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1. Introduction

There is now a considerable body of work on moduli stabilisation, facilitated by flux of

the Neveu Schwarz-Neveu Schwarz (NSNS) and Ramond-Ramond (RR) anti-symmetric

tensor fields, in the context of type II theories. Specifically, within type IIB it has been

shown [1] that a combination of NSNS and RR three-form flux can stabilize the dilaton

and all complex structure moduli, while the Kähler moduli have to be fixed by other effects

such as non-perturbative contributions [2] or perhaps higher-order α′ corrections [3]. The

consistency of these procedures, including the interplay between α′ and non-perturbative

corrections, was analyzed in refs [4 – 10] Within type IIA theories, on the other hand, both
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odd and even degree form field strengths are available, so that flux potentials for complex

structure moduli as well as Kähler moduli will typically be generated [11, 12] (see also

ref. [13] for N = 1 models). One may therefore hope that all moduli can be stabilised by

flux in some such models and specific examples have indeed been found [14 – 18], although

it appears that in generic models of this kind some flat directions are still left over.

Traditionally, the heterotic string has been considered the most attractive string the-

ory, with the presence of (preferably E8×E8) ten-dimensional gauge fields leading to a large

number of supersymmetric compactifications with phenomenologically interesting proper-

ties [19]. It has also been known for a long time that heterotic NSNS three-form flux can

stabilize all complex structure moduli of the theory [20, 21]. More recently, this subject

was addressed in refs [22, 23]. However, in the absence of any further (RR) antisymmet-

ric tensor fields, the potential for stabilizing the remaining moduli seems rather limited

compared to type II theories. This apparent problem can be overcome by departing from

Calabi-Yau compactifications and by considering the heterotic string on general manifolds

with SU(3) structure. Such models were analyzed in refs [24 – 30] where general aspects of

compactifications on non-Kähler manifolds were studied. Recently, a more general analysis

which takes into account the effects of a gaugino condensate in ten dimensions appeared

in ref. [31]. The generic form of the superpotential was inferred in [25 – 27], but its de-

tailed analysis was not possible due to the lack of knowledge of the moduli space of these

manifolds. On the other hand the low energy effective action and an explicit form for the

superpotential in terms of the low energy fields were found in ref. [32], where half-flat mirror

manifolds were used as compactification spaces. Such manifolds arise in the context of type

II mirror symmetry with NS fluxes [33] and, in some appropriate region, their moduli space

was conjectured to be similar to that of a normal Calabi–Yau manifold. This conjecture

has been applied in ref. [32] to derive the low-energy theory for these compactifications

and, in particular, the superpotential as an explicit function of the moduli fields. In par-

ticular, it was found that the intrinsic torsion of the half-flat mirror manifolds gives rise

to a superpotential for the Kähler moduli. These results suggest that, by combining the

intrinsic torsion of sufficiently general classes of SU(3) structure manifolds with NSNS flux,

moduli stabilisation in heterotic compactifications can be as flexible as in type II models.

This is precisely the line of work we would like to further develop in the present

paper. We will first study in detail supersymmetric moduli stabilisation in the heterotic

string on half-flat mirror manifolds, based on the effective theories of ref. [32]. As we

will see, the torsion of half-flat manifolds and the allowed H-fluxes are insufficient to fix

all Kähler and complex structure moduli. We therefore move on to the more general

class of manifolds with SU(3) structure described in refs [34 – 36], which we will refer to

as generalized half-flat manifolds. For this class of spaces we first show, by an explicit

reduction of the bosonic action, that the heterotic Gukov-Vafa-Witten type formula for

heterotic compactifications [32, 37, 38] leads to the correct result for the superpotential.

This result is then applied to a detailed analysis of moduli stabilisation for those models.

The flux and torsion superpotential, W, for all models considered in this paper is a

function of the Kähler moduli T i and complex structure moduli Za, but it turns out to be

independent of the dilaton S. Hence, the dilaton is not stabilised at this stage. However,
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in the E8 × E8 case, one expects hidden sector gaugino condensation to generate a non-

perturbative dilaton superpotential which should be added to W. We will, therefore, use

this non-perturbative contribution to stabilize the dilaton. It turns out that, in order

to fix S at sufficiently weak coupling (and to be in the large radius and large complex

structure limits) we need global minima for the Kähler and complex structure moduli

which correspond to superpotential values W0 with |W0| ¿ 1. This is quite analogous

to a similar requirement in type IIB models [2], where it is necessary to ensure moduli

stabilisation at large radius. The original models of heterotic gaugino condensation with

flux [20, 21] were discarded precisely because this condition was difficult to satisfy due

to the quantization of fluxes. However, we find that cancellations leading to small |W0|
are possible for our generalized models. We carry out a statistical analysis in those cases,

counting the number of vacua as a function of |W0| and the maximal flux value. As the

value of |W0| determines the value of the dilaton, this counting analysis is directly relevant

to the question of how many vacua realize a phenomenologically acceptable gauge coupling.

The outline of the paper is as follows. In section 2 we briefly review the low energy

effective theory of the heterotic string on half-flat mirror manifolds [32]. In addition, we

work out the generalization of this effective theory expected for the more general spaces

proposed in [34]. We will show explicitly that the potential obtained from compactifica-

tion (which includes a part from the non-vanishing scalar curvature of the internal space)

can be obtained from a Gukov-Vafa-Witten type superpotential for manifolds with SU(3)

structure, which was derived in [32]. In section 3 we set up our four-dimensional models

in a way suitable for the discussion of moduli stabilisation which includes gaugino conden-

sation and flux quantization. This section is largely self-contained and the reader mostly

interested in the four-dimensional aspects of our analysis may want to skip section 2 and

move on to section 3 straight away. Moduli stabilisation within models based on half-flat

mirror manifolds [32] is discussed in section 4. In section 5 we discuss the models based

on the more general half-flat spaces introduced in section 2. We conclude in section 6.

Various technical details are deferred to the three appendices. Appendix A contains a

calculation of the scalar curvature of the generalized half-flat spaces, which is essential in

establishing the consistency of the generalized models of section 2. In appendix B we have

collected a number of useful relations on special geometry, while appendix C summarizes

our four-dimensional N = 1 supergravity conventions. It also includes an elementary proof

that supersymmetric AdS vacua of this theory are always stable.

2. The heterotic string on half-flat manifolds

In this section we will review the compactification of the heterotic string on half-flat mirror

manifolds [32] and present an extension of this work to the spaces proposed in ref. [34 – 36].

2.1 The heterotic string on half-flat mirror manifolds

Half-flat mirror manifolds arise in the context of type II mirror symmetry [33] and can

be thought of as mirror duals to Calabi-Yau manifolds with NSNS flux. More specifically,

given a mirror pair (X,Y ) of Calabi-Yau manifolds, the mirror of, say, IIB on Y in the
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presence of NSNS flux is IIA on a half-flat mirror manifold X̂ (without flux). This half-flat

mirror manifold X̂ is closely related to the original Calabi-Yau mirror X in that it can

be characterized by the two Hodge numbers h(1,1) and h(2,1) of X and carries sets of two-

three- and four-forms analogous to the sets of harmonic forms on the Calabi-Yau space

X. Specifically, on X̂ we denote by (ωi) and (ω̃j) a basis for the two- and four-forms

respectively, where i, j, · · · = 1, . . . , h(1,1), which satisfy
∫

X̂
ωi ∧ ω̃j = δj

i . (2.1)

Further, on X̂ , one can define a set of symplectic three forms (αA, βB) where A,B, · · · =

0, . . . , h(2,1) with
∫

X
αA ∧ βB = δB

A ,

∫

X
αA ∧ αB =

∫

X
βA ∧ βB = 0 . (2.2)

Being manifolds with SU(3) structure [39], half-flat mirror manifolds carry a two-form J

and three-form Ω which are the analog of the Kähler form and the holomorphic (3, 0) form

on Calabi-Yau manifolds 1. As on Calabi-Yau manifolds these forms can be expanded as

J = tiωi , (2.3)

Ω = ZAαa − GAβA , (2.4)

where ti and ZA are the equivalent of Kähler and complex structure moduli. As usual, the

coefficient GA can be obtained from a holomorphic pre-potential G = G(ZA), homogeneous

of degree two, as

GA =
∂G

∂ZA
. (2.5)

So far, the set-up has been exactly as for Calabi-Yau manifolds. The main difference is

that the forms (ωi) and (αA, βA) are no longer harmonic but rather satisfy

dωi = eiβ
0 , dα0 = eiω̃

i , dαa = dβA = 0 , dω̃i = 0 . (2.6)

Here ei are h(1,1) parameters (real numbers) which characterize the torsion of the half-flat

mirror manifold under consideration.

Having described the basic structure of half-flat mirror manifolds, let us now review

the compactification of the heterotic string (at lowest order in α′) on those spaces. Besides

the metric, there are two other bosonic fields, namely the dilaton s = exp(−2φ) and the

NSNS two-form B̂. The latter can be expanded as

B̂ = B + τ iωi , (2.7)

where B is a four-dimensional two-form which can be dualised to a scalar σ and τ i is a

set of axions. Together with the dilaton and the Kähler moduli, these fields pair up into

four-dimensional chiral multiplets as

T i = τ i + iti , (2.8)

S = σ + is . (2.9)

1Although the manifolds discussed in this paper are generally neither complex nor Kähler, we will

frequently use Calabi-Yau terminology and, for example, refer to J as Kähler form.
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In terms of the projective coordinates ZA the complex structure chiral multiplets Za, where

a, b, · · · = 1, . . . , h(2,1), are obtained by Za = Za/Z0 and we write these fields as

Za = ζa + iza . (2.10)

The Kähler potential for those fields in the large radius limit is then of the standard

Calabi-Yau form, that is,

K = K(T ) + K(Z) + K(S) , (2.11)

with

K(T ) = − ln

(

4

3
K

)

,

K(Z) = − ln

(

4

3
K̃

)

, (2.12)

K(S) = − ln
(

i(S̄ − S)
)

,

and

K =
i

8
dijk(T

i − T̄ i)(T j − T̄ j)(T k − T̄ k) = dijkt
itjtk , (2.13)

K̃ =
3i

4

(

Z̄AGA −ZAḠA

)

. (2.14)

Here, dijk are numbers analogous to the intersection numbers of the associated Calabi-

Yau space X. Later, we will be working in the large complex structure limit, where the

pre-potential G can be written as

G = −1

6

d̃abcZaZbZc

Z0
, (2.15)

with d̃abc analogous to the intersection of the associated mirror Calabi-Yau space Y . In

this case, the complex structure Kähler potential takes a form similar to the one for the

Kähler moduli, that is

K̃ =
i

8
d̃abc(Z

a − Z̄a)(Zb − Z̄b)(Zc − Z̄c) = d̃abcz
azbzc . (2.16)

Let us now discuss the superpotential. In ref. [32] it has been shown that, for general

heterotic compactifications on manifolds with SU(3) structure, the superpotential to order

α′ can be obtained from the Gukov-Vafa-Witten type formula

W =
√

8

∫

X̂
Ω ∧ (Ĥ + idJ) , (2.17)

where Ĥ is the NSNS field strength. For half-flat mirror manifolds this field strength can

be written as

Ĥ = dB + dτ i ∧ ωi + τ ieiβ
0 + Hflux . (2.18)
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where the first three terms have been computed by taking the exterior derivative of eq. (2.7).

Note that the third term is new and arises because the forms ωi are no longer closed, see

eq. (2.6). We have also added on an additional NSNS flux contribution

Hflux = (µaαa − εaβ
a) , (2.19)

with electric and magnetic flux parameters εa and µa, respectively. If we arrange the α′

terms in the Ĥ Bianchi identity to cancel (for example by choosing the standard embedding)

if follows that dĤ = 0. For this reason we have dropped the term proportional to the non-

closed form α0 in eq. (2.19). We have also omitted a possible term proportional to β0

in (2.19) which can be absorbed into a re-definition of the axions τ i, as is evident from

eq. (2.18). Inserting the field strength (2.18), the (3, 0) form (2.4) and dJ = eit
iβ0 into the

general formula (2.17), one finds the superpotential

W =
√

8(eiT
i + εaZ

a − µaGa) , (2.20)

where the basic integrals (2.2) have been used. This result has been checked in ref. [32],

where the four-dimensional scalar potential was calculated from an explicit reduction of

the ten-dimensional bosonic action of the heterotic string. This scalar potential has three

contributions which arise from the third term in eq. (2.18) and the NSNS flux (2.19),

both inserted into the Ĥ kinetic term, and the non-vanishing scalar curvature of the half-

flat mirror manifolds. These three contributions lead to a potential which can be exactly

reproduced from the above superpotential, using the standard relations of four-dimensional

N = 1 supergravity (see appendix C for a summary of supergravity conventions). In the

following subsection we will generalize this calculation to a larger class of manifolds with

SU(3) structure.

2.2 Setup for the extended models

Having discussed the basic models obtained from the compactification on half-flat mirror

manifolds we can now study a generalisation of the half-flat spaces which was proposed in

ref. [34]. The same class of spaces appeared in [35, 36] and it was argued to be the correct

Ansatz for a consistent Kaluza-Klein truncation to four dimensions. Here we will use

the prescriptions given in the above references, and show that such a truncation is indeed

consistent with supersymmetry. In particular, we will show that the four-dimensional scalar

field potential derived from a compactification on those generalized spaces is consistent with

the Gukov-Vafa-Witten type formula (2.17) for the superpotential.

We start by reviewing the main features of this new class of manifolds with SU(3) struc-

ture which we will denote generalized half-flat manifolds. We will mostly follow refs. [34, 36].

As we have done for the half-flat mirror manifolds, the existence of two-forms (ωi), four-

forms (ω̃i) and three-forms (αA, βB) satisfying the basic integral relations (2.1) and (2.2)

is postulated. However, the crucial differential relations (2.6) are now generalized to

dωi = pAiβ
A − qA

i αA , dαA = pAiω̃
i , dβA = qA

i ω̃i , dω̃i = 0 , (2.21)

– 6 –
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with (real) torsion parameters pAi and qA
i . From d2wi = 0 one concludes that the additional

constraints

pAiq
A
j − qA

i pAj = 0 , (2.22)

have to be imposed, for a consistent definition of the exterior derivative. In what follows

the above defining relations are enough in order to derive the low energy action which

arises from compactification on these manifolds. In appendix A we will have more to say

about the geometry of these spaces and, in particular, about their torsion classes, which

differ from those of a half-flat manifold.

The expansion of the Kähler form, J , the (3, 0) form, Ω, and the NSNS two-form, B̂, in

terms of the basic forms remains unchanged and is given in eqs (2.3), (2.4) and (2.7). This

also means that we have the same set of moduli fields,2 namely the Kähler and complex

structure moduli T i and Za and the dilaton S. Whenever exterior derivatives are taken

we now have to work with the generalized relations (2.21). This means that the NSNS

three-form field strength associated to (2.7) is given by

Ĥ = dB + dτ i ∧ ωi + τi(pAiβ
A − qA

i αa) + Hflux , (2.23)

where, as before, we have added on the NSNS flux part

Hflux = µAαA − εAβA , (2.24)

with electric and magnetic flux parameters εA and µA. If the RHS of the heterotic Bianchi

identity

dĤ =
α′

4
(tr(F ∧ F ) − tr(R ∧ R)) , (2.25)

vanishes (for example, by choosing the standard embedding), then Ĥ needs to be closed

which implies the further constraints

µApAi − εAqA
i = 0 , (2.26)

between flux and torsion parameters. On the other hand, the RHS of eq. (2.25), although

necessarily exact, can be non-zero, so that the constraint (2.26) can be avoided by, for

example, more complicated choices of the gauge bundle. It is convenient to introduce the

following combinations

ε̃A = εA − T ipAi ,

µ̃A = µA − T iqA
i ,

(2.27)

of fluxes, torsion parameters and Kähler moduli in terms of which the NSNS field strength

can be expressed as

Ĥ = dB + dτ iωi + Re(µ̃A)αA − Re(ε̃A)βA . (2.28)

2Strictly speaking the fields we are talking about are no longer moduli as the potentials generated are not

flat in these directions. However we continue to call them moduli in order to stress that we are interested

in the fields which were the moduli of the related Calabi–Yau compactifications.
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For the exterior derivative of the Kähler form J one finds

dJ = tidωi = Im(µ̃A)αA − Im(ε̃A)βA , (2.29)

where the differential relations (2.21) and the definitions (2.27) have been used. These last

two results for Ĥ and dJ , together with the standard expansion for the (3, 0) form (2.4) and

the basic integrals (2.2), can be used to evaluate the formula (2.17) for the superpotential.

A simple calculation leads to

W =
√

8(ε̃AZA − µ̃AGA) . (2.30)

We will now verify this result by an explicit reduction of the ten-dimensional bosonic action.

2.3 Reduction for the generalized models

The starting point for the compactification is the lowest order in α′ of the bosonic part of

the ten-dimensional effective action of the heterotic string. This is given by

S0,bosonic = − 1

2κ2
10

∫

M10

e−2φ̂

[

R̂ ? 1− 4dφ̂ ∧ ?dφ̂ +
1

2
Ĥ ∧ ?Ĥ

]

. (2.31)

As the main assumption for compactifications on generalized half-flat manifolds is that the

light spectrum of normal Calabi–Yau (and also half-flat) compactifications is unchanged,

we will not be concerned with the derivation of the kinetic terms for the various fields

one obtains in four dimensions. They are exactly as discussed for the case of half-flat

mirror manifolds, see eqs (2.11)–(2.14). Instead we concentrate on the scalar potential. As

explained in the previous section, one contribution to the four-dimensional potential arises

from the Ĥ kinetic term with (2.28) inserted. A standard calculation [11, 40] leads to

e−KVH = −4e−K(Z)[

Re(ε̃A)−Re(µ̃C)MCA

](

ImM−1
)AB[

Re(ε̃A)−Re(µ̃C)M̄CA

]

. (2.32)

Here the matrix M is the period matrix (B.7) which, for the complex structure sector, is

also given by the relations (B.10).

The second contribution arises from the Einstein Hilbert term in (2.31) and is due to

the non-vanishing scalar curvature of the half-flat spaces. The calculation of this scalar

curvature, for the spaces characterized by the relations (2.21), is somewhat non-trivial and

has been carried out in appendix A. The result is

e−KVR = −4e−K(Z)[

Im(ε̃A) − Im(µ̃C)MCA

](

ImM−1
)AB[

Im(ε̃A) − Im(µ̃C)M̄CA

]

+8EiĒj(g
ij − 4titj) , (2.33)

where we have introduced the notation

Ei = pAiZ
A − qA

i GA . (2.34)

It is not hard to see that, provided the constraints (2.22) and (2.26) are satisfied, the total

potential takes the form

e−KV = −4e−K(Z)[

ε̃A−µ̃CMCA

](

ImM−1
)AB[

ε̃A − µ̃CMCA

]

+8EiĒj(g
ij−4titj) . (2.35)
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We now need to verify that this potential indeed originates from the superpotential (2.30)

via the standard supergravity formula (C.2). Since the index X in this formula runs over

all chiral fields which, in our case, consist of the dilaton S, the complex structure moduli

Za and the Kähler moduli T i, we will discuss each case separately.

First of all notice that, since the superpotential (2.30) does not depend on S, the

contribution of the dilaton-axion chiral superfield to the potential can be found from (2.12)

to be simply

e−KVS = |W |2. (2.36)

For the complex structure moduli we obtain

1√
8
DaW = (ε̃B − GBC µ̃C)DaZ

B , (2.37)

where we define GBC = ∂B∂CG. Using the relations (B.9) and (B.6) one immediately finds

gab̄DaWDb̄W̄ =−4e−K(Z)(

ImM−1
)AB (

ε̃A−µ̃CM̄CA

) (

ε̃B−µ̃DM̄DB

)

− 8|ε̃AZ̄A − µ̃AḠA|2 .

(2.38)

Note that the first term in the above equation is similar to the first term of (2.35), except

for the complex conjugations which do not work out quite right. However, it is just a matter

of algebra to show that these two terms are indeed identical provided that the constraints

(2.22) and (2.26) hold.

Also, the second term in (2.38) very much resembles the square of the superpotential,

but here the complex conjugations can not be exchanged so easily. In turn one obtains

gab̄DaWDb̄W̄ = −4e−K(Z)(

ImM−1
)AB(

ε̃A−µ̃CMCA

)(

ε̃B − µ̃DMDB

)

−|W |2+Y , (2.39)

where by Y we have denoted the combination

Y = −32titjEiĒj − 2
√

8iti(EiW̄ − ĒiW ) . (2.40)

Let us finally deal with the Kähler moduli contribution to the N = 1 potential. Using

formulae (B.15)–(B.19) on the Kähler moduli space we find

gijDiWDj̄W̄ = gij∂iW∂j̄W̄ + 3|W |2 + 2iti(W∂īW̄ − W̄∂iW ) . (2.41)

To this end it is useful to make the dependence of the superpotential (2.30) on the Kähler

moduli explicit by writing

W =
√

8(−EiT
i + εAZA − µAGA) , (2.42)

where Ei were defined in (2.34). Hence we have

∂iW = −
√

8Ei . (2.43)

With this we see that the last terms in eqs (2.41) and (2.40) cancel identically. Moreover,

the |W |2 terms from equations (2.36), (2.39) and (2.41) cancel against the −3|W |2 in

equation (C.2) while the remaining terms precisely combine into (2.35). This concludes
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our derivation of the potential (2.35) from the superpotential (2.30), and establishes a

strong argument for the consistency of the compactifications on the manifolds presented in

section 2.2, which were introduced in refs. [34 – 36].

We conclude this section by comparing the superpotential (2.30) which we have just

derived with the one obtained in type IIB compactifications. There, the fluxes are “com-

plexified” in a way that involves the IIB complex coupling. In our case, the flux parameters

are “complexified” to ε̃ and µ̃ in eq. (2.27) due to their dependence on the Kähler moduli.

Apart from this “exchange” of Kähler moduli and dilaton, the resemblance between the

two superpotentials is quite striking. This confirms our expectation that heterotic theories

can be as flexible with regard to moduli stabilisation as type II theories when non-trivial

torsion is included.

3. General structure of low-energy theories

So far we have concentrated on how four-dimensional models arise from compactifications

of the underlying ten-dimensional theory. In the remainder of the paper we will analyze

the implications of these four-dimensional models for moduli stabilisation, and the purpose

of this section is to set up all the necessary ingredients, in a way that is convenient for this

analysis.

3.1 The models

From now on, we will adopt the “phenomenological” definition of the chiral superfields

in terms of its components, where the real parts are the “geometrical” moduli and the

imaginary parts the axions. With respect to our previous convention, this corresponds to

the simple transformation φX → −iφX (together with a sign flip of the axions) on all fields.

Explicitly, this means we are replacing the field definitions (2.8), (2.9) and (2.10) by

S = s + iσ , (3.1)

T i = ti + iτ i , (3.2)

Za = za + iζa . (3.3)

While our general calculation for the four-dimensional effective theory was valid for all

values of the complex structure moduli we will, in the following, focus on the large complex

structure limit. This means that, from eqs (2.11)–(2.16) together with the above field re-

definition, the Kähler potential is given by 3

K = − ln(S + S̄) − ln(8K) − ln(8K̃) , (3.4)

with

K =
1

8
dijk(T

i + T̄ i)(T j + T̄ j)(T k + T̄ k) = dijkt
itjtk , (3.5)

K̃ =
1

8
d̃abc(Z

a + Z̄a)(Zb + Z̄b)(Zc + Z̄c) = d̃abcz
azbzc . (3.6)

3Several numerical factors from (2.11) to (2.16) were absorbed into the superpotential and the definition

of the flux parameters in order to make the calculations in the following sections more straightforward.
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Recall that dijk and d̃abc correspond to the intersection numbers of the associated Calabi-

Yau space and its mirror, respectively. Both the Kähler and complex structure parts of the

Kähler potential are given in terms of special geometry pre-potentials which, due to large

radius and complex structure, are determined by cubic polynomials. The cubic nature of

the pre-potentials means both moduli spaces constitute examples of very special geometry.

Some useful relations for very special geometry, which we will apply subsequently, are

collected in appendix B.

Let us now turn to the superpotential. Inserting the derivatives (2.5) of the large-

complex structure pre-potential (2.15) into eq (2.30), along with the definitions (2.27) of

the complex flux parameters, the explicit form of the superpotential W turns out to be

W = −i(ε0 − iT ip0i) + (εa − iT ipai)Z
a +

i

2
(µa − iT iqa

i )d̃abcZ
bZc

+
1

6
(µ0 − iT iq0

i )d̃abcZ
aZbZc . (3.7)

As we have pointed out in section 2.2, the parameters in this superpotential are not inde-

pendent but satisfy

pAiq
A
j − qA

i pAj = 0 , (3.8)

εAqA
i − µApAi = 0 . (3.9)

Note that the first of these constraints follows from the property d2 = 0 of the exterior

derivative and is, therefore, strictly necessary. The second one is a consequence of dĤ = 0,

which is the correct form of the heterotic Bianchi identity if the α′ corrections on the RHS of

eq. (2.25) cancel by themselves, for example, by choosing the standard embedding. However

this need not be the case, so that this second constraint can be avoided.4 In this paper, we

will study both cases with and without the second constraint. Finally, note that half-flat

mirror manifolds correspond to the special case where we set ε0 = pai = qa
i = µ0 = q0

i = 0

and p0i = −ei in the superpotential (3.7). This leads to

W = eiT
i + εaZ

a +
i

2
d̃abcµ

aZbZc , (3.10)

which is the large complex structure limit of eq. (2.20), as it should.

The above Kähler potential and superpotential feed into the general formula for the

four-dimensional N = 1 supergravity potential and we have summarized the relevant con-

ventions in appendix C. In this paper, we will only be concerned with supersymmetric

vacua of these potentials, that is, solutions to the F-equations. Generically, such solutions

have a negative cosmological constant (C.5) and so they lead to four-dimensional AdS

vacua. It is known [41] that such vacua are always stable and appendix C also contains an

elementary proof of this fact.

4Since the calculation in section 2.3 relies on equation (3.9) we may argue that this constraint cannot be

relaxed. However, if we were to incorporate consistently all the terms which appear at order α′, we would

expect to find the same superpotential as before. In fact, this is precisely what the Gukov-Vafa-Witten

formula (2.17) evaluated for a field strength H which includes the α′ corrections predicts.

– 11 –



J
H
E
P
0
3
(
2
0
0
6
)
0
0
5

3.2 Gaugino condensation

As the dilaton does not appear in the superpotential W, eq. (3.7), the potential will usually

be runaway in this direction. Hence, if we want to have any chance of stabilizing all

moduli, we should consider additional contributions. As has been shown in ref. [32], the

gauge kinetic function f of the four-dimensional gauge group SO(10) ⊗ E8 for heterotic

compactifications on half-flat mirror manifolds is given by

f = S , (3.11)

to leading order. Clearly this result extends to the generalized half-flat manifolds discussed

in the previous section and more general gauge bundles. Hence, hidden-sector gaugino

condensation [20] leads to an additional dilaton-dependent superpotential term which is

precisely what we need. We will, therefore consider the superpotential

W = W + ke−cS , (3.12)

with W as given in eq. (3.7). Here k and c are constants, the latter being determined by

the one-loop beta function of the gauge group. To make this more precise, we normalize

the real part of the dilaton, s, such that

s =
1

αYM
=

4π

g2
YM

, (3.13)

where gYM is the Yang-Mills coupling constant. In terms of the one-loop beta function

coefficient b, the constant c can then be written as c = 6π/b. For gauge group E8, one

finds b = 90 and, hence,

c =
π

15
. (3.14)

The pre-factor k is hard to fix precisely not least because corrections due to the two-loop

beta-function will lead to an S-dependent pre-factor of the exponent in W , which we neglect

in the present context. We will simply parameterize k as

k =
k̃√
α′

, (3.15)

where α′ is the string tension and k̃ is a dimensionless constant which one expects to be of

order one.

3.3 Quantization of flux and torsion

We would now like to be somewhat more specific about the quantization of flux and torsion

parameters in the superpotential. For the genuine fluxes this is easy to achieve [21] by

imposing that H is an element in the integral cohomology (modulo normalization factors).

It is less straightforward to see how the torsion parameters of the internal manifold should

be quantized. For the half-flat mirror manifolds, this will be done via the mirror symmetry

relation which was used in order to establish the existence of such spaces in the first place.

Unfortunately, such a correspondence is not known for the more general manifolds described

– 12 –



J
H
E
P
0
3
(
2
0
0
6
)
0
0
5

in section 2.2, so we will have to make a plausible assumption about quantization for these

spaces, generalizing from the results obtained for half-flat mirror manifolds.

Before we can find the quantization rules for the flux parameters we should fix the

normalization of our moduli fields. We recall that the above models have been derived

and are valid in the large radius and large complex structure limit. Hence, we adopt a

normalization of fields where these limits correspond to field values

ti > 1 , za > 1 . (3.16)

What does this convention imply for the underlying internal geometry? Recall that the

dimensionless Kähler moduli fields measure the volume of the various Calabi-Yau two-cycles

Ci
2 in units of some (six-dimensional) reference volume v. More precisely, we have

ti =
1

v1/3

∫

Ci
2

J , (3.17)

where J is the Calabi-Yau Kähler form. In order to assure that ti > 1 indeed corresponds

to the limit in which the “radius” of these cycles is bigger than one in string units, one has

to fix this reference volume to be5

v = (4π2α′)3 . (3.18)

In order to fix the normalization of the complex structure moduli in a similar way, it

is useful to consider the mirror picture. The fields za measure the size of two-cycles on

the mirror and large radii for these two-cycles corresponds to large complex structure in

the original model. The volume of these mirror two-cycles should be measured in units of

the same reference volume (3.18), in order for the two four-dimensional effective theories

from the original model and its mirror to be identical (and the mirror map being trivial

on the four-dimensional fields). With this convention, it is then clear that za > 1 indeed

corresponds to the large complex structure limit.

We are now ready to discuss the quantization of the flux parameters which appear in

the superpotential (2.20). The basic quantization condition for the NSNS three-form field

strength H is given by [21]
∫

C3

H = 4π2α′ · l , (3.19)

where l is an integer and C3 represents any three-cycle in the integer homology. Fol-

lowing the explicit calculation of the four-dimensional potential by dimensional reduction

in ref. [32], it is easy to see that this quantization rule, together with the scale conven-

tion (3.18), implies that

εa =
6
√

2

π
√

α′
ε̃a , (3.20)

µa =
6
√

2

π
√

α′
µ̃a , (3.21)

5Of course, there is always an ambiguity of factors of 2π in this calculation which cannot be easily fixed.

To arrive at the result (3.18), we have used two-tori which should lead to a conservative bound on ti.
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where ε̃a and µ̃a are integers. Note that the counterintuitive numerical factors include

the redefinitions of the flux parameters, which were needed in order to rewrite the Kähler

potential and superpotential in the simpler form of (3.4) to (3.7). In order to fix the quan-

tization of the electric torsion parameters, ei, we should again consider mirror symmetry.

On the mirror, these electric torsion parameters become electric flux parameters of the

NSNS form. Given that our basic choice of unit is given by v in eq. (3.18), both on the

original space and on the mirror, the parameters ei are quantized in precisely the same

way as εa and µa, that is,

ei =
6
√

2

π
√

α′
ẽi , (3.22)

where ẽi are integers.

Finally let us comment on the other parameters which will appear in our discussion and

that we did not discuss here. Given the above conventions all the flux/torsion parameters

are quantized in terms of the same unit, and we shall assume the same for the flux 6 and

torsion parameters of the more general models considered in section 2.2. This is far from

being a rigorous treatment, but the most natural and straightforward assumption one can

make in the absence of detailed knowledge about these manifolds.

4. Vacua of the basic models

In this section we study moduli stabilisation for the four-dimensional model based on half-

flat mirror manifolds, as introduced in section 2.1. For clarity we start with a simplified

version where we consider only one size modulus, T , and one shape modulus, Z, together

with the axio-dilaton, S. Later on in this section we will generalize our discussion to

arbitrary numbers of T and Z moduli. Throughout, we will focus on supersymmetric

solutions of the above systems.

4.1 The STZ model

For the simple three-field model with one Kähler modulus T = t+iτ , one complex structure

modulus Z = z + iζ and the dilaton S = s+ iσ, the Kähler potential (3.4)–(3.6) specializes

to

K = − ln (S + S̄) − 3 ln (T + T̄ ) − 3 ln (Z + Z̄) , (4.1)

where we have set d111 = d̃111 = 1. The flux/torsion superpotential (3.10) now simply

reads

W = eT + εZ +
iµ

2
Z2 , (4.2)

and, including the gaugino condensate term, we have

W = W + ke−cS . (4.3)

6The quantization of flux parameters in the generalized half-flat models can be discussed in more detail

by studying their third cohomology and homology. It is likely to be more subtle than assumed in this paper.

– 14 –



J
H
E
P
0
3
(
2
0
0
6
)
0
0
5

The F-equations for this model become

FT = e − 3

2t
W = 0 , (4.4)

FZ = ε + iµZ − 3

2z
W = 0 , (4.5)

FS = −kce−cS − 1

2s
W = 0 . (4.6)

The solution to (4.4) implies that

W =
2e

3
t , (4.7)

which is a real quantity. Inserting this into (4.5) we find

εz = et ,

µz = 0 .
(4.8)

Recall that our model is valid only in the regime of large volume and complex structure

and, in particular, we have t, z 6= 0. Therefore, the second of equations (4.8) implies the

vanishing of the magnetic flux term, that is µ = 0. Let us absorb the constant c in the

gaugino condensate potential by defining the quantities

x = cs , y = cσ . (4.9)

Then, using (4.7), eq. (4.6) can be written as

−2kxe−x cos y =
2et

3
,

2kxe−x sin y = 0 .
(4.10)

The value x = 0 is unacceptable, as it would correspond to the strong (gauge) coupling

limit. Consequently we have to impose sin y = 0 which fixes y to y = nπ for some

integer n.7 Finally, calculating directly the real and imaginary parts of W in eq. (4.3) by

inserting (4.8), y = nπ and µ = 0, we can evaluate the constraint (4.7). Combining all

results we find the most general supersymmetric solution of our model to be

eτ = −εζ ,

et = εz = (−1)n+1 3k

4
e−1/4 ,

x =
1

4
, (4.11)

y = nπ .

Let us discuss this result. These equations fix t, z, s and σ, and the same holds for

eτ + εζ, while the orthogonal combination remains a flat direction. It is clear from the

7Note that had we taken no gaugino condensate, that is k = 0, the above system admits a solution only

if e = ε = µ = 0. This is the limit of compactifying on a normal Calabi–Yau manifold with no fluxes turned

on and it is in agreement with the result derived in ref. [42] that the internal manifold has to be complex

in order to obtain supersymmetric solutions.
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above expressions that, in order to be in the large radius and complex structure limits,

the torsion and flux parameters e and ε should be sufficiently small. However, as those

parameters are quantized, the best we can do is to stick to their minimal, non-vanishing,

values which corresponds to |ẽ| = |ε̃| = 1 in equations (3.20). Even for this choice, we need

a value of k̃ bigger than 5 to arrive at t > 1 and z > 1. In other words, it is difficult to

stabilize fields in the large radius and large complex structure region and, only by going

to the limit of what one would consider reasonable parameter choices, can marginally

consistent solutions be obtained.

There is a similar problem with the gauge coupling since x is fixed at a relatively

small value for the above solutions. Even using the relatively large E8 beta-functions

coefficient (3.14) we find for the inverse gauge coupling

s = x/c =
15

4π
∼ 1.19 , (4.12)

which is barely in the weak coupling limit.

4.2 The general case

Let us now briefly discuss the general case, where h(1,1) and h(2,1) are arbitrary integers.

With the Kähler potential as in eqs (3.4)–(3.6) and the superpotential (3.12), (3.10), we

derive the following F-equations

FT i = ei + KiW = 0 , (4.13)

FZa = εa + iµbdabcZ
c + KaW = 0 , (4.14)

FS = −kce−cS − 1

2s
W = 0 , (4.15)

with Ki and Ka given by

Ki = − 3

2Kdijkt
jtk , Ka = − 3

2K̃
dabcz

bzc . (4.16)

Note that Ki and Ka and, hence, W are real with the latter given by

W =
2eit

i

3
. (4.17)

As a consequence, taking the imaginary part of eq. (4.14) gives

dabcz
bµc = 0 . (4.18)

The matrix Kab = dabcz
c is non-singular for a physical point za in moduli space (as other-

wise the Kähler metric Kab would be singular at this point), so all magnetic fluxes must

vanish in order to have a supersymmetric solution. Equation (4.15) reproduces similar

results to the case with only one T and one Z, namely y is constrained to take the values

y = nπ with n integer, while x must obey

(−1)n+12kxe−x =
2eit

i

3
. (4.19)
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As before, we can compute the value of the superpotential directly by inserting µa = 0,

y = nπ and eq. (4.14) into eq. (3.10). On the other hand, we know from eq. (4.17) that

the imaginary part of W must vanish which leads to the constraint

eiτ
i + εaζ

a = 0 . (4.20)

This will be the only relation involving the axions, so we can only fix one of them while

we are left with h(1,1) + h(2,1) − 1 flat axion directions. Matching the real part of W with

eq. (4.17) fixes the value of the dilaton to

x =
1

4
, (4.21)

while the ti and za moduli obey

ei = (−)n+1 3k

4
e−1/4 dijkt

jtk

K , εa = (−)n+1 3k

4
e−1/4 d̃abcz

bzc

K̃
. (4.22)

It appears that generic analytic solutions to these last equations for ti and za cannot be

written down but, of course, solutions can be obtained, either analytically in simple cases or

numerically, once explicit sets of intersection numbers dijk and d̃abc have been fixed in the

context of a particular model. We will not carry this out explicitly, as we have already seen

that there exist flat axion directions and that the value of the dilaton is unchanged from

the simple three-field case, so that weak gauge coupling is difficult to achieve. However,

it is clear that solutions to eqs (4.22) will be of the form ti ∼ k/(flux or torsion) (and

similarly for za) so that flux/torsion quantization makes it hard to obtain vacua in the

large radius and large complex structure limits. In summary, we have seen that the general

model shows all the major problems that we have already found in the simple three-field

case.

Let us consider if there are any alternative ways around the above problems. Clearly,

some of the difficulties arise because the supersymmetry condition forces us to set the

magnetic fluxes µa to zero. This problem may not arise for non-supersymmetric vacua.

However, we note that the scalar potential only depends on the combination eiτ
i of the

axions τ i (since this is true for the superpotential and the Kähler potential is axion in-

dependent). Hence, even for non-supersymmetric vacua we will have at least h1,1 − 1 flat

directions. A possible way forward could then be to study non-supersymmetric solutions

for models with only one T modulus, that is, h1,1 = 1. We will not do this in the present

paper, as we focus on supersymmetric vacua, but we simply note that, for models with

h1,1 = 1, there is still a chance for consistent (non-supersymmetric) vacua with all moduli

fixed.

Another possibility is to modify the superpotential (3.10) to

W = eiT
i +

i

2
dijkm

iT jT k + εaZ
a +

i

2
d̃abcµ

aZbZc , (4.23)

that is, by including magnetic torsion terms with torsion parameters mi. Although this is a

suggestive extension of the basic model, with a superpotential perfectly symmetric between

the Kähler and complex structure moduli parts, we do not currently know of a convincing
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derivation of such a model in the context of the heterotic string. Given this situation, we

will only give a very brief summary of the results for moduli stabilisation we have obtained

for such models. We find that there exist supersymmetric vacua with all moduli stabilised

and values of the dilaton x in the range x ∈ [0, 1]. For suitable choices of parameters x ' 1

can be achieved and, with the E8 beta-function coefficient (3.14), this implies an inverse

gauge coupling of at most s ' 4.8. This is in the weak coupling region, although still well

away from the “phenomenological” value s ' 24. The values of ti and za are proportional

to the magnetic torsion/flux parameters, that is, ti ∼ mi and za ∼ µa, but the constant

of proportionality in these relations is such that large radius and large complex structure

can barely be achieved by minimal flux/torsion parameters and a value of k at the upper

end of the reasonable range. In summary, adding a magnetic torsion term can solve two of

the three problems of the basic model, namely fix all moduli and generate weak coupling

(although perhaps not to the desired extent), but achieving large radius and large complex

structure remains problematic.

Why is it so difficult to generate sufficiently large values of ti and za? In all ex-

amples the values of these fields were basically determined by an expression of the form

k/(flux or torsion). The lower bound on the flux/torsion parameters due to quantiza-

tion, combined with the fact that k is expected to be not too large in α′ units, rules out

large field values. The proportionality of the field values to the constant k in the gaug-

ino condensate potential can be traced back to the fact that the flux/torsion part W of

the superpotential does not have non-trivial globally supersymmetric solutions by itself.

For example, from the superpotential (3.10) for the basic model we have WT i = ei which

has no solution unless the torsion parameters ei vanish. On the other hand, if W had

globally supersymmetric solutions, the values of ti and za at this global level would be

determined by fluxes and torsion parameters only. Provided the locally supersymmetric

solution can be obtained as a perturbation of the global one this would essentially de-

couple the values of ti and za from k and potentially solve our problem. To understand

the local solution as a perturbation of the global one, the value W0 of the superpotential

taken at the global solution should be small. A small |W0| also facilitates weak coupling

as should be intuitively clear from the structure of the superpotential (3.12). We will ex-

plain those statements in more detail in the following section, where we analyze the models

based on generalized half-flat spaces. As we will see, for those models W has, in general,

global supersymmetric solutions and, under certain conditions, |W0| can indeed be made

small.

5. Generalized half-flat models

In this section, we will analyze moduli stabilisation for the generalized half-flat models

introduced in section 2.2. They are significantly more complicated than the basic models

of the previous section as they involve more flux/torsion parameters per field. It will

therefore be harder to find simple analytic solutions and we will have to use approximations

and numerical methods. Also, the main part of our discussion will be within the simplest

three-field STZ model, where h(1,1) = h(2,1) = 1. This model already contains eight flux
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and torsion parameters. However, our main results should carry over to the general case,

which we will discuss at the end of the section.

5.1 Relation between locally and globally supersymmetric solutions

Before we launch into the analysis of the STZ model, we would like to understand the

relation between globally and locally supersymmetric solutions of our models in general.

This will also provide us with a practical way of finding supersymmetric vacua. We start

with a superpotential of the form

W = W + ke−cS , (5.1)

where W = W(T i, Za) is independent of the dilaton and stands for the flux/torsion part

of W . For the purpose of the present discussion we can keep W arbitrary but, of course,

we have in mind the concrete form (3.7). Let us assume that T i = T i
0 and Za = Za

0 is

a globally supersymmetric minimum, that is, it satisfies ∂iW(T0, Z0) = ∂aW(T0, Z0) = 0,

and let W0 be the value of the superpotential at this minimum

W0 = W(T0, Z0) . (5.2)

Further, let M0 be the typical moduli mass at this minimum, computed at the global level

from the second derivative of W and let us assume that |W0/M0| ¿ 1. It is not hard to

see that this condition is sufficient to ensure that the F-equations, Fi = 0 and Fa = 0, are

approximately satisfied by the global solutions T i
0 and Za

0 , up to small corrections

δT i ' δZa ' W0

M0
. (5.3)

Note that, in the above analysis, we have used the fact that we are working in the large

radius and large complex structure limits, that is, the moduli fields ti and za are bigger

than one. Values much larger than one for these fields will make the approximation even

better. For smaller field values (for example near conifold points) the above argument

would have to be refined.

The specific flux/torsion superpotentials and their derivatives will generically be of

order one or larger due to the quantization of flux and torsion parameters. To satisfy the

above condition it will, therefore, be sufficient to have |W0| ¿ 1 in α′ units.

Let us turn now to the dilaton F-equation

FS = ∂SW + KSW = 0 . (5.4)

Expanding W around the global solution and using (5.3), the leading contribution to the

above equation will come from

FS ' −cke−cS − 1

2s

(

W0 + ke−cS
)

= 0 , (5.5)

which then yields the solution

(2x + 1)e−x =

∣

∣

∣

∣

W0

k

∣

∣

∣

∣

,

y = −arg

(

−W0

k

)

,

(5.6)
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for the rescaled dilaton

x = cs , y = cσ . (5.7)

It is this class of supersymmetric solutions which we will be looking for in our generalized

models. For such vacua the values of T i and Za are determined at the global level, thereby

potentially circumventing the problems of achieving large radius and large complex struc-

ture encountered in the previous section. Furthermore, it is clear from eq. (5.6) that a

small value |W0| facilitates a large value of the dilaton x and, hence, weak coupling.

Note that this procedure is slightly different to the one outlined in refs [9, 10], where

the issue of integrating out heavy fields in SUSY theories was addressed and applied to

the KKLT [2] scenario. Whereas in most papers the F-equations are used to integrate out

heavy moduli we, as indicated above, start with a globally supersymmetric solution and,

by making |W0| small, ensure that an approximate solution to the full F-equations exists.

In fact, we have numerically checked our procedure and verified that a solutions of the full

F-equations indeed exist close to the globally supersymmetric ones, provided |W0| is small.

An explicit example will be presented in the next subsection.

5.2 The STZ model

In this subsection, we discuss the three-field model with a single Kähler modulus T , a

single complex structure modulus Z and the dilaton S. From eqs (3.4)–(3.6) the Kähler

potential reads

K = − ln (S + S̄) − 3 ln (T + T̄ ) − 3 ln (Z + Z̄) . (5.8)

The general flux/torsion superpotential (3.7) becomes

W = i(ξ + ieT ) + (ε + ipT )Z +
i

2
(µ + iqT )Z2 +

1

6
(ρ + irT )Z3 , (5.9)

where we have chosen the signs of the flux parameters ξ, ε, µ and ρ and the torsion

parameters e, p, q and r for convenience. We recall those parameters are subject to a

number of constraints (3.8) and (3.9). However, the first set of these constraints (3.8) is

trivially satisfied for h(1,1) = 1 while the second set reduces to the single condition

ξr − εq + µp − ρe = 0 . (5.10)

We remind the reader that this constraint originates from the relation dĤ = 0, which

is a consequence of the Bianchi identity (2.25) if the order α′ terms on the RHS cancel.

This happens, for example, if the standard embedding is chosen, that is, if the gauge

connection is set equal to the spin connection. On the other hand, for more general gauge

bundles the constraint can be avoided. We will discuss both cases, with and without the

constraint (5.10). As usual, we take the full superpotential to be

W = W + ke−cS , (5.11)

with W as in eq. (5.9).
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Following the procedure outlined at the beginning of the section, we will start by

searching for global supersymmetric vacua of W. These can be found from

WT = − e + ipZ − q

2
Z2 + i

r

6
Z3 = 0 ,

WZ =ε + ipT + (iµ − qT )Z +
1

2
(ρ + irT )Z2 = 0 .

(5.12)

For r 6= 0, the first of these equations is a cubic in Z which can be explicitly solved using

Cardano’s formula. One finds that for each choice of the flux/torsion parameters there is

exactly one solution with z > 0 if and only if the discriminant of the cubic is positive. The

second equation can then be solved for T in terms of Z.

For r = 0 the solutions to the previous equations take the simple form

z2 = −2e

q
− p2

q2
,

ζ =
p

q
, (5.13)

tz =
ε

q
− µp

q2
− ρe

q2
− ρp2

q3
,

τ =
µ

q
+

ρp

q2
.

For a given set of parameters we can now compute W0 and check whether it is much

smaller than one. However, the size of the flux parameter space is such that it is virtually

impossible to carry out an analytic search of favoured regions. Therefore we resort to a

numerical scan, varying the flux/torsion values (which are integers) in a certain range from

−M, . . . ,M .

We have found the corresponding vacuum solution for each set of parameters, keeping

only those vacua in the large radius and large complex structure limits, that is, with t > 1

and z > 1. We first carried out this procedure imposing the constraint (5.10). For the

case r 6= 0 we find, for flux/torsion parameters in the range −20, . . . , 20, that |W0| > 0.8

always. A similar lower bound in |W0| is found for r = 0 where we have searched in

the range −70, . . . , 70. Furthermore, the lower bound for |W0| is reached for relatively

small values for the flux/torsion parameters and |W0| does not decrease any further as the

parameters range is increased. We take these results as strong evidence that small values

of |W0| cannot be obtained within this model and, hence, that it will be difficult to achieve

weak coupling.

Next, we have repeated the above procedure but without imposing the constraint (5.10)

focusing, for simplicity, on the case r = 0. The results are surprisingly different from the

ones obtained when the constraint is imposed. In particular, we find that vacua with small

values of |W0| can be found without any problem once the constraint is dropped. A useful

way of summarizing the result is to introduce the quantity N = N(M,w), defined as the

number of vacua (with t > 1 and z > 1) found in the range −M, . . . ,M of flux/torsion

parameters, with associated superpotential values W0 satisfying |W0| < w. Numerically,

we find that N is well-described by the scaling law

N(M,w) = N0M
xwy , (5.14)
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Figure 1: Total number of vacua, N , as a function of the range of flux/torsion parameters, M

(in logarithmic units).

where N0, x and y are real constants. From a numerical search of all flux/torsion parameters

with M = 10, 20, . . . , 70 we find that

N0 ' 0.17 , x ' 5.0 , y ' 2.1 . (5.15)

This can be easily seen from the following two figures. In figure 1 we have plotted the

total number of solutions with |W0| < 1 (i.e. taking w = 1 in equation (5.14)) for M =

10, 20, . . . , 70. In figure 2 we have presented the result for N(70, w), the number of vacua in

the flux/torsion range from −70, . . . , 70, as a function of the superpotential value, |W |. The

numerical value of x can be easily understood intuitively. Although we consider a model

with seven parameters, the requirement of small Re(W0) and small Im(W0) effectively fixes

two of these parameters, leading to a scaling law with power 5. We also remark that the

value of y close to y = 2 corresponds to a nearly uniform random distribution of W0 values

in the complex W0 plane.8

As can be seen from figure 2, |W0| values of 0.01 and smaller can be obtained. Our

result gives an indication of what fraction of vacua leads to a gauge coupling of s ' 24

as suggested by gauge unification in the MSSM. Assuming the E8 beta-function coeffi-

cient (3.14) such a value for s translates into x ' 5 which, from eq. (5.6) (setting k = 1

for simplicity) implies |W0| ' 1/14 (or, equivalently, log|W0| ' −1.15). This means ap-

proximately a fraction of 10−3 of all vacua with |W0| < 1 lead a gauge coupling sufficiently

weak to be compatible with gauge unification. For a condensing gauge group smaller than

E8 or a value of k smaller than one this fraction will decrease accordingly.

8We thank Nuno Antunes for pointing this out to us.
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Figure 2: Number of vacua N with |W0| < w as a function of w (in logarithmic units), for

flux/torsion parameters in the range −70, . . . , 70.

We have also checked the case r 6= 0 without the constraint (5.10) and the results are

similar to the one obtained for r = 0.

Finally we would like to show a numerical proof of the validity of our procedure (i.e.

the use of the global SUSY condition Wi(T0, Z0) = Wa(T0, Z0) = 0 with |W0/M0| ¿ 1 in

order to find an approximate solution for the T and Z fields). We have chosen, within this

r = 0 case, values for the flux/torsion parameters as follows

e = −7 , ε = −4 , µ = 2 , ρ = 5 , p = 1 , q = 2 , ξ = −13 , (5.16)

for which eqs. (5.13) give the field values

z0 = 2.598 ,

t0 = 2.165 ,

ζ0 = 0.500 , (5.17)

τ0 = 2.250 ,

with |W0| = 0.167. As it is illustrated in figure 3, these values are very close to the actual

solution to the F-equations, given by

z0 = 2.598 ,

t0 = 2.164 ,

ζ0 = 0.520 , (5.18)

τ0 = 2.300 .
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Figure 3: Contour plot of the potential, on the (t, z) plane, for the example shown in the text,

eq. (5.16). The solid (dashed) lines are the Re(FT ) = Re(FZ) = 0 (Re(WT ) = Re(WZ ) = 0) local

(global) SUSY conditions. Note that the lines Re(WT ) = 0 and Re(FT ) = 0 coincide.

Using the beta-function coefficient (3.14) and k = 2, the values for the dilaton field are

found to be
s =23.190 ,

σ =22.399 ,
(5.19)

which proves that phenomenologically viable values for the gauge coupling can be obtained

for reasonable values of the flux parameters. We should add that we have computed

the Hessian matrix for this example and we have explicitly checked that all eigenvalues are

positive at the point where the F-equations vanish. This is quite important as the potential

at the minimum is negative, actually given by V = −3eK |W0|2, and very small, of the order

of 10−7. This means that, in a small region around the true minimum, the potential will

shift from negative to positive values and, this being a multi-variable potential, it is easy

to get mistaken about the real position of the minimum. For example, if we were to use the

global supersymmetric solution given by (5.17), due to its closeness to the real one, (5.18),

the no-scale cancellation mechanism would take place and the scalar potential would read,

at this point, V = +3eK |W0|2. That is, we would predict a dS vacuum (of order 10−7)

were, in reality, the only minimum in that region is AdS.

Before we conclude this section we would like to make a few comments about the general

case, with an arbitrary numbers of moduli fields. As it is evident from (2.30) and (2.27),

the number of parameters grows rapidly with the number of fields, making a numerical

search for vacua infeasible. We have, therefore, not attempted to extend the numerical

analysis beyond the three-field STZ model. However, the experience with this model shows

that dropping the constraint (3.9) is crucial in order to obtain small values of |W0| and we

expect this to be true in general. Conversely, multi-field models without the constraint (3.9)
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should be at least as flexible as their three-field counterpart and should, therefore, allow

small |W0| values without problems. From our general argument relating globally and

locally supersymmetric vacua, this should then allow consistent, locally supersymmetric

vacua at weak coupling as determined by eq. (5.6). As for the scaling law (5.14), in the

general case one would expect scaling powers x ' n − 2, where n is the total number of

parameters in the model and y ' 2, leading to the same uniform random distribution in

the W plane which we have observed in the STZ model.

6. Conclusion

In this paper we have analyzed the vacuum properties of various classes of heterotic models

on certain manifolds with SU(3) structure. After a review of the heterotic string on half-

flat mirror manifolds [32], defined by (2.20), we have derived the superpotential for a more

general class of manifolds with SU(3) structure which were introduced in refs [34 – 36].

We have explicitly verified in these models that the application of the heterotic Gukov-

Vafa-Witten type formula for the superpotential leads to the same result as an explicit

reduction of the ten-dimensional bosonic terms. The resulting superpotential, which is

given in eqs (2.30), (2.27), resembles very much the one obtained in type IIB orientifold

compactifications suggesting that one may recover the flexibility of type II models in the

heterotic case. These flux/torsion superpotentials depend on h(1,1) Kähler moduli T i as

well as on h(2,1) complex structure moduli Za, but are independent of the dilaton S. We

have, therefore, supplemented our superpotential with a contribution from hidden sector

gaugino condensation in order to stabilize the dilaton, which is again similar to the type

IIB constructions where non-perturbative terms need to be added in order to fix the Kähler

moduli.

We have first analyzed moduli stabilisation for the models based on half-flat mirror

manifolds and have found a number of problems. Generally in those models, h(1,1) +

h(2,1) − 1 axion directions remain flat, and it is hard to achieve the large radius and

large complex structure limits as well as weak gauge coupling. In models with additional

magnetic torsion terms, the flat axion directions are lifted and moderately weak coupling

can be achieved, while stabilizing field in the large radius and large complex structure

limits remains a problem. However, such models with additional magnetic torsion terms,

although a plausible extension of half-flat mirror models, cannot currently be derived within

the heterotic string.

We have traced the root cause of the aforementioned problems to the fact that the

flux/torsion superpotential W is too simple to allow for globally supersymmetric vacua.

Consequently, we have analyzed moduli stabilisation for some generalized half-flat models

whose associated superpotential is significantly more complicated. We have seen that con-

sistent weak-coupling vacua can be obtained if the flux/torsion superpotential has globally

supersymmetric vacua with a superpotential value W0 satisfying |W0| ¿ 1. The value

of the dilaton and, hence, the gauge coupling, is then directly related to |W0|. We have

verified that the superpotential for the generalized half-flat models has indeed globally su-

persymmetric vacua with all Kähler and complex structure moduli stable. However, the
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requirement of small |W′| turned out to be more subtle. For the standard embedding of

the spin connection into the gauge group, the resulting Bianchi identity dĤ = 0 for the

NSNS form led to a constraint (3.9) on the flux/torsion parameters which ruled out the

possibility of small W0, at least within the range of flux/torsion parameters covered by

our numerical scan. However, for more general gauge bundles, the constraint should be

dropped and vacua with small |W0| can easily be obtained in this case. The number of

such vacua as a function of |W0| for a simple model with three fields, S, T and Z, has

been plotted in figure 2. Using eq. (5.6) one can estimate that, typically, the fraction of

vacua that lead to a sufficiently weak gauge coupling consistent with gauge unification, is

10−3. Our results establish the existence of consistent, weak-coupling AdS vacua within

generalized heterotic half-flat models.

In the light of these results, it is clearly desirable to get to a better understanding of

half-flat compactifications and their generalizations, in particular with regard to the precise

nature of the manifolds involved, the rules for quantizing flux and torsion parameters in

those compactifications and the inclusion of gauge and gauge matter fields. We will leave

those tasks for future publications.
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A. Ricci scalar for the “extended half-flat” manifolds

This section contains a generalization of the result obtained in the appendices of ref. [33],

where the Ricci scalar for half-flat manifolds mirror to Calabi-Yau with NS-NS fluxes was

computed. Here we will follow this calculation closely, by recalling the main identities

which remain valid, while pointing out the places where it differs from the simple half-flat

case.

To set the stage, let us briefly recall a few features of manifolds with SU(3) structure.

Such manifolds are characterized by the existence of an almost complex structure with the

associated fundamental form J and a (3, 0) complex form Ω which are invariant under the

action of the SU(3) structure group. More concretely this means that the forms J and

Ω are covariantly constant with respect to some connection ∇(T ), which in general has a

torsion. Decomposed into SU(3) representations the torsion falls into five different classes

W1 , . . . ,W5 which are given by

dJ = W1Ω + W4 ∧ J + W3 , (A.1)

dΩ = W1J ∧ J + W5 ∧ Ω + W2 .

Since the torsion on manifolds with SU(3) structure measures the departure from Calabi–

Yau manifolds (which are Ricci flat) it is clear that the Ricci scalar of the SU(3) structure

manifolds depends on their torsion. Thus, in order to compute the Ricci scalar, we will
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need to know all the components of the torsion and for this we will use equations (A.1)

above and the relations

dΩ = Eiω̃
i , (A.2)

dJ = (tipAi)β
A − (tiqA

i )αA , (A.3)

which are easily derived from (2.4) and (2.21), with the quantities Ei defined in equation

(2.34). Note we have postulated that the basis forms in the above equations have the same

SU(3) properties as their Calabi–Yau counterparts. Hence, αA and βA in eq. (2.21) are

primitive and, consequently, W4 has to vanish. Moreover as dΩ in eq. (A.2) is a (2, 2) form,

W5 also vanishes. The other torsion components T1+2 and T3 are found to be

(T1+2)αβγ =
Ēi

4||Ω||2 (ω̃i)αβᾱβ̄Ωᾱβ̄
γ , (A.4)

(T3)αβγ̄ = − i

2
ti(pAiβ

A
αβγ̄ − qA

i αAαβγ̄) . (A.5)

Here ||Ω||2 = 1
6ΩαβγΩ̄αβγ is a function of the complex structure moduli which is related

to the Kähler potential for these fields via V||Ω||2 = e−K(Z)
, where V is the volume of the

manifold. Note that, in this case, the quantities Ei are neither real nor constants as it

happened for the case of half-flat manifolds and thus one generically has

T ∈ W1 ⊕W2 ⊕W3 . (A.6)

However it is important to note that the nature of the indices of the torsion components is

the same as in the half-flat case, and the torsion itself is still traceless. As a consequence,

the expression of the Ricci scalar in terms of the torsion obtained in [33] still holds

R = (T1+2)αβγ(T1+2)
αβγ − 6(T1+2)αβγ(T1+2)

βγα + (T3)αβγ̄(T3)
αβγ̄ + c.c. (A.7)

To obtain the integrated Ricci scalar we perform the same steps as in ref. [33] and, using

the relations (B.10), we obtain
∫

X̂

√
g R = eK(Z)(gijEiĒj − 4titjEiĒj)

−1

2
titj(pAi − qC

i MCA)
(

ImM−1
)AB

(pBj − qD
j M̄BD) . (A.8)

After taking into account various coefficients and rescalings, the contribution of gravity to

the potential in Einstein’s frame can be rewritten as

e−KVg = 8(gijEiĒj − 4titjEiĒj) (A.9)

−4e−K(Z)[

Im(ε̃A) − Im(µ̃C)MCA

](

ImM−1
)AB[

Im(ε̃B) − Im(µ̃D)M̄DB

]

.

B. Some useful results on special geometry

As it is well known, the moduli space of Calabi–Yau manifolds splits into a product of two

special Kähler manifolds, one for the complexified Kähler class deformations and one for
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the complex structure deformations. Since these geometries are at the heart of the four-

dimensional physics obtained from compactifications on Calabi–Yau manifolds we review

in this appendix some of the properties of the special Kähler manifolds which we need in

the main part of the paper. We mainly follow ref. [43].

The main feature of special Kähler manifolds is that their geometry is completely

determined in terms of a holomorphic function H, called the pre-potential. In terms of

the projective coordinates XP , where P = 0, . . . , n (n being the complex dimension of the

manifold), the pre-potential is a homogeneous function of degree two, that is, it satisfies

XPHP = 2H, where HP = ∂
∂XP H. In fact, one does not always need to rely on the

pre-potential and it may be sufficient to work with the period vector

O =

(

XP

HP

)

. (B.1)

Let us further introduce the symplectic inner product <,> as

< O, Ō >≡ OT

(

0 −1

1 0

)

Ō = (HP X̄P − H̄PXP ) . (B.2)

With this notation the Kähler potential can be written as

K = − log
(

i < O, Ō >
)

= − log
[

i(HP X̄P − H̄PXP )
]

, (B.3)

while the Kähler metric is given by the usual formula

gpq̄ = ∂p∂̄q̄K . (B.4)

Here the derivatives are with respect to the affine coordinates Xp = X p/X 0, where

p, q, · · · = 1, . . . , n. It is also useful to introduce the Kähler covariant derivative of the

periods O

e−K/2Uq ≡ e−K/2

(

fP
q

hP q

)

= ∇pO = (∂p + ∂pK)O . (B.5)

The period matrix Q, which is a complex symmetric matrix is now required to satisfy

H̄P =Q̄PQX̄Q ,

hP q =Q̄PSfS
q .

(B.6)

It can be shown, see ref [44], that, in terms of the pre-potential H, the period matrix has

the form

QPQ = H̄PQ + 2i
(ImH)PR(ImH)QSXRX S

(ImH)RSXRX S
, (B.7)

where we have denoted HRS = ∂
∂XR

∂
∂XS H.

With this one can prove the following relations

< O, Up > = < O, Ūp̄ >= 0 ,

gpq̄ = −i < Up, Ūq̄ >= −2fP
p ImQPQf̄Q

q̄ , (B.8)

fP
p f̄Q

q̄ gpq̄ = −1

2
(ImQ)−1 PQ − eKX̄PXQ .
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In order to make this discussion less abstract let us first apply the above formalism to

the complex structure moduli space of Calabi–Yau manifolds. The periods O are now

determined by the holomorphic (3, 0) form Ω. Moreover the inner product (B.2) becomes

now the inner product for three-forms on the Calabi–Yau manifold. With this one imme-

diately finds that the Kähler potential (B.3) precisely reproduces the one from equation

(2.14). Finally, the Kähler covariant derivatives in equation (B.5) give the components of

the (2, 1) forms in the basis (2.2). With these identifications it is easy to see that most of

the relations in equation (B.8) are straightforward, the only non-trivial ones involving the

period matrix. Denoting the period matrix by M in this case and the indices P,Q, . . . by

A,B, . . . = 1, . . . , h(2,1), the last relations in equation (B.8) become

gab̄ = −2fA
a ImMAB f̄B

b̄ ,

eKDaZ
ADb̄Z̄

B = fA
a f̄B

b̄ gab̄ = −1

2
(ImM)−1 AB − eK Z̄AZB . (B.9)

Finally we note that in the basis (2.2) the period matrix M can be found to be
∫

Y3

αA ∧ ∗βB = −(ReM)AC(ImM)−1 CB ,

∫

Y3

αA ∧ ∗αA = −(ImM)AB − (ReM)AC(ImM)−1 CD(ReM)DB , (B.10)

∫

Y3

βA ∧ ∗βB = −(ImM)−1 AB .

While the pre-potential is typically a complicated function it simplifies considerably

in certain limits in moduli space, such as large radius and large complex structure limits

for the Kähler and complex structure moduli spaces, respectively. In those limits, the

pre-potential is given by a cubic function

H = −1

6

dpqrX pX pX r

X 0
, (B.11)

Such a cubic pre-potential defines what is known as very special geometry. Writing the

affine coordinates as

Xp = ξp + ixp , (B.12)

one finds for the Kähler potential

K = − ln

(

4

3
K

)

, (B.13)

where

K =
i

8
dpqr(X

p − X̄p)(Xq − X̄q)(Xr − X̄r) = dpqrx
ixjxk . (B.14)

From equation (B.7) one can also define a period matrix in this case and then the

relations (B.8) follow by straightforward algebraic manipulations. There are a number of

further very special geometry relations which are useful in the main part of this paper.

First, let us define

Kp = dpqrx
qxr , Kpq = dpqrx

r . (B.15)
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With this, the first derivatives of the Kähler potential K with respect to Xp, denoted by

Kp and the Kähler metric Kpq̄ can be written as

Kp = −3iKp

2K , (B.16)

gpq = Kpq̄ = −3

2

(Kpq

K − 3KpKq

2K2

)

. (B.17)

Defining fields xp = gpqx
q with lowered indices it is easy to show that

xp =
3Kp

4K , xpx
p =

3

4
. (B.18)

These formulae lead immediately to the “no-scale” relation

Kpq̄KpK̄q̄ = 3 . (B.19)

Finally we note that a typical flux superpotential, for example as it arises from the

Gukov-Vafa-Witten formula, can be written as

W = ePXP − mPHP . (B.20)

Here eP and mP depend on the fluxes and can be either real constants or can also depend

holomorphically on other (super)fields in the theory, but not on Xp, as we have seen in

section 2.2. For the cubic pre-potential (B.11) the dependence on the physical degrees of

freedom Xp can be made explicit after setting X 0 to one and we find

W = e0 + epX
p +

1

2
dpqrm

pXqXr − m0

6
dpqrX

pXqXr . (B.21)

Note that after transforming to the “phenomenological” convention for Xp by Xp → −iXp

(and after dropping an overall factor of −i from W which is irrelevant) the constant and

quadratic terms in the above superpotential pick up a factor of i.

C. Supergravity conventions in d = 4 and stability of supersymmetric

vacua

In this appendix we summarize conventions and relevant formulae for four-dimensional

N = 1 supergravity [45]. Further, we present an elementary proof that solutions to the

F-equations are always stable vacua.

The bosonic terms in the action of four-dimensional N = 1 supergravity coupled to

chiral fields (φX) = (S, T i, Za) read

S = − 1

κ2
4

∫

M4

√−g d4x

[

1

2
R + KXY ∂µφX∂µφ̄Y + V

]

, (C.1)

where κ4 is the four-dimensional Newton constant. As usual, KXY = ∂X∂Y K is the Kähler

metric while the potential V is given by the standard formula

V = eK
(

KXY FX F̄Y − 3|W |2
)

, (C.2)
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where KXY is the inverse Kähler metric and the F-terms FX are defined by

FX = WX + KXW . (C.3)

Here a subscript X denotes a derivative with respect to φX , as usual. Note that we

have considered the chiral fields and the Kähler potential to be dimensionless, while the

superpotential has dimension one, a convention which is convenient for the discussion of

moduli fields and in line with the formulae in the main part of the paper.

In this paper we were interested in supersymmetric vacua of the potential (C.2), that

is, vacua which can be obtained by solving the F-equations

FX = WX + KXW = 0 . (C.4)

It is easy to show, from eq. (C.2), that solutions to the F-equations indeed constitute

extremal points of the potential V . The cosmological constant, V0, at such an extremal

point is given by

V0 = −3eK |W |2 . (C.5)

Without fine-tuning (to make W at the extremal point vanish) this value will usually be

negative and, hence, we are generically dealing with AdS vacua. The stability of AdS vacua

in gravity coupled to scalar fields was analyzed a long time ago [46, 47] by Breitenlohner

and Freedman and, independently, by Abbott and Deser. They found that such vacua are

stable if all scalar field masses are larger than a certain lower bound, which is basically

given by the cosmological constant V0. Hence in AdS space, unlike in Minkowski space,

negative (square) masses do not necessarily indicate an instability. In fact, it can be shown

in general, [41], that this bound is always satisfied for supersymmetric vacua of supergravity

theories and, hence, such vacua are always stable. We will now present an elementary proof

of this statement.

Let us first formulate the Breitenlohner-Freedman bound for a theory with canonically

normalized real scalars χi and a potential V = V (χi). We assume the potential has a

stationary point at χi = χi
0 with negative cosmological constant V0 = V (χi

0) < 0. Define

the mass matrix as

Mij =
∂2V

∂χi∂χj
(χk

0) . (C.6)

According to Breitenlohner and Freedman this stationary point leads to a stable, AdS

vacuum if ai ≥ 3V0/2, where ai are the eigenvalues of M . A sufficient criterion for this to

be the case is that

ξT Mξ − 3

2
V0ξ

T ξ ≥ 0 , (C.7)

for all vectors ξ in field space. To see that this inequality implies the one for the eigenvalues,

choose ξ to be the eigenvectors of the mass matrix M . It is useful for the application to

supergravity to re-write this criterion for non-canonical kinetic terms Gij∂µχi∂µχj, where

Gij is the metric on field space. Then, eq. (C.7) takes the form

ξT Mξ − 3

2
V0ξ

T Gξ ≥ 0 , (C.8)
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where the mass matrix M is now, of course, defined with respect to the non-canonical

fields.

We would like to apply the criterion (C.8) to the case of four-dimensional N = 1

supergravity with complex scalars φX , Kähler potential K and superpotential W . We

consider a solution φX
0 of the F-equations (C.4). This solution is automatically a stationary

point of the potential V and it preserves supersymmetry. The cosmological constant V0 at

such a vacuum is given by eq. (C.5). From eq. (C.2) one finds for the second derivatives of

V at FX = 0 after a bit of computation

VXY |F=0 = −eKW̄FXY , (C.9)

VXȲ |F=0 = eK
[

KZT̄FZX F̄T̄ Ȳ − 2KXȲ |W |2
]

, (C.10)

where FXY is the derivative of FX with respect to φY . Combining these results (and taking

care to convert real into complex expressions) it is then straightforward to compute the

LHS of the criterion (C.8) which takes the form

2VXȲ ξXξȲ + VXY ξXξY + VX̄Ȳ ξX̄ξȲ − 3

2
V0KXȲ ξXξȲ

= eK

[

2KZT̄FZX F̄T̄ Ȳ ξXξȲ − W̄FXY ξXξY − WF̄X̄Ȳ ξX̄ξȲ +
1

2
|W |2KXȲ ξXξȲ

]

= eK

(

1√
2
WKZX̄ξX̄ −

√
2FZXξX

)

KZT̄

(

1√
2
W̄KT̄ Y ξY −

√
2F̄T̄ Ȳ ξȲ

)

. (C.11)

The last line is obviously positive and, hence, the criterion is satisfied. The conclusion is

that any supersymmetric AdS vacuum of four-dimensional N = 1 supersymmetry satisfies

the Breitenlohner/Freedman criterion and, therefore, constitutes a stable AdS vacuum.
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