
Moduli Spaces of Higher Spin Curves and

Integrable Hierarchies

TYLER J. JARVIS1*, TAKASHI KIMURA2
** and ARKADY VAINTROB3

1Department of Mathematics, Brigham Young University, Provo, UT 84602, U.S.A.

e-mail: jarvis@math.byu.edu
2Department ofMathematics, 111 Cummington Street, Boston University, Boston,MA 02215,

U.S.A. e-mail: kimura@math.bu.edu
3Department of Mathematics, University of Oregon, Eugene, OR 97403, U.S.A.

e-mail: vaintrob@math.uoregon.edu

(Received: 26 August 1999; accepted: 31 March 2000)

Abstract. We prove the genus zero part of the generalized Witten conjecture, relating moduli
spaces of higher spin curves to Gelfand^Dickey hierarchies. That is, we show that intersection
numbers on the moduli space of stable r-spin curves assemble into a generating function which
yields a solution of the semiclassical limit of the KdVr equations.We formulate axioms for a
cohomology class on this moduli spacewhich allowone to construct a cohomological ¢eld theory
of rank rÿ 1 in all genera. In genus zero it produces a Frobenius manifoldwhich is isomorphic to
the Frobenius manifold structure on the base of the versal deformation of the singularityArÿ1.We
prove analogs of the puncture, dilaton, and topological recursion relations bydrawing an analogy
with the construction of Gromov^Witten invariants and quantum cohomology.
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0. Introduction

The moduli space Mg;n of stable curves of genus g with n marked points is a
fascinating object. Mumford [31] introduced tautological cohomology classes associ-
ated to the universal curve Cg;n ÿ!Mg;n. Witten [36] conjectured and Kontsevich
[23] proved that certain intersection numbers of tautological cohomology classes
onMg;n have a generating function which satis¢es the equations of the Korteweg^de
Vries hierarchy (more precisely, that it is a t-function of the KdV hierarchy satisfying
some additional equations). This remarkable result provided an unexpected link
between the algebraic geometry of these moduli spaces and integrable systems.

The spaces Mg;n can be generalized in two ways. The ¢rst way is by choosing a
smooth projective variety V and considering the moduli space Mg;n�V � of stable
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maps into V from genus-g, n-pointed, stable curves. When V is a point, Mg;n�V �
reduces to Mg;n.

The second way to generalize Mg;n is by considering the moduli space M1=r
g;n of

higher spin curves introduced in [17, 18]. Roughly speaking, a higher spin curve,
or r-spin curve, is an algebraic curve with an rth root of its (suitably twisted)
canonical bundle. Forgetting the r-spin structure reduces M1=r

g;n to Mg;n. It is natu-
ral to ask if Kontsevich's theorem admits a generalization to either of these two
cases.

The case of Mg;n�V � remains mysterious. It gives the Gromov^Witten invariants
of V and their so-called gravitational descendants, which assemble into a generating
function whose exponential is an analog of a t-function. In the case where V is a
point, one recovers the t-function of the KdV hierarchy by Kontsevich's theorem.
More generally, there is a conjecture of Eguchi, Hori, and Xiong [8] and of
S. Katz which essentially states that this generating function is a highest weight
vector for a particular representation of the Virasoro algebra. Presumably, there
is some analog of an integrable system which gives rise to this Virasoro algebra
action, should the conjecture hold.

On the other hand, the KdV hierarchy is just the ¢rst in a series of integrable
hierarchies KdVr, where r � 2; 3; . . ., called the generalized KdV, or
Gelfand^Dickey hierarchies. In the case of r � 2, this is the usual KdV hierarchy.
Each of these hierarchies has a formal solution, corresponding to the unique
t-function which satis¢es an additional equation known as the string (or puncture)
equation. In [34, 35], Witten formulated a generalization of his original conjecture,
suggesting that for each rX 2, there should exist moduli spaces and cohomology
classes on them whose intersection numbers assemble into this t-function of the
KdVr hierarchy. The corresponding moduli spaces of higher spin curves have
recently been constructed in [17, 18]. In this paper we present a precise mathematical
formulation of the generalized Witten conjecture and prove it in several special cases
including, in particular, the case of genus zero.

Motivated by analogy with the construction of Gromov^Witten invariants from
the moduli space of stable maps, we introduce axioms which must be satis¢ed
by a cohomology class c1=r (called the virtual class) on the moduli space of r-spin
curves M1=r

g;n in order to obtain a cohomological ¢eld theory (CohFT) of rank
�rÿ 1� in the sense of Kontsevich and Manin [24]. This virtual class on M1=r

g;n is
an analog of the Gromov^Witten classes of a variety V (i.e. the pullbacks via
the evaluation maps of elements in H��V �). We realize this virtual class in genus
zero as the top Chern class of a tautological bundle over M1=r

0;n associated to the
r-spin structure. This yields a Frobenius manifold structure [6, 16, 27] on the state
space of the CohFT which is isomorphic to the Frobenius manifold associated
to the versal deformation of the Arÿ1 singularity [6]. This is an indication of the
existence of a kind of ``mirror symmetry'' between the moduli space of r-spin curves
and singularities. According to Manin [28] ``isomorphisms of Frobenius manifolds
of different classes remain the most direct expression of various mirror phenomena''.
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Proving the generalized Witten conjecture for all genera would provide further
evidence of this relationship.

As in the case of Gromov^Witten invariants, one can construct a potential
function from the integrals of the class c1=r on different components ofM1=r

g;n to form
the small phase space of the theory. The large phase space is constructed by
introducing the tautological classes c associated to canonical sections of the
universal curve C1=rg;n ÿ!M1=r

g;n, and can be regarded as a parameter space for a family
of CohFTs. A very large phase space (see [9, 21, 29]), parametrizing an even larger
space of CohFTs, is obtained by considering classes l, associated to the Hodge
bundles, and classes m, associated to the universal spin structure.

We show that the corresponding potential function satis¢es analogs of the
puncture and dilaton equations and also a new differential equation obtained from
a universal relation involving the class m1. These relations hold in all genera.
Topological recursion relations are also obtained from presentations of these classes
in terms of boundary classes in low genera.

Finally, using the new relation involving m1, we show that the genus zero part of
the large phase space potential F0�t� is completely determined by the geometry,
and this potential agrees with the generalized Witten conjecture in genus zero.

Some of our constructions were foreshadowed by Witten, who formulated his
conjecture even before the relevant moduli spaces and cohomology classes had been
constructed, just as he had done in the case of the topological sigma model and
quantum cohomology. We prove that his conjecture has a precise algebro-
geometric foundation, just as in the case of Gromov^Witten theory. Witten also
outlined a formal argument to justify his conjecture in genus zero. Our work shows
that the formulas that he ultimately obtained for the large phase space potential
function in genus zero are indeed correct, provided that the geometric objects
involved are suitably interpreted. This is nontrivial even in genus zero because
the underlying moduli spaces are not schemes, but stacks. We proceed further
to prove relations between various tautological classes associated to the r-spin
structures and to derive differential equations for the potential function associated
to them.

Notice also that one can introduce moduli spaces M1=r
g;n�V � of stable r-spin maps

into a variety V , where one combines the data of both the stable maps and the r-spin
structures. The analogous construction on these spaces yields a Frobenius manifold
which combines Gromov^Witten invariants (and quantum cohomology) with the
KdVr hierarchies. Work in this direction is in progress [20].

In the ¢rst section of this paper, we review the moduli spaceM1=r
g;n of genus g; stable

r-spin curves, which was introduced in [17, 18]. We also discuss the strati¢cation of
the boundary of M1=r

g;n. The boundary strata fall into two distinct categoriesöthe
so-called Neveu^Schwarz and Ramond types.

In the second section we introduce canonical morphisms, tautological bundles,
tautological cohomology classes, and cohomology classes associated to the bound-
ary strata of M1=r

g;n, and we derive a new relation involving the m1 class.
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In the third section, we de¢ne a cohomological ¢eld theory (CohFT) in the sense of
Kontsevich and Manin, its small phase space potential function, and the
associativity (WDVV) equation. We then review the construction of Gromov^
Witten invariants for the moduli space of stable maps and de¢ne the large and very
large phase spaces in the Gromov^Witten theory. Motivated by this example,
we explain how one may construct a CohFT and the various potential functions
from analogous intersection numbers on M1=r

g;n, assuming that the virtual class
c1=r exists.

In the fourth section we state axioms which c1=r must satisfy in order to obtain a
CohFT. We show that these axioms give a complete CohFT with a £at identity,
and we construct the class c1=r in genus zero, as well as in the case r � 2.

In the ¢fth section, we obtain analogs of the string and dilaton equations for this
r-spin CohFT, and we ¢nd a new equation based on the relation involving the
m1 class. We also prove the analog of topological recursion relations in genus zero.

In the sixth section, we use the new relation for the class m1 to completely deter-
mine the genus-zero part of the large phase space potential.

Finally, in the seventh section, we give a precise formulation of the generalized
Witten conjecture and prove that the genus-zero, large phase space potential of
the r-spin CohFT yields a solution to the semiclassical limit of the KdVr hierarchy,
thereby proving the Witten conjecture in genus zero. We conclude with our own
W -algebra conjecture, aKdVr-analog of a re¢nement of the Virasoro conjecture [8].

1. The Moduli Space of r-Spin Curves

In this section, we review the de¢nition and some of the basic properties of the
moduli space M1=r

g;n of genus g, n-pointed, stable r-spin curves.

1.1. AN OVERVIEW OF M1=r
g;n

As the de¢nition ofM1=r
g;n is rather involved, we motivate it by starting with an intuit-

ive approach to r-spin curves and their moduli space.
A smooth r-spin curve is essentially just a curve with an rth root of the canonical

bundle oX (suitably twisted). In other words, it is a pair �X ;L� where X is a smooth
curve and L is a line bundle on X such that L
r is isomorphic to the canonical bundle
oX . Given a collection of integers m � �m1; . . . ;mn�, an n-pointed smooth r-spin
curve of type m is a smooth n-pointed curve �X ; p1; . . . ; pn� with a line bundle L
on X , such that L
r is isomorphic to oX �ÿ

Pn
i�1 mipi�. For degree reasons such

a bundle exists only if 2gÿ 2ÿ
P

mi is divisible by r. When this condition is met,
there are r2g choices of L on X .

If we want to compactify the space of smooth r-spin curves by allowing the curveX
to degenerate to a stable curve, the above de¢nition of an r-spin structure is
insuf¢cient. In particular, there is often no line bundleL such that L
r is isomorphic
to oX �ÿ

P
mipi�, even when the degree condition is satis¢ed. One possible
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solutionöreplacing line bundles by arbitrary rank-one, torsion-free sheavesö
permits too many potential candidates. The correct structure required in this case
amounts essentially to an explicit choice of isomorphism (or homomorphism when
L is not locally free) b:L
r ÿ!oX �ÿ

P
mipi�, with some additional technical

restrictions described in De¢nitions 1.2 and 1.3.
There are two very different types of behavior of this torsion-free sheaf L near a

node q 2 X . When it is still locally free, the sheaf L is said to be Ramond at the
node q. If the sheaf L is not locally free at q, it is called Neveu^Schwarz.

In the Ramond case, the homomorphism b is still an isomorphism (near the node
q), but in the Neveu^Schwarz case it cannot be an isomorphism. The local structure
of the sheaf L near a Neveu^Schwarz node can be described as follows.

Near the node q, the curve X has two coordinates x and y, such that xy � 0; and
the sheaf oX (or oX �ÿ

P
mipi�) is locally generated by dx=x � ÿdy=y. Near q

the sheaf L is generated by two elements `� and `ÿ supported on the x and y branches
respectively (that is, x`ÿ � y`� � 0). The two generators may be chosen so that the
homomorphism b:L
r ÿ!oX �ÿ

P
mipi� takes `
r

� to xm��1�dx=x� � xm�dx, and
so that b takes `
r

ÿ to ymÿ�1�dy=y� � ymÿdy, where �m� � 1� � �mÿ � 1� � r is the
order of vanishing of b at the node q.

One more dif¢culty arises when r is not prime ^ in this case the moduli of stable
curves with r-spin structure, as described above, is not smooth. The remedy is
to include all d-spin structures for every d dividing r, satisfying some natural com-
patibility conditions. This is described in De¢nition 1.3.

We now give the de¢nition of r-spin curves.

1.2. HIGHER SPIN CURVES

DEFINITION 1.1. A prestable curve is a reduced, complete, algebraic curve with at
worst nodes as singularities.

DEFINITION 1.2. Let �X ; p1; . . . ; pn� be a prestable, n-pointed, algebraic curve, K
be a rank-one, torsion-free sheaf on X , and m � �m1; . . . ;mn� be a collection of
integers. A dth root of K of type m is a pair �E; b�, where E is a rank-one, torsion-free
sheaf, and b is an OX -module homomorphism b: E
d ÿ!K
OX �ÿ

P
mipi� with the

following properties:

. d � deg E � degKÿ
P

mi

. b is an isomorphism on the locus of X where E is locally free

. for every point p 2 X where E is not free, the length of the cokernel of b at p is
d ÿ 1.

The condition on the cokernel amounts essentially to the condition that the order
of vanishing of b at a node should be d. For any dth root �E; b� of type m, and
for any m0 congruent to m �mod d�, we can construct a unique dth root �E0; b0�
of typem0 simply by taking E0 � E 
 O�1=d

P
�mi ÿm0

i�pi�. Consequently, the moduli
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of curves with dth roots of a bundle K of type m is canonically isomorphic to the
moduli of curves with dth roots of type m0. Therefore, unless otherwise stated,
we will always assume the type m of a dth root has the property that
0Wmi < d for all i. Unfortunately, the moduli space of curves with dth roots of
a ¢xed sheaf K is not smooth when d is not prime, and so we must consider not
just roots of a bundle, but rather coherent nets of roots [17]. This additional structure
suf¢ces to make the moduli space of curves with a coherent net of roots smooth.

DEFINITION 1.3. Let K be a rank-one, torsion-free sheaf on a prestable n-pointed
curve �X ; p1; . . . ; pn�. A coherent net of rth roots of K of type m � �m1; . . . ;mn�
is a pair �fEdg; fcd;d 0g� of a set of sheaves and a set of homomorphisms as follows.
The set of sheaves consists of a rank-one, torsion-free sheaf Ed on X for every divisor
d of r; and the set of homomorphisms consists of an OX -module homomorphism
cd;d 0 : E
d=d 0

d ÿ!Ed 0 for every pair of divisors d 0; d of r, such that d 0 divides d. These
sheaves and homomorphisms must satisfy the following conditions:

. E1 � K and c1;1 � 1.

. For each divisor d of r and each divisor d 0 of d, the homomorphism cd;d 0 makes
�Ed ; cd;d 0 � into a d=d 0th root of Ed 0 of type m0, where m0 � �m0

1; . . . ;m
0
n� is the

reduction of m modulo d=d 0 (i.e. 0Wm0
i < d=d 0 and mi � m0

i �mod d�=d 0).
. The homomorphisms fcd;d 0g are compatible. That is, the diagram

commutes for every d 00jd 0jdjr.

If r is prime, then a coherent net of rth roots is simply an rth root ofK. Even when d
is not prime, if the root Ed is locally free, then for every divisor d 0 of d, the sheaf Ed 0 is
uniquely determined, up to an automorphism of Ed 0 . In particular, if m0 satis¢es the
conditions m0 � m �mod d 0� and 0Wm0

i < d 0, then the sheaf Ed 0 is isomorphic to
E
d=d 0

d 
O 1=d 0P�mi ÿm0
i�pi

ÿ �
.

DEFINITION 1.4. An n-pointed, r-spin curve of type m � �m1; . . . ;mn� is an
n-pointed, prestable curve �X ; p1; . . . ; pn� with a coherent net of rth roots of oX

of type m, where oX is the (canonical) dualizing sheaf of X . An r-spin curve is called
smooth if X is smooth, and it is called stable if X is stable.
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EXAMPLE 1.5. Smooth 2-spin curves of type 0:� �0; 0; . . . ; 0� correspond to classi-
cal spin curves (a curve with a theta characteristic) �X ; E2�, with an explicit
isomorphism E
2

2 ÿ!� o.

DEFINITION 1.6. An isomorphism of r-spin curves

�X ; p1; . . . ; pn; �fEdg; fcd;d 0g�� ÿ!
� �X 0; p01; . . . ; p

0
n; �fE0

dg; fc0d;d 0g��

of the same type m is an isomorphism of pointed curves

t: �X ; p1; . . . ; pn� ÿ!
� �X 0; p01; . . . ; p

0
n�

and a set of sheaf isomorphisms fbd : t�E0
d ÿ!� Edg; with b1 being the canonical

isomorphism t�oX 0�ÿ
P

i mip
0
i� ÿ!

�
oX �ÿ

P
mipi�; and such that the homomorph-

isms bd are compatible with all the maps cd;d 0 and t�c0d;d 0 .
Every r-spin structure on a smooth curveX is determined, up to isomorphism, by a

choice of a line bundle Er, such that E
r
r � oX �ÿ

P
mipi�. In particular, if X has no

automorphisms, then the set of isomorphism classes of r-spin structures (if
non-empty) of type m on X is a principal homogeneous space for the group of
r-torsion points of the Jacobian of X . Thus there are r2g such isomorphism classes.

EXAMPLE 1.7. If g � 1 and m � 0, then oX is isomorphic to OX , and a smooth
r-spin curve is just an elliptic curve X with a line bundle Er corresponding to an
r-torsion point of X , together with an explicit isomorphism E
r

r ÿ!� OX . In par-
ticular, the stack of stable, one-pointed r-spin curves of genus one and type 0 forms
a gerbe over the disjoint union of modular curves

`
djr X1�d�.

DEFINITION 1.8. The stack of connected, stable, n-pointed, r-spin curves of genus
g and type m � �m1; . . . ;mn� is denoted by M1=r;m

g;n . The disjoint union`
m0Wmi<r M

1=r;m
g;n is denoted by M1=r

g;n.

Remark 1.9. As mentioned above, no information is lost by restricting m to the
range 0Wmi W rÿ 1, since when m � m0 �mod r� every r-spin curve of type m nat-
urally gives an r-spin curve of type m0 simply by

Ed 7! Ed 
O
Xmi ÿm0

i

d
pi

� �
:

Thus M1=r;m
g;n is canonically isomorphic to M1=r;m0

g;n .

1.3. BASIC PROPERTIES OF THE MODULI SPACE

In [17] it was shown thatM1=r
g;n is a smooth Deligne^Mumford stack, ¢nite overMg;n,

with a projective, coarse moduli space. For g > 1 the spacesM1=r;m
g;n are irreducible if

gcd�r;m1; . . . ;mn� is odd, and they are the disjoint union of two irreducible com-
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ponents if gcd�r;m1; . . . ;mn� is even. When r � 2 (and in fact, for all even r) this is
due to the well-known fact that even and odd theta characteristics on a curve cannot
be deformed into one another [30]. These two components will be denotedM1=r;m;even

g;n

and M1=r;m;odd

g;n respectively.
When the genus g is zero the moduli space M1=r;m

0;n is either empty (if r does not
divide 2�

P
mi), or is canonically isomorphic to M0;n. Note, however, that this

isomorphism is not an isomorphism of stacks, since the automorphisms of elements
ofM1=r;m

g;n vary differently from the way that automorphisms of the underlying curves
vary. We will discuss this further in Section 1.6. In any case, M1=r;m

0;n is always
irreducible.

When the genus g is one, the space M1=r;m
1;n is the disjoint union of d irreducible

components, where d is the number of divisors of gcd�r;m1; . . . ;mn�. We will denote
the irreducible (and connected) component indexed by a divisor e of
gcd�r;m1; . . . ;mn� by M1=r;m;�e�

1;n . When m is zero, as mentioned in Example 1.7,
the locus of smooth r-spin curves in this component consists of n-pointed, elliptic
curves with a torsion point of exact order e.

Throughout this paper we will denote the forgetful morphism by p:M1=r
g;n ÿ!Mg;n,

and the universal curve by p: C1=rg;n ÿ!M1=r
g;n. As in the case of the moduli space of

stable curves, the universal curve possesses canonical sections si:M
1=r
g;n ÿ!C1=rg;n

for i � 1; . . . ; n. Unlike the case of stable curves, however, the universal curve
C1=r;mg;n ÿ!M1=r;m

g;n is not obtained by considering �n� 1�-pointed r-spin curves.
The curve C1=r;mg;n is birationally equivalent to M1=r;�m1;m2;...;mn;0�

g;n�1 , but they are not
isomorphic.

There is one other canonical morphism associated to these spaces; namely, when d

divides r, the morphism

�r=d�:M1=r;m
g;n ÿ!M1=d;m0

g;n and �r=d�:M1=r
g;n ÿ!M1=d

g;n ;

which forgets all of the roots and homomorphisms in the net of rth roots except those
associated to divisors of d. Here m0 is congruent to m �mod d� and 0Wm0

i < d for all
i 2 f1; . . . ; ng. In the case that the underlying curve is smooth, this is equivalent to
replacing the line bundle Er by its r=d-th tensor power (and then taking the tensor
product with O�1=d

P
�mi ÿm0

i�pi�).
The two components M1=r;m;even

g;n and M1=r;m;odd

g;n that arise in the case that
gcd�r;m1; . . . ;mn� is even are just the preimages of the spaces of even and odd
theta-characteristics in M1=2;0

g;n under the map �r=2�:M1=r;m
g;n ÿ!M1=2;0

g;n .

1.4. BOUNDARY BEHAVIOR

1.4.1. Neveu^Schwarz and Ramond Nodes

At any node q of a prestable curve X , there are two types of local behavior of an rth
root �Er; br� of oX �ÿ

P
mipi�. It is either locally free at q, in which case the

homomorphism br is an isomorphism near q, or it is torsion-free, but not locally
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free at q. In the locally free case we will say that the root Er is Ramond at q, and in the
non-locally free case it will be called Neveu^Schwarz.

If the rth root sheaf Er of an r-spin structure on X is Ramond at every node of X ,
then the whole net of roots is completely determined (up to isomorphism) by
the root �Er; cr;1� as follows:

Ed � E
r=d
r 
O 1

d

X
�mi ÿm0

i�pi
� �

;

and cd;1 � cr;1 
 I; where I is the identity homomorphism

O 1
d

X
�mi ÿm0

i�pi
� �

ÿ!O 1
d

X
�mi ÿm0

i�pi
� �

:

Remark 1.10. In the Neveu^Schwarz case, the r-spin structure maps are more
complicated than those in the Ramond case, but the combinatorial structure of
Neveu^Schwarz nodes is simpler than the Ramond nodes. In particular, the
cohomology classes de¢ned by boundary strata with Neveu^Schwarz nodes factor
in a nice combinatorial way. Moreover, the hope of constructing a cohomological
¢eld theory fromM1=r

g;n is based on the expectation that one can construct a canonical
cohomology class which vanishes on the strata where the r-spin structure has an rth
root sheaf which is Ramond at some node. (This would follow from Axiom 4 in
Section 4.1.)

1.4.2. Local Structure at Neveu^Schwarz Nodes

Recall from Section 1.1 (see also [17, 18, 34]) that near a Neveu^Schwarz node q, an
rth root �Er; br� of oX �ÿ

P
mipi� is uniquely determined by an rth root � ~Er; ~br� of the

bundle o ~X �ÿ
P

mipi ÿm�q� ÿmÿqÿ� on the normalization n: ~X ÿ!X of X at
the node q. Here q� and qÿ are the inverse images of q under n, and m� and
mÿ are non-negative integers* which sum to rÿ 2. If x and y are local parameters
of X near the node q satisfying the equation xy � 0, then the sheaf E is generated
locally by the sections �xm�dx�1=r and �ymÿdy�1=r; and ~Er is generated by
�xm�dx�1=r on the x branch of ~X , and it is generated by �ymÿdy�1=r on the y branch
of ~X . The points q� and qÿ are given by fx � 0g and fy � 0g, respectively, on ~X .
The sheaf ~Er is simply n�Er modulo torsion; and n� ~Er is Er, with br induced from
~br by adjointness. We will call the integersm� andmÿ the order of the r-spin structure
at the node, along the x or y branch, respectively. The order m� and mÿ of the r-spin
structure along the x or y branch of a node is not to be confused with the order of
vanishing of the structure maps. Indeed, if the r-th root bundle Er is Neveu^Schwarz
at a node, the order of vanishing of the map c1;r at that node is exactly
�m� � 1� � �mÿ � 1� � r.

In the case that m� � 1 and mÿ � 1 are relatively prime, one can show (see [17])
that ~E and ~b uniquely determine the entire net. However, if gcd�m� � 1;

*Note that the integers u and v of the papers [17] and [18] are m� � 1 and mÿ � 1, respectively.
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mÿ � 1� � d, then although Er still completely determines the Neveu^Schwarz roots,
d divides r, and the dth root �Ed ; cd;1� of the net is locally free (Ramond), as are all
roots �Ed 0 ; cd 0;1� for every d 0 dividing d. In particular, although generators
�xm�dx�1=r and �ymÿdy�1=r in Er determine �xm�dx�1=d and �ymÿdy�1=d , we must identify
�dx=x�1=d with �ÿdy=y�1=d . However, this identi¢cation is only determined by �Er; cr;1�
up to a non-canonical choice of a dth root of unity. If the normalization ~X at q has
two connected components, then the dth root �Ed ; cd;1� is determined up to
(non-canonical) isomorphism by �Er; br�, but if ~X is connected, then �Ed ; cd;1� is
not determined by �Er; br�, since an additional choice of a dth root of unity is required
to construct Ed from E
r=d

r (see Section 1.7).

1.4.3. More Detailed Study of the Ramond Case

Let �E; b� be an rth root of oX �ÿ
P

mipi� which is Ramond at a node q of X . The
restriction of E to q gives an exact sequence 0ÿ!mq 
 E ÿ!Eÿ!Ejq ÿ! 0; where
mq is the maximal ideal of the point q. The sheaf E0:� E 
mq is a rank-one,
torsion-free sheaf of degree �2gÿ 2ÿ

P
mi�=rÿ 1 on X , and pulling E0 back to

the normalization n: ~X ÿ!X ofX at q gives, modulo torsion, a rank-one, torsion-free
sheaf E 00:� n�E 0=torsion, such that n�E 00 is equal to E0.

If x and y are local coordinates on ~X near q� and qÿ respectively, then E00 is locally
generated by x�dx=x�1=r (respectively y�dy=y�1=r). Therefore, the homomorphism

b00: E00
r ÿ!n�oX ÿ
X

mipi

� �
� o ~X ÿ

X
mipi � q� � qÿ

� �
;

induced by b: E
r ÿ!o ~X �ÿ
P

mipi�, factors through

o ~X ÿ
X

mipi ÿ �rÿ 1�q� ÿ �rÿ 1�qÿ
� �

ÿ!o ~X ÿ
X

mipi � q� � qÿ
� �

:

Thus the rth root �Er; cr;1� can be Ramond at the node if and only ifm� � rÿ 1 and
mÿ � rÿ 1 satisfy the degree conditions

degX �j� o ~X ÿ
X

mi ÿm� ÿmÿ � 0 �mod r�

on every connected component X �j� of ~X . In the case that �Er; cr;1� is Ramond, we will
de¢ne the order of the r-spin structure at the node to bem� � mÿ � rÿ 1 along both
branches of the underlying curve.

Similarly,

�n�E�
r ÿ!n
�b

n�oX ÿ
X

mipi

� �
� o ~X ÿ

X
mipi � q� � qÿ

� �

corresponds to the choice m� � mÿ � ÿ1. In this special case there is a residue map
that canonically identi¢es Erjq� and Erjqÿ with C.
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PROPOSITION 1.11. If �Er; b� is an rth root ofoX �ÿ
P

mipi�with mi � ÿ1 for some i,

then there is an isomorphism

Rpi : Erjpi ÿ!
�

C �1�

which is canonical up to a choice of an rth root of unity.

An immediate consequence is the following corollary:

COROLLARY 1.12. If si is the ith section of the universal curve p: C1=r;mg;n ÿ!M1=r;m
g;n

with m � �m1; . . . ;mn� and mi � ÿ1 for some i, then the pullback s�i �Er� of the uni-

versal rth root Er is an r-torsion line bundle, i.e., its rth tensor power is isomorphic

to OM1=r;m

g;n

.

Proof of the Proposition. Let z be a local parameter on X near p, so that the sheaf
Er is locally generated by an element �dz=z�1=r which is well de¢ned up to an rth
root of unity. De¢ne the map Rp: Erjp ÿ!

�
C by Rp��a0 � a1z� . . .��dz=z�1=r�:� a0.

It is easy to check that this de¢nition is independent of local parameter, and hence
de¢nes a canonical isomorphism. &

1.5. GRAPHS

Much of the information about the structure of the boundary of M1=r;m
g;n can be

encoded in terms of decorated graphs.
Recall that the (dual) graph of an n-pointed prestable curve �X ; p1; . . . ; pn� consists

of the following elements:

. Vertices, corresponding to the irreducible components ofX : a vertex v is labeled
with a non-negative integer g�v�, the (geometric) genus of the component;

. Edges, corresponding to the nodes of the curve: an edge connects two vertices
(possibly even the same vertex, in which case the edge is called a loop) if
and only if the corresponding node lies on the associated irreducible
components;

. Tails, corresponding to the marked points pi 2 X , i � 1; . . . ; n: a tail labeled by
the integer i is attached at the vertex associated to the component of X that
contains pi.

DEFINITION 1.13. A half-edge of a graph G is either a tail or one of the two ends of
a `real' edge ofG. We denote byV �G� the set of vertices ofG and by n�v� the number of
half-edges of G at the vertex v.

The following de¢nition describes a class of graphs that are dual graphs of stable
pointed curves.

DEFINITION 1.14. Let G be a graph. The number g�G� � dimH1�G� �
P

v2V �G� g�v�
is called the genus of a graph G.
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A graph G (not necessarily connected) is called stable if 2g�v� ÿ 2� n�v� > 0 for
every v 2 V �G� (in particular, it satis¢es 2g�G� ÿ 2� n > 0, where n is the number
of tails of G).

To describe strata of the moduli space of r-spin curves, we decorate the graphs
with additional data coming from the r-spin structure. In particular, the type
m � �m1; . . . ;mn� gives a marking to each of the tails.

DEFINITION 1.15. Fix an integer rX 2. A decorated stable graph is a stable graph
with a marking of each half-edge by a non-negative integer m < r, such that for each
edge e the marks m� and mÿ of the two half-edges of e satisfy

m� �mÿ � rÿ 2 �mod r�:

As mentioned in Section 1.4, decorated stable graphs with n tails and genus g

correspond to boundary strata in M1=r
g;n.

DEFINITION 1.16. Given a stable r-spin curve X of type m � �m1; . . . ;mn�, the
decorated dual graph of X is the dual graph G of the underlying curve X , with
the following additional markings. The ith tail is marked by mi, and each half-edge
associated to a node of X is marked by the order (m� or mÿ) of the r-spin structure
along the branch of the node associated to that half-edge.

DEFINITION 1.17. Let G be a connected stable graph (or a decorated stable graph)
with n tails and of genus g . We denote byMG (or byM1=r

G
) the closure inMg;n (or in

M1=r
g;n) of the moduli space of stable curves (or r-spin curves) whose dual graph is G. If

G �
`

i2IGi is the disjoint union of connected subgraphsGi then we denote byMG the
product

Q
i2I MGi

, and similarly M1=r
G

�
Q

i2I M
1=r
Gi

.

1.6. AUTOMORPHISMS OF r-SPIN CURVES

As mentioned in Section 1.3, even in the genus zero case, where there is a unique
r-spin structure of a given typem � �m1; . . . ;mn� for each genus-zero curve (provided
m satis¢es the degree requirement

P
mi � 2 �mod r�), the automorphisms of the

r-spin structure ensure that M1=r;m
0;n is not isomorphic, as a stack, to M0;n. The auto-

morphisms of r-spin structures will play an important role later in this paper, par-
ticularly in the determination of the degrees of morphisms and the properties of
various cohomology classes under restriction and pullback. Consequently, we need
to understand the group of automorphisms of an r-spin curve.

First, we introduce some notation. Let X � �X ; p1; . . . ; pn; �fEdg; fcd;d 0g�� be an
r-spin curve, and let G be its decorated dual graph. Let V be the set of vertices
of G and Enl be the set of edges which do not start and end at the same vertex (i.e.,
non-loops). Furthermore, for each v 2 V , denote by Xv the irreducible component
of X associated to vertex v; and denote by Fv the set of all half-edges attached
to v in G. For each f in Fv let pf be the point of Xv associated to f , and let mf
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be the marking of f . Finally, for each vertex v, if iv:Xv ÿ!X denotes the obvious
inclusion, then the r-spin structure �fEdg; fcd;d 0g� pulls back to a collection
�fi�vEdg; fi�v cvd;d 0g�� of sheaves and morphisms on Xv. However, these sheaves are
not necessarily torsion free. Taking the quotient of each sheaf i�vEd by its torsion
submodule gives a rank-one, torsion-free sheaf, which we denote by Ev

d . It is
easy to see that the homomorphisms fcvd;d 0g, induced on the fEv

dg from the homomor-
phisms i�vEd , make Xv � �Xv; pf v1 ; . . . ; pf

v
kv
; �fEv

dg; fcvd;d 0g�� into an r-spin curve. We
will call Xv the restriction of X to the curve Xv. Any e 2 Enl consists of
two half-edges f �e and f ÿe ; and we denote by de the integer
de:� gcd�mf �e

� 1;mf ÿe � 1� � gcd�mf �e
� 1; r�:

PROPOSITION 1.18. If the underlying pointed curves �Xv; pf v1 ; . . . ; pf
v
kv
� of the r-spin

curves Xv have no non-trivial automorphisms (this is true for a generic curve with

g� n > 2), then

(1) for each v 2 V the automorphism groupAut�Xv� of Xv is isomorphic to mr, the group

of rth roots of unity; and

(2) given any orientation of the edges of the dual graph G of X, the automorphism group

Aut�X� of X ¢ts into the following exact sequence

1ÿ!Aut�X� ÿ!
Y

v2V
Aut�Xv�

@
ÿ!

Y

e2Enl

mr=de : �2�

Here the map @ is de¢ned as follows. The orientation of each edge e determines the

choice of half-edges f �e and f ÿe and of corresponding vertices v�e and vÿe (the unique

vertex of G attached to f �e or f ÿe , respectively). The map @ maps the elementQ
zv 2

Q
v2V mr to the element

Q
�zde

v�e
zÿde
vÿe

�. Note that, although the map @ depends upon

the given orientation of the edges of G, the kernel of @ is independent of orientation.

Proof. If �Xv; pf v1 ; . . . ; pf ve � has no automorphisms, then each term Ev
d in the r-spin

structure �fEv
dg; fcvd;d 0g� is locally free (since Xv is smooth) of rank one and has

automorphism group C
� � H0�Xv;O�

Xv
�, which acts on Ed by multiplication.

However, an automorphism of the r-spin structure must also be compatible with
the structure maps fcd;d 0g. In particular, compatibility with the isomorphism
cr;1: �Ev

r�
r ÿ!� oXv
�ÿ
P

f2Fv
mf pf � shows that any automorphism sr of Er must satisfy

�sr�r � 1. Moreover, compatibility with cd;d 0 shows that sd 0 � �sd�d=d
0
for every d 0

dividing d and d dividing r. Thus sr corresponds to some z 2 mr, and for every d

dividing r, the automorphism sd is just zr=d . This proves the ¢rst part of the
proposition.

For the second part, it is easy to see that any automorphism of the whole r-spin
curve X induces, by restriction, an automorphism of Xv for each Xv, and the
map Aut�X� ÿ!

Q
v2V Aut�Xv� is injective.

Moreover, for any edge e 2 Enl corresponding to half edges f � attached to vertex
v� and f ÿ attached to vertex vÿ, an automorphism s of Xwill induce automorphisms
sv� � z� 2 mr and svÿ � zÿ 2 mr; and these automorphisms must agree whenever Er is
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Ramond (locally free) at the node pe corresponding to edge e. Similarly, if Ed is
Ramond at pe, then �z��r=d must equal �zÿ�r=d . However, if the sheaf Ed is
Neveu^Schwarz at pe, then sv� and svÿ act on distinct vector spaces (the sheaf
Ev�

d jp
f�e

is not the same as Evÿ
d jpfÿe ), and so Ed imposes no compatibility condition

on sv� and svÿ .
Since Ed is Ramond at the node pe precisely when d divides both mf � � 1 and

mf ÿ � 1, we have that the condition imposed by compatibility for sv� and svÿ is
precisely the equality �sv� �r=d � �svÿ�r=d for

d � de:� gcd�mf � � 1;mf ÿ � 1� � gcd�mf � � 1; r�:

It is clear that any
Q

sv 2
Y

Aut�Xv� which meets this compatibility condition at
each edge e 2 Enl de¢nes a global automorphism s 2 Aut�X�. &

Of course, since we only care about the kernel of @, the right-most term in exact
sequence (2) might as well include all the edges, including loops. This is because
for any loop e, the map @ will always map every element of

Q
v2V Aut�Xv� to

1 2 mr=de , since the vertices v� and vÿ (and hence also sv� and svÿ) are the same.
For r-spin curves of genus 1 and 2 with a generic involution (i.e. inM1=r

1;1 andM
1=r
2;0),

we have the following description of the group of automorphisms. Note that when
g � n � 1, degree requirements force m1 to be zero. Also when g � 2 and n � 0,
degree requirements force r to be 2.

PROPOSITION 1.19.

(1) If the underlyingcurve �X ; p�ofa smooth r-spin curveX 2 M1=r;0;�j�
1;1 of index j has no

automorphisms other than the elliptic involution, then the automorphism group of X

is

AutX � mr �Z=2; if j � 1 or j � 2;
mr; if j > 2:

�

(2) If the underlying curve X of a smooth 2-spin curve X 2 M1=2
2;0 has no auto-

morphisms other than the hyperelliptic involution, then the automorphism group

of X is AutX � mr �Z=2:

Proof. In the case of g � n � 1, smooth r-spin curves of type 0 and index j cor-
respond to the torsion points of X of exact order j. It is well known that the
involution i:X ÿ!X acts without ¢xed points on the points of exact order j, unless
j is 1 or 2, in which case the involution ¢xes all 2-torsion points (including the
identity, corresponding to the trivial bundle OX � oX ).

It is easy to check (e.g. by explicitly writing out the coordinates) that for sheaves Er

of index 2 (or 1), corresponding to 2-torsion, there is a canonical choice of
isomorphism t: i�Er ÿ!Er such that

. i�t � t is trivial,
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. any other isomorphism i�Er ÿ!Er differs from t by an element z 2 mr, and

. t commutes with all elements of mr.

Thus AutX has order 2r and is Abelian; and if r is even, then every automorphism
has order dividing r. Thus the proposition follows in genus 1.

The proof in genus 2 is similar, but simpler, since every 2-spin structure is ¢xed by
the involution. &

1.7. GLUING

In the case of moduli spaces of ordinary stable curves, if a graph G is obtained from
another graph ~G (not necessarily connected) by gluing together two tails of ~G (thus
producing a new edge), there is a natural gluing morphism

r:M ~G ÿ!MG ,!Mg;n: �3�

It corresponds to gluing together the punctures on a curve X 2 M ~G associated to the
two tails, and thus the curve r�X � 2 MG will have an additional node and two fewer
punctures than X . A similar gluing operation sometimes exists for r-spin curves, but
even then we often need to include extra data.

1.7.1. Two Irreducible Components

Consider the case of an r-spin curve with a single Neveu^Schwarz node. Assume the
normalization of the underlying curve X at the node has two connected components:
X� of genus k, and Xÿ of genus gÿ k. The decorated dual graph of the r-spin curve
looks like this

n

j+1

j

1

g-kk
i

m

m

im

im

i

The rth root bundle Er factors as Er � E�
r � Eÿ

r , with E�
r an rth root

of oX� �ÿ
Pj

l�1 milpil ÿm�q�� on X� and Eÿ an rth root of
oXÿ�ÿ

Pn
l�j�1 milpil ÿmÿqÿ� on Xÿ. Here m� and mÿ can easily be calculated (for

degree reasons) as the unique non-negative integers summing to rÿ 2 such that
the rth roots of the corresponding (twisted) canonical bundles exist; namely,

m� � 2kÿ 2ÿ
Xj

l�1

mil �mod r� �4�
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and

mÿ � 2�gÿ k� ÿ 2ÿ
Xn

l�j�1

mil �mod r�: �5�

Of course, since the degree of the original bundle was divisible by r, each of the two
relations implies the other. The Neveu^Schwarz case occurs exactly when the sol-
utions m� and mÿ to the congruences (4) and (5) lie in f0; 1; . . . ; rÿ 2g (whereas
the Ramond case occurs when the solution is m� � rÿ 1, mÿ � rÿ 1) [18]. If
gcd�m� � 1;mÿ � 1� is one, then these data completely determine the r-spin structure
on X , and in a canonical way, so that in this case we have a well-de¢ned gluing
morphism

r:M1=r
G1tG2

� M1=r
G1

�M1=r
G2

ÿ!M1=r
G

,!M1=r;m
g;n : �6�

If, however, d:� gcd�m� � 1;mÿ � 1� is greater than one, there is no canonical
morphism of stacks, as there is in (6). To construct a gluing morphism would require
an isomorphism f: E�

d jq� ÿ!� Eÿ
d jqÿ that makes Ed Ramond at the node. In par-

ticular, f must be compatible with the isomorphism �E�
d �


d ÿ!� o�ÿ
P

mipi� and
�Eÿ

d �

d ÿ!� o�ÿ

P
mipi�. We call such an isomorphism f a gluing datum.

DEFINITION 1.20. Given a prestable �n� 2�-pointed curve �X ; p1; . . . ; pn�2� (not
necessarily connected) and a dth root �E; b� of oX �ÿ

P
mipi�, such that

mn�1 � mn�2 � ÿ1, denote by X the curve obtained from X by identifying the point
pn�1 with pn�2. A gluing datum for �E; b� is an isomorphism f: Ejpn�1

ÿ!� Ejpn�1
which

is compatible with the d-th root maps Ej
d
pn�1

ÿ!b oX �ÿ
Pn

i�1 mipi� ÿ!
bÿ1

Ej
d
pn�2

:

Returning to the case of a curve X with a single node and two irreducible
components, since the normalized curve has two connected components, the root
�Ed ; cd;1� is determined up to non-canonical isomorphism by �Er; cr;1�. Still, choosing
one gluing datum f: E�

d jq� ÿ!� Eÿ
d jqÿ does not give a morphism of stacks because

an automorphism of the r-spin structure on X� or on Xÿ changes the gluing datum
f, and thus induces a different (but isomorphic) r-spin structure on the curve X .

1.7.2. Irreducible Curve with One Node

In the case of an r-spin curve X with a single component and one node we have the
dual graph

m
1

m
2

mn

m
+

m
-

g-1
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This determines an r-spin structure on the normalized curve ~X , with the dual graph

1
m

+mm
g-1

nm

2

-m

If d � gcd�m� � 1;mÿ � 1� � gcd�m� � 1; r� � 1; then all roots Ed in the r-spin
structure are of the Neveu^Schwarz type and we can de¢ne the gluing morphism

r:M1=r
~Girr

ÿ!M1=r
Girr

,!M1=r;m
g;n �7�

in the obvious way.
However, if d � gcd�m� � 1; r� is greater than one, then, as mentioned above, an

additional gluing datum is required to construct �Ed ; cd;1� from �E
r=d
r ; cr;1�. In this

case, set u� � �m� � 1=d� and uÿ � �mÿ � 1=d� and de¢ne

E0
d :� E
r=d

r 
O�u�p� � uÿpÿ�;

where p� and pÿ are the inverse images under normalization of the node. This shows
that E 0

d is a dth root ofo ~X �ÿ
P

mipi � p� � pÿ�; that is,m� andmÿ are both replaced
with ÿ1. To construct Ed from E0

d we need to choose an isomorphism
f: E 0

d jp� ÿ!E0
d jpÿ compatible with the isomorphisms E 0
d

d jp� ÿ!� o ~X �p� � pÿ� ÿ!�

E 0
d
d jpÿ ; and there are exactly d such isomorphisms.
Unlike in the case of the tree, an automorphism of the r-spin structure on the

normalized curve induces the same automorphism on both sides of the gluing datum
f, and thus it preserves f. Consequently, we expect d � gcd�m� � 1; r� gluing
morphisms rf:M

1=r
~Girr

ÿ!M1=r
Girr

,!M1=r;m
g;n ; indexed by the set of different choices

of f. However, in order to construct such a morphism, one needs to be able to de¢ne
the gluing data in families. That is, if p: C1=r~Girr

ÿ!M1=r
~Girr

is the universal curve over
M1=r

~Girr
, and if D� and Dÿ are the loci in of the two sections s� and sÿ of p to

be glued, then we need to de¢ne an isomorphism f: E0
d jD� � s���E0

d � ÿ!
�

sÿ��E0
d � � E0

d jDÿ : Such an isomorphism may not exist because E0
d jD� and E0

d jDÿ

may differ by an r-torsion line bundle on M1=r;�m;ÿ1;ÿ1�
gÿ1;n�2 But if g is the set of

isomorphisms E 0
d jD� ÿ!� E0

d jDÿ of the sheaf E0
d � E
r=d

r 
O�u�D� � uÿDÿ�, we have
a morphism rGirr

:M1=r
~Girr

� gÿ!M1=r

Girr
,!M1=r;m

g;n :

2. Tautological Cohomology Classes

Unless otherwise stated, all cohomology groups in the paper are considered with
coef¢cients in Q.
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2.1. DEFINITIONS

There are many natural cohomology classes in H��M1=r;m
g;n ;Q�; these include the

classes induced by pullback from Mg;n, as well as classes induced by replacing
the canonical (relative dualizing) sheaf op with Er in the usual constructions of
tautological cohomology classes on Mg;n.

In particular, we have the ith Chern classes li of the Hodge bundle p�op. However,
p�Er is not especially well behaved. Instead, we prefer to use the K-theoretic
pushforward p!Er (also called Rp�E).* Recall that for any coherent sheaf F on
the universal curve p: C1=r;mg;n ÿ!M1=r;m

g;n , the element p!F of K0�M
1=r;m
g;n � is the differ-

ence p�F ÿ R1p�F (p has relative dimension 1). Here R1p�F is the sheaf whose ¢ber
over a point p of the baseM1=r;m

g;n is the vector spaceH1�pÿ1�p�;Fjpÿ1�p��. Serre duality
shows that H1�X ;o� is canonically isomorphic to C, and so R1p�op is a trivial line
bundle. Hence p�op � p!op �O in K0�M

1=r;m
g;n �. Therefore, we have an equality

of Chern polynomials ctp�op � ctp!op � 1� l1t� l2t
2 � . . . : Tautological classes

ni are de¢ned as components of the Chern character of the Hodge bundle

chtp�op � 1� chtp!op � g� n1t� n2t
3 � n3t

5 � . . . : �8�

(The even components of chtp�op vanish by Mumford's theorem [31].) Similarly, we
de¢ne classes mi as components of the Chern character of p!Er:

chtp!Er � D� m1t� m2t
2 � . . . : �9�

Here ÿD is the Euler characteristic w�ErjCs� of Er on any geometric ¢ber Cs of p, and
by Riemann^Roch

D � 1
r

�rÿ 2��gÿ 1� �
X

i

mi

 !
: �10�

Serre duality shows that for any F we have p!�Hom�F ;op�� � p!F , so p!O � p!op.
More importantly, for purposes of comparison with Witten's calculations of [34],
in the special case that R1p�Hom�Er;op� � 0 (or equivalently, p�Er � 0), the bundle
V:� p�Hom�Er;op� of [34] corresponds to p!Er:

In addition to the Hodge-like classes, there are those induced by the canonical
sections si of p: C1=r;mg;n ÿ!M1=r;m

g;n . These are classes ci:� c1�s�i �op�� and
~ci:� c1�s�i �Er�� (and also class ~c

�d�
i for each divisor d of r). When working in

PicM1=r;m
g;n , we will abuse notation and use ci to indicate the line bundle s�i �op�,

and ~ci the line bundle s
�
i �Er�. Finally, there are the boundary classes. In particular,

if A t B is a partition of f1; . . . ; ng into two subsets, we denote by ak;A the class

*The notation p! is from algebraic topology and is not to be confused with the sheaf-theoretic
direct image with compact supports, whichwe never use in this paper.
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of the divisor associated to r-spin curves with the dual graph G of the form

n

j+1

j

1

g-kk
i

m

m

im

im

i

;

with fi1; . . . ; ijg � A and fij�1; . . . ; ing � B. Of course there is an obvious equality:
ak;A � agÿk;B:

Since the graph G is a tree, there is a unique choice ofm� andmÿ, given the original
type m and the partition A t B.

If g is greater than 1, and if r and all of the mi are even, then the moduli space has
two components, M1=r;m;even

g;n and M1=r;m;odd

g;n . If 2W kW gÿ 2; then ak;A is the
sum of four divisorsötwo on each irreducible component of the moduli space.
In particular, there are two divisors in PicM1=r;m;even

g;n with dual graph

n

j+1

j

1

g-kk
i

m

m

im

im

i

:

The ¢rst is the locus where both vertices of the graph (irreducible components of the
underlying curve) are endowed with an even r-spin structure; and the second is where
both vertices are endowed with an odd r-spin structure. Similarly, in PicM1=r;m;odd

g;n ,
the two divisors correspond to the two ways of endowing the vertices with r-spin
structures of differing parities.

In the case of k � 0 and g > 1, the divisor a0;k is the sum of only two divisors,
corresponding to the parity of the r-spin structure on the other vertex (of genus
g). If k � 1 then a1;A is the sum of (potentially many) divisors corresponding to
the choices of index for the r-spin structure on the vertex of genus 1, (as well as
the choices of index or parity for the remaining vertex).

Finally, denote by ~dirr;m� the divisor associated to the graph

m
1

m
2

mn

g-1
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with the r-spin structure inducing

1
m

+mm
g-1

nm

2

-m

on the normalization; and denote the divisor corresponding to the Ramond root by
~dirr;rÿ1.* The divisor ~dirr;m� is not necessarily irreducible, since different choices
of gluing will induce distinct (and disjoint) divisors, all in ~dirr;m� . Again, there is
an obvious equality ~dirr;m � ~dirr;rÿ2ÿm:

2.2. BASIC PROPERTIES OF THE TAUTOLOGICAL CLASSES

The following Proposition describes relations between various elements in the Picard
group ofM1=r;m

g;n . It is a straightforward generalization of the corresponding result for
the case m � 0 proved in [19].

PROPOSITION 2.1.

. The forgetful map p:M1=r;m
g;n ÿ!Mg;n induces an injection

p�: PicMg;n 
Qÿ!PicM1=r;m
g;n 
Q:

. Let dk;A denote the pullback to PicM1=r;m
g;n of the class in PicMg;n associated to

the union of all strata in Mg;n with the dual graph

j

1

g-kk

j+1

i

i

i

i

n

;

with A � fi1; . . . ; ijg. The pullback dk;A is related to ak;A as follows:

dk;A � r

gcd�m� � 1; r� ak;A;

where m� is determined by k;m, and A, as in Section 1.7.1.

. Let dirr be the pullback to PicM
1=r;m
g;n of the divisor of all curves inMg;n with dual

graph

Girr �
g-1

1

2

ni

i

i

:

*Beware that the index m of ~dirr;m differs from the index j of g in [19] by one.
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The pullback dirr can be expressed in terms of the ~dirr;m as follows:

dirr �
X

r=2ÿ1Wm<r

r

gcd�r;m� 1�
~dirr;m:

The fact that, for an rth root �E; b� of o�ÿ
P

mipi�, the map b is almost an
isomorphism means that ~ci and ci are closely related.

PROPOSITION 2.2. The line bundles s�i o and s�i �Ed� on the stackM1=r;m
g;n are related

by

rs�i �Er� � �mi � 1�s�i �o� and ds�i �Ed� � �m0
i � 1�s�i �o�;

where m0
i is the smallest non-negative integer congruent to mi �mod d�. Therefore, in

PicM1=r;m
g;n 
Q we have

~ci �
mi � 1

r
ci and ~c

�d�
i � m0

i � 1
mi � 1

� �
r

d
~ci:

Before proving the proposition, we recall the following well-known fact.

LEMMA 2.3. Let p: Cg;n ÿ!Mg;n be the universal n-pointed curve, and si the ith
tautological section of p. If Di is the divisor of Cg;n associated to si, and if

o � op is the canonical (relative dualizing) sheaf, then

s�i �O�ÿDj�� �
s�i �ojDi

� � ci; if i � j;

O; if i 6� j:

�

Proof. When i 6� j the bundle s�i �O�ÿDj�� is trivial because the sections are disjoint.
In the case i � j the result follows from the fact that taking residues gives an
isomorphism between op�Di�jDi

and ODi
. &

Proof of Proposition 2.2. The map cd;1: E
d
d ÿ!o�ÿ

P
m0

jpj� pulls back, via s�i , to
give s�i cd;1: �s�i E�
r ÿ!s�i o ÿ

P
m0

jpj

� �
: Since im�si� is disjoint from the nodes of

X , s�i cd;1 is an isomorphism, even on the boundary strata where E fails to be locally
free.

Consequently, we have

s�i �cd;1�: s�i �E
d
d � ÿ!� s�i o
O ÿ

X

j

m0
jDj

 ! !
� ci �m0

ici � �m0
i � 1�ci:
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2.3. NON-TRIVIAL RELATIONS INVOLVING THE CLASS m1.

PROPOSITION 2.4. De¢ne the boundary divisors e and d by

e �
X

k;A

�m� � 1��mÿ � 1�
uk;A

ak;A �
X

r
2ÿ1Wm<rÿ1

�m� 1��rÿmÿ 1�
vm

~dirr;m

and d �
P

dk;A �
P

r
2ÿ1Wm<r

r
vm
~dirr;m �

P
k;A

r
uk;A

ak;A; where vm � gcd�m� 1; r�,
uk;A � gcd�m� � 1; r�, and m� is determined by k;A, and m via relation (4).

Then the following relation holds in PicM1=r;m
g;n :

re � �2r2 ÿ 12r� 12�l1 ÿ 2r2m1 � �rÿ 1�d�
X

1W iW n

mi�rÿ 2ÿmi�ci:

The proof of the Proposition is almost identical to its counterpart in [19, Theorem
4.3.3] except that Er is not an rth root of o, but rather of o�ÿ

P
mipi�. The only extra

information necessary to prove the proposition is the content of the following two
lemmas and the fact that the divisor we have called e is the product < ~Er;E > in [19].

LEMMA 2.5. Let p: Cg;n ÿ!Mg;n be the universal curve and

h; i:Pic Cg;n � Pic Cg;n ÿ!PicMg;n

be Deligne's bilinear product de¢ned by

hL;Mi:� det�p!�L 
M� ÿ p!L ÿ p!M� p!O�:

If D is the image of a section s:Mg;n ÿ!Cg;n, then for any line bundle L on Cg;n the
product hL;OC�D�i is equal to the restriction of L to D; that is, it is just s�L.

This is proved in [4, Prop. 6.1.3], but it also follows from the fact that when the
base is a smooth curve B, then deg hL;Mi is exactly the usual intersection number
�L:M�. Since line bundles on Mg;n are completely determined by their degree on
smooth curves in Mg;n [2], and since in the case of a smooth, one-parameter base
the degrees agree, the lemma is true in general.

LEMMA 2.6. We have

hO�Di�;O�Dj�i �
ÿs�i op � ÿci; if i � j;

0; if i 6� j:

�

This follows immediately from Lemmas 2.3 and 2.5.
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COROLLARY 2.7. If g � 0 then classes l1 and ~dirr;m vanish (for all m), and

2r2m1 � �rÿ 1�d�
X

i

mi�rÿ 2ÿmi�ci ÿ re

�
X

A��n�

r

u0;A
�rÿ 1ÿ �m� � 1��mÿ � 1��a0;A�

�
X

1W iW n

mi�rÿ 2ÿmi�ci:

3. Cohomological Field Theory

In this section we begin with a review of the notion of a cohomological ¢eld theory
(CohFT) in the sense of Kontsevich and Manin [24]. This is an object which
formalizes the expected factorization properties of the theory of topological gravity
coupled to topological matter. The Gromov^Witten invariants associated to a
smooth, projective variety V correspond to the physical situation where the matter
sector arises from the topological sigma model [24, 32]. The analogous intersection
numbers associated to the moduli space of r-spin curves have their physical origins
in a different choice of the matter sector. Our goal in this section is to give a precise
formulation of these notions in terms of the moduli spaces described above.

3.1. AXIOMS OF CohFT

DEFINITION 3.1. A (complete) cohomological ¢eld theory (CohFT) of rank d

(denoted by �H; Z;L� or just �H; Z�) is a d-dimensional vector space H with a metric
Z and a collection L :� fLg;n g of n-linear H��Mg;n�-valued forms on H

Lg;n 2 H��Mg;n� 
 H�
n � Hom�H
n;H��Mg;n�� �11�

de¢ned for stable pairs �g; n� and satisfying the following axioms C1^C3 (where
fe0; . . . ; edÿ1g is a ¢xed basis of H, Zmn is the inverse of the matrix of the metric
Z in this basis, and the summation convention has been used).

C1. The element Lg;n is invariant under the action of the symmetric group Sn.
C2. Let

rtree:MG1tG2 � MG1 �MG2 ÿ!MGtree
,!Mg;n �12�

be the gluing morphism (3) corresponding to the stable graph

j

1

g-kk

j+1

i

i

i

i

n
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and the two graphs G1 and G2 obtained by cutting the edge of Gtree. Then the
forms Lg;n satisfy the composition property

r�treeLg;n�g1; g2 . . . ; gn�
� Lk;j�gi1 ; . . . ; gij ; em�Z

mn 
 Lgÿk;nÿj�en; gij�1
; . . . ; gin�

�13�

for all gi 2 H.
C3. Let

rloop:M ~G � Mgÿ1;n�2 ÿ!MGloop
,!Mg;n �14�

be the gluing morphism (3) corresponding to the stable graph

g-1
1

2

ni

i

i

�15�

and the graph ~G obtained by cutting the loop of Gloop. Then

r�loop Lg;n�g1; g2; . . . ; gn� � Lgÿ1;n�2 �g1; g2; . . . ; gn; em; en� Zmn: �16�

The pair �H; Z� is called the state space of the CohFT.

An element e0 2 H is called a £at identity of the CohFT if, in addition, the
following equations hold.

C4a. For all gi in H we have

Lg;n�1�g1; . . . ; gn; e0� � p�Lg;n�g1; . . . ; gn�; �17�

where p:Mg;n�1 ! Mg;n is the universal curve on Mg;n and
C4b.

Z

M0;3

L0;3�g1; g2; e0� � Z�g1; g2�: �18�

A CohFT with £at identity is denoted by �H; Z;L; e0�: A genus ~g CohFT on the state
space �H; Z� is the collection of forms fLg;n gg W ~g that satisfy only those of the
Equations (13), (16), (17), and (18), where gW ~g.

Remarks 3.2. (1) In general, the state spaceH of CohFT isZ2-graded, but here, for
simplicity, we are assuming thatH contains only even elements, since this is the only
case that will arise in this paper.

(2) The de¢nition of a CohFT given above has an equivalent dual description
in terms of homology. Consider the maps H��Mg;n� ! TnH� given by
�c� 7!

R
�c� Lg;n. These maps are called the (n-point) correlators of the CohFT. A struc-

ture of a (complete) CohFT on �H; Z� is equivalent to the requirement that these
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correlators endow �H; Z� with the structure of an algebra over the modular operad
fH��Mg;n� g in the sense of Getzler and Kapranov [14].

(3) Clearly, the de¢nition of a cohomological ¢eld theory extends fromC to more
general ground rings K.

Let G be a stable graph, then there is a canonical composition map rG

rG:
Y

v2V �G�
Mg�v�;n�v� ! MG ! Mg;n �19�

whereV �G� denotes the set of vertices ofG. Since the map rG can be constructed from
gluing morphisms (12) and (14), the forms Lg;n satisfy a restriction property

r�
G
Lg;n � rÿ1

G
�
O

v2V �G�
Lg�v�;n�v� � �20�

where rÿ1
G

:
N

v2V �G� T
n�v� H� ! T n H� contracts the factors TnH� by means of the

inverse of the metric Z and successive application of Equations (13) and (16). There
is a parameter which can be introduced into the de¢nition of a CohFT. This par-
ameter can be regarded as a coupling constant in the theory.

LEMMA 3.3. Let �H;eZ;eL; e0� be a CohFT with £at identity e0 and let l be a nonzero

parameter. If we de¢ne L � fLg;n g, where Lg;n :� l2gÿ2eLg;n and Z :� lÿ2eZ; then
�H; Z;L; e0� is a CohFT with £at identity.

The proof is obvious.

DEFINITION 3.4. The small phase space potential function of the CohFT �H;eZ;eL�
is a formal series F 2 C��H�� given by

F�x� :�
X1

g� 0

Fg�x�; �21�

whereFg�x� :�
P

n
1
n!

R
Mg;n

eLg;n ; x

n

D E
:Here � � �h i denotes evaluation, the sum over

n is understood to be over the stable range, and x �
P

a xa ea, where f ea g is a basis
of H.

Remark 3.5. The small phase space potential function of the CohFT �H; Z;L; e0�
associated to �H;eZ;eL; e0� as in Lemma 3.3 may be regarded as an element in
lÿ2C��H; l2��.

All of the information of a genus zero CohFT is encoded in this potential.

THEOREM 3.6 ([24, 27]). An element F0 inC��H�� is the potential of a rank d, genus

zero CohFT �H; Z� if and only if it contains only terms which are of cubic and higher

order in the coordinates x0; . . . ; xdÿ1 (corresponding to a basis f e0; . . . edÿ1 g of

H) and it satis¢es the associativity, or WDVV (Witten^Dijkgraaf^Verlinde2)

MODULI SPACES OF HIGHER SPIN CURVES 181

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017528003622


equation @a@b@eF0 Z
ef @f @c@dF0 � @b@c@eF0 Z

ef @f @a@dF0; where Zab is the inverse

matrix of the matrix of Z in the basis feag, @a is derivative with respect to xa, and

the summation convention has been used.

Conversely, a genus zero CohFT structure on �H; Z� is uniquely determined by its

potential F0, which must satisfy the WDVV equation.

A genus zero CohFT with £at identity is essentially equivalent to endowing the
state space �H; Z� with the structure of a formal Frobenius manifold [6, 16, 27].
The theorem follows from the work of Keel [22], who proved that H��M0;n� is gen-
erated by boundary classes and that all relations between boundary divisors arise
from lifting the basic codimension one relation on M0;4.

3.2. GROMOV^WITTEN INVARIANTS AND THEIR POTENTIALS

Our construction of CohFTs from the moduli space of stable r-spin curves is guided
by analogy with the moduli space of stable maps and Gromov^Witten invariants.
Let us brie£y review this construction. Let V be a smooth projective variety,
H � H��V ;C�, and Z the Poincar�e pairing. Let Mg;n�V � be the moduli stack of
stable maps into V of genus g with n marked points. The Gromov^Witten invariants

of V are multilinear maps H
n ! C given by

h t0�g1� � � � t0�gn� ig � l2gÿ2
Z

�Mg;n�V ��vir
ev�1 g1 [ � � � [ ev�n gn; �22�

where �Mg;n�V ��vir is the virtual fundamental class of the moduli stackMg;n�V � and l

is a formal parameter. The corresponding small phase space potential F�x� is de¢ned
by (21) where the genus g part is given by

Fg�x� �
X

n

l2gÿ2
Z

�Mg;n�V ��vir
ev�1 x [ � � � [ ev�n x;

x �
P

a xa ea, and f e0; . . . ; er g is a basis forH such that e0 is the identity element. If
V is a convex variety, then M0;n�V � is a smooth stack and its virtual fundamental
class coincides with its topological fundamental class. In this situation, [11] shows
that �H; Z� forms a genus zero CohFT with potential F0. This result can be gener-
alized to higher genera and to more general varieties, as well.

Remark 3.7. In the usual de¢nition of Gromov^Witten invariants, there is no
factor of l2gÿ2 in the de¢nition of the correlators but this factor is inserted into
the potential function by hand. We have chosen our conventions so that this factor
appears instead in the correlator but is not explicitly inserted into the potential
function.
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The gravitational descendants are de¢ned by twisting the Gromov^Witten classes
with the tautological c classes as follows:

ta1 �g1� � � � tan �gn�

 �

g
:� l2gÿ2

Z

�Mg;n�V ��vir
ev�1g1 [ ca1

1 [ � � � [ ev�ngn [ can
n �23�

for all a1; . . . ; an � 0; 1; 2; . . . and g1; . . . ; gn in H��V �. This gives rise to the large
phase space potential F�t� 2 lÿ2C��t; l2�� where t � �t0; t1; . . .� and tn �
�t0n; . . . ; trn�, which is de¢ned by

F�t� :�
X

g

Fg�t� �24�

and

Fg�t� :�
X

ta1 �ea1� � � � tan�ean �

 �

g
ta1a1 � � � t

an
an

1
n!
: �31�

Setting tan � 0 for n X 1 and xa � ta0 reduces the large phase space potential F�t� to
the small phase space potential F�x�.

When V is a point, Kontsevich's theorem gives that Z�t� :� exp�F�t�� is a
t-function of the KdV hierarchy. In addition, Kontsevich showed that Z�t� is a
highest weight vector for the Virasoro Lie algebra, a condition which allows one
to completely solve for these intersection numbers. The existence of a similar
Virasoro algebra action has been conjectured by Eguchi, Hori, and Xiong
[8] in the case where V is not a point. Evidence for this conjecture is mounting [10,
15]. A very large phase space has recently been introduced in [21, 29] for the case
where V is a point and for more general varieties in [9] by including variables
corresponding to the Hodge classes ni as well. These additional variables parametrize
an even larger family of CohFTs than just the large phase space coordinates [21]. We
will shortly introduce, in addition, variables associated to the r-spin structure
(see (52)).

3.3. r-SPIN CohFT

We perform an analogous construction of a very large phase space where the role of
the moduli space of stable maps Mg;n�V � is played by the moduli space of stable
r-spin curvesM1=r

g;n. Unlike the moduli space of general stable maps, the moduli space
of stable r-spin curves is a smooth stack. Intersection theory is therefore simpler in
this case than for the case of stable maps. However, the dif¢culty lies instead in
the construction of the analogs of the Gromov^Witten classes.

In the next section, we will introduce axioms which a collection of cohomology
classes (called a virtual class) c1=rg;n�m� in H��M1=r;m

g;n � must satisfy in order to insure
that the following result holds.
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THEOREM 3.8. Let �H�r�;eZ� be a vector space of dimension rÿ 1 with a basis

f e0; . . . ; erÿ2 g and metric eZ given by

eZ�em; en� :� eZmn :�
1
r
dm�n;rÿ2: �26�

Let c1=rg;n�m� be a virtual class in H��M1=r;m
g;n � satisfying Axioms 1 through 5 from the

next section, and let p : M1=r;m
g;n ! Mg;n be the map which forgets the r-spin structure.

Let eL :� feLg;n g be de¢ned by

eL�s;u�
g;n �em1 ; . . . ; emn

� :� p� �c1=rg;n�m� exp�s � l � u � m��; �27�

where these forms have values in the ring C��s; u��, then �H;eZ;eL�s;u�; e0� is a CohFT

satisfying Axiom C4a. Furthermore, if

eLg;n :� eL�0;0�
g;n ; �28�

then �H;eZ;eL; e0� is a CohFT with £at identity. The latter will be called the r-spin
CohFT. Restricting the r-spin CohFT to genus zero shows that �H�r�; Z� is endowed
with the structure of a Frobenius manifold.

This theorem is proved in Section 4.2.

COROLLARY 3.9.Let �H; Z;L; e0� be constructed from �H;eZ;eL; e0� above by setting

Z�em; en� :� Zmn :�
1

rl2
dm�n;rÿ2; �29�

L
�s;u�
g;n �em1 ; . . . ; emn

� :� l2gÿ2eL�s;u�
g;n �em1 ; . . . ; emn

�; �30�

and

Lg;n :� L
�0;0�
g;n ; �31�

then �H; Z;L�s;u�; e0� is a CohFT satisfying Axiom C4a and �H; Z;L; e0� is a CohFT

with £at identity.

Proof. This is a direct consequence of Lemma 3.3 and the previous theorem. &

The classes c1=rg;n�m� are analogs of the Gromov^Witten classes in this theory. The
analogs of the gravitational descendants (23) are given by

h ta1�em1 � � � � tan�emn
� ig :� l2gÿ2

Z

M1=r;m

g;n

ca1
1 � � � can

n c1=rg;n�m�; �32�

and the large phase space potential function is de¢ned by Equations (24) and (25).
The small phase space potential function is de¢ned by restricting (32) to correlators
with ai � 0. We will see that the case of l � 1=

��
r

p
corresponds to the generalized
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Witten conjecture. This corresponds to the metric

Z�em1 ; em2 � � dm1�m2;rÿ2 �33�

and the forms

Lg;n�em1 ; . . . ; emn
� :� r1ÿg p� c

1=r
g;n�m�: �34�

Remark 3.10. Strictly speaking, the state space of this r-spin CohFT (34) should
be, instead, �Ĥ�r�; Ẑ�, where Ĥ�r� is an r-dimensional vector space, with basis
fe0; . . . ; erÿ1g and a metric given by

Ẑ�ea; eb� �
1 if a� b � �rÿ 2� mod r

0 otherwise:

�

However, it follows from the axioms for c1=r in Section 4.1 that the obvious orthog-
onal decomposition Ĥ�r� � H�r� � H0; where H0 is the trivial one-dimensional
CohFT with basis f erÿ1 g, is a direct sum of CohFTs. For this reason, we can (and
will) restrict ourselves to the state space �H�r�; Z�:

4. Virtual Classes

To endow the pair �H�r�; Z� from Theorem 3.8 with the structure of a CohFT by
Equation (34), we must de¢ne cohomology classes c1=rg;n�m�. We will call this collection
of classes an r-spin virtual class. It should satisfy the axioms described below.
Throughout this section, we will restrict ourselves to the case where the coupling con-

stant l is 1=
��
r

p
, unless otherwise stated. This is done purely for convenience as anal-

ogous results hold for general l as well.

4.1. AXIOMS FOR THE VIRTUAL CLASS

DEFINITION 4.1. An r-spin virtual class is an assignment of a cohomology class

c
1=r
G

2 H2D�M1=r
G

;Q� �35�

to every genus g, stable, decorated graph G with n-tails. Here, if the tails of G are
marked with the n-tuple m � �m1; . . . ;mn�, then the dimension D is

D � 1
r

�rÿ 2��gÿ a� �
Xn

i�1

mi

 !
; �36�

and a is the number of connected components of G. In the special case where G has
one vertex and no edges, we denote c

1=r
G

by c1=rg;n�m�. These classes must satisfy
the axioms below.

Axiom 1a (Connected Graphs): Let G be a connected, genus g, stable, decorated
graph with n tails. Let E�G� denote the set of edges of G. For each edge e of G, let
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le :� gcd�m�
e � 1; r�, where m�

e is an integer decorating a half-edge of e. The
classes c

1=r
G

and c1=rg;n�m� are related by

c
1=r
G

�
Y

e2E�G�

r

le

 !
~i� c1=rg;n�m� 2 H2D�M1=r

G
�; �37�

where ~i : M1=r
G

,!M1=r;m
g;n is the canonical inclusion map.

Axiom 1b (DisconnectedGraphs): LetGbe a stable, decorated graphwhich is the
disjoint union of connected graphs G�d�, then the classes c1=r

G
and c

1=r
G
�d� are related

by

c
1=r
G

�
O

d

c
1=r
G
�d� 2 H��M1=r

G
�:

Axiom 2 (Convexity): Consider the universal r-spin structure �fEdg; fcd;d 0g� on
the universal curve p: C1=r;mg;n ÿ!M1=r;m

g;n . For each irreducible (and connected)
component of M1=r;m

g;n (denoted here by M1=r;m;�d�
g;n for some index d), if

p�Er � 0 on M1=r;m;�d�
g;n , then c1=rg;n�m� restricted to M1=r;m;�d�

g;n is cD�ÿR1p�Er�,
the top Chern class of the bundle with ¢ber H1�X ; Er�� at ��X ; p1; . . . ; pn;

�fEdg; fcd;d 0g��� 2 M1=r
g;n.

Axiom 3 (Cutting edges):Given any genus g decorated stable graph Gwith n tails
marked with m, we have a diagram

�38�

whereM ~G is the stackof stable curves with graph
~G, the graph obtained by cutting

all edges of G, and M1=r
~G is the stack of stable r-spin curves with graph ~G (still

marked with m� on each half edge). p1 is the following morphism: The ¢ber
product consists of triples of an r-spin curve �X=T ; fEd ; cd;d 0g�, a stable curve
~X=T , and a morphism n: ~X ÿ!X , making ~X into the normalization of X. Also,
the dual graphs of X and ~X are G and ~G, respectively.The associated r-spin curve
inM1=r

~G is simply � ~X=T ; n�fEd ; cd;d 0g�.We require that p1� ~m�c
1=r
G

� rjE�G�jc1=r~G
;where

E�G� is the set of edges of G that are cut in ~G.
Axiom 4 (Vanishing): If G contains a tail marked with mi � rÿ 1, then c

1=r
G

� 0:
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Axiom 5 (Forgetting tails): Let bG be a stable graph whose ith tail is marked by
mi � 0, G be the stable graph obtained by removing the ith tail, and
p:M1=r

Ĝ
ÿ!M1=r

G
be the forgetful morphism. The classes c

1=r

Ĝ
and p�c1=r

G
are

related by c
1=r

Ĝ
� p�c1=r

G
:

Remarks 4.2.
(1) The factor of

Q
e �r=le� in Axiom1arises from the fact that the right hand square in

Equation (38) is not quite Cartesian. Rather, because of rami¢cation of p over
MG, we have that for any cohomology class c on M1=r

g;n,

i�p� c �
Y

e

r

le

 !
p�~i

� c: �39�

(2) Notice that in Axiom 3, unlike the case of a tree, if G contains a loop and if the
r-spin structure is Ramond at the corresponding node, the dimensions DG

and D ~G of the virtual classes c1=r
G

and c
1=r
~G

are di¡erent. Thus Axiom 3 actually

requires the vanishing of both p1� ~m
�c1=r

G
and c

1=r
~G

in this case. Of course, for
the Ramond case, Axiom 4 already requires the vanishing of c1=r~G

, since the cut
half-edges are both marked with rÿ 1. Thus for any graph (tree or otherwise),
in the Ramond case Axiom 3 amounts essentially to the requirement that
p1� ~m

�c1=r
G

vanish.
(3) Although the vanishing of H0 or p� is often called concavity, the Serre dual

Hom�Er;o�, corresponding to Witten's sheaf V in [34], is convex �H1 vanishes)
exactly when Er is concave. Moreover, p!V � p!Er. Therefore, we use the term
convex to describe the case when p�Er � 0.

(4) One might think that the class cD�p!Er� would be a good candidate for a virtual
class, since it coincides with c1=r in the convex case. However, this is not the case
(see Section 4.4).

(5) Witten has described [34, Section 1.3] an analytic construction of a class that he
calls the `top Chern class,' but it is not clear that this class satis¢es the above
axioms. Witten's index-like construction is reminiscent of the analytic con-
struction of a virtual fundamental class of the moduli space of stable maps
in the theory of Gromov^Witten invariants. Ideally, one should be able to con-
struct c1=r by methods similar to those used in algebraic constructions of the
fundamental class.

(6) Although, as explained in Remark 1.9, the restriction 0Wmi < r does not change
the moduli spaceM1=r

g;n, it does give a di¡erent choice of c
1=r. Indeed, replacing mi

by mi � r changes the dimension of c1=r by 1 and corresponds (up to a
multiplicative constant) to the ¢rst descendant of the classes associated to mi.
Thus on a given moduli space M1=r

g;n there are potentially several (but still only
¢nitely many, for dimensional reasons) choices of c1=r and the corresponding
CohFT . However, without the restriction 0Wmi < r, the corresponding metric
Z is not necessarily invertible, and several other unusual considerations also arise.
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These issues will be treated in a forthcoming paper [20]. In the remainder of this
paper, we will assume that 0Wmi < r except where explicitly stated.

4.2. VERIFICATION OF THE CohFT AXIOMS FOR �H�r�; Z�

In this section we give a proof of Theorem 3.8, ¢rst for the case where s � u � 0,
and then in general.

4.2.1. The Case s � u � 0

Let c1=rg;n be a cohomology class on M1=r
g;n satisfying the axioms of Section 4.1. We will

show that the collection of classes fLg;ng given by (40) satis¢es the CohFT axioms
C1^C4 with state space �H�r�; Z�. Axiom C1 clearly holds by the de¢nition of fLg;ng.

Let r � rtree be the gluing morphism (12). Condition (13) of Axiom C2 is equiv-
alent to

r�p�c
1=r
g;n�m�r1ÿg

�
Xrÿ2

a;b�0

r1ÿkp�c
1=r
k;j�1�mi1 ; . . . ;mij ; a�
r1ÿ�gÿk�p�c

1=r
gÿk;nÿj�1�b;mij�1 ; . . . ;min�Zab

�40�

for all 0Wmi W rÿ 1 and m � �m1; . . . ;mn�. Consider the decorated stable graph

mi

mi

mi

mi

m
-

m
+

k g-k

1

j

j+1

n

and denote the graph obtained from cutting its edge by ~G � G1 t G2 where

k

1

j

m+

m

im

i

0

j+1

n

m-

m

im

i

Since the spaces M1=r
Gi

are non-empty for 0Wm� W rÿ 1 only when m� are deter-
mined by the conditions (4) and (5), the sum in the right-hand side of
Equation (40) has only one non-vanishing term. By the de¢nition of the metric
Z (33), Axiom C2 reduces to the following:

r�p�c
1=r
g;n�m�r1ÿg �

�p� p���c
1=r
G1

r1ÿk 
 c
1=r
G2

r1ÿ�gÿk��; if 0Wm�
W rÿ 2

0 if m� � rÿ 1;

(
�41�

with mÿ � rÿ 2ÿm�. In other words, we must show that

r�p�c
1=r
g;n�m� � r�p�c1=rG1


 p�c
1=r
G2

� � r � p2��c1=r~G
�; �42�
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where we have the diagram

and the map r is i � w. However, if we let l be gcd�m� � 1; r�, then

r�p�c
1=r
g;n�m� � w�i�p�c

1=r
g;n � w�p�~i

��r=l�c1=rg;n

�by the def. of c
1=r
G
� � w�p�c

1=r
G

� p� ~w
�c1=r

G
� p2�p1� ~w

�c1=r
G

�by Axiom 3� � �p2�c1=r~G
�r:

This gives (40); therefore, Axiom C2 is veri¢ed. The statement (16) of Axiom C3 is
equivalent by (34) and (33) to

r�p�c
1=r
g;n�m� � r

Xrÿ2

m��0

p� c
1=r
gÿ1;n�2�m1; . . . ;mn;m

�;mÿ�; �43�

where r � rloop is the gluing morphism (14) and

mÿ � rÿ 2ÿm�; if 0Wm�
W rÿ 2;

rÿ 1; if m� � rÿ 1:

�
�44�

Let

1
m

+mm
g-1

nm

2

-m

m
1

m
2

mn

m
+

m
-

g-1
�45�

be decorated stable graphs. Let ~G and G � Gloop be the corresponding underlying
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(undecorated) graphs, respectively. We have the commuting diagram

where FG;m� :� M ~G �MG
M1=r

G;m� . Therefore, if le is de¢ned to be gcd�m� � 1; r�, then

r�p�c
1=r
g;n � w�p�

X

m�

�~i�cg;n�r=le � w�p�
X

m�

c
1=r
G;m�

� p� ~w
�
X

m�

c
1=r
G;m� � p2�p1� ~w

�
X

m�

c
1=r
G;m� � r � p2�

X

m�

c
1=r
~G;m� :

This proves axiom C3. To prove Axiom C4a, consider the Cartesian square

By (11) and Axiom 5 (forgetting tails) we have the required Equation (17)

p�Lg;n�em1 ; . . . ; emn
� � r1ÿg p� p�c

1=r
g;n�m� � r1ÿg p� ~p

�c1=rg;n�m�
� r1ÿg c

1=r
g;n�1�m1; . . . ;mn; 0� � Lg;n�1�em1 ; . . . ; emn

; e0�:

Finally, a direct calculation yields Axiom 4b (see Proposition 6.1).

4.2.2. The General Case

The proofs of Axioms C1 and C4a remain the same. We only need to prove Axioms
C2 and C3. Before doing so, we will need a lemma on regular imbeddings and base
change.
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LEMMA 4.3. Let i be a regular imbedding, and let

be a Cartesian square with p and p0 proper and £at, and E a coherent sheaf on X 0, £at

over X. If X and Y both carry an ample invertible sheaf, then the Chern character

commutes with base change, that is i�chp!E � chp0!
~i�E.

Proof. First, we claim that because i is a regular imbedding it has ¢nite Tor
dimension; that is, there is an integer N such that for every coherent OX -module
F , the OY -modules T orOX

j �OY ;F� vanish for j > N. This can be seen as follows.
We may assume that X is SpecA and Y is SpecA=�x� for some regular element x
in a ring A. This gives the free resolution 0ÿ!A ÿ!

�x�
Aÿ!A=�x� ÿ!0 of OY ,

and shows i has ¢nite Tor dimension.
Since p is £at, the sheaves OX 0 and OY are Tor independent over X ; that is,

TorOX

j �OX 0 ;OY � � 0 for all j > 0.
Let Li� and L~i� be the left derived functors of i� and ~i�, respectively. Proposition

5.13 of [33] states that if i has ¢nite Tor dimension, and if OX 0 and OY are
Tor-independent over X , then Li�p! � p0!L

~i�.
However, since E is £at over X , we have L~i�E:�

P1
j�0�ÿ1�jTorXj �E;OY � �

E 
OX
OY � ~i�Ej ; and since Li� commutes with the Chern character, the lemma

holds. &

Now we prove that Axioms C2 and C3 hold.
First consider the Cartesian square

where p is the universal curve. Let Er be the rth root from the universal r-spin struc-
ture on C. The morphism p is projective, and M1=r

g;n carries an ample invertible line
bundle [17, 3.1.1], so Lemma 4.3 gives chi�p! î�Er� � chi�~i�p!Er�. Note that î�Er is
the rth root from the universal r-spin structure CG.

Let F be the ¢ber product

F :� M ~G �MG

M1=r
G
: �46�

MODULI SPACES OF HIGHER SPIN CURVES 191

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017528003622


We have

where C ~G is de¢ned to be the universal curve overM1=r
~G , and ĈF and CF are the ¢bered

products F �M1=r
~G

C ~G and F �M1=r

G

CG, respectively. The morphism y is just normali-
zation, and in fact, if ĈG ÿ!yG CG is the normalization of CG, then we have the following
¢bered diagram (all rectangles are Cartesian).*

Moreover, if E ~G, EG, ÊG, EF , and ÊF are the r-th roots of the universal r-spin struc-
tures on C ~G, CG, ĈG, CF , and ĈF , respectively, we have ÊF � p̂�1E ~G. Also, since y is ¢nite,
�p � y�!ÊF � p!EF . Since ~w is £at, we have ~w�p!EG � p! ~w

�EG � p!EF � �p � y�!ÊF . Also,
since p1 is £at p�1p!E ~G � �p � y�!p�1E ~G � �p � y�!ÊF . Furthermore, p�1 p! � �p � y�! p�1.
If ~i : MG ÿ!M1=r;m

g;n is the inclusion map, then the above implies that

~w� ~i�chi�p! E� � ~w� chi�p! EG� � chi�p! ŵ� EG� �
chi��p � y�! p̂�1 E ~G� � chi�p�1 p! E ~G� � p�1 chi�p! E ~G�:

�47�

The previous equation, the fact that ni on M1=r;m
g;n is the lift of ni on Mg;n, and the

projection formula yield the desired result.
This ¢nishes the proof of Theorem 3.8.

*Elsewhere in the paper the maps ~w and y were called ~m and n, respectively, but we have
renamed them here in order to avoid confusion with the cohomology classes mi and ni.
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4.3. THE GENUS-ZERO CASE

As we explained in Remark 4.2.3, we call the r-spin structure �fEdg; fcd;d 0g� on the
universal curve C1=r

G
convex if p�Er is identically zero. This occurs, for example, when

g � 0, as is shown in the following proposition.

PROPOSITION 4.4. Let X be a prestable curve of genus zero with n punctures and

markings �m1; . . . ;mn�, such that ÿ1Wmi W rÿ 1 for all i and mi X 0 for all i except
at most one. Then, if �E; b� is an r-th root of oX �ÿ

P
mipi�, we have H0�X ; E� � 0:

Proof. The degree of E is an integer and is equal to ÿ�2�
P

mi�=r. ThusP
mi X rÿ 2, and the degree of E is strictly negative. Therefore, when X is

irreducible, E has no global sections. When X is not irreducible, but E is locally
free (Ramond) at each node, the same argument holds. If E is Neveu^Schwarz
at some nodes, then normalization n: ~X ÿ!X at the nodes of X where E is not locally
free gives E � n�F , where F is locally free on ~X . Restricting F to ~X we obtain an r-th
root of o ~X �ÿ

P
~mi ~pi�, where the points ~pi are either marked points or inverse images

of nodes, and thus the collection ~mi still meets the hypotheses of the proposition, but
now F is locally free on each component, and hence has no global sections. Since n is
¢nite, H0�X ; E� � H0� ~X ;F� � 0. &

The previous proposition shows that if a class c1=r on M1=r
0;n satisfying Axioms 1^5

exists, then by Axiom 2 it must be the top Chern class of the bundle with ¢ber
H1�X ; Er�� at ��X ; p1; . . . ; pn; �fEdg; fcd;d 0g��� 2 M1=r

0;n. In this case, it does indeed
satisfy the required properties.

THEOREM 4.5. De¢ne cohomology classes on M1=r
0;n by

c
1=r
0;n�m� � cD�p!Er� � �ÿ1�DcD�R1p�Er�; �48�

where

D � 1
r

2ÿ r�
Xn

i�1

mi

 !

and Er is the rth root sheaf of the universal r-spin structure. Then the collection of

classes c
1=r
G

de¢ned by (37) for decorated stable graphs of genus zero satis¢es

Axioms 1^5.

Proof. It is clear from the construction of the classes c1=r
G

that they satisfy Axiom 2
(convexity).

Axiom 1 follows from the fact that since Er;G � Er;G1 � Er;G2 , the top-dimensional
Chern class cD�G� � ctop of p!Er;G, is simply the product of the top-dimensional classes
of p!Er;G1 and p!Er;G2 .

Now we will show that Axiom 3 holds. If Er is the r-th root from the universal
r-spin structure on C1=rg;n ! M1=r

g;n, then since g � 0, Er is convex. Repeating the argu-
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ment in the proof of Axiom 3 in Section 4.2.2 with the Chern character replaced by
the top Chern class yields

c
1=r
G

� rjEj=
Y

e2E

le

 !
cD�ÿR1p�Er�;

where E denotes the edge set of G. Also, we can compute the degree of p1:F ÿ!M1=r
~G

from the diagram

The morphism M ~G ÿ!MG has degree 1, since G is a tree, and therefore ~w also has
degree 1. The morphism pG has degree

Q
e ler

ÿjV �G�j, as can be seen from the fact
that the coarse moduli space map induced by pG has degree 1, and there are
rjV �G�j=

Q
e le automorphisms of a generic r-spin structure. Thus the map ~p also

has degree
Q

e ler
ÿjV �G�j, the map p2 has degree rÿjV �G�j, so p1 has degree exactlyQ

e le. Now we can compute p1� ~w
�c1=r

G
using Equation (47) (replacing chi with cD)

to obtain

p1��rjEj=
Y

e

le�~w�cD�ÿR1p�EG� � �rjEj=
Y

e

le�p1�cD�p�1�ÿR1p�E ~G��

� �rjEj=
Y

e

le�p1�p�1cD�ÿR1p�E ~G� � rjEjcD�ÿR1p�E ~G� � rjEjc1=r~G

as desired. All that remains to check is Axiom 4 (vanishing). Let p be a point cor-
responding to a tail marked by m � rÿ 1. Taking the tensor product of Er with
the exact sequence 0ÿ!Oÿ!O�p� ÿ!O�p�jp ÿ! 0 gives the exact sequence
0ÿ!Er ÿ!E0 ÿ!E0jp ÿ! 0; where E0 � Er 
O�p�. Thus E 0 corresponds to a root
with pi marked by m0 � ÿ1. Since R1p��E0jp� � 0, and since the residue
isomorphism (1) Rp: p��E 0jp� ÿ!

� O shows that p��E 0jp� is a trivial bundle, we have
p!�E 0� � O � p!�Er�: By Proposition 4.4 the sheaves Er and E0 are both convex; thus
p!Er � ÿR1p�Er and p!E 0 � ÿR1p�E 0 are both locally free and have the same Chern
classes in all dimensions. However, the vector bundle p!E 0 has dimension
D0 � Dÿ 1, and so c1=r � cD�p!Er� � 0. This gives Axiom 4. &
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4.4. THE CASE M1=r;0
1;1

In this section we will calculate the virtual class onM1=r;0
1;1 from the axioms. Let Gm�

be the decorated graph as in (45) with the underlying graph G � Gloop with one tail,
one node of genus zero, and one loop whose one half-edge is marked with m�

and the other with mÿ given by (44).
The stack M1=r;0

1;1 is a disjoint union
`

djr M
1=r;0;�d�
1;1 , where the component indexed

by d has a generic geometric point corresponding to a smooth r-spin curve
�X ; Er; cr;1�with E
d

r isomorphic toOX . That is, Er is a d-torsion point of the Jacobian
of X . Since Er has global sections if and only if d � 1, the case of d > 1 is convex.
Since the dimension (36) of the virtual class c

1=r;0
1;1 is 0, we have that c1=r;0;�d�1;1 � 1

for d > 1. Moreover, consider the graph Grÿ1. By Axiom 3, p1� ~m�cGrÿ1 � ceGrÿ1

, where
eGrÿ1 is Grÿ1 with the loop cut. Since both the half-edges of the cut loop will be labeled
by rÿ 1, by Axiom 4 the corresponding class must vanish. Therefore, the (Ramond)
case of Grÿ1 with a trivial gluing (i.e., Er � OX ) yields

c
1=r;0;�1�
Grÿ1

� i�c1=r;0;�1�1;1 � ÿ�rÿ 1�; �49�

since all the remaining Ramond components have i�c1=r;0;�d�1;1 � �1, and there are rÿ 1
of them. Since D � 0, this means c1=r;0;�1�1;1 is also equal to ÿ�rÿ 1�. Notice that this
differs from the top Chern class of the bundle cD�p! Er� � c0�p!Er� � 1.

Now, the map p�1�:M1=r;0;�1�
1;1 ! M1;1 has degree 1=r, and p�d�:M1=r;0;�d�

1;1 ! M1;1

has degree d2=r
Q

pjd�1ÿ 1=p2�. The latter is 1=r times the number of points of order
precisely d on the Jacobian of the

p�c
1=r
1;1 � 1=r

X

d>1

d2
Y

pjd
�1ÿ 1=p2� ÿ �rÿ 1�=r

� r2 ÿ 1
r

ÿ rÿ 1
r

� rÿ 1:

Therefore,

ht1;0i1 �
Z

M1=r;0

1;1

c1c
1=r;0
1;1 �

Z

M1;1

c1p�c
1=r;0
1;1 � �rÿ 1�

Z

M1;1

c1;

and we conclude that

h t1;0 i1 �
rÿ 1
24

: �50�

Equation (50) is consistent with the prediction from CohFT stated in Equation (61).

4.5. THE CASE r � 2

In this section we will show that in the case of theta-characteristics (i.e. when r � 2)
there exists a unique virtual class c1=2 satisfying the axioms of Section 4.1.
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THEOREM 4.6. The collection of cohomology classes c1=2g;n �m� 2 H��M1=2;m
g;n � satis¢es

Axioms 1^5 of Section 4.1 if and only if c1=2g;n �m� � 0 form 6� 0, and form � 0 the class

c1=2g;n �0� belongs to H0�M1=2;0
g;n � and is given by

c1=2g;n �0� �
1; on M1=2;0;even

g;n ;

ÿ1; on M1=2;0;odd
g;n :

(
�51�

Proof. Let us show ¢rst that the conditions of the theorem are necessary. Ifm 6� 0,
then by Axiom 4, c1=2g;n �m� must vanish; therefore, we can assume that m � 0. In this
case the dimension D (given in Equation (42)) of the class c1=2g;n is equal to zero,
and since M1=2;0

g;n has two connected components (M1=2;0;even
g;n and M1=2;0;odd

g;n � it will
be suf¢cient to ¢nd c

1=2
G

for two graphs G0 and G1, such that the intersections
M1=2

G0
\M1=2;0;even

g;n and M1=2
G1

\M1=2;0;odd
g;n are non-empty.

Let G0 be the graph with one genus-zero vertex, n tails, and gNeveu^Schwarz (i.e.,
all half-edges are decorated with zeroes) loops. In this case, M1=2

~G0
�

M ~G0
�MG0

M1=2
G0

in (38), so by Axiom 3 (cutting edges) the class c
1=2
G0

pulls back
to c

1=2
~G0
, where ~G0 is the graph with one vertex of genus zero and n� 2g tails. Since

the genus is zero, the universal square root E of o on the universal curve over
M1=2;0

0;n�2g is convex by Proposition 4.4. Therefore, if E is the set of edges of G0,
we have

c1=2;eveng;n �0� � 1
2jEj

c
1=2;even
G0

�0� � c
1=2
~G0

� c0�ÿR1p�E� � 1;

where the ¢rst equality follows from Axiom 1, the second from Axiom 3, and the
third from Axiom 2. To ¢nd c1=2;odd consider the graph G1 with a single vertex
of genus one, n tails, and gÿ 1 Neveu^Schwarz loops. Axiom 3 again shows that
c
1=2
G1

pulls back to c
1=2
~G1
, where ~G1 has a single vertex of genus one and 2gÿ 2� n

tails. Since m � 0, Axiom 5 (forgetting tails) shows that c1=2;odd is a pullback from
M1=2;0;odd

1;1 � M1=2;�1�
1;1 , and c

1=2;�1�
1;1 � ÿ1 by Equation (49).

Now let us show that the classes c1=2g;n �m� de¢ned above for r � 2 indeed satisfy
Axioms 1^5.

Axiom 2 (convexity) holds whenm � 0, since in this case the class has dimension 0,
and if E is convex (and, therefore, even) R1p�E � 0 and c1=2 � ctop � 1 as required.

If m 6� 0 then E is not convex on the universal curve overM1=2;m
g;n for any g > 0. In

particular, consider the degenerate curve of genus g which has two irreducible com-
ponents E and C joined at a single node, the component E of genus zero, containing
all n marked points, and the component C of genus g. For degree reasons the node
must be Neveu^Schwarz, and so E corresponds to EE � EC , for EE a square root
of typem ofoE � OE�ÿ2ÿ

P
mi�, and for EC a theta-characteristic onC. In general,

EC has non-zero global sections. Thus E also has non-zero global sections, and the
universal square root is not convex.

When g � 0 and m 6� 0, the sheaf E is convex by Proposition 4.4. By Theorem 4.5
(and Axiom 4) the class cD�ÿR1p�E� vanishes, and so agrees with our de¢nition
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of c1=2g;n �m�. Axiom 1 holds because of the simple observation that the parity of a root E
over a curve with the graph G1 t G2 is equal to the summodulo 2 of the parities of the
restrictions of E to the components corresponding to G1 and G2.

To prove Axiom 3, we may assume thatm � 0, and it is suf¢cient to check the case
that G has only one edge. We have by de¢nition c

1=2;even
G

� 2 and c
1=2;odd
G

� ÿ2 for G a
tree. Let F be de¢ned as in Equation (46). The canonical morphism p1:F ÿ!M1=2

~G is
actually an isomorphism if G is a tree, and so we get p1� ~m�c

1=2
G

� 2 � c1=2~G
since the

parity of E2 does not change when restricting to the normalization. In the case
of a loop, there are two subcases. First when m� � 1, F is isomorphic to two copies
of p1�F � � M1=2

~G (because of the two choices of gluing data ^ see Section 1.7.2). In the
second case m� � 0, and F is isomorphic to M1=2

~G , so p1 has degree 1. Also, c1=2
G

is
2~i�c1=2g;n if m� � 0, and ~i�c1=2g;n if m� � 1. Thus, when m� � 0, p1� ~m�c

1=2
G

� 2c1=2~G
as

desired.
When m� � 1, the two choices of gluing give different parities. Since parity is

deformation invariant, this can be seen by degenerating to the special case of
the curve X , whose partial normalization ~X at one node q consists of two irreducible
components joined at a single node q. One component C is of genus gÿ 1 and con-
tains the marked points p1; . . . ; pn. The other component ~E is of genus zero and
contains marked points q� and qÿ. Degree reasons force the node to be
Neveu^Schwarz, and so ~E is simply a direct sum EC � E ~E . Moreover, since ~E ~E is
a square root of o ~E � O ~E�ÿ2� of type �0;ÿ1;ÿ1�, E ~E must be trivial (E ~E � O ~E).
Gluing E ~E via �1 and ÿ1 yields the trivial bundle OE � E�

E and another non-trivial
bundle Eÿ

E of degree zero, respectively. Consequently, h0�E�� � h0�EC �O� �
1� h0�EC � Eÿ

E �. Since the parities of E� and Eÿ are simply the parities of h0�E��
and h0�Eÿ�, respectively, E� and Eÿ have different parities. The different parities
under the two gluings give p1� ~m

�c1=2
G

� 0 � c
1=2
~G
, since ~G has a tail marked with

�1 � m�. This completes the proof of Axiom 3.
Axiom 5 is true because the projection M1=2;�m1;...;mn;0�

g;n�1 ÿ!M1=2;m
g;n respects the

parity of components. Axiom 4 follows from the de¢nition of the classes c1=2.
This theorem together with Theorem 3.8 implies that in the r � 2 case we obtain a

well-de¢ned complete CohFT of rank one. It turns out to be the same as the
Witten^Kontsevich rank-one CohFT of the pure topological gravity. Namely,
we have the following result (cf. also [34]).

COROLLARY 4.7. The class Lg;n�em1 ; . . . ; emn
� 2 H��Mg;n� of the 2-spin CohFT

given by (34) is equal to 1 if m1 � m2 � . . . � mn � 0 and 0 otherwise.

Proof.We only need to check the casem1 � m2 � . . . � mn � 0. Since the class has
dimension 0, Equation (34) gives

Lg;n�e0; . . . ; e0� � 21ÿgp�c
1=2
g;n �0� � 21ÿg 2gÿ1�2g � 1� ÿ 2gÿ1�2g ÿ 1�

ÿ �
=2 � 1;

where 2gÿ1�2g � 1� are the numbers of even/odd theta characteristics on a smooth
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curve of genus g and the last factor of 1=2 is the local (orbifold) degree of the map p

near a generic point of M1=2;0
g;n . &

In Section 7.2 we will see that this corollary together with Kontsevich's theorem
gives the generalized Witten conjecture for r � 2.

5. Intersection Numbers and Recursion Relations

In this section, we use relations between boundary classes and tautological classes in
order to derive recursion relations between intersection numbers on the moduli space
of stable r-spin curves. Throughout this section, we assume the existence of a virtual
class c1=r satisfying Axioms 1^5 of Section 4.1. This class was shown in Section 4 to
exist in genus zero for arbitrary r, and in arbitrary genus for r � 2. Let
�H�r�; Z;L; e0� be the r-spin CohFT with the standard basis f e0 . . . ; erÿ2 g described
in Corollary 3.9.

We will ¢nd it convenient to introduce the notion of a very large phase space
potential in this section. For all v1; . . . ; vn in H�r�, de¢ne

hh ta1 �v1� � � � tan�vn� iig :� h ta1�v1� � � � tan �vn� exp�t � s� s � l� u � m� ig;

where

t � s �
X

0WmW rÿ2

aX 0

ta;m tma

and ta;m � ta�em�. Here

u � m �
X

i X 1

ui ni; s � l �
X

i X 1

simi;

where the classes ni and mi are de¢ned by (8) and (9) as components of the Chern
characters of the Hodge bundle and its r-spin analog. These expressions should
be understood as formal power series in variables tma ; ui; vi. The correlators are
de¢ned by

hta1�em1� � � � tan �emn�ig:� l2gÿ2
�

M1=r;m

g;n

ca1
1 � � �can

n c
1=r
g;n�m� exp�s � l� u � m�;

where m � �m1; . . . ;mn�. In particular, the very large phase space potential is

F�t; s; u� �
X1

g� 0

Fg�t; s; u�; �52�

where Fg�t; s; u� � hh iig: The other two potentials are restrictions of F�t; s; u�. The
large phase space potential F�t� � F�t; 0; 0� corresponds to setting all the s and u

variables to zero. The small phase space potential is F�x� :� F�x0; . . . ; xrÿ2�; where
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xi :� ti0 and all other variables are set to zero. The function F�x� is the small phase
space potential of the r-spin CohFT. It will also be useful to de¢ne

Z�t; s; u� :� exp�F�t; s; u��: �53�

5.1. THE EULER VECTOR FIELD

We begin with a differential equation arising from the grading. The dimensions of
the moduli spaces and cohomology classes induce a grading on the potential
function.

DEFINITION 5.1. The Euler vector ¢eld E is the differential operator

E �
X

aX 0

0WmW rÿ2

aÿ 1�m

r

� �
tma

@

@tma
�
X

aX 1

asa
@

@sa
� �2aÿ 1�ua

@

@ua

� �
:

PROPOSITION 5.2. The very large phase space potential F�t; u; s� satis¢es the

grading equation

E F � 1� 1
r

� �
l

@

@l
F: �54�

Proof. This follows from the de¢nition of the potential, the dimensions of the
cohomology classes, and the dimensions of the moduli spaces M1=r;m

g;n . It encodes
the fact that intersection numbers between cohomology classes vanish if the classes
do not have proper the dimension. &

This equation encodes the fact that the potential function is invariant under the
rescaling tma 7! eaÿ1�m

r tma ; ua 7! e2aÿ1 ua; sa 7! ea sa; and l 7! eÿ1ÿ1
rl:

Remark 5.3. This grading shows that our small phase space potential function
cannot arise as the small phase space potential associated to the Gromov^Witten
invariants of a smooth, projective variety. This is because the elements in H�r� have
fractional dimension with respect to this Euler vector ¢eld, whereas cohomology
classes of a space always have integral dimension.

5.2. THE STRING EQUATION AND ITS COUSINS

We begin by proving the analog of the string equation, the dilaton equation, and a
new equation arising from our identity on the m1 class.
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THEOREM 5.4. Let �g; n� be a pair of nonnegative integers such that 2gÿ 2� n > 0.
The following identities are satis¢ed:

h t0;0 t0;m1 t0;m2 exp�s � l � u � m� i0 � Zm1m2
�55�

and

ht0;0ta1;m1 � � � tan;mn
exp�s � l� u � m�ig

�
Xn

i�1

hta1;m1 � � � taiÿ1;mi
� � � tan;mn

exp�s � l� u � m�ig;

where we assume that the terms in the sum containing ta;m with a < 0 vanish.

These two equations are equivalent to the string (or puncture) equation

Lÿ1Z � 0; �56�

where

Lÿ1:� ÿ @

@t00
�

X

0Wm1;m2 W rÿ2

1
2
Zm1m2

tm1
0 tm2

0 �
X

0WmW rÿ2

aX 0

tma�1
@

@tma
:

Similarly, the following identities are satis¢ed:

h t1;0 exp�s � l� u � m� i1 � rÿ 1
24

�57�

and

ht0;0ta1;m1 � � � tan;mn
exp�s � l� u � m�ig

� �2gÿ 2� n�hta1;m1 � � � tan;mn
exp�s � l� u � m�ig;

These two equations are equivalent to the dilaton equation

DZ � 0; �58�

where

D � ÿ @

@t01
�

X

0WmW rÿ2

aX 0

tma
@

@tma
� l

@

@l
� rÿ 1

24
: �59�

Finally, if L0 denotes the differential operator

L0: � ÿ 1� 1
r

� �
@

@t01
�

X

0WmW rÿ2

aX 0

a�m� 1
r

� �
tma

@

@tma
� r2 ÿ 1

24r
�

�
X

aX 1

�2aÿ 1�ua
@

ua
� a

@

@sa

� �
;
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then the following equation holds:

L0 Z � 0: �60�

Furthermore, �L0;Lÿ1� � Lÿ1. When restricted to the large phase space

(u � s � 0), the operators L0 and Lÿ1 become the usual generators L0 and L1

in the Virasoro Lie algebra.

Proof.Recall that on the moduli space of stable curves,Mg;n, the ci classes (where
i � 1; . . . ; n) satisfy the equation ci � p� ci � Di;n�1, where Di;n�1 is the image of
the i-th canonical section and p : Mg;n�1 ! Mg;n. Let p be the forgetful morphism
M1=r;m

g;n ! Mg;n, then since the class ci on M1=r;m
g;n is the pullback via p of the

ci class on Mg;n, one can lift the same formula to M1=r;m
g;n to obtain

ci � ~p� ci � Di;n�1, where this equation is now regarded as being on M1=r;m
g;n ,

Di;n�1 is the pullback via p of the divisors with the same name on Mg;n, and ~p

is the forgetful morphism M1=r;mt0
g;n�1 ! M1=r;m

g;n . Suppose that �g; n� 1� 6�
�0; 3�; �1; 1�. Using the lifting formula and canceling trivial terms, we obtain

ca
j � ~p� ca

j � Dj;n�1 ~p
��caÿ1

j �:

Since ~p�c1=r � c1=r, we have

ht0;0ta1;m1 � � � tan;mn
ig

� l2gÿ2
Z

M1:r;m

g;n�1

ca1
1 � � �can

n c
1=r

�
X

1W iW n

l2gÿ2
Z

M1:r;m

g;n�1

Di;n�1c
a1
1 � � �caiÿ1

i � � �can
n c

1=r;

where the right hand side is understood to vanish if an exponent is negative. Inte-
gration over the ¢ber of M1=r;mt0

g;n�1 ! M1=r;m
g;n yields the desired result. Inclusion

of the additional m and n classes into the correlators does not change the argument,
since ~p� mi � mi, and similarly for ni.

Finally, the exceptional cases follow from dimensional considerations and the fact
that on M1=r;m

0;3 , c1=r is the identity element in cohomology provided that
m1 � m2 � m3 � rÿ 2. The dilaton equation is proved by a similar analysis, where
the exceptional case can be computed by using the explicit presentation for c1 on
M1=r;0

1;1 to obtain

ht1;0i1 �
1
24

Zm�mÿht0;0t0;m�t0;mÿi0 �
rÿ 1
24

: �61�

Finally, the equation L0 Z � 0 is obtained by combining the dilaton equation and
the grading Equation (54). &

The new relation for the m1 class yields new equations between correlators.
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THEOREM 5.5. Let x : H�r� ! H�r� be de¢ned by

xm�
mÿ :� m�mÿ

r2
dm� �mÿ;rÿ2;

relative to the standard basis, and let xm�;mÿ :� Zm�m xm
mÿ . The following differential

equation holds:

@F

@s1
� r2 ÿ 6r� 6

r

@F

@u1
�

X

aX 0

0Wm�;mÿ W rÿ2

1
2
tm�
a xm�

mÿ
@F

@tmÿ
a�1

ÿ

ÿ
X

m�;mÿ

1
2
@F

@t
m�
0

xm�;mÿ @F

@tmÿ
0

ÿ
X

m�;mÿ

1
4

@2F

@t
m�
0 @tmÿ

0

xm�;mÿ ;

where the summation over m� and mÿ runs over 0; . . . ; rÿ 2. This is equivalent to the
following relations between the correlators:

hhta1;m1 � � � tan;mn
m1iig

� r2 ÿ 6r� 6
r

hhta1;m1 � � � tan;mn
n1iig �

�
X

1W iW n

m0
i

1
2
xmi

m0
i hhta1;m1 � � � tai�1;m0

i
� � � tan;mn

iigÿ

ÿ
X

I�tIÿ��n�
g��gÿ�g
m�;mÿ

1
2

Y

i2I�
tai;mi

 !
t0;m�

* +* +

g�

xm�;mÿ t0;mÿ

Y

j2Iÿ
taj ;mj

 !* +* +

gÿ

ÿ

ÿ
X

m�;mÿ

1
4
hhta1;m1 � � � tan;mn

t0;m�t0;mÿiigÿ1x
m�;mÿ ;

where we use the notation �n� � f1; 2; . . . ; ng:
The class n1 which appears above is precisely l1. This class vanishes on M1=r;m

g;n for

g � 0.
Proof. The proof follows from the facts that p��c1=r exp�sl�� forms a CohFT, and

that n and c are lifts of the analogous classes on the moduli space of stable curves,
and from Proposition 2.4. &

5.3. TOPOLOGICAL RECURSION RELATIONS

Topological recursion relations are relations between correlators which arise from
presentations of tautological classes in terms of boundary classes.
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THEOREM 5.6. The following topological recursion relations hold in genus zero:

hhta1�1;m1ta2;m2ta3;m3ii0 �
X

m�;mÿ

hhta1;m1t0;m�ii0Zm�mÿhht0;mÿta2;m2ta3;m3ii0;

which is equivalent to the differential equation

@3F0

@tm1
a1�1@t

m2
a2 t

m3
a3

�
X

m�;mÿ

@2F0

@tm1
a1 @t

m�
0

Zm�mÿ
@3F0

@tmÿ
0 @tm2

a2 @tm3
a3

:

Proof. On M1=r;m
0;n , the class c1 can be written in terms of boundary classes as

c1 �
X

I� t Iÿ � �n�
nÿ1;n2I�
12 Iÿ

d0;I� :

This equation is obtained from lifting the analogous relation onM0;n. The classes ci

can be written similarly by applying an element of the permutation group Sn. The
recursion relation follows from this presentation and the restriction properties of
the ci to the boundary strata. &

THEOREM 5.7. The following topological recursion relation holds in genus one:

hhta1�1;m1ii1 �
1
24

hhta1;m1t0;m�t0;mÿii0Zm�mÿ�

�
X

m�;mÿ

hhta1;m1t0;m�ii0Zm�mÿhht0;mÿii1:

This is equivalent to

@F1

@tm1
a1�1

� 1
24

X

m�;mÿ

@3F0

@tm1
a1 @t

m�
0 @tmÿ

0

Zm�mÿ �
X

m�;mÿ

@2F0

@tm1
a1 @t

m�
0

Zm�mÿ
@F1

@tmÿ
0

:

The topological recursion relation for n1 � l1 from [21]

hhn1ii1 �
1
24

X

m�;mÿ

Zm�mÿhht0;m�t0;mÿii0

can be written as

@F1

@u1
� 1

24

X

m�;mÿ

Zm�mÿ
@2F0

@t
m�
0 @tmÿ

0

:
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Proof. The proof of the ¢rst topological recursion relation arises from the relation
on M1=r;m

1;n

c1 � 1
12

dirr �
X

I�tIÿ��n�
nÿ1;n2I�

12Iÿ

d0;I� ;

which is obtained from lifting the analogous relation from M1;n. The action of Sn

yields ci. This, combined with the restriction properties of the c classes, yields
the desired result. The second comes from the presentation of l1 on
M1=r;m

1;n l1 � � 112� dirr and the restriction properties of l1 � n1. &

These two relations allow one to completely reduce the large phase space potential
to the small phase space potential in genus zero and one. Combined with the previous
equations, we can compute F�t; s; u� in genus zero and one when we set si � ui � 0
for all i X 2.

The genus one potential satis¢es an analog of the WDVV equation due to Getzler
[12], which arises from relations between codimension-two boundary classes on
M1;4. Using this equation, Dubrovin and Zhang [7] showed that if the Frobenius
manifold is semisimple, then the genus-one potential is determined by the Frobenius
structure. Since the Frobenius manifold structure on �H�r�; Z� associated to F0�x� is
known to be semisimple [6], F1�x� is determined. On the other hand, the latter must
vanish due to dimensional considerations. Together with the topological recursion
relations in genus zero and one, we obtain the following corollary.

COROLLARY 5.8. Let s � u � 0 so that we are on the large phase. Let vm:�Prÿ2
m�0hh t0;0t0;l ii0Zlm. Let D�t� denote the matrix with entries @vm@tl0 where

m; l � 0; . . . ; rÿ 2, then

F1�t� �
1
24

ln detD�t�: �62�

Proof. Dijkgraaf and Witten [5] write down a formula (see Theorem 15 of [13]
for an explicit proof) for the large phase space potential F1�t� which in our
case is F1�t� � h exp�t0�v�� i1 � 1

24 ln detD�t�; where v:�
Prÿ2

m�0 v
mem. The term

h exp�t0�v�� i1 is equal to the small phase space potential F1�x�, evaluated at
xm � vm for all m � 0; . . . ; rÿ 2, but the small phase potential F1�x� vanishes. &

In genus 2, there exist relations among products of psi classes and boundary
classes, which give rise to topological relations [3, 13]. However, unlike in genus
0 and 1, these relations do not allow the expression of the large phase space potential
as a differential polynomial of the small phase space potential, since some of the
terms in these relations involve a single descendant, which cannot be eliminated.*

*We would like to thank the referee for both the content and the wording of this paragraph.
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6. The Genus-Zero Large Phase Space Potential

In this section, we compute the genus-zero, three- and four-point correlators and
show that they completely determine the genus-zero, large phase space potential
function F0�t�. We roughly follow the outline provided by Witten [34] and are able
to rigorously prove the validity of his computations, now that the relevant moduli
spaces and classes have been constructed.

Throughout the rest of this paper, we will consider only the large phase space
potential F�t� (setting the other variables ua and sa of the very large phase space
potential to zero). We will also ¢x the coupling constant l as l � �1=

��
r

p
�, since this

is the value which is relevant to the generalized Witten conjecture.
The following proposition rigorously demonstrates the formulas from [34], but the

idea of our proof is quite different, as it uses our new relation for the m1 class.

PROPOSITION 6.1. The three-point and four-point correlators of the r-spin CohFT

are given by the following formulas: h t0;m1 t0;m2 t0;m3 i0 � dm1 �m2 �m3;rÿ2 and

h t0;m1 . . . t0;m4 i0 � 1
r
Min1W iW 4�mi; rÿ 1ÿmi�; where Min is minimum value.

Proof. M1=r;m
0;n is nonempty if and only if �2 �

P
i mi�=r 2 Z, where m �

�m1; . . . ;mn� and mi � 0 . . . rÿ 1 for all i. The genus zero correlators are given by

h t0;m1 . . . t0;mn
i0 � r

Z

M1=r;m

0;n

c1=r;

where c1=r � cD�ÿR1 p� Er� is the (top) Chern class of degree

D � ÿ1 � 2
r
� 1

r

X

i

mi:

The class c1=r vanishes unless mi � 0; . . . rÿ 2 for all i by Theorem 4.5.
Furthermore, the correlator can only be nonzero if D � nÿ 3.

If n � 3 then the dimensionality condition becomes m1 � m2 � m3 � rÿ 2, in
which case c1=r is the identity. This proves the ¢rst part of the proposition.

If n � 4 then the dimensionality condition becomes m1 � � � � � m4 � 2rÿ 2: If
this condition is satis¢ed, then c1=r � m1. The correlator is

h t0;m1 . . . t0;m4 i0 � r

Z

M1=r;m

0;4

m1:

The right hand side can be computed using the relation for the class m1 in
Proposition 2.4, which becomes, in genus zero,

m1 �
X

1W iW n

mi�rÿ 2ÿmi�
2r2

ci �
X

I���n�

rÿ 1ÿ �m� � 1��mÿ � 1�
2r2

d0;I� ;

where m� and mÿ are uniquely determined by the divisor d0:I� . Let dij;kl denote the
divisor d0;f i;j g on M1=r;m

0;4 .
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Plugging in this formula, one obtains (after doing a little case by case analysis to
write m� and mÿ in terms of m1; . . . ;m4)

Z

M1=r;m

0;4

m1 �
X4

i�1

mi�rÿ 2ÿmi�
2r2

Z

M1=r;m

0;4

c1 �

� rÿ 1ÿ �w12;34 � 1��rÿ 1ÿ w12;34�
2r2

Z

M1=r;m

0;4

d12;34 �

�
rÿ 1ÿ �w13;24 � 1��rÿ 1ÿ w13;24�

2r2

Z

M1=r;m

0;4

d13;24 �

�
rÿ 1ÿ �w14;23 � 1��rÿ 1ÿ w14;23�

2r2

Z

M1=r;m

0;4

d14;23;

where wij;kl :� Min�mi �mj;mk �ml�. Since each dij;kl is Poincarë dual to the
(topological) homology class represented by a point, one has r

R
M1=r;m

0;4

dij;kl � 1:
Similarly, each class ci can be represented by dij;kl for some i; j; k; l. Therefore,
one obtains

r

Z

M1=r;m

0;4

m1 �
X4

i�1

mi�rÿ 2ÿmi�
2r2

�

� rÿ 1ÿ �w12;34 � 1��rÿ 1ÿ w12;34�
2r2

�

� rÿ 1ÿ �w13;24 � 1��rÿ 1ÿ w13;24�
2r2

�

�
rÿ 1ÿ �w14;23 � 1��rÿ 1ÿ w14;23�

2r2
:

The right-hand side of this equation can be shown to be equal to
1=rMin1W iW 4�mi; rÿ 1ÿmi�, an elementary but not obvious identity. &

PROPOSITION 6.2. [34] The genus zero potential F0�t� is completely determined by

h ta1;m1 ta2;m2 ta3;m3 ta4;m4 i0 and the fact that h ta1;m1 ta2;m2 ta3;m3 i0 � dm1�m2�m3;rÿ2:

Proof. The large phase space, genus zero potential F0�t� is completely determined
by its values on the small phase space by the topological recursion relations. Let
F0�x� denote the small phase space potential, which must satisfy the WDVV
equation since c1=r yields a CohFT. Furthermore, the grading Equation (54) shows
that the small phase space potential is a polynomial in the variables
f x0; . . . ; xrÿ2 g of degree of at most r� 1. One then performs an induction on
the degree of the polynomial to show that F0�x� is uniquely determined by the above
data and the WDVV equation. The proof is straightforward. &
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7. Gelfand^Dickey Hierarchies and the Generalized Witten Conjecture

In this section we present a mathematical formulation of the generalized Witten
conjecture, relating intersection theory on M1=r;m

g;n with Gelfand^Dickey integrable
hierarchies and prove this conjecture in various cases.

7.1. GELFAND^DICKEY HIERARCHIES AND THEIR POTENTIALS

In order to ¢x notation and normalization constants for the generalized Witten con-
jecture, we recall the de¢nition of the Gelfand^Dickey hierarchies KdVr and their
special solutions. A more detailed review can be found, for example, in [26, 34].

Fix an integer rX 2 and consider the space

D � Dr ÿ
Xrÿ2

m�0

um�x�Dm

( )
�63�

of differential operators in D � �i=
��
r

p
��@=@x� (the factor �i=

��
r

p
� is added for con-

venience), where um are formal functional variables. For every operator L 2 D there
exists a unique pseudodifferential operator L1=r � D�

P
m>0 wmD

ÿm; such that
�L1=r�r � L. All coef¢cients wm of L1=r are differential polynomials in u0; u1; . . . ; urÿ2.

For a pseudodifferential operator Q �
P

mXÿn vmD
ÿm, denote by Q� �P0

m�ÿn vmD
ÿm its differential part, and consider the following in¢nite family of

differential equations on D:

i
@L

@tmn
� kn;m��

r
p �Ln�m�1

r ��;L
h i

; �64�

where the constants

kn;m � �ÿ1�nrn�1

�m� 1��r�m� 1� . . . �nr�m� 1�

have been introduced for convenience. It can be shown that the corresponding £ows
on D commute, and thus the following de¢nition makes sense.

DEFINITION 7.1. The in¢nite system (64) of partial differential equations with
rÿ 1 unknown functions ui�x; tmn �, i � 0; . . . ; rÿ 2, m � 0; . . . ; rÿ 1, nX 0 is called
the rth Gelfand^Dickey hierarchy or KdVr.

The KdV2 hierarchy is the usual Korteweg^de Vries hierarchy.
For L � Dr ÿ

Prÿ2
m�0 um�x�Dm, consider the functions

vn � ÿ r

n� 1
res�L1=r�n�1; �65�

where the residue of a pseudodifferential operator is de¢ned as the coef¢cient ofDÿ1.
The functions vk can be expressed in terms of uj by a triangular system of differential

MODULI SPACES OF HIGHER SPIN CURVES 207

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017528003622


polynomials. This means that uj can be expressed in terms of vn in a similar way, and
we may regard v0; v1; . . . ; vrÿ2 as a new system of coordinates for D.

DEFINITION 7.2. A formal power series C�t�, in variables tmn , m � 0; . . . ; rÿ 2,
nX 0, is called a potential of the KdVr hierarchy if it satis¢es the following con-
ditions:

(1) C�0� � 0,
(2) the functions vm�t� � @2C�t�=@t00@tm0 satisfy the Equations (64) with x � t00 and uj

related to vm via (65),
(3) C�t� satis¢es the string equation

@C�t�
@t00

� 1
2

Xrÿ2

m;n�0

Zmnt
m
0 t

n
0 �

X1

k�0

Xrÿ2

m�0

tmk�1
@C�t�
@tmk

; �66�

where Zmn � dm�n;rÿ2.

It can be shown that the potential C�t� is uniquely determined by these conditions
(cf. [36]).

Finally, we introduce the semiclassical limit of the hierarchy KdVr (87) and its
potential.

For a differential operator L � Dr ÿ
Prÿ2

m�0 um�x�Dm 2 D, denote by eL � prÿPrÿ2
m�0 um�x�pm the polynomial in a formal variable p obtained by replacing D with

p. The commutator �L;Q� of differential operators will be replaced in (64) by
the Poisson bracket

feL;eQg � @eL
@p

@eQ
@x

ÿ @eQ
@p

@eL
@x

:

DEFINITION 7.3. The semiclassical limitKdVs
r of theKdVr hierarchy, is the system

of equations

@eL
@tmn

� km;n

r

g
Ln�m�1

r ;eL
� �

�67�

in unknown functions u0; . . . ; urÿ2.
The corresponding potential function C0�t� is de¢ned as the unique function

satisfying the string Equation (66) and the condition C0�0� � 0, and such that
the functions u0; . . . ; urÿ2 given by (65) and

vm�t� �
@2C0�t�
@t00@t

m
0

�68�

satisfy the equations of the hierarchy (67).
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7.2. THE GENERALIZED WITTEN CONJECTURE

Even before the moduli space M1=r;m
g;n of r-spin curves was constructed, Witten [34]

conjectured that these moduli spaces would exist, and that intersection numbers
on them would assemble into the potential C�t� of the KdVr hierarchy. Now we
can give this conjecture the following mathematical formulation.

CONJECTURE 7.4. There exists an r-spin virtual (cohomology) class c1=r onM1=r;m
g;n

satisfying Axioms 1ö5 ofDe¢nition 4.1, such that the large phase space potentialF�t�
of the r-spin CohFT (34) coincides with the potential function C�t� of the KdVr

hierarchy.

Using results from Sections 4, 5, and 6, we prove this conjecture in two special
cases.

THEOREM 7.5. Conjecture 7.4 holds for r � 2 and arbitrary g.

Proof. Theorem 4.6 shows that when r � 2 the class given by (51) satis¢es the
axioms of a virtual class, and Corollary 4.7 implies that the large phase space poten-
tial of the corresponding 2-spin CohFT is equal to the generating function of
tautological intersection numbers on Mg;n (the large space potential of pure
topological gravity). By Kontsevich's theorem [23], this generating function
coincides with the potential function of the Korteweg^de Vries hierarchy, which
is the same as the KdV2 hierarchy. &

THEOREM 7.6. Conjecture 7.4 holds for g � 0 and arbitrary r.

Proof. In this case, the conjecture means that the genus zero part F0�t� of the large
phase space potential (24) of the r-spin CohFT (34) coincides with the potentialC0�t�
of the semiclassical limit of the KdVr hierarchy.

In genus zero the virtual class c1=r exists by Theorem 4.5. From Theorem 5.4 it
follows that the corresponding potential function F0 satis¢es the string Equation
(66).

Because of the uniqueness of the potential function of the KdVr hierarchy (and its
semiclassical approximation) all that remains is the proof of the following
proposition. &

PROPOSITION 7.7. The functions um�t�, m � 0; . . . ; rÿ 2, given by (65) and

vm�t� �
@2F0�t�
@t00@t

m
0

; �69�

satisfy the equations of the semiclassical limit of the KdVr hierarchy (67).

Proof. By Proposition 6.2 there is a unique formal power seriesF0�t�, of the proper
grading, satisfying the equations of Proposition 6.1, WDVV, and the genus-zero
topological recursion relations. Witten [34] shows by a straightforward computation
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that any such power series yields a solution of the semiclassical limit of the KdVr

hierarchy. &

COROLLARY 7.8. The Frobenius manifold structure on �H�r�; Z�, de¢ned by

Theorems 3.8 and 4.5, is isomorphic to the Frobenius structure on the base of the

versal deformation of the Arÿ1 singularity.

Proof. The proof follows from Theorem 7.6 and the fact that the potential of the
Frobenius structure on the base of the versal deformation of the Arÿ1 singularity
is equal to the potential C0 of the semiclassical limit of the KdVr hierarchy
(cf. [6]). &

Remarks 7.9. (1) The generalized Witten conjecture, as it is stated here, should be
viewed as a re¢nement of Witten's original formulation of his conjecture [34], since
it is not clear that his construction yields a class with the desired factorization pro-
perties.

(2) The coincidence of Frobenius structures given by Corollary 7.8 appears to be a
genus zero manifestation of some mirror phenomenon [28], relating the moduli space
of r-spin curves and singularities of type Arÿ1.

(3) There is additional evidence for Conjecture 7.4 in genus one for arbitrary r.
Witten [34] states that the formula (50) for the intersection numbers when g � 1
can be derived from the conjecture for all rX 2. Furthermore, when rW 4, it
can be shown that Equation (62) holds for the genus-one part of the potential
of the KdVr hierarchy (cf. [5, 7]).

(4) The fact that C�t� (in all genera) is independent of the variables trÿ1
n for all

n X 0 is consistent with Axiom 4 (Vanishing) of the virtual class.

The exponential of the KdV potential function is called a t-function and can be
de¢ned as the unique function Z�t� annihilated by certain differential operators
Li, iX ÿ 1, generating (a part of) the Virasoro Lie algebra. This gives an alternate
formulation of the original Witten conjecture. Similarly, the exponential Z�t� of
the KdVr potential is annihilated by a series of differential operators which forms
a so-calledW�

r -algebra [1, 25] (part of which forms a subalgebra isomorphic to (half
of) the Virasoro algebra). Thus we obtain an alternate formulation of the generalized
Witten conjecture.

CONJECTURE 7.10 (W-algebra conjecture). There exist a collection of differential
operators forming a W�

r algebra (in which the generators fLngnXÿ1 of the Virasoro

algebra form a subset) which annihilates and completely determines Z�t�.

This conjecture can be regarded as theKdVr analog of a re¢nement of the Virasoro
conjecture [8]. When r � 2, this conjecture reduces to the usual Virasoro highest
weight condition.
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