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Abstract

This paper describes the intrinsic geometry of a leaf A(L) of the
absolute period foliation of the Hodge bundle ΩMg: its singular Eu-
clidean structure, its natural foliations and its discretized Teichmüller
dynamics. We establish metric completeness of A(L) for general g,
and then turn to a study of the case g = 2. In this case the Euclidean
structure comes from a canonical meromorphic quadratic differential
on A(L) ∼= H, whose zeros, poles and exotic trajectories are analyzed
in detail.
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1 Introduction

A compact Riemann surfaceX of genus g ≥ 2 acquires a geometric character
when it is equipped with a holomorphic 1-form ω ∈ Ω(X). For example, such
a form determines a Euclidean metric on X (with singularities at the zeros
of ω), and a foliation F(ω) by horizontal geodesics (provided ω $= 0).

The moduli space of holomorphic 1-forms

ΩMg → Mg,

which classifies pairs (X,ω) as above, similarly exhibits features not present
in the underlying moduli space of curves. For example, ΩMg carries a
stratified linear structure and a natural action of SL2(R).

In this paper we study the global geometry of the moduli space of forms
(X,ω) with fixed absolute periods. We first discuss the space of isoperi-
odic stable forms for general g, and show it is metrically complete. We
then explore several aspects of the case g = 2, which already displays no-
table complexity. Our analysis of this case provides the first detailed, global
picture of the Euclidean geometry of an absolute period leaf, its natural
foliation and its discretized Teichmüller dynamics.

Moduli spaces. Let Mg and Mg denote the moduli space of compact
Riemann surfaces of genus g and its compactification by stable curves. The
g-dimensional space Ω(X) of stable forms on X ∈ Mg consists of the holo-
morphic 1-forms ω on the smooth locus X∗ that have at worst simple poles,
with opposite residues, at the nodes of X. Let ΩMg denote the moduli
space of nonzero stable forms of genus g.

Isoperiodic forms. A polarized module is a subgroup L ⊂ C isomorphic to
Z2g equipped with a positive, unimodular symplectic form [z, w]. We define
the periods of a stable form by

Per(X,ω) =

{∫

C
ω : C ∈ H1(X

∗,Z)

}
⊂ C.

Provided it has rank 2g, this group is a polarized module with the symplectic
form inherited from H1(X

∗,Z).
The moduli space of isoperiodic forms with periods L is defined by

A(L) =
{
(X,ω) ∈ ΩMg : Per(X,ω) = L as a polarized module

}
.

This analytic space of dimension 2g − 3 will be our main object of study.
We begin in §2 by showing:
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Theorem 1.1 The space of stable forms with fixed absolute periods is iso-
morphic, as a complex variety, to a standard slice

A(L) = Sg ∩ Hg−1

of the Schottky locus in Siegel space. Relative period coordinates give A(L)
a stratified complex Euclidean structure, whose underlying path metric is
complete.

In particular, we have A(L) ∼= Hg−1 for g ≤ 3.
The Euclidean coordinates on A(L) with values in Cs are given by

ti(X,ω) =

∫ pi

p0

ω

along the stratum where (X,ω) has exactly (s+1) zeros, (p0, . . . , ps). These
coordinates describe simple changes in the shapes of polygons on (X, |ω|),
but they are transcendental analytic functions on Hg.

Action of SL2(R). The space ΩMg carries a natural action of SL2(R),
satisfying

Per(γ · (X,ω)) = γ(Per(X,ω)),

where we have identified C with R2 on the right. The orbits of SL2(R) project
to complex Teichmüller geodesics in Mg. The locus A(L) is stabilized by
the subgroup

SL2(R)
L = {γ : γ(L) = L and [γ(z), γ(w)] = [z, w]},

which acts on A(L) by real-linear transformations in period coordinates.

Strata. We let W (L) ⊂ A(L) denote the locus where (X,ω) has a multiple
zero, and P (L) the locus where X is a singular curve (X ∈ ∂Mg). These
loci are invariant under SL2(R)

L.

Dynamical classification of forms. It is also useful to classify points
in moduli space according to the dynamical properties of the horizontal
foliation F(ω) of X.

We say F(ω) is periodic if all its leaves are closed, and we let

A0(L) = {(X,ω) ∈ A(L) : F(ω) is periodic}. (1.1)

This locus is preserved by the action of the upper triangular subgroup
AN2(R)

L.
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Genus two. In §3 we begin the study of the case g = 2. In this case we
have A(L) ∼= H as remarked above.

The Euclidean structure onA(L) is recorded by the meromorphic quadratic
differential q(L) = dt21, which has simple zeros and poles at the points in
W (L) and P (L) respectively. The levels sets of Im(t1) give a foliation F(L)
of A(L). Nearby forms on the same leaf of F(L) are related by sliding their
zeros horizontally, while preserving the absolute periods. This operation
does not change the dynamics of F(ω); in particular, the periodic locus
A0(L) is a union of leaves of F(L).

The group SL2(R)
L acts on A(L) by Teichmüller mappings relative to

q(L), and its upper triangular subgroup preserves F(L).

Zero flux. In §4 we study the case where the periodic locus is nontrivial;
that is, we assume

∅ $= A0(L) $= A(L).

This is equivalent to the zero flux condition:

L ∩ R is a Lagrangian subspace of L.

(See Proposition 4.1.) In this context we show the Euclidean geometry of
A0(L) can be described as follows.

Theorem 1.2 The periodic locus A0(L) ⊂ H is an open, dense topological
disk, tiled by the closures of rectangular strips Ri whose upper edges are
folded to create leaves of F(L) with periodic sequences of zeros and poles.
All zeros of q(L) are contained in A0(L).

P

iR

W

Figure 1. The region A0(L) is tiled by rectangular strips, whose edges are

folded to create periodic sequences of zeros and poles.

See Figure 1. The interior of each strip is an infinite rectangle, satisfying
(Ri, q|Ri) ∼= (R × (0, hi), dz). The heights hi can be computed from L by
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a continued fraction algorithm. In §4 we also construct a natural height
function

Y : A0(L) → (0,∞)

whose fibers are the leaves of F(L), and show:

Theorem 1.3 The tiling of A0(L) by strips Ri is mapped by Y to a tiling
of (0,∞) by intervals of length hi.

Since Y is bounded below, any unit speed geodesic headed downward in
(A0(L), |q|) must exit this region in finite time. In particular we easily see:

The region A0(L) is incomplete in the flat metric |q|.

It not at all clear what the limit of such a geodesic should be, and thus
completeness of A(L) is something of a surprise.

Upper degree. To understand how A0(L) is completed, we turn to the
countably many leaves which sweep out the rest of A(L).

A useful invariant of F(ω) is the upper degree f = deg+(X,ω), an integer
f ≥ 0 defined in [Mc7] (see §4 for details). Its level sets give a partition

A(L) =
⋃

f≥0

Af (L). (1.2)

The induced partition of the poles of q(L) will be denoted by P (L) =⋃
f≥0 Pf (L).
The upper degree is characterized by the following properties. First,

f = 0 iff F(ω) is periodic, so (1.2) is consistent with (1.1). Second, f
is constant along the leaves of F(L). Third, any form in Pf (L) can be
presented as the connected sum of two forms of genus one joined at a node,

(X,ω) = (C/S, dz)#
[0]
(C/S⊥, dz),

with periods S and S⊥ ⊂ L; and we have f = [Im(L) : Im(S)] provided
f > 0. (Here Im(S) ⊂ Im(L) are the subgroups of R coming from the
imaginary parts of the periods; they are both isomorphic to Z2 when f > 0.)

Since every leaf of F(L) outside A0(L) contains a unique pole, this third
property completes the characterization of f . The upper degree is also
invariant under AN2(R)

L.
In §4 we show:
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Theorem 1.4 The closed set

∂A0(L) =
⋃

f>0

Af (L)

is a countable union of leaves of F(L), each homeomorphic to a ray [0,∞)
based at a pole of q(L).

These leaves produce a complicated comb of repeated folds in the boundary
of A0(L), which renders it complete by Theorem 1.1.

A typical blowup of the foliation F(L) near ∂A0(L) is shown in Figure
2. As we will see below, the boundary can be topologically wild and need
not be locally connected. It would be interesting to find an explicit model
for ∂A0(L) as a topological space.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 2. The foliated moduli space A(LD) ∼= H near its boundary, for D = 5.

Cohomological invariants. It is easy to see that the topological type of
the foliation F(ω) remains constant as (X,ω) varies along a leaf of F(L).
In particular, any topological invariants of F(ω) are constant along leaves.

One such invariant is the content C(Imω) ⊂ H1(X,R), introduced in
[Mc7] (see §4). The content is the smallest convex set containing the coho-
mology classes [Imω|A] for all measurable sets A which are unions of leaves
of F(ω). In §4 we also show:
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Theorem 1.5 Two forms in A(L) determine the same convex set

C(Imω) ⊂ H1(X,R) ∼= Hom(L,R)

if and only if they lie on the same leaf of F(L). Thus the topological type of
F(ω) is determined by its cohomological invariants.

In particular, periodicity of F(ω) is detected by C(Imω).

Eigenforms. In §5 we turn our attention to isoperiodic forms of genus
g = 2 that satisfy the condition

The locus SL2(R) · A(L) is a closed subset of ΩMg.

This condition insures a certain dynamical completeness for the orbits of
SL2(R) represented in the slice A(L).

The closure property is equivalent to the condition:

A(L) consists of eigenforms for real multiplication.

(See Proposition 5.2.) Thus up to the action of GL+
2 (R), the space A(L)

depends only on the discriminant D > 0 of a real quadratic order

OD ⊂ K = Q(
√
D) ⊂ R.

We can therefore reduce to the case where

LD = OD ⊕OD i (1.3)

with the symplectic form

[a+ ib, c+ id] = TrKQ (D−1/2(ad− bc)).

Hilbert modular surfaces. The moduli space A(LD) can be identified
with a slice {τ1}×H of the universal cover of the Hilbert modular surface

XD = (H ×H)/SL2(OD ⊕O∨
D).

The normalization (1.3) corresponds to τ1 = i
√
D. Thus A(LD) provides

an overview of the space of all eigenforms for real multiplication.
The second coordinate on H×H gives a natural isomorphism

τ2 : A(LD) → H,
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with the property that

Jac(X) ∼= C2/OD ⊕O∨
D(τ1, τ2)

for any (X,ω) ∈ A(LD).

Teichmüller dynamics. The spaceA(LD) also provides a Poincaré section
for the action of SL2(R) on a closed, invariant submanifold of ΩMg. Along
A(LD), the continuous action of SL2(R) is replaced the discrete action of
the arithmetic group

SL2(R)
LD = SL2(OD).

The hyperbolic elements in SL2(OD) give examples of the first return map
for the Teichmüller geodesic flow. The return time is the same at all points.
The action of SL2(OD) on A(LD) provides a discretized picture of the dy-
namics of the Teichmüller geodesic flow, and more generally of the dynamics
of SL2(R) acting on ΩMg.

Note that OD = LD ∩ R is Lagrangian, so A(LD) enjoys the properties
already described in Theorems 1.2 through 1.5 above.

Orbits. By [Mc5], the zeros and poles W (LD) and P (LD) of q(LD) are
cut out by the preimages of a pair of algebraic curves WD and PD on XD.
Since each curve has only finitely many irreducible components, the sets
W (LD) ∪ P (LD) are comprised of finitely many orbits under the action of
SL2(OD). In §6 we also show:

Theorem 1.6 The orbit spaces W (LD)/AN2(OD) and Pf (LD)/AN2(OD)
are finite for each f ≥ 0.

Since the affine group acts by automorphisms of F(LD), this result shows
the behavior of a leaf of F(LD) is determined up to finitely many choices
by its upper degree f .

Fixed points and pseudo-Anosov mappings. It is an interesting open
problem to determine which elements of γ ∈ Sp2g(Z) can be realized by
pseudo-Anosov mappings with orientable foliations.

In §7 we show that, for genus g = 2, one can usually think of γ has a
hyperbolic element of SL2(OD) for some D. Then γ is realizable iff it has a
fixed point in A(LD). In particular, using the Brouwer fixed point theorem,
we show:

Theorem 1.7 Any element γ ∈ SL2(OD) with |Tr(γ′)| < 2 < |Tr(γ)| can
be realized by an orientable pseudo-Anosov mapping.
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Here γ′ is the Galois conjugate of γ. Since OD is dense in R, infinitely many
different conjugacy classes can be so realized.

Convergence of leaves. By analyzing the fixed points of elements in
AN2(OD), we also establish:

Theorem 1.8 For f > 0, every path component of Af (LD) consists of a
leaf of F(LD) that starts at a pole P ∈ Pf (LD) and converges to a point

x ∈ R = ∂H = ∂A(LD).

There is a hyperbolic element γ ∈ AN2(OD) that fixes both x and P .

Here we have used the fact that the action of γ on A(LD) ∼= H is quasi-
conformal, so it extends to a homeomorphism on ∂H. (In fact, γ ∈ SL2(OD)
acts on ∂H via the Möbius transformations γ′(x) defined by its Galois con-
jugate — see (6.1) below).

Inaccessible points. Recall that a point x ∈ ∂U is accessible if there is an
arc α ⊂ U meeting ∂U only at x. Using the dynamics of the affine group,
in §7 we also show:

Theorem 1.9 The boundary points of A0(L) that lie in Af (LD) are inac-
cessible for all f 0 0. In particular, ∂A0(LD) is not locally connected.

P

γ (P)

Figure 3. Inaccessible points in ∂A0(LD).

The mechanism that creates inaccessible leaves is shown in Figure 3.
Suppose a pole Q of q(LD) in ∂A0(LD) is stabilized by a hyperbolic element
γ ∈ AN2(OD). If the stable manifold for γ (shown as a dotted line) crosses
the leaf through another pole P ∈ ∂A0(LD), then by iterating γ we obtain a
sequence of leaves that make Q inaccessible from within the periodic locus.
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Figure 4. Top: Two adjacent strips in A(LD) for D = 5. Indicated
lengths are measured in the |q(LD)| metric.

Bottom: The same region, with the foliation F(LD).
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The case D = 5. Next we provide a more detailed description of A(D) in
the case D = 5. Let ε = (1 +

√
5)/2 be the fundamental unit of OD.

As we will see in §8, there is a distinguished zero W0 of q(LD) with
coordinate τ2(W0) = i

√
D which represents an eigenform for complex mul-

tiplication. The remaining zeros Wn,k of q(LD) form a single orbit under
AN2(OD) which can be effectively enumerated with two indices (n, k). We
have Y (Wn,k) = εn, and these level sets define the boundaries of the strips
making up A0(LD). Each zero is connected by a leaf of F(LD) to a unique
pole Pn,k which satisfies

τ2(Pn,k) = ε4n−2τ1 + 5kε2n−1, (1.4)

where τ1 = i
√
D.

This geometry is illustrated in Figure 4(top). The full foliation F(LD)
in the same region is shown in Figure 4, and a blowup near the real axis is
given in Figure 2.

Fake pentagons, class numbers and cascades. We conclude by briefly
elaborating three other topics in the case D = 5.

In §9 we use the enumeration of W (LD) to effectively describe all fake
pentagons. The latter are forms of genus two with double zeros, such that
Per(X,ω) ∼= Z[ζ5] as a polarized module. One such form comes from the
regular pentagon, but there are countably many others (compare [Mc5, §9]).

In §10 we give an example of the relationship to number theory, by
showing:

Theorem 1.10 For D = 5 and f > 0, the number of orbits of AN2(OD) in
Pf (LD) is given by the strict class number h+(f2D).

Finally in §11 we give an explicit family of forms (Xt,ωt) of genus 2 such
that foliations F(iωt) bifurcate for a countable set of t homeomorphic to ωω.
These bifurcation give some indication of the way in which the countably
many leaves in

⋃
f>0Af (LD) intervene when a Euclidean geodesic that starts

in A0(LD) reaches its boundary; instead of leaving the space, it is forced to
double back into it.

Higher–dimensional examples. When g = 3, we have A(L) ∼= H2. In
this case one can mimic the construction of LD to show:

Proposition 1.11 For any totally real cubic field K, there is a natural
action of SL2(OK ⊕O∨

K) on the three-dimensional Siegel space H2.
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In contrast to the case of quadratic fields, most points in H2 do not represent
eigenforms. It would be interesting to investigate these genus three examples
in more detail.

For genus g ≥ 4, the study of A(L) implicitly involves the Schottky
problem, as can be seen from Theorem 1.1. It appears to be unknown if
A(L) is connected for g ≥ 4. For related connectedness results, see [KZ] and
[La].

Notes and references. Figures 2, 4 and 12 were created using an elegant
theta function formula for q(LD) due to Möller and Zagier; see §5.

This paper is a sequel to [Mc5] and [Mc7], and continues an investi-
gation begun in [Mc1]. The proof of completeness of A(L) (Theorem 1.1)
relies on [Mc6], which provides additional background. The geometry of
the curves WD and PD on the Hilbert modular surface XD is developed
in [Ba]; see also [Mu]. Related work on genus 2 covers of elliptic curves
appears in [Sch]. Some results related to transverse invariant measures for
F(L) appear in [CW]. For general background on ΩMg and related topics
in Teichmüller theory, see e.g. the surveys [Z] and [Mo]. The variety A(L)
can also be regarded as the space of isomonodromic deformations of the
differential equation y′ + ωy = 0; for more on this broader setting, see e.g.
[Bol]

I would like to thank R. Mukamel for useful conversations related to this
work.

2 Slices of Schottky space

In this section we describe A(L) for general genus g and establish Theorem
1.1. More generally, we discuss the moduli space of holomorphic 1-forms
representing a fixed cohomology class φ ∈ H1(Σg,C).

Compact type. A stable curve X ∈ Mg is of compact type if the following
equivalent conditions are satisfied:

1. The Jacobian of X is compact.

2. The stable forms ω ∈ Ω(X) have no poles.

3. The irreducible components of X form a tree.

4. Their genera satisfy
∑

gi = g.

Schottky space. Let Σg be an oriented topological surface of genus g. Let
〈α,β〉 = (i/2)

∫
Σg

α ∧ β. denote the intersection form on H1(Σ,C).
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The universal cover of Mg can be identified with the Teichmüller space
Tg of Riemann surfaces marked by Σg. Its quotient by the Torelli group
gives the Schottky space Sg.

A point in Sg is specified by a pair [X,m] consisting of a Riemann surface
plus a symplectic isomorphism or marking

m : H1(Σg,C) ∼= H1(X,C)

that sends H1(Σg,Z) to H1(X,Z). A useful completion Sg is obtained by
allowing X to be a stable curve of compact type. By taking the period
matrix of such X, we obtain an analytic inclusion

Sg ⊂ Hg

whose image is the Schottky locus, the closed analytic subvariety of Siegel
space coming from the Jacobians of stable curves of compact type. As is
well–known, we have Sg = Hg iff g ≤ 3.

Absolute period leaves. The space ΩMg carries a natural absolute period
foliation A, with the property that [ω] ∈ H1(X,C) is locally constant along
its leaves. This condition defines an analytic foliation transverse to the orbits
of SL2(R), with leaves of dimension 2g − 3 (for g ≥ 2). Each leaf carries
a stratified geometric structure coming from the relative periods, which are
determined by integrating ω along paths joining its zeros. (See e.g. [Mc6,
§3].)

Period slices. Now fix a positive cohomology class φ ∈ H1(X,C) (meaning
〈φ,φ〉 > 0). Let

Sg(φ) = {[X,m] : m(φ) ∈ H1,0(X)},

and let π([X,m]) = (X,ω) ∈ ΩMg, where [ω] = φ. The definitions readily
imply:

Proposition 2.1 Each leaf of the absolute period foliation is swept out by
a component of Sg(φ) under the projection map

π : Sg(φ) → ΩMg.

Characterization of holomorphic forms. Let

Per(φ) = {φ(C) : C ∈ H1(Σg,Z)} ⊂ C.

We say φ is an elliptic cohomology class, of degree d > 0, if Per(φ) ∼= Z2 is
a lattice in C and if the natural map Σg → C/Per(φ) has degree d. (Since
φ is positive, so is d.) By [Kap] we have:

13



Proposition 2.2 The slice Sg(φ) is nonempty unless φ is elliptic of degree
one.

Completions. By allowing X to be a stable curve of compact type, we can
similarly define

π : Sg(φ) → ΩMg.

The advantage here is that the completion is simply a linear slice of the
Schottky locus.

Proposition 2.3 We have Sg(φ) = Sg ∩ Hg−1 for some standard copy of
Hg−1 inside of Hg.

Proof. Choose a real symplectic basis (ai, bi) of H1(Σg,R) such that
φ(a1) = 1 and φ(ai) = φ(bi) = 0 for i > 1. Then φ(b1) = σ ∈ H. For
any marked Abelian variety (J,m), the unique forms ωi ∈ Ω(J) such that
ωi(aj) = δij determine the associated period matrix τij = ωi(bj) ∈ Hg.

Clearly φ ∈ H1,0(J) iff φ = [ω1], which is equivalent to the condition
that τ11 = σ and τ1i = 0 for i > 1. This means simply that τ = [σ] ⊕ τ ′

lies in a standard copy of Hg−1 inside Hg. By intersecting with the Schottky
locus, we insure that J is a Jacobian.

Proposition 2.4 The locus Sg(φ) is nonempty for every positive class φ.

Proof. A stable form realizing φ on a stable curve with components of
genus 1 and g − 1 is easily constructed when φ is elliptic of degree one, and
the other cases are handled by Proposition 2.2.

Analytic symmetries. Fix a symplectic basis for H1(Σg,Z). We may
then identify Sp2g(R) and Sp2g(Z) with the groups of automorphisms of
H1(X,C) that preserve H1(X,R) and H1(X,Z) respectively. The action of
a symplectic transformation γ on a cohomology class α will be denoted by
γ · α.

Let Sp2g(R)
Φ denote the subgroup of Sp2g(R) stabilizing the real 2-

dimensional subspace
Φ = 〈Re(φ), Im(φ)〉.

Then the symplectic complement Φ⊥ ∼= R2g−2 is also preserved, and we have

Sp2g(R)
Φ ∼= SL2(R)× Sp2g−2(R).
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The projection of a symplectic automorphism γ to the first factor is given
by the matrix Dγ ∈ SL2(R) satisfying

(γ · φ) = Dγ ◦ φ : H1(Σg,Z) → C ∼= R2.

The kernel of D is the same as the subgroup Sp2g(R)
φ stabilizing φ. Since

the integral points this group simply change the marking, we have:

Proposition 2.5 The fibers of π : Sg(φ) → ΩMg are the orbits of Sp2g(Z)
φ.

Remark: the absolute period foliation in low genus. When g ≤ 3,
the absolute period foliation A of ΩMg can be understood using results on
group actions on homogeneous spaces. For example, letting Ω1Mg denote
the locus where

∫
X |ω|2 = 1, we have:

Proposition 2.6 Provided g ≤ 3, the foliation A of Ω1Mg is ergodic and
its closed leaves all come from elliptic cohomology classes.

Proof. Since Sg = Hg for g ≤ 3, Proposition 2.3 shows the leaves of A are
covered by totally geodesic submanifolds Hg−1 ⊂ Hg. Thus the study of A
can be reduced to the study of the action of Sp2g−2(R) on Sp2g(R)/Sp2g(Z).
This action is ergodic by Moore’s theorem, so A is ergodic as well. Similarly,
by Ratner’s theorems [Rat], the leaf of A defined by φ : H1(Σg,R) → C is
closed iff

Γ = G ∩ Sp2g(Z)

is a lattice in G = Sp2g(R)
φ ∼= Sp2g−2(R).

Note that G acts faithfully on the symplectic space Ker(φ) ⊂ H1(Σg,R)
of rank 2g − 2, and G acts by the identity on Ker(φ)⊥ ∼= R2. The subgroup
Γ preserves the integral points H1(Σg,Z), so it also preserves the subgroup
L = Ker(φ)∩H1(Σg,Z). We have L ∼= Zs with 0 ≤ s ≤ 2g−2. If s = 0 then
H1(Σg,Z) projects faithfully to Ker(φ)⊥; since G acts trivially there, Γ is
also trivial. If 0 < s < 2g−2, then Γ preserves the subspaces R ·L ⊂ Ker(φ),
so it is not Zariski dense in G. Thus Γ can only be a lattice when s = 2g−2.
But this is exactly the case where φ is elliptic.

Conversely, it is readily verified that an elliptic class φ of degree d defines
a closed leaf of A, corresponding to degree d covers of the fixed elliptic curve
C/Per(φ).
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It would be interesting to have a similar analysis for g ≥ 4.

Quasiconformal symmetries. The holomorphic action of Sp2g(Z)
φ ex-

tends to a quasiconformal action of Sp2g(Z)
Φ on Sg(φ), defined as follows.

Suppose γ ∈ Sp2g(Z)
Φ and [X,m] ∈ Sg(φ). Let A = Dγ and let

(XA,ωA) = A · (X,ω), where π([X,m]) = (X,ω). Then the natural homeo-
morphism X ∼= XA gives a marking mA of XA sending A ◦ φ to [ωA]. But
A ◦ φ = γ · φ, so

fγ([X,m]) = (XA,mA ◦ γ)
lies in Sg(φ). The action is defined by [X,m] 5→ fγ([X,m]).

Foliation picture. Alternatively, one can observe that the standard ana-
lytic action of Sp2g(Z)

Φ on Hg preserves the locus of marked Abelian varieties

Hg(Φ) = {[J,m] : Φ = 〈Reω, Imω〉 for some ω ∈ H1,0(J)},

which is isomorphic to H×Hg−1. The Schottky sublocus Sg(Φ) = Sg∩Hg(Φ)
is preserved as well, and foliated by the Teichmüller disks generated by
µ = ω/ω. Each of these disks has a unique intersection with the transversal
Sg(φ), and so the analytic action of Sp2g(Z)

Φ on the space of leaves gives a
topological action on this transversal.

From this perspective we immediately see:

Proposition 2.7 Two points of Sg(φ) lie in the same orbit of Sp2g(Z)
Φ iff

they project into the same orbit of SL2(R) on ΩMg.

Period coordinates and stratified Euclidean structure. The space
Sg(φ) breaks into strata along which |Z(ω)|, the number of zeros of the form
with [ω] = m(φ), is locally constant. Let G = Ss be the symmetric group,
acting on X = Cs/(1, 1, . . . , 1) by permuting coordinates. If we label the
zeros of ω as (p1, . . . , ps), and choose a basepoint q, then the relative periods
ti =

∫ pi
q ω provide each stratum with the structure of a (G,X) manifold (see

[Mc6, §3]). The action of fγ on Sp2g(Z)
Φ on Sg(φ) is also linearized in these

coordinates, with derivative Dfγ = (Dγ, . . . ,Dγ) ∈ (SL2(R))
s on Cs.

Full support. The relative period charts just described extend to Sg(φ),
provided we exclude those forms (X,ω) which vanish identically on some
irreducible component of X. (In the case of a stable curve, the nodes of X
should be included in the list (p1, . . . , ps).)

Such a component would give a pair a, b ∈ H1(Σg,Z) with φ(a) = φ(b) =
0 and a · b = 1. If no such pair exists, we say φ has full support. We then
have:
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Proposition 2.8 If φ has full support, then Sp2g(Z)
Φ acts on Sg(φ) by real

linear transformations in stratified relative period coordinates.

Note: if φ does not have full support, then we construct a stable form
(X,ω) in π(Sg(φ)) such that one irreducible componentX0 ofX is an elliptic
curve, H1(X0,Z) = 〈a, b〉, and ω|X0 = 0.

Completeness. In the case of full support, each stratum carries a natural
path metric coming from the norm ‖(zi)‖ = max |zi − zj| on Cs/(1, 1, . . . , 1)
on relative periods.

Proposition 2.9 The space Sg(φ) is complete in the relative period metric
provided Per(φ) ∼= Z2g.

Proof. Let p : [0, 1) → Sg(φ) be a path of finite length in the relative
period metric. By [Mc6, Theorem 1.4], the path (Xt,ωt) = π ◦ p(t) has
a limit (X,ω) ∈ ΩMg provided we ignore the components of the limit on
which ω vanishes identically. But φ has full support, so there are no such
components; and hence [ω] = φ for a suitable marking of X. Finally Jac(X)
is compact, since φ(H1(Σg,Z)) ∼= Z2g.

Proof of Theorem 1.1. Choose a symplectic isomorphism φ : H1(Σg,Z) →
L. Then we may identify A(L) with Sg(φ) and apply the results above.

Examples of incompleteness. If Per(φ) is not isomorphic to Z2g, then
Sg(φ) is incomplete. Indeed, whenever C ∈ H1(Σg,Z) is a primitive class in
the kernel of φ, we can find a path of finite length in Sg(φ) whose image in
ΩMg converges to a stable form (X,ω) such that C is pinched to become a
node. This path has no limit in Sg(φ), since Jac(X) is not compact.

3 Genus two

This section introduces charts and notation for the study of A(L) in the
case g = 2.

Polarized modules. We define the determinant of a polarized module
L ⊂ C by

det(L) =

g∑

i=1

Im(aibi),

where (ai, bi) is an symplectic basis for L and Im(zw) is the usual symplectic
form on C. We say L is positive if det(L) > 0.
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Any polarized module L ⊂ C can be regarded as the image of a sym-
plectic isomorphism φ : H1(Σg,Z) → L with 〈φ,φ〉 = det(L). The choice of
φ determines a bijection

Sg(φ) ∼= A(L)

together with a compatible isomorphism

Sp2g(Z)
Φ ∼= SL2(R)

L. (3.1)

Thus A(L) is a special case of the moduli space Sg(φ). In terms of the
standard action of SL2(R) on ΩMg, we have (using 3.1)

fγ(X,ω) = γ · (X,ω) (3.2)

for all γ ∈ SL2(R)
L.

Genus two. Now suppose g = 2. Then we have A(L) ∼= Sg(φ) = H. The
unique relative period

t =

∫ p2

p1

ω

gives rise to a globally defined meromorphic quadratic differential q(L) = dt2

on A(L). As in [Mc5, §8], a local calculation shows that the zeros and poles
of q(L) are simple, and coincide with the sets W (L) and P (L) respectively.

Foliations. We let F(L) denote the horizontal foliation of A(L) determined
by the quadratic differential q(L). The leaves of F(L) are horizontal lines
in the relative period coordinate t.

Dynamics. For each γ ∈ SL2(R)
L the derivative of fγ in local coordinates

where q = (dx+ i dy)2 is given by

Dqfγ = γ.

This is simply because the relative periods of γ · (X,ω) are the image of the
relative periods of (X,ω) under γ.

When γ ∈ AN2(R)
L, the map fγ it also preserves the foliation F(L).

These two properties often assist in explicitly determining the action of fγ ,
especially once a fixed point is known.

Splittings. Any submodule S = Za⊕ Zb ⊂ L with [a, b] = 1 determines a
symplectic splitting

L = S ⊕ S⊥.

The splitting is positive if det(S) > 0 and det(S⊥) > 0; equivalently, if S
and S⊥ are positively-oriented rank two lattices in C.

18



Charts. We wish to describe some complex charts where q(L) = dt2. Given
a positive splitting L = S ⊕ S⊥, let US ⊂ C be the open region obtained by
removing the rays [1,∞) · λ from C for every λ $= 0 in S ∪ S⊥.

Using connected sums [Mc4, §7], for t ∈ US we define

XS(t) = (C/S, dz) #
[0,t]

(C/S⊥, dz).

Here the 1-form (Xt,ωt) = XS(t) is constructed by cutting open the flat
tori on the right and the left along the projection of [0, t], and then gluing
the resulting slits together. For t = 0 we obtain a stable form on a pair of
elliptic curves joined at node; otherwise we obtain a form with two distinct
zeros on a smooth Riemann surface of genus two.

Proposition 3.1 Any positive splitting L = S⊕S⊥ determines a holomor-
phic map

XS : US → A(L)

such that XS(t) = XS(−t) and X∗
S(q(L)) = dt2. This map is an immersion

for t $= 0.

Proof. The absolute periods of (X,ω) = XS(t) are given by S ⊕ S⊥ = L,
and by construction the relative period is t.

The map t 5→ XS(t) is a branched covering of degree two at t = 0.
Because of this branching, q(L) has a simple pole at XS(0). The map
US/(±1) → A(L) is a local homeomorphism.

Points of P (L) and W (L). Clearly a positive splitting gives a stable
form XS(0) ∈ P (L), and every form in P (L) arises in this way. Indeed,
since Jac(X) is compact, any (X,ω) ∈ P (L) gives a pair of elliptic curves
whose periods give a splitting of L.

Every form of genus two with distinct zeros can be presented as a con-
nected sum [Mc4, §7], so the charts XS(US) cover A(L) − W (L). The
connected sum extends to t $= 0 in S provided (0, t) ∩ (S ∪ S⊥) = ∅. The
result is a form with a double zero XS(t) ∈ W (L); and again, all points of
W (L) arise in this way.

4 Zero flux

In this section we continue the analysis of genus two, under the added as-
sumption:
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L ∩R is a Lagrangian subspace of L .

We give a concrete picture of the periodic locus A0(L), and establish The-
orems 1.2 through 1.5.

Zero flux. We begin by recapitulating some results from [Mc7].
Let ρ be a smooth closed 1-form on a closed, oriented n-manifold M ,

with periods P = Per(ρ) ⊂ R and associated (singular) measured foliation
F(ρ). There is a natural map π : M → E to the period torus

E = (P ⊗Z R)/P,

well-defined up to homotopy. The flux of (X, ρ) is the cohomology class

flux(X, ρ) = π∗([F(ρ)]) ∈ Hn−1(E,R).

When it vanishes we say (X, ρ) has zero flux; this means its leaves on average
have no homological drift.

Genus two. Now let L ⊂ C be a polarized module of rank 2g, g = 2, such
that L ∩ R is Lagrangian.

For each (X,ω) ∈ A(L), we consider the harmonic form ρ = Imω defin-
ing F(ω). Its periods satisfy

P = Per(ρ) = Im(L) = Zy1 ⊕ Zy2 ⊂ R,

where y1, y2 ∈ R are linearly independent over Q. Thus we can express ρ as
a linear combination of harmonic forms with integral periods:

ρ = y1ξ1 + y2ξ2

with [ξ1], [ξ2] ∈ H1(X,Z). The period map π : X → E ∼= R2/Z2 is then
obtained by integrating ξ1 and ξ2, and (X, ρ) has zero flux iff

deg(X, ρ) = deg(π : X → E) =

∫

X
ξ1 ∧ ξ2 = 0.

(See [Mc7, §2].) But this condition means that [ξ1] and [ξ2] span a La-
grangian subspace of H1(X,R), which is equivalent to the condition that
L ∩ R is a Lagrangian submodule of L. This shows:

(X, Imω) has zero flux for all (X,ω) ∈ A(L).

By [Mc7, Thm. 7.1], we then obtain the following dichotomy:
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For all (X,ω) in A(L), either F(ω) is periodic, or it splits into
two minimal components, each of genus one.

Upper degree. To refine this dichotomy we introduce the upper degree. A
measurable set A ⊂ X is saturated if it is a union of leaves of F(ρ). The
upper degree is then defined by

f = deg+(X, ρ) = sup

∫

A
ξ1 ∧ ξ2, (4.1)

where the sup is over all saturated sets.
By [Mc7, Cor 6.4], in the case at hand either

1. F(ω) is periodic and f = 0; or

2. F(ω) has two minimal components of genus one, corresponding to a
splitting of the form

(X,ω) = (C/S, dz) #
[0,t]

(C/S⊥, dz), (4.2)

and f = [Im(L) : Im(S)] > 0.

In the second case, the maximum in (4.1) is attained when A is one of the
minimal components of F(ω), and the index [Im(L) : Im(S)] computes the
degree of the map π : A → E.

Here are some additional useful properties of the invariant f .

• The upper degree depends only on the topological type of F(ω), so
it is constant along the leaves of F(L) (as can be verified from the
description just given).

• We have W (L) ⊂ A0(L). Indeed, S ∩ R = (0) in equation (4.2), so a
double zero is impossible when f > 0.

• The upper degree strictly increases under limits [Mc7, Theorem 1.3].
That is, along any path (Xt,ωt) in A(L) transverse to F(L), we have

deg+(X0,ω0) ≥ 1 + lim sup
t→0

deg+(Xt,ωt) (4.3)

unless deg+(X0,ω0) = 0.

• Consequently A0(L) is open and nonempty, and
⋃

f>0 Af (L) is closed.
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• By letting t vary in (4.2) we see that
⋃

f>0 Af (L) is the union of
countably many leaves of F(L), each homeomorphic to [0,∞) and
rooted at a pole XS(0) of q(L).

Periodicity. We now turn to a second characterization of the zero flux
condition.

Proposition 4.1 The periodic locus satisfies ∅ $= A0(L) $= A(L) iff L ∩ R

is Lagrangian.

Proof. Suppose ∅ $= A0(L) $= A(L). Then there is a form (X,ω) ∈ A(L)
such that F(ω) is periodic. The cohomology class ρ = [Imω] ∈ H1(X,R)
has the form ρ =

∑s
1 ai[Ci], where [Ci] are integral classes Poincaré dual to

cylinders of F(ω) and ai ∈ R. We may assume the classes [Ci] are linearly
independent over Q; thus s ≤ g = 2. If s = 1 then ρ is proportional to
an integral cohomology class, in which case every form in A(L) is periodic,
contrary to assumption. Thus s = 2, and therefore Im(L) and L ∩ R each
have rank two. The latter space is Lagrangian, since it has a rational basis
satisfying [ω(C1),ω(C2)] = C1 · C2 = 0. Cf. [Mc7, Cor. 3.2].

The converse will follow from Propositions 4.2 and 4.3 below.

Positive bases. Our next task is to describe A0(L).
Assume L ∩ R is Lagrangian. Then the symplectic pairing gives an

isomorphism

Hom(L ∩R,Z) ∼= Im(L) = {Im(λ) : λ ∈ L}.

Any integral basis (a1, a2) for L ∩ R determines a dual basis (y1, y2) for
Im(L), and vice-versa.

We say (a1, a2) is a positive basis if the real numbers a1, a2, y1 and y2 are
all positive. A positive basis (y1, y2) for Im(L) is defined similarly. A positive
basis can always be lifted to a symplectic basis (ai, bi) for L with Im(bi) = yi,
but the pair (b1, b2) is only well-defined modulo Z(a1, 0)⊕Z(0, a2)⊕Z(a2, a1).

The Farey triangulation. The bases for L ∩ R ∼= Z2 can be identified
with matrices

(
a b
c d

)
, and hence with the Farey geodesics in the hyperbolic

plane, which join rationals a/b and c/d with ad− bc = 1 (see Figure 5). The
positive bases correspond to those Farey geodesics that separate a pair of
distinct, irrational points ξ1 < 0 < ξ2 determined by L∩R and Im(L). Thus
the positive bases for L ∩ R form an infinite, linearly ordered set.
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Figure 5. The Farey triangulation, from 0/1 to 1/1.

More concretely, suppose (a1, a2) and (y1, y2) are a dual pair of positive
bases for L ∩ R and Im(L). Order the indices so that a1 > a2. Then the
operation

(a1, a2), (y1, y2) → (a1 − a2, a2), (y1, y2 + y1)

yields a new pair of dual positive bases, with a1+a2 smaller. Repeating this
operation gives a sequence of bases with a1 + a2 → 0; reversing the roles of
ai and yi, we obtain a sequence with a1 + a2 → ∞. These two sequences
give all the positive bases for L ∩ R.

The spectrum. The spectrum of L is the discrete set of positive numbers

Spec(L) = {y1 + y2 : (y1, y2) is a positive basis for Im(L)}.

Each point y ∈ Spec(L) is realized by a unique positive basis (y1, y2) with
y1 > y2. Indeed, if y

′ < y are consecutive points in Spec(L), then (y1, y2) =
(y′, y − y′). Consequently the two points y and y′ determine the entire
infinite set Spec(L) ∩ (0, y), by the Euclidean algorithm. Note also that
1 < y/y′ ≤ 2.

Proposition 4.2 The locus Af (L) is nonempty for infinitely many f > 0.

Proof. Start with any positive splitting L = S ⊕ S⊥ with S = Za1 ⊕ Zb1,
a1 ∈ R, Im b1 = y1 $= 0. Then B = b⊥1 ⊂ C is isomorphic to Z3, so its closure
B is a subgroup of C isomorphic to R,R× Z or R2. Since a1 $∈ B, B ∩ R is
discrete, and therefore B $= R ⊂ C. It follows that Im(B) is dense in R and
has finite index in Im(L).

For any b ∈ B we obtain a new unimodular symplectic module S′ =
Za′1 ⊕ Zb1 by setting a′1 = a1 + b. This module is positive provided

0 < det(S′) = det(S) + Im(bb1) < det(L),
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which holds for all b ∈ B sufficiently small. Note that Im(S′) = 〈Im b, Im b1〉 ⊂
Im(L). Since Im(B) is dense in R, we can simultaneously choose b such
that f = [Im(S′) : Im(L)] is finite and as large as we want; and then
XS(0) ∈ Af (L).

Height and strips. Whenever the horizontal foliation F(ω) is periodic, we
have a tiling of X by the closure of its finitely many cylinders (C1, . . . , Cs).
In fact s = 2 or 3, since Im(L) has rank two and 3g − 3 = 3. Let ai and hi
denote the circumference and height of Ci. Note that ai ∈ L ∩R, since it is
given by a period of ω. We define the height function

Y : A0(L) → (0,∞)

by Y (X,ω) =
∑s

1 hi.
Given y ∈ Spec(L), let

R(y) = {y − h < Y (X,ω) < y} ⊂ A0(L),

where y − h ∈ Spec(L) is the largest point less than y. The next result
describes R(y); see Figure 6.

2W W

P0

W0

P2P1

1 2
a −a

2a

1

Figure 6. The region R(y) is an infinite flat strip, folded along its upper edge

to produce countably many zeros and poles for q(L).

Proposition 4.3 Let (a1, a2) and (y1, y2) be the dual pair of positive bases
corresponding to y = y1 + y2 ∈ Spec(L), ordered so a1 > a2. Then:

(i) The level set
{Y (X,ω) = y} ⊂ A0(L)

is a single leaf of F(q), consisting of zeros and poles Wm, Pm, m ∈ Z,
joined together by segments with lengths

|[Wm, Pm]| = a2 and |[Wm,Wm+1]| = a1 − a2

in the metric |q(L)|. The poles Pm lie in the interior of R(y).
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(ii) There is a conformal isomorphism R(y) ∼= {z : 0 < Im(z) < min(y1, y2)}
sending q(L) to dz2.

The proof will also show:

Corollary 4.4 The foliation F(ω) has two cylinders if Y (X,ω) ∈ Spec(L),
and otherwise three.

(c)(a) (b)

Figure 7. Ribbon graphs for genus 2, with two or three cylinders.

Proof of Proposition 4.3. As a preliminary, extend (a1, a2) to a symplec-
tic basis for L by choosing (b1, b2) with [ai, bj ] = δij and [b1, b2] = 0. Then
yi = Im bi, and we have a positive splitting

L = (Za1 ⊕ Zb1)⊕ (Za2 ⊕ Zb2) = S0 ⊕ S⊥
0 .

Given m ∈ Z, we may replace (b1, b2) with (b1 +ma2, b2 +ma1) to obtain
another splitting L = Sm⊕S⊥

m. All positive splittings such that Im(S) = Zy1
and Im(S⊥) = Zy2 are obtained in this way.

We now prove part (i). Let Pm = XSm(0) and let Wm = XSm(a2) (recall
a2 < a1). Then Y (Pm) = Y (Wm) = y. In fact, all zeros and poles of q(L)
along the level set Y = y have this form, since each gives a splitting of
type above. Clearly the segment [Pm,Wm] = XSm([0, a2]) connecting these
points lies along a leaf of F(L). Along this segment, the saddle connections
of F(ω) form a graph of the type shown in Figure 7(a).

There is a similar segment [Wm,Wm+1] of length a1 − a2, along which
the saddle connections have the type shown in Figure 7(b). The behavior
of the forms along this path is indicated in Figure 8.

Every two cylinder ribbon graph is of type (a) or (b) (cf. [Mc4, §7]), so
to complete the proof we need only show there are no three cylinder forms
with Y (X,ω) = y. This will also establish Corollary 4.4.

To this end, consider a 3-cylinder form with Y (X,ω) ∈ (y1, y], where we
have reindexed so that y1 > y2. It is straightforward to check that the cir-
cumferences and heights of its cylinders (C1, C2, C3) are given by (a1, a2, a1+
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a2) and (y1 − h, y2 −h, h) for some h ∈ (0, y2). Thus Y (X,ω) eq y1 + y2 −h,
while y = y1 + y2.

To prove part (ii), choose a path δ in the cylinder of height h joining
the two different zeros of ω, and let z =

∫
δ
ω. By shrinking z to zero, we

obtain some pole with Y (Pm) = y. It follows that (X,ω) = XSm(z), with
z ∈ U = {0 < Im(z) < y2}. Similarly, we have XSm(U) ⊂ R(y). It is readily
verified that this region does not depend on m, and thus R(y) ∼= U with
q(L) = dz2.

Figure 8. A path from Wm to Wm+1. The two marked edges are identified; all

others are glued together by vertical or horizontal translations.

Proof of Theorems 1.2, 1.3 and 1.4. We have seen that A0(L) is tiled by
a sequence of rectangular strips R(y) : y ∈ Spec(L); thus it is a topological
disk. By construction, Y sends this tiling of A0(L) to the tiling of (0,∞)
by intervals with endpoints in Spec(L). The fact that W (L) ⊂ A0(L) and
the description of

⋃
f>0Af (L) are contained in our preliminary remarks on

properties of the upper degree.

Cohomological invariants. Let (X, ρ) be a nonzero harmonic form on a
Riemann surface X. As in [Mc7], the content

C(ρ) ⊂ H1(X,R)

is defined as the convex hull of the cohomology classes [ρ|A], where A ranges
over all saturated subsets of X (measurable sets which are unions of leaves
of F(ρ)). If F(ρ) is periodic, with cylinders Ci of height hi whose Poincaré
duals we denote by [Ci], then

C(ρ) =
{∑

ai[Ci] : ai ∈ [0, hi]
}
.

Now let ρ = Imω, where (X,ω) ∈ A(L). The invariant C(Imω) depends
only on the topological dynamics of F(ω), so it is clearly constant along the
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leaves of F(L). We can now show that the level sets of C(Imω) ⊂ Hom(L,R)
coincide with the leaves of F(L).

Proof of Theorem 1.5. Let ρ = Imω. Suppose F(ω) is periodic with
y = Y (X,ω) ∈ Spec(L), and let (a1, a2) and (y1, y2) be the corresponding
dual pair of positive bases. By Poincaré duality, these cylinders give the
classes

a1 ⊗ y1, a2 ⊗ y2 ∈ L⊗Z R ∼= H1(X,R) ∼= H1(X,R).

The vertices of C(ρ) are these two classes, their sum, and 0. Since a1 and
a2 are integral classes, the real numbers y1 and y2 can be read off from the
quadrilateral C(ρ). If Y (X,ω) $∈ Spec(L) then we have 3 cylinders, and
C(ρ) is a hexagon from which we can read off the heights y1−h, y2−h and
h. So in either case C(ρ) determines the value of Y (X,ω), which in turn
defines a single leaf of F(L).

Now suppose F(ω) has two minimal components, each of genus one.
Then F(ω) determines a splitting L = S ⊕ S⊥. The projections of L to
Im(S) and Im(S⊥) determine cohomology classes such that ρ = ρ1 + ρ2,
and C(ρ) is the square with vertices (0, ρ1, ρ2, ρ). Such a square cannot
arise in the periodic case, because its vertices are not multiples of integral
cohomology classes. From C(ρ) we can recover S as Ker ρ1, and then (X,ω)
belongs to the unique leaf of F(L) through XS(0).

Since local changes in the relative periods of (X,ω) can always be con-
structed via Schiffer variations [Mc6], we have:

Corollary 4.5 Two forms have the same cohomological invariant C(Imω)
iff they are related by a sequence of Schiffer variations along the leaves of
F(ω).

In fact a single variation will suffice, provided the zeros of ω lie on dif-
ferent leaves of F(ω).

5 Hilbert modular surfaces

In this section we continue the study of A(L) in the case of eigenforms for
real multiplication. In this case A(L) can be regarded as a slice of a Hilbert
modular XD, and the zeros and poles of q(L) are slices of algebraic curves
WD and PD on this surface. We begin with background and then establish:

Theorem 5.1 Suppose the eigenvalues of γ ∈ SL(OD ⊕O∨
D) are units in

OD other than ±1. Then γ stabilizes at most one component of P̃D.
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This result will play a pivotal role in the proof of Theorems 1.8 and 1.9 on
the topology of the leaves of F(L). The proof uses positivity of the form
Tr(aa†) on the endomorphism algebra of an Abelian variety (cf. [BL, 5.1.8]).

We also describe the theta function formula for q(L) from [MZ].

Closed orbits and real multiplication. By [Mc4, Thms. 1.2 and 5.1]
we have:

Proposition 5.2 The following conditions are equivalent.

1. The locus SL2(R) · A(L) is a closed subset of ΩMg.

2. The leaf A(L) is contained in the locus of eigenforms for real multi-
plication.

3. The trace field of SL2(R)
L is larger than Q.

4. The ring

End(L) = {λ ∈ R : λL ⊂ L and [λx, y] = [x,λy] for all x, y ∈ L}

is a real quadratic order OD.

We wish to study A(L) under the equivalent conditions above.

Lattices and orders. Let D > 0 be a nonsquare integer congruent to 0 or
1mod 4. Then D determines a real quadratic order

OD ⊂ K = Q(
√
D) ⊂ R

of discriminant D, with a fixed embedding into R. The Galois involution
of K/Q will be denoted by x 5→ x′, and the norm and trace by N(x) and
Tr(x). We can write OD = Z[ξ], where

ξ =
e+

√
D

2

and e ∈ {0, 1} has the same parity as D. The inverse different of OD is
the fractional ideal O∨

D = (1/
√
D). The module OD ⊕O∨

D carries a natural
symplectic form, given by

[(a, b), (c, d)] = Tr(ad− bc). (5.1)

Hilbert modular surfaces. Each point τ = (τ1, τ2) ∈ H × H determines
a polarized lattice

OD ⊕O∨ τ ⊂ C2,
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where a+ bτ = (a+ bτ1, a
′ + b′τ2). The Hilbert modular surface

XD = H×H/SL2(OD ⊕O∨
D)

is a degree two branched cover of the locus of all Abelian varieties with real
multiplication by OD, via the map

τ 5→ C2/OD ⊕O∨ τ.

See e.g. [vG], [Mc5]. Projection of the period lattice to its first factor gives
a polarized module

L = OD ⊕O∨ τ1 ⊂ C.

The definitions readily imply:

Theorem 5.3 For each τ1 ∈ H we have a natural isomorphism

{τ1}×H ∼= A(L)

sending τ = (τ1, τ2) to (X,ω), where

Jac(X) = C2/OD ⊕O∨ τ

and ω = dz1 ∈ Ω(Jac(X)) ∼= Ω(X) is the associated eigenform for real
multiplication.

The Weierstrass curve WD. The map τ 5→ (X,ω) descends to a well-
defined embeddingXD → PΩMg. The locus of eigenforms with double zeros
gives theWeierstrass curveWD ⊂ XD, which projects to a Teichmüller curve
in M2. It is know that WD has two components when D = 1mod 8, and is
otherwise connected [Mc2, §1].

The nodal locus PD. The locus of eigenforms that live on nodal curves
defines a curve PD ⊂ XD, disjoint from WD, which maps locally isometri-
cally to M1×M1. The number of components of PD is given by the number
of solutions to D = e2 + 4ℓm with ℓ,m > 0, e ≥ 0 and gcd(e, ℓ) = 1 [Mc2,
§2].

The components of its preimage P̃D in H × H are the graphs of the
Möbius transformations τ2 = U(τ1) of the form

U =

(
µ bD

−a −µ′

)
, (5.2)
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where µ ∈ OD, a, b ∈ Z, N = det(U) > 0, and µ = ±(e +
√
D)/2 in

OD /(
√
D) satisfies e2 + 4N = D. See [Mc5, Theorem 4.1].

Stabilizers. The group SL(OD ⊕O∨
D) permutes the components of P̃D,

sending the graph of U to the graph of γ′Uγ−1. The stabilizer of any given
component is conjugate, in SL2(K), to a congruence subgroup of SL2(Z).

In general, an element γ ∈ SL(OD ⊕O∨
D) can stabilize more than one

component of P̃D. For example, when D = 8 the matrices U1 =
(√

2 0
0

√
2

)

and U2 =
(

5
√
2 8

6 5
√
2

)
are both fixed by γ = ( 7 8

6 7 ).

Theorem 5.1 asserts that the behavior is different if γ is diagonalizable
over K. Then only one component of P̃D can be fixed by γ (provided
γ $= ±I). This fact will play an important role in the sequel.

Proof of Theorem 5.1. Let ε±1 be the eigenvalues of γ, and let K2 =
V− ⊕ V+ be the corresponding eigenspace decomposition.

Suppose γ stabilizes two components of P̃D, corresponding to the sym-
plectic splittings OD ⊕O∨

D = Si⊕S⊥
i , i = 1, 2. Then Si⊗Q can be regarded

as the graph of a map fi : V− → V+ commuting with the action of γ. Such
a map is unique up to composition with an element of Q(γ) = K. Thus
S1 = kS2 for some k ∈ K. It follows that the ring

A = {δ ∈ M2(OD ⊕O∨
D) : δ(Si) = Si and δγ = γδ}

is independent of i; that is, it is uniquely determined by γ. Note that A is
invariant under the Rosati involution (defined by [δx, y] = [x, δ†y]).

Now let πi ∈ A be the projection of Si ⊕ S⊥
i onto its first factor. Then

π⊥
i = πi, and πi commutes with γ. Since γ acts irreducibly on S1, with

respect the splitting S1 ⊕ S⊥
1 we have

π2 =

(
aI b

b† cI

)

for some a, c ∈ Z. Since π2 ◦ π2 = π2, we also have a2 + bb† = a. But
Tr(bb†) ≥ 0, so b = 0 and a = 0 or 1. It follows that π2 = π1 or I − π1, and
hence the two splittings are the same.

Theta functions. We conclude by describing the formula used to draw
F(LD) in Figures 2, 4 and 12. The classical theta function associated to
τ ∈ H×H is defined for z = (z1, z2) ∈ C2 by

ϑ(τ, z) =
∑

n∈O∨

D

qn
2

ζn,
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where
ζa = ζa1 ζ

a′
2 = exp(2πiaz1) exp(2πia

′z2)

and similarly
qa = qa1q

a′
2 = exp(πiaτ1) exp(πia

′τ2)

for any a ∈ K. The zero set of ϑ(τ, z) in C2 covers the theta divisor

X ⊂ C2/(OD ⊕O∨
D τ).

In the present setting X is a smooth curve of genus two, and the ambient
complex torus can be identified with the Jacobian of X.

Let M = OD ⊕O∨
D. Given (a, b) ∈ M ⊗Q, let

ϑ(a,b)(τ, z) = exp(2πiTr(ab)) qb
2

ζb ϑ(τ, z + a+ bτ).

We have ϑm(τ, z) = ϑ(τ, z) for all m ∈ M .
The 16 points [m] ∈ 1

2M/M define spin structures on X. The 10 even
spin structures are those which satisfy

∑
4[m,ai][m, bi] = 0mod 2

with respect to a symplectic basis for M ; the other 6 are odd. The odd spin
structures coincide with Weierstrass points on X, and the even ones give
the possible locations for a node. Choosing a representative m ∈ 1

2M for
each spin structure, we define a meromorphic form on H×H by

Q =

(
∏

m odd

dϑm

dz2
(τ, 0)

/
∏

m even

ϑm(τ, 0)

)
dτ−1

1 dτ22 . (5.3)

This form is invariant under SL(OD ⊕O∨
D), and we have:

Theorem 5.4 (Möller-Zagier) The divisor of Q on XD is given by (Q) =
WD − PD, and its restriction to a slice

{τ1}×H ∼= A(L)

gives a nonzero multiple of the relative period form q(L), L = OD ⊕O∨
D τ .

For more on the differential Q, see [Mc5, §8] and [Ba, §10]. A general
reference for ϑ-functions is [Mum].
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6 Dynamics of SL2(OD)

In this section we continue the study of eigenforms for real multiplication,
with the normalization

LD = OD ⊕OD i

(corresponding to τ1 = i
√
D). The symplectic form on LD is given by

[a+ ib, c+ id] = TrKQ (D−1/2(ad− bc)), and we have

SL2(R)
LD = SL2(OD).

We establish Theorem 1.6 on the orbits of SL2(OD), and analyze the geom-
etry of A0(L).

The standard splitting. As in §5, let ξ = (e+
√
D)/2 where e ∈ {0, 1} has

the same parity as D; then OD = Z[ξ]. A symplectic basis for LD is given
by (a1, b1) = (1,−ξ′i) and (a2, b2) = (ξ, i). This basis defines the standard
splitting

LD = (Za1 ⊕ Zb1)⊕ (Za2 ⊕ Zb2) = S ⊕ S⊥.

Since ai, Im(bi) > 0, this splitting is positive, and we have

det(LD) = Im(a1b1) + Im(a2b2) = ξ − ξ′ =
√
D.

ξ

1

1

1

1

ξ

ξ

ξ

Figure 9. Forms in W (LD) and P (LD) with rotational symmetry.

Complex multiplication. WhenD = 1mod 4 we have (a1, b1) = (1, ξ−1),
and thus the form (X,ω) obtained from the L-shaped polygon in Figure 9
lies in W (LD). Because of its 4-fold symmetry, (X,ω) is an eigenform for
complex multiplication by OD[i]. This point is fixed by the elliptic element
τ 5→ −D/τ in SL(OD ⊕O∨

D), so in fact τ2(X,ω) = i
√
D. This is one of the

few points in W (LD) whose coordinate τ2 ∈ H can be expressed in closed
form. (A complete classification of elliptic points on WD is given in [Mu].)
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When D = 0mod 4, the same fixed point lies in P (LD) and comes from
the pair of rectangles at the right in Figure 9. (In fact all the points of
P (LD) can be computed directly for any value of τ1, using equation (5.2).)

Units and periodicity. Let ε > 1 denote the fundamental unit for OD.
The geodesic in H with endpoints ξ and ξ′ is stabilized by a matrix

A ∈ SL2(Z) with eigenvalues ε±1. Similarly, Spec(LD) is invariant under
multiplication by ε; and if we let [c1, . . . , cn] denote the periodic part of the
continued fraction expansion of ξ, we may use the Farey triangulation to
verify:

Proposition 6.1 The number of points in Spec(LD)/〈ε〉 is given by N =
c1 + · · ·+ cn, where [c1, . . . , cn] is the periodic part of the continued fraction
expansion of ξ.

Thus the strips R(y), y ∈ Spec(LD) that cover A0(LD) have essentially N
different types.

Theorem 6.2 The discrete sets P (LD) and W (LD) fall into finitely many
orbits under the action of SL2(OD) on A(LD). Every other orbit of SL2(OD)
is dense, with the exception of the decagon orbit in the case D = 5.

Proof. These orbits correspond to the finitely many components of the
curves WD and PD. The second statement follows from the analysis of orbit
closures for SL2(R) acting on ΩMg [Mc4], together with the classification
of Teichmüller curves in genus two [Mc3]. (This reference also describes the
decagon form.)

Foliations and the affine group. Observe that OD = LD ∩ R is a La-
grangian subspace of LD. Thus we have a stratification A(LD) =

⋃
f≥0Af (LD)

as in §4.
The affine group of upper triangular matrices in SL2(OD) is given in

terms of the fundamental unit ε by

AN2(OD) =

{
γ = ±

(
ε−n b

0 εn

)
: n ∈ Z and b ∈ OD

}
.

This group preserves the leaves of the foliation F(LD) and the strataAf (LD),
and we have

Y (γ · (X,ω)) = εn Y (X,ω);
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in particular, the unipotent subgroup N2(OD) ⊂ AN2(OD) preserves the
level sets of Y .

Each of the sets Pf (LD) = P (LD)∩Af (L) is invariant under AN2(OD).
The natural bijection P0(LD) → WD, obtained by following the leaves of
F(q), descends to a bijection

W (LD)/AN2(OD) ∼= P0(LD)/AN2(OD).

Using the fact that N2(OD) acts nontrivially on each strip, it is easy to see
that both sets above are finite. In fact:

Proposition 6.3 The number of cusps of WD is an upper bound for the
number of orbits of AN2(OD) acting on W (LD).

Proof. Suppose for simplicity that WD is connected. Let Γ ⊂ SL2(OD)
be the stabilizer of a point W0 ∈ W (LD). Then W (LD) may be identified
with SL2(OD)/Γ, and its quotient by AN2(OD) may be identified with C/Γ,
where

C = AN2(OD)\SL2(OD) →֒ AN2(R)\SL2(R) ∼= P1(R).

Since the horizontal foliation of any form in W (LD) is periodic, the stabilizer
in Γ of any point in C is unipotent. Hence C/Γ corresponds to a subset of
the cusps of WD = H/Γ. Similar reasoning applies if WD has more than one
component.

Proposition 6.4 For each f > 0, the set Pf (LD) falls into finitely many
orbits under the action of N2(OD).

Proof. A point in P (LD) is determined by the associated positive splitting
LD = S⊕S⊥. Thus it suffices to show there are only finitely such splittings
with [Im(S) : Im(LD)] = d, up to the action of N2(OD).

Clearly there are only finitely many possibilities for Im(S). Fix one
such, with integral basis y1, y2. We may assume S has a basis with Im(a1) =
y1, Im(b1) = y2 and [a1, b1] = 1. The orbit of a1 under N2(OD) is a1+y1OD,
which has finite index in the set a1 + OD of all solutions to Im(z) = y1 in
LD. Thus there are only finitely many possibilities for a1 up to the action
of N2(OD).
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Now suppose a1 is fixed. Then the set of all solutions to the equations
Im b1 = y1 and [a1, b1] = 1 in LD forms a coset of the form z1 + Zx1. But
the splitting S ⊕ S⊥ is positive, so b1 = z1 + nx1 must also satisfy

0 < Im(a1b1) = Im(a1z1) + nx1y1 < det(LD).

Thus once a1 is fixed, there are only finitely many choices for b1 with the
required positivity.

Proof of Theorem 1.6: Combine the results above and use the fact that
N2(OD) ⊂ AN2(OD).

Geometry of the periodic stratum. We conclude this section by study-
ing the domain A0(LD) ⊂ H in the coordinate system τ2.

Proposition 6.5 The imaginary axis Re τ2 = 0 lies in A0(LD).

Proof. Since Re(τ1) = 0, every form with Re(τ2(X,ω)) = 0 has an anticon-
formal symmetry preserving the leaves of F(ω). Such a symmetry is only
compatible with a periodic foliation.

Since A0(L) is invariant under the dense subgroup SL2(OD) ⊂ SL2(R),
we have:

Corollary 6.6 There is a dense set of pairs (x1, x2) ∈ R2 such that x1 can
be joined to x2 by an arc in A0(L) ⊂ H.

Galois conjugate dynamics at the boundary. By [Mc5, Theorem 8.3],
for each γ ∈ SL2(OD) the map fγ acts on ∂A(L) ∼= R ∪ {∞} by the Ga-
lois conjugate Möbius transformations γ′ ∈ SL2(R). More precisely, in τ2
coordinates on R we have

fγ(x) = Cγ′(x/C) (6.1)

for some C > 0. (In the case at hand, C =
√
D; this scale factor arises from

the isomorphism SL2(OD) ∼= SL(OD ⊕O∨
D).)

Using this boundary dynamics, we will show:

Proposition 6.7 Each leaf H of F(LD) in A0(LD) ⊂ H lies within a
bounded hyperbolic distance of a horocycle of the form Im τ2 = y, and its
ends converge to τ2 = ∞.
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Proof. Let 〈. . . t−1 < t0 < t1 . . .〉 be the ordered set of t ∈ OD ⊂ R

with |t′| ≤ 1. Since {(t, t′) : t ∈ OD} gives a lattice in R2, we have
M = sup |tn+1 − tn| < ∞. Let fn : H → H denote the map fγn for

γn =

(
1 t′n

0 1

)
∈ SL2(OD).

Since Dqfn = γn and |t′n| ≤ 1, these maps are uniformly quasiconformal. By
equation (6.1), the map fn|R agrees a Möbius transformation of the form
Tn(z) = z + Ctn, where C is independent of n.

Let H be the leaf of F(LD) through Z0 ∈ A0(LD). Then H is invariant
under N2(OD), so in particular it is invariant under the maps fn above. It
follows readily that H is a quasiarc and its ends converge to τ2 = ∞. By
properties of quasiconformal maps, we have d(fn(Z0), Tn(Z0)) = O(1) in
the hyperbolic metric. Since every point on the horocycle Im τ2 = ImZ0 lies
within a bounded distance of a point of the form Tn(Z0) = Z0 + tn, and the
Proposition follows.

We will see that A0(L) contains a halfplane in Corollary 7.4 below.

Remark: Other ideals. When the class number of OD is greater than
one, not every Lagrangian subspace of LD is equivalent to OD under the
action of SL2(OD). To obtain a complete picture, one should also consider
the case where I ⊂ OD is an ideal and L = I ⊕ I∨τ1. This is necessary, for
example, to see all the cusps of WD in Proposition 6.3.

7 Fixed points and pseudo-Anosov maps

In this section we relate the action of SL2(OD) on A(LD) to the existence
of pseudo-Anosov maps, and prove Theorem 1.7. We then use dynamics of
AN2(OD) to tame the leaves of F(LD), and establish Theorems 1.8 and 1.9
on the behavior of ∂A0(L).

Realizations. We continue with the assumption g = 2. Let γ ∈ Sp2g(Z)
be a symplectic automorphism with largest eigenvalue λ > 1. Suppose γ

is irreducible; then λ has degree 4 over Q, and γ commutes with the real
quadratic order generated by γ+ γ−1 in M2g(Z). Thus we can consider γ as
an element of SL2(OD).

We say γ is realized by a pseudo-Anosov map F : Σg → Σg if F has
multiplier λ and γ = F |H1(Σg). (In this case the stable and unstable
foliations of F must be orientable.)
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Theorem 7.1 The element γ ∈ SL2(OD) is realizable iff the quasiconformal
map fγ has a fixed point on A(LD)− P (LD).

Proof. The stabilizer of (X,ω) ∈ A(LD) is simply the affine group SL(X,ω).
Thus if γ has a fixed point, it is realized by a pseudo-Anosov mapping on X
with foliations parallel to its eigenvectors in R2 ∼= C. (Since γ is irreducible,
(X,ω) $∈ P (LD).) The converse is similar.

Proof of Theorem 1.7. Suppose |Tr(γ)| > 2 > |Tr(γ)′|, and identify
A(LD) with H. By equation (6.1), fγ |∂H has no fixed points since it acts by
an elliptic Möbius transformation with trace Tr(γ)′. Thus fγ fixes a point
in H by Brouwer’s fixed point theorem.

On the other hand, we have:

Proposition 7.2 If |Tr(γ)| ≤ |Tr(γ)′|, then γ is not realizable.

Proof. If γ is realizable then its leading eigenvalue as an element of Sp2g(Z)
must be simple and agree with the multiplier λ of the associated pseudo-
Anosov map, which is the leading eigenvalue of γ as an element of SL2(OD).

The affine group. Next we examine the fixed points of the affine group.

Theorem 7.3 The fixed points of hyperbolic elements in AN2(OD) all lie
in

⋃
f>0 Pf (LD). A given hyperbolic element has at most one fixed point,

and every point in
⋃

f>0 Pf (LD) is fixed by at least one hyperbolic element.

Proof. Elements of the affine group can never be realized by orientable
pseudo-Anosov mappings, because they satisfy |Tr(γ)| = |Tr(γ′)|. Thus
their fixed points lie in P (LD). Such a fixed point (X,ω) is unique by
Theorem 5.1. The foliation F(ω) must be irrational if γ is hyperbolic, so
(X,ω) ∈ Pf (LD) for some f > 0.

Conversely, any form (X,ω) ∈ ⋃
f>0 Pf (LD) gives a pair of isogenous

tori with foliations F(ω) of equal, irrational slope k ∈ K, and is therefore
stabilized by some hyperbolic element in AN2(OD).

37



Convergence of leaves. Let P ∈ Pf (LD), f > 0, be stabilized by the
hyperbolic element γ ∈ AN2(OD). We can now show that the leaf of F(LD)
through P converges to the unique fixed point x of γ in R ⊂ ∂A(LD).

Proof of Theorem 1.8. Let M ⊂ A(LD) be the closure of the leaf through
P . Then M itself is a union of leaves of F(LD). If M is compact, then by
equation (4.3) there is a Z ∈ M where deg+(Z) is maximized. The same
result shows the leaf through Z cannot have any accumulation point in M ,
which is a contradiction since this leaf is isomorphic to [0,∞).

Thus M accumulates on at least one point x ∈ ∂H. By Corollary 6.6 and
Proposition 6.7, there is only one such accumulation point and x ∈ R. Thus
x must coincide with the real fixed point of γ. The leaf through any other
pole Q ∈ M must also converge to x. Since the stabilizer of x in AN2(OD)
is virtually cyclic, it follows that then P and Q are stabilized by the same
hyperbolic element, and hence P = Q by Theorem 7.3. Consequently M
contains only one leaf of F(LD). By equation (4.3) the leaf cannot accumu-
late on itself, so it must in fact converge to x.

Accessibility. Finally we show that points in Af (LD) are inaccessible from
A0(LD) for all f 0 0.

Proof of Theorem 1.9. Suppose Z0 = XS(0) ∈ Pf (LD), for f > 0. Recall
that Z0 is fixed by a hyperbolic element γ ∈ AN2(OD).

Let s $= 0 be one of the nonzero points in S ∪ S⊥ closest to the origin.
Then the path Zt = XS(t) joins Z0 to a point Zs = W ∈ W (L) ⊂ A0(L).
If this path crosses ∂A0(LD), then we can use the action of γ to prove that
Z0 is inaccessible as in Figure 3.

Otherwise, the segment [0, s] ⊂ C corresponds to a saddle connection
C of W = (X,ω) crossing each of the two cylinders of F(ω) exactly once,
so that

∫
C Imω = Y (W ). There are only finitely many such C up to the

action of the cyclic group AN2(OD)
W , and there are only finitely many

AN2(OD) orbits in W (LD), so there are only finitely many AN2(OD) orbits
of accessible points in P (LD).

Since the upper degree is constant on each orbit, we have shown that
Pf (LD) is inaccessible for all f 0 0. But once a point in A(LD) is inacces-
sible, so is the whole leaf of F(LD) through it, so Af (LD) is inaccessible for
all f 0 0.

Corollary 7.4 The periodic locus A0(L) contains a horoball of the form
U = {Im τ2 > y > 0}.
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Proof. Let H be a leaf of F(LD) contained in A0(LD). By Proposition
6.7, H lies below a line of the form Im τ2 = y in H and converges to infinity.
Thus H separates U from the real axis. By the preceding result, any point
in A(LD) − A0(LD) can be joined to the real axis by a path avoiding H;
thus U ⊂ A0(LD).

8 The case D = 5

In this section we give a more detailed account of the case D = 5.

Splittings. To begin with, we note that the generator ξ = (1 +
√
5)/2 of

OD = Z[ξ] coincides with the fundamental unit ε > 1. It follows easily that

Spec(LD) = εZ.

Note also that ε′ = −1/ε.
This case is simplified by the fact that LD has only one type of splitting.

Proposition 8.1 For D = 5, any positive splitting

LD = S ⊕ S⊥

satisfies S⊥ = ε±1S.

Proof. Consider a positive splitting defined by S = Za1 ⊕ Zb1 with

[a1, b1] = TrKQ (a1 ∧ b1) = 1.

Positivity of S means that the determinant a1∧b1 is a totally positive element
of O∨

D. But there are only two such elements with trace one, namely x and
x′ where x = ε/

√
5.

Assume a1∧b1 = x. We claim S⊥ = ε−1S. To see this, one simply checks
that the vectors (a2, b2) = ε−1(a1, b1) satisfy a2, b2 lie in S⊥ and satisfy

[a2, b2] = Tr(ε−2x) = Tr(x′) = 1.

The case a1 ∧ b1 = x′ is similar.
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The following are direct consequences, which could also be verified using
the general results referred to in §6.

1. The nodal curve PD has only one component.

Indeed, for any two splittings S1 ⊕ εS1 and S2 ⊕ εS2, any symplectic
isomorphism S1

∼= S2 extends uniquely to an OD-linear automorphism
of LD.

2. Taking S1 = S2, we see for any P ∈ P (LD) the stabilizer SL2(OD)
P

is isomorphic to SL2(Z).

3. The Weierstrass curve WD has only one component, with a unique
cusp, since cusps correspond to splittings. We will see a concrete
description of WD below.

The golden form. For D = 5, the standard positive splitting is given by
LD = S ⊕ ε−1S with

S = Zε⊕ Zi.

The form W0 = XS(1) corresponds to the symmetric L-shaped polygon of
Figure 9. Its stabilizer is the well-known Veech group

Γ = SL2(OD)
W0 =

〈(
0 1

−1 0

)
,

(
1 ε

0 1

)〉
,

which is a (2, 5,∞)-triangle group; cf. [V].

Enumerating zeros. Since the Weierstrass curve WD
∼= H/Γ has only one

cusp, by Proposition 6.3 we have

W (LD) = AN2(OD) ·W0.

In fact, since ( 1 ε
0 1 ) · W0 = W0, every point in W (LD) can be expressed

uniquely in the form

Wn,k =

(
ε−n 0

0 εn

)(
1 k

0 1

)
·W0 (8.1)

for some n, k ∈ Z. We note that the generators of AN2(OD) act on these
indices by

(
ε−1 0

0 ε

)
·Wn,k = Wn+1,k and

(
1 ε

0 1

)
·Wn,k = Wn,k+F2n

.
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Here Fn = (. . . , 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .) is the bi-infinite sequence of Fi-
bonacci numbers, defined by the conditions Fn ∈ Z and

εn = Fn−1 + εFn. (8.2)

For fixed n, the zeros Wn,k appear consecutively along the level set Y =
εn+1, and satisfy

Re τ2(Wn,k) > 0 whenever k > 0. (8.3)

To see this last inequality, use the fact that W0,1 = fγ(W0) where γ =(
1 −1/ε
0 1

)
. Since Dfγ = γ, this map is a shear on the strip ε < Y < ε2.

It fixes W1,0 on the upper boundary, so it shifts the lower boundary to the
right. Since the level sets of Y are symmetric about the imaginary axis, this
implies (8.3).

We remark again that the only value of τ2(Wn,k) known in closed form
is the case τ2(W0,0) =

√
−5.

Enumerating poles. Let P0 = XS(0) be the pole attached to W0 by a
segment of F(LD). Its stabilizer

SL(OD)
P0 =

〈(
0 ε

−ε−1 0

)
,

(
1 ε

0 1

)〉

is conjugate to SL2(Z).
Define Pn,k by replacing W0 with P0 in (8.1). These give all the poles of

q(LD) in A0(LD), since each is attached to a zero by a segment of F(LD).
Note that the segments [W0, P0] and [W0,W0,1] on the leaf Y = ε have
|q|-lengths 1 and ε−1 respectively.

Let τ1 =
√
−D as usual. Every P ∈ P (LD) satisfies τ2(P ) = U(τ1) for

some U given by equation (5.2). We have a = 0 in (5.2) when P ∈ A0(LD),
and we easily find:

τ2(Pn,k) = ε4n−2τ1 + 5kε2n−1.

In particular, we have τ2(P0) = i
√
5/ε2.

We also have a $= 0 for all P ∈ Pf (LD), f > 0, which yields bound

Im τ2(P ) ≤ 1

a2 Im τ1
≤ 1√

D
·

This bound is consistent with the fact that A0(L) contains a halfplane
(Corollary 7.4).
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Figure 10. A path along the imaginary axis is obtained by sliding a

1× (1/ε) rectangle first horizontally, then vertically.

Overview. An overview of the geometry of A(LD), showing the zeros and
poles of q(LD) in τ2-coordinates, is given in Figure 4.

The imaginary axis. For further orientation, we note that the imaginary
axis in τ2-coordinates gives a path through the zeros Wn,0 and the poles
Pn,0. This path runs alternately along the vertical and horizontal foliations
of q(LD). The forms (X,ω) occurring along two such segments are indicated
in Figure 10.

ε

1

Figure 11. The two types of saddle connections of height ε in the golden table.

Accessible points. We conclude this discussion by showing:

Proposition 8.2 The points of Af (LD) ⊂ ∂A0(L) are accessible iff f = 1.

Proof. There are exactly two saddle connections of height ε in W0, up to
the action of AN2(OD)

W0 (see Figure 11). One can check that these saddle
connection represent the two points in P1(LD)/AN2(OD); the result then
follows from the proof of Theorem 1.9 give in §7.
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Figure 12. A geodesic in A0(LD) connecting W0 to a pole in P1(LD).

Example. Let U =
(
ε−1 0
1 ε

)
. One of the accessible poles P ∈ ∂A0(LD)

is given by τ2(P ) = U(τ1) = (1 + i)
√
5/((4 + i) +

√
5) ≈ 0.4056 + 0.2936i.

This pole corresponds to the symplectic splitting LD = S ⊕ εS, where S =
Z(i/ε)⊕ Z(1 + i), as can be read off from Figure 11. A geodesic in A0(LD)
connecting W0 to P is shown in Figure 12.

9 A guide to fake pentagons

Let Q ⊂ C be a pentagon with unit sides, resting on the interval [0, 1] ⊂
R, and let Q∗ be its reflection through the real axis. Let (X0,ω0) be the
pentagon form, obtained from (Q∪Q∗, dz) by identifying parallel sides. The
vertices of Q ∪Q∗ give the single zero of ω0 on X0.

Let ζ5 = exp(2πi/5) and let τ1 = γζ5/
√
D. It is readily checked that the

periods of the pentagon form give the polarized module

Per(X0,ω0) = OD ⊕O∨
D τ1 = Z[ζ5],

satisfying [1, ζ5] = 1. As in [Mc5, §9], we say (X,ω) ∈ ΩMg is a fake
pentagon if:

1. ω has a double zero;
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2. Per(ω) = Per(ω0), respecting the symplectic form; and yet

3. (X,ω) $= (X0,ω0).

All fake pentagons are also eigenforms for OD. The existence of infinitely
many fake pentagons follows from properties of foliations on Hilbert modular
surfaces [Mc5, §10]. In fact, using the enumeration of the zeros of W (LD),
these forms can be explicitly described as follows.

Theorem 9.1 Every fake pentagon can be expressed uniquely in the form
(X,ω) = A ·Wk,n, where

A =

(
ε Re(1 + ζ5)

0 Im(1 + ζ5)

)
∈ GL2(R)

and (0, 0) $= (k, n) ∈ Z2.

The regular pentagon is distinguished by the fact that X0 also has a sym-
metry of order 5 with ω0 as an eigenform.

Figure 13. The regular pentagon and several impostors.

10 Class numbers

In this section we establish Theorem 1.10, in the following form.

Theorem 10.1 For D = 5 and f > 0 we have a natural bijection

Pf (LD)/AN2(OD) ∼= Pic+Of2D .

In particular, the number of different types of splittings of LD of degree f is
given by the strict class number h+(f2D).
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This map depends on the choice of an orientation for K as a vector space
over Q.

We will also relate these class numbers to the behavior of Teichmüller
rays.

Ideals and conductors. We begin with generalities. Let K be a real
quadratic field of discriminant D > 0. We may identify the ring of integers
in K with the real quadratic order OD. The subrings of finite index in OD

are given by the orders
Of2D = Z+ f OD,

f ≥ 1. A fractional ideal is an additive subgroup I ⊂ K isomorphic to Z2.
The conductor of I is the unique f ≥ 1 such that

Of2D = {x ∈ OD : xI ⊂ I}.

A special property of quadratic fields is that I is invertible over Of2D. The
class group PicOf2D consists of the fractional ideals with conductor f mod-
ulo principle ideals.

Lemma 10.2 Let I ⊂ OD be a submodule of index f such that OD ·I = OD.
Then f is the conductor of I.

Proof. We first note that OD /I must be isomorphic to Z/f as an additive
group; otherwise I ⊂ nOD for some n > 1, in which case OD ·I $= OD. Let
e be the conductor of I. Since Oe2D ·I ⊂ I, we have eOD ·I = eOD ⊂ I,
and thus f |e. On the other hand, since [OD : I] = f we have f OD ·I =
f OD ⊂ I, and thus e|f .

Remark. More generally, the conductor of any fractional ideal satisfies
f = [OD I : I].

Class numbers. An explicit formula for the class number h(f2D) =
|PicOf2D |, in the case D = 5, can be given in terms of the Legendre
symbol and the Fibonacci sequence Fn defined in equation (8.2); namely we
have

h(f2D) =
f

min(n : f |Fn)

∏

p|f

(
1−

(p
5

) 1

p

)
. (10.1)

This can be seen using [Lang, Ch. 8.1, Thm. 7] and the fact that Z[εn] =
OF 2

nD
.

If we only take the quotient by the principal ideals (k) with N(k) > 0,
we obtain the strict class group Pic+Of2D, whose order will be denoted
h+(f2D).
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These two types of class groups are identical if there is a unit of norm
−1 in Of2D; otherwise, we have h+(f2D) = 2h(f2D). For D = 5, we have
h(f2D) = h+(f2D) iff f |Fn for some odd value of n. The first few values
are shown in Table 14.

f 1 2 3 4 5 6 7 8 9 10 11 12

h+(f2D) 1 1 2 2 1 2 2 4 2 1 2 4

f 13 14 15 16 17 18 19 20 21 22 23 24

h+(f2D) 2 2 2 4 2 6 2 2 8 2 2 8

Table 14. Strict class numbers of orders of conductor f , for D = 5.

If we fix an orientation forK ∼= Q2, we may identify the strict class group
with the set of isomorphism classes of oriented invertible Of2D-modules.

Proof of Theorem 10.1. By Proposition 8.1, points Z ∈ Pf (LD) corre-
sponds bijectively to splittings of the form LD = S⊕S⊥ such that S⊥ = εS
and [OD : I] = f , where I = Im(S). Since OD I = OD, the preceding
Lemma shows the conductor of I is f . The symplectic form on S deter-
mines an orientation of I, and thus we have a map

φ : Pf (LD) → Pic+Of2D

given by φ(Z) = [Im(S)].
Since OD has strict class number one, any oriented fractional ideal I =

Za ⊕ Zb of conductor f can be scaled so that OD I = OD. Then ad −
bc = 1 for some c, d ∈ OD. This gives an element γ ∈ SL2(OD) such that
φ(γ(P0)) = [I], and thus φ is surjective.

Next we observe that φ is constant along the orbits of AN2(OD). Indeed,
if γ ∈ AN2(OD) then Im(γ(S)) = εn Im(S) for some n ∈ Z.

Finally suppose φ(Z1) = φ(Z2). Then the corresponding splittings S1 ⊕
S⊥
1 and S2 ⊕ S⊥

2 determine the same oriented ideal class. This means that,
after applying the action of the diagonal subgroup of AN2(OD) to one of
them, we can arrange that Im(S1) = Im(S2) as oriented fractional ideals.
Using the fact that S⊥

i = εSi, we find there is a unique γ ∈ SL2(OD) inducing
the isomorphism S1

∼= Im(S1) ∼= Im(S2) ∼= S2. Since Im γ(s) = Im(s) for all
s ∈ S1, we have γ ∈ N2(OD), and thus Z1 and Z2 lie in the same orbit of
AN2(OD).
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Double cosets. Here is another perspective on the result above. When
D = 5 the group SL2(OD) acts transitively on P (LD) with point stabilizers
isomorphic to SL2(Z). On the other hand, since OD has class number one,
the group SL2(OD) acts transitively on P1(K) with AN2(OD) the stabilizer
of infinity. Thus we have a correspondence:

AN2(OD)\P (LD) ⇐⇒ AN2(OD)\SL2(OD)/SL2(Z)

⇐⇒ P1(K)/SL2(Z).

Any point in P1(K) can be given in homogeneous coordinates as [a : b] where
a, b ∈ OD are relatively prime; then the conductor f = |ab′ − a′b|/

√
D of

the ideal Za⊕Zb is constant along the orbits on the right, and corresponds
to the degree of the splittings on the left. It is immediate that the number
of orbits on the right with a given conductor is h+(f2D).

A partial order on ideals classes. The leaves of F(LD) have a natural
partial ordering given by F1 ≤ F2 if F2 ⊂ AN2(OD) · F1. This ordering is
compatible with the ordering by upper degree, and it descends to an ordering
on the set of ideals classes

Cl(K) =
⋃

f>0

Pic(Of2D).

It would be interesting to describe this ordering directly in terms of the
structure of Cl(K).

Escaping Teichmüller rays. For another perspective on these matters,
let (X0,ω0 be a form in Af (LD)−Pf (LD), and consider the Teichmüller ray
[Xt] in M2 obtained by projection the forms

(
e−t 0

0 et

)
· (X0,ω0) ∈ ΩM2, t ≥ 0

to moduli space. The leaves of the horizontal foliation F(ω0) shrink to zero
along this ray.

If f = 0, then these leaves are closed and [Xt] converges to a stable curve
in ∂M2 consisting of one or two components of genus zero. In particular,
[Jac(Xt)] goes to infinity in the Hilbert modular surface for OD.

If f > 0, on the other hand, then (X0,ω0) splits as the connected sum
of a pair of complex tori with irrational foliations, and Xt spirals towards
a closed geodesic γ on a modular curve inside M1 × M1 ⊂ ∂M2. In this
case [Jac(Xt)] remains bounded in the Hilbert modular surface, and the
hyperbolic length of γ is the log of a unit in OD. For D = 5, the modular
curve is simply H/SL2(Z), and the oriented geodesic γ determines an ideal
class in Pic+Of2D.
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11 Snow falling on cedars

In this section we describe an explicit path in A0(L) joining together the
points W0,k, k ∈ Z, and use it to construct a family of interval exchange
maps Ft(x) whose bifurcation set is homeomorphic to ωω. This family gives
an indication of the complexity of ∂A0(L), and the way bifurcations and
periodicity combine to render A(L) complete.

t

B

A

Figure 15. The form (Xt,ωt) is obtained from the symmetric form W0 by

shearing horizontally, preserving the absolute periods. Each point (x, 0) ∈ A is

glued to the point (x′, 1) ∈ B with x′ = xmod |A|.

1 2 3 4 5

2

4

6

8

10

12

Figure 16. Spikes in the period of Ft(x) occur for t in a closed, countable set

B homeomorphic to ωω.

A path through the zeros. Let (X0,ω0) = W0, presented as the quotient
of a symmetric L-shaped polygon with edges of lengths 1 and ε as in Figure
11. By shearing the two rectangles form (X0,ω0) independently, we obtain
the family of forms (Xt,ωt) in A(LD) as shown in Figure 15. (The same
general construction was used in the proof of Proposition 4.3.) Since the
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Figure 17. Stable and unstable manifolds which cross.

zeros of ωt only move horizontally, this family gives a path along the leaf of
F(LD) through W0. In fact the forms (Xt,ωt) move at unit speed along the
upper edge of the leaf through W0, passing through W0,k at time t = k/ε.

Now consider the vertical foliation F(iωt) of Xt. Its first return map to
the bottom edge in Figure 15 gives an interval exchange transformation

Ft : [0, ε] → [0, ε]

which rotates the subintervals [0, 1] and [1, ε] each by +t, and then rotates
the full interval [0, ε] by −t.

Theorem 11.1 The bifurcation set

B = {t ∈ R : F(iωt) is not periodic}

is homeomorphic to ωω. In fact for each k > 0, the derived set B(k−1)

contains kε.

(Here B0 = B and B(k+1) = ∂B(k).) The set B consists of the points the
period Nt of Ft becomes infinite. The graph of log2(Nt) is shown in Figure
16.

Proof. The region ε < Y < ε2 is an infinite strip of height one in the
|q|-metric. If we take its closure and unfold the upper edge, we obtain the
region shown in Figure 17. The form (Xt,ωt) moves at unit speed along the
lower edge. When t = kε, it encounters the vertical leaf through P1,k. Thus
these values of t lie in the bifurcation set.

For each k > 0 there is a hyperbolic element γk ∈ SL2(OD) stabilizing
P1,k and expanding the vertical leaf on which it lies. The contracting direc-
tion of γk gives a stable manifold through P1,k, which is shown as a dotted
line in Figure 17.
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We claim the stable manifold through P1,k crosses the vertical leaf through
P1,k−1. To verify this, one can one use the fact that the stabilizer of P1,k is

given by Ak SL2(Z)A
−1
k , where Ak =

(
1 k/ε
0 ε

)
. The stable manifold through

P1,k is parallel to the vector Ak(A
−1
k ( 01 ))

′, and we find it crosses the path
(Xt,ωt) at t = k/ε3.

By the mechanism illustrated in Figure 3, the intersection of stable and
unstable manifolds results in copies of the vertical leaf through P1,k−1 accu-
mulating on the vertical leaf through P1,k. It follows easily by induction that
kε ∈ B(k−1). This shows B contains a homeomorphic copy of the countable
ordinal ωω. It can be no more complex than this ordinal, by equation (4.3).

The additional fact that kε $∈ B(k) can be established using [Mc7, The-
orem 10.1].

Figure 18. Cedars and snow.

Winters with diminishing snowfall. We conclude by relating these
bifurcations to the completeness of A(LD).

We have seen that A0(LD) is a stacked sequence of horizontal strips,
each mapping to an interval under the height function Y : A0(LD) → R+.
One can think of these strips as layers of snow, and Y as depth beneath the
snow. We wish to picture the region 0 ≤ Y ≤ ε.

Think of the set Y = ε as a line of level ground, along which a sequence
of cedars [W0,k, P0,k] have grown to height 1 (Figure 18). During the winter
these trees are buried under a layer of snow of thickness 1/ε. The next spring
taller cedars grow, farther apart, and then the next winter they are buried
under a thinner layer of snow. The process continues through countably
many seasons until we reach the top of the snow at depth Y = 0.

50



In fact with each new season the trees get higher by a factor of ε > 1,
while the snow gets thinner by the same factor. Thus the height of the
cedars tends to infinity, while the total depth of the snow, after infinitely
many seasons, is just ε. It is therefore possible to burrow out of the snow
by traveling only a finite distance; that is, A0(LD) is incomplete.

It becomes complete, however, when we add in the countably many
half-infinite leaves of F(LD) contained in

⋃
f>0Af (LD). These leaves can

be visualized as fissures where the snowfall, in infinitely many layers, folds
together to meet itself. An explorer attempting to burrow out of A0(LD)
encounters a countable cascade of such fissures, and finds himself descending
back into the snow. One can think of Figure 16 as a record of the explorer’s
journey, with spikes occurring each time a fissure is crossed.
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