆ V2, and

a bundle class occurs for V2, then its restriction to V1 occurs for V1. In particular, if

we have the trivial class over V2 then we also have it over V1, as well as any other

subvariety of V2. This leads to the following question: if the trivial class occurs for

every proper closed subvariety of V2, does it necessarily occur for V2? What if we

weaken the condition and only require the trivial class to occur for subvarieties that

cover V2?

4.5 The Trivial Bundle Case

For most curves C ⊆ Mn,ss
d , there occurs a trivial bundle. Since the complement

of Homn,ss
d in PN has high codimension, this is true by simple dimension counting.

Therefore, it is useful to analyze those curves separately, as we have more tools to

work with. Specifically, we can use more machinery from geometric invariant theory.

We will start by proving Proposition 1.0.7, restated below:
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Proposition 4.5.1. Let X be a projective variety over an algebraically closed field

with an action by a geometrically reductive linear algebraic group G. Using the ter-

minology of geometric invariant theory, let D be a complete curve in the stable space

Xs whose quotient by G is a complete curve C; say the map from D to C has degree

m. Suppose the stabilizer is generically finite, of size h, and either D or C is normal.

Then there exists a finite subgroup SD ⊆ G, of order equal to mh, such that for all

x ∈ D and g ∈ G, gx ∈ D iff g ∈ SD.

Proof. For x ∈ D, we define SD(x) = {g ∈ G : gx ∈ D}. This is a map of sets from

an open dense subset of D to Symmh(G), and is regular on an open dense subset. We

have:

Lemma 4.5.2. The map from Symmh(G)×Xs to Symmh(Xs)×Xs defined by sending

each ({g1, . . . , gmh}, x) to ({g1 · x, . . . , gmh · x}, x) is proper.

Proof. By standard geometric invariant theory, the map from G × Xs to Xs × Xs,

(g, x) 7→ (g · x, x), is proper. Thus the map from Gmh × (Xs)mh to (Xs)mh × (Xs)mh

defined by (gi, xi) 7→ (gi · xi, xi) is also proper, as the product of proper maps. Now

closed immersions are proper, so the map remains proper if we restrict it to Gmh×Xs

where we embed Xs into (Xs)mh diagonally; the image of this map is contained in

(Xs)mh ×Xs. Finally, we quotient out by the symmetric group Sk, obtaining:

Gmh ×Xs //

π

��

(Xs)mh ×Xs

π

��

Symmh(G)×Xs // Symmh(Xs)×Xs
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The map on the bottom is already separated and finite-type; we will show it is

universally closed. Extend it by some arbitrary scheme Y . If V ⊆ Symmh(G)×Xs×Y

is closed, then so is π−1(V ) ⊆ Gmh ×Xs × Y . The map on top is universally closed,

so its image is closed in (Xs)mh×Xs×Y . But the map on the right is proper, so the

image of V is also closed in Symmh(Xs)×Xs × Y .

Now, the rational map fD(x) = SD(x) · x ∈ Symmh(D) can be extended to a

morphism on all of D, since both D and Symmh(D) are proper. This is trivial if D

is normal; if it is not normal, but C is normal, then observe that the map factors

through C since it is constant on orbits, and then analytically extend it through C.

But now (fD(x), x) embeds into Symmh(Xs) ×Xs as a proper curve. The preimage

in Symmh(G) × Xs of this curve is also proper; for each (fD(x), x), it is a finite set

of points of the form (S, x) satisfying S · x = fD(x), including (SD(x), x). Projecting

onto the Symmh(G) factor, we still get a proper set, which means it must be a finite

set of points, as Symmh(G) is affine. One of these points will be SD, which is then

necessarily finite.

Finally, if g, h ∈ SD and x ∈ D then g · h · x ∈ g · D = D; therefore SD is a

group.

Remark 4.5.3. The proposition essentially says that the cover D → C is necessarily

Galois. The generic stabilizer is necessarily a group H, normal in SD.

Corollary 4.5.4. With the same notation and conditions as in Proposition 4.5.1,

the map from D to C ramifies precisely at points x ∈ D such that Stab(x) intersects
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SD in a strictly larger group than H. Furthermore, the ramification degree is exactly

[Stab(x) ∩ SD : H].

For high n or d, the stabilized locus of Homn
d is of high codimension. Furthermore,

most curves in Homn,ss
d lie in Homn,s

d . Therefore, generically not only is H trivial, but

also there are no points on D with nontrivial stabilizer. Thus for most C and D, the

map D → C must be unramified. Thus, when C is rational, generically the degree is

1.

It’s based on this observation that we conjecture the bounds for the nontrivial

bundle case in both directions – that is, that if we fix C and the bundle class P(E),

then the degree of the map π : D → C is bounded.

Using the structure result on Mss
2 = P2, we can prove much more:

Proposition 4.5.5. If C is a generic line in Mss
2 , then it requires a nontrivial bundle.

Proof. Generically, C is not the line consisting of the resultant locus, Mss
2 \M2. So

it intersects this line at exactly one point. Furthermore, since the resultant Res2 is

an SL(2)-invariant section, we have D.Res2 = m ·C.Res2; we abuse notation and use

Resnd to refer to the resultant divisor both upstairs and downstairs. Since the degree

of the resultant upstairs is (n + 1)dn = 4 [4], we obtain 4 · D.O(1) = m. In other

words, m ≥ 4.

However, using Proposition 4.5.1, we will show m ≤ 2 generically. The generic

stabilizer is trivial, and the stabilized locus is a cuspidal cubic in P2, on which the

stabilizer is isomorphic to Z/2Z, except at the cusp, where it is S3. The generic line C
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will intersect this cuspidal curve at three points, none of which is the cusp. Therefore,

h = 1, and there are at most three points of ramification, with ramification degree 2.

By Riemann-Hurwitz, the maximum m is 2, contradicting m ≥ 4.
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