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1 Introduction

Flux compactifications of type II string theory (see e.g. [1–4] for reviews) have been inten-

sively studied in the last couple of years. The simplest compactification spaces that lead

to a four-dimensional N = 1 action with a non-vanishing scalar potential for the closed

string moduli are Calabi-Yau orientifolds threaded with H3 and RR fluxes. In type IIB

such compactifications allow only for H3 and F3 fluxes, which generically fix all complex

structure moduli and the dilaton and yield no-scale type Minkowski vacua at tree level

with unfixed Kähler moduli [5, 6]. In order to fix also the Kähler moduli, typically in

AdS-vacua, the no-scale property has to be broken, which may naturally happen due to

non-perturbative quantum [7] or perturbative α′ corrections [8–10].

On the other hand, in type IIA string theory compactified on Calabi-Yau orientifolds

threaded with p-form fluxes [11, 12] it is possible to stabilize all geometric moduli at tree-

level in AdS vacua [13, 14]. In [15] it was shown that supersymmetric AdS vacua in type IIA

cannot only be obtained from Calabi-Yau compactifications but also from the more general

class of SU(3)-structure manifolds. This has lead to the exploration of compactifications

on SU(3)-structure manifolds [16–28] for which it is also possible to stabilize all moduli at

tree-level in AdS vacua.

Having compactifications with a tree-level scalar potential that depends on all closed

string moduli, one may ask whether it is also possible to have meta-stable de Sitter (dS)

vacua or slow-roll inflation [29]. In [30] a no-go theorem was derived that forbids dS

vacua and slow-roll inflation in type IIA Calabi-Yau compactifications with p-form fluxes

and O6/D6-sources. A manifold with negative scalar curvature, however, could in principle

evade this no-go theorem. Using this approach, four-dimensional dS vacua were constructed

in [31, 32], but it was argued in [33] that it may be difficult to satisfy the underlying 10-

dimensional equations of motion. A related approach was used in [34, 35], where the

authors studied compactifications on coset spaces [18, 36–43] and twisted tori [16, 17,

25, 44–50]. The authors derived several new no-go theorems that were used to exclude

many concrete examples, but explicit dS extrema with one tachyonic direction were also

found in both papers. Since this tachyonic direction is different from the one discussed

in [51, 52] (see also [53]), its origin is unclear. In [54] an extensive search for dS vacua

was performed in a related model and the authors found dS extrema. However, stable de

Sitter (and Minkowski) vacua were only found in special non-geometric compactifications.

So it remains an open problem to construct geometric flux compactifications that lead to

controlled stable dS vacua at tree-level.

In this paper we investigate type IIB compactifications that classically lead to a four-

dimensional N = 1 supergravity action that could posssibly be interesting from a cosmo-

logical point of view. In particular, we would like to have a scalar potential that depends

at least on all geometric moduli at tree-level and that potentially could allow for dS vacua

or slow-roll inflation. This requires orientifold planes to evade the no-go theorems of [55–

57] (see also [58–60]). We will take these O-planes to be smeared over their transverse

directions (see [61] for a discussion of this point). Furthermore, for simplicity we restrict

ourselves to closed string moduli (i.e. we do not include D-branes), and only consider bulk
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plane 1 2 3 4 5 6

O5 x x

O5 x x

O7 x x x x

O7 x x x x

Table 1. O5- and O7-planes.

moduli in the analysis of concrete examples. As we explain in section 5, this leads us to

study flux compactifications on SU(2)-structure manifolds with O5- and O7-planes (see

e.g. [46, 62–71] for flux compactifications on SU(2)-structure manifolds). In these models,

also F1 and F5 flux can be turned on, as opposed to the warped Calabi-Yau compactifi-

cations of [6], where the absence of one- and five-cycles does not allow for these types of

fluxes. As we show explicitly in one particular example, compactifications of this type can

actually stabilize all moduli at tree level in a large volume and small string coupling regime.

As we discuss in more detail in section 2, SU(2)-structure manifolds have two globally

defined vector fields that lead to a natural (2+4)-split of the tangent bundle (in the special

case of SU(2)-holonomy, even the whole manifold factorizes as T 2×K3). Furthermore, the

explicit examples we consider in this paper are all parallelizeable manifolds. This allows us

to choose a basis of six globally defined vector fields, em (m = 1, . . . , 6), that is compatible

with the (2+4)-split (i.e., we take e1 and e2 to span the two-dimensional part of the

tangent spaces singled out by the SU(2)-structure, and e3, . . . , e6 in the four-dimensional

complement). Aligning the orientifold planes with this adapted basis of vector fields, one

finds that the most general O-plane setup that still preserves N = 1 supersymmetry is, up

to permutations, given as in table 1.

This follows from the fact that for a pair of D-branes or O-planes to preserve a common

supersymmetry, the number of mixed Neumann-Dirichlet boundary conditions must be

divisible by four. Moreover, the globally defined vector fields of the SU(2)-structure must

be even under the O7-projection and odd under the O5-projection, which explains the

orientation of the O-planes in the (1,2)-plane shown in the table. One also can convince

oneself that, apart from the familiar combinations O3/O7 and O5/O9, this O5/O7 setup is

the only other possibility of having two different kinds of O-planes that both extend along

the four non-compact directions and still preserve some supersymmetry.

We see in table 1 that one can always do a single T-duality along the 1- or 2-direction

(which are the directions of the two real one-forms present in any six-dimensional SU(2)-

structure manifold) to obtain a type IIA compactification with four O6-planes along the co-

ordinate axis. However, after such a T-duality we generically have non-geometric Q-fluxes.

The organization of this paper is as follows. In section 2, we give some more details

on SU(2)-structure compactifications, their orientifolds and the effective 4D supergravity

action and set up our notation. In section 2.4, we also discuss the relation to IIA compactifi-

cations on SU(3)-structure manifolds with O6-planes via a formal T-duality transformation.

In section 3 we show the impossibility of supersymmetric Minkowski vacua in our setup

and discuss some aspects of AdS vacua and the validity of the supergravity approxima-
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tion. Section 4 is devoted to several explicit examples that consist of coset spaces involving

semisimple and U(1)-group factors as well as twisted tori. All these examples allow for a

left-invariant SU(2)-structure and we can therefore use the left-invariant forms as expan-

sion forms which yields a consistent effective 4D action. We compute the scalar potentials

and show explicitly, in a simple example, how all moduli can be stabilized at tree-level.

In section 5, we discuss the cosmological properties of our class of compactifications and

derive several no-go theorems that forbid dS vacua and slow-roll inflation under certain

assumptions. We then apply these no-go theorems to our explicit models and show that

only one evades them. For that model we find a dS extremum with numerically vanishing ǫ

and two tachyonic directions. A conclusion is given in section 6. Finally, three appendices

summarize some technical details.

2 Type IIB compactifications on SU(2)-structure orientifolds

In this section we discuss the N = 1 supergravity theory obtained from type IIB com-

pactifications on an SU(2)-structure manifold with O5- and O7-planes. We also show that

generically the resulting scalar potential is formally T-dual to a type IIA compactification

on an SU(3)-structure space with O6-planes and non-geometric Q-fluxes.

2.1 Manifolds with SU(2)-structure

A six-dimensional manifold, M, with (static) SU(2)-structure admits two globally defined

and mutually orthogonal spinors η and η̃, which we choose to be of unit norm. The existence

of these two spinors means that the tangent space group can be restricted to SU(2)⊂ SO(6).

The spinors define a complex one-form, V , a real two-form, ω2, and a complex two-form,

Ω2, via suitable spinor bilinears on M

Vm :=
1

2
η†−γmη̃+, (2.1)

ω2mn := iη†+γmnη+ − iη̃†+γmnη̃+, (2.2)

Ωmn := η̃†+γmnη+, (2.3)

where the subscript ± refers to the chirality of the 6D spinors, and the γm...n are the usual

antisymmetrized gamma matrices. These forms are invariant under the tangent space

group SU(2) and determine the metric on M. Due to the Fierz identities and the assumed

orthonormality of the spinors η and η̃, they satisfy a number of constraints,

ω2 ∧ ω2 =
1

2
Ω2 ∧ Ω∗

2 6= 0, (2.4)

ω2 ∧ Ω2 = 0, Ω2 ∧ Ω2 = 0, (2.5)

ιV Ω2 = 0, ιV ω2 = 0. (2.6)

A set of SU(2)-invariant forms with these properties provides an equivalent definition of

an SU(2)-structure.

In the special case of SU(2)-holonomy (i.e., for M = T 2 × K3), the two spinors are

covariantly constant with respect to the Levi-Civita connection, which then implies that the
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forms V, ω2,Ω2 are all closed. On a general SU(2)-structure manifold, however, the spinors

are not covariantly constant with respect to the Levi-Civita connection, and V, ω2,Ω2 are in

general no longer closed. Nevertheless, also in this generic case, one can define a different,

torsionful, connection with respect to which the spinors are covariantly constant. The

nontrivial torsion of this connection is encoded in the non-vanishing exterior derivatives of

the forms V, ω2,Ω2. Unlike the special case of a manifold with SU(2)-holonomy, a generic

SU(2)-structure manifold is in general not Ricci-flat.

2.2 Effective theories and field expansions

In order to extract an effective 4D field theory from a given string compactification, one has

to expand the higher-dimensional fields and fluxes in an appropriate set of expansion forms

of the compact space. A 4D Lagrangian with finitely many fields requires the restriction

to a finite set of such expansion forms. For this to be a meaningful theory, no interference

with the neglected modes should spoil the dynamics of the modes one has kept, at least

not in the regime the truncated theory is supposed to be valid. One way to ensure such a

decoupling is a sufficiently large mass gap between the two sets of modes, as it may occur

for example in compactifications on Ricci-flat spaces such as tori or Calabi-Yau manifolds.

There an expansion in terms of harmonic forms provides the classically massless moduli,

well-separated from the massive Kaluza-Klein excitations.

On a generic SU(2)-structure manifold, however, the forms V, ω2,Ω2 are not closed

and hence cannot be expanded in terms of harmonic forms. Metric deformations therefore

tend to descend to massive 4D modes, and it is now less trivial to divide them into light

and heavy fields.1

Another situation in which the restriction to finitely many fields is justified is when the

neglected modes cannot be excited at all by the dynamics of the modes one has retained.

This latter case is commonly referred to as “consistent truncation” and means that any

solution of the truncated 4D theory lifts to an exact solution of the full 10D theory.

The examples we discuss in detail in this paper are expected to be models in which a

consistent truncation is possible. More precisely, we will consider in detail the case where

M is a group manifold, or a quotient thereof by suitable discrete or continuous subgroups.2

The SU(2)-structure is furthermore required to respect this group structure, i.e., to be left-

invariant under the group multiplication. The left-invariant forms on M are then taken as

the natural expansion basis that in some sense generalize the harmonic forms on a torus

and lead to consistent truncations as argued in [72–74].

The manifolds so-obtained are all parallelizeable, and would lead to an effective 4D

theory with N = 4 supersymmetry. In order to obtain a theory with N = 1 supersymmetry,

we will introduce two types of orientifold projections corresponding to O5- and O7-planes

with orientations as in table 1. The left-invariant forms that survive these orientifold

projections are labeled by Y (npq), where n denotes the degree of the form and p, q = ± refer

1For a discussion of this issue see e.g. refs. [21, 27].
2The two classes we consider are: (i) products of compact semisimple and Abelian group factors, possibly

modded out by suitable continuous subgroups (so as to yield coset spaces), and (ii) nilmanifolds (or “twisted

tori”), i.e., nilpotent Lie-groups modded out by appropriate discrete subgroups.
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to the transformation property of the form under the O5- and O7-orientifold projection,

respectively. In our examples these forms exhibit a natural (2+4)-split3 that is compatible

with the orientation of our O-planes in table 1 and in many ways parallels properties of the

T 2×K3-compactification. More precisely, in our expansion basis, there are two one-forms,

and they can be only of the type Y
(1−+)
a (a = 1, 2) so that they have their leg only along

the directions 1 and 2 in table 1. The two-forms, on the other hand, either arise as products

of the two one-forms Y
(1−+)
a , or they have both legs along the remaining directions 3,4,5,6

in table 1. The expansion forms of rank higher than 2 all turn out to be obtainable from

wedge products of the lower rank forms, so that the independent expansion forms are4

0-form: Y (0++),

1-forms: Y
(1−+)
a ,

2-forms: Y
(2−−)
i ,

Y
(2+−)
A ,

Y
(2−+)
I ,

where the indices i, j, . . ., A,B, . . ., I, J, . . . label the two-forms with the legs along the

directions 3,4,5,6. Just as in the T 2 × K3-case, our setups have, up to multiplication by a

function, only one four-form, Y (4++), with legs along the 3,4,5,6 directions. When wedged

with the two one-forms Y
(1−+)
a , this form also yields the six-dimensional volume form of

the full 6D space. We normalize it such that
∫

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y (4++) = 1, which we

often will also write as ǫab =
∫

Y
(1−+)
a ∧ Y

(1−+)
b ∧ Y (4++) with ǫ12 = −ǫ21 = 1.

Products of two-forms with different orientifold parities can never combine to an

even/even four-form, and, due to the uniqueness of Y (4++), thus have to vanish. Y (4++)

can therefore only be obtained from products of two-forms of the same parity, and we only

have the following non-vanishing symmetric intersection forms

X̃ij =

∫

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−−)
i ∧ Y

(2−−)
j ,

X̂AB =

∫

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2+−)
A ∧ Y

(2+−)
B , (2.7)

X̄IJ =

∫

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I ∧ Y

(2−+)
J .

Before we expand the fields and fluxes in the above-described expansion forms, we sum-

marize their transformation properties under O5- and O7-orientifold projections [75].

3The complex vector field V of a six-dimensional SU(2)-structure manifold defines a so-called almost

product structure, i.e., a tensor field of rank (1, 1) that divides the tangent spaces into two-dimensional

subspaces spanned by the real components of V and well-defined four-dimensional complements. The

two-forms ω2 and Ω2 of the SU(2)-structure have their legs stretched only along these complements (see

e.g. [64, 70]).
4In general it should also be possible to have compactifications with 2-forms along the four-dimensional

part of the compact space that are even under both the O5- and the O7-orientifold projection. This would

lead to D-terms as is discussed in detail in appendix A. In the concrete examples we study in detail in this

paper, however, a left-invariant (++)-two-form does not occur.
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Fields O5 O7

C0, F1 - +

C2, F3 + -

C4, F5 - +

C6 + -

B,H3 - -

ω2 - -

Re(Ω2) - +

Im(Ω2) + -

V - +

Since the 0-form and the volume form on the six-dimensional space are both even under

the O5- and the O7-orientifold projections we find that the RR-axions C0 and C6 are

projected out. (This is required since, as we will argue below, after one formal T-duality

we have a manifold without 1- and 5-forms and therefore without C1 and C5.) The scalar

components for the remaining fields can be combined into complex fields and expanded as

follows [75, 76]

ωc = ω2 − iB = (ki − ibi)Y
(2−−)
i = tiY

(2−−)
i ,

Ωc
2 = e−φIm(Ω2) + iC2 = (uA + icA(2))Y

(2+−)
A = zAY

(2+−)
A ,

Ωc
4 = −ie−φ2V ∧ V ∗ ∧ Re(Ω2) + iC4 = (vI + icI(4))Y

(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I (2.8)

= wIY
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I ,

2V = L
(

iY
(1−+)
1 − (x + iy)Y

(1−+)
2

)

= L
(

iY
(1−+)
1 − τY

(1−+)
2

)

= L T aY (1−+)
a .

In the last line we have only one complex modulus τ , since the overall scale, L, of 2V

drops out of the scalar potential and can be eliminated from the Kähler and superpotential

through a Kähler transformation. We do not get any vector fields from the metric or the B

field, since the 1-forms Y
(1−+)
a are odd/even under the O5- and O7-orientifold projections,

and the metric is even and the B field odd under both projections.

Next we expand the background fluxes in our basis

F1 = maY (1−+)
a ,

F3 = eaiY (1−+)
a ∧ Y

(2−−)
i ,

F5 = faY (1−+)
a ∧ Y (4++),

H3 = haAY (1−+)
a ∧ Y

(2+−)
A .

(2.9)

As mentioned above, in a generic SU(2)-structure compactification, the forms V, ω2,Ω2 are

in general not closed, so that we have to allow for the possibility of having non-closed

expansion forms, i.e. a deviation from the SU(2)-holonomy case, which we parameterize as

– 7 –
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follows

dY (1−+)
a = rIaY

(2−+)
I ,

dY
(2−−)
i = r̃aAi Y (1−+)

a ∧ Y
(2+−)
A ,

dY
(2+−)
A = r̂aiAY (1−+)

a ∧ Y
(2−−)
i , (2.10)

dY
(2−+)
I = 0.

Here, the coefficients rIa, r̃aAi and r̂aiA are constant parameters.

Note that the matrices r̃a and r̂a are not independent, as we have5

− ǫabX̂AB r̃bBi =

∫

dY
(2−−)
i ∧ Y (1−+)

a ∧ Y
(2+−)
A (2.11)

=

∫

Y
(2−−)
i ∧ Y (1−+)

a ∧ dY
(2+−)
A = ǫabX̃ij r̂

bj
A ,

so that

r̂aiA = −X̂AB

(

X̃−1
)ij

r̃aBj . (2.12)

We will nevertheless use both r̂aiA and r̃aBj in explicit formulas to simplify expressions. The

reader should keep in mind, though, that they are not independent and in particular, if

one of them vanishes, so does the other.

Demanding that d squares to zero on the forms6 one furthermore finds

ǫabr̃
aA
i r̂bjA = ǫabr̂

ai
A r̃bBi = 0. (2.13)

The RR-fluxes given in (2.9) are constrained by the Bianchi identities that have the fol-

lowing form

dF1 = marIaY
(2−+)
I = 4[δO7],

dF3 + H3 ∧ F1 =
(

−eair̃bAi + haAmb
)

Y (1−+)
a ∧ Y

(1−+)
b ∧ Y

(2+−)
A = [δO5], (2.14)

dF5 + H3 ∧ F3 = 0 =
1

4
[δO3],

where [δOp] denotes the (9 − p)-form contribution of the smeared Op-planes. We see that

in the absence of D-branes the setup only allows for O5- and O7-planes but no O3-planes.

The absence of NS5-branes finally requires the closure of the H3 flux

dH3 = −ǫabh
aAr̂biA Y

(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−−)
i = 0, (2.15)

which gives the extra constraint

ǫabh
aAr̂biA = 0. (2.16)

5Here and at various other places in the following, we use that dY
(1−+)

a ∝ Y
(2−+)

I , whose wedge product

with Y
(2−−)

i or Y
(2+−)

A vanishes, so that there is no contribution from d acting on Y
(1−+)
a .

6This is a necessary but not sufficient condition one has to impose on the metric fluxes. The sufficient

condition is given below in (3.13).
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2.3 The four-dimensional scalar potential

With the conventions given above we can now discuss the resulting four-dimensional theory.

We started with 32 real supercharges in type IIB, and the compactification on the SU(2)-

structure manifold would preserve only half of this original supersymmetry in the resulting

effective action. The two orientifold projections break each another half so that we are left

with an effective 4D action with 1
8 of the original supersymmetry, i.e. four real supercharges

corresponding to N = 1. Note that any two of the orientifold planes in our setup of

table 1 have four Neumann-Dirichlet directions and thus can preserve a common set of

supercharges.7 We therefore can write the four-dimensional action using the language of

N = 1 supergravity. Our main interest is in the scalar potential for the closed string moduli

that is determined by the Kähler potential K and the superpotential W as8

V = eK
(

KMN̄DMW DNW − 3|W |2
)

. (2.17)

To determine the Kähler potential K and the superpotential W we can plug our expansions

from the previous subsection into the generic expressions for the Kähler and superpotential

for SU(3)×SU(3) structure compactifications [19, 22–24, 26, 28, 75, 77]. For the Kähler

potential we find

K = Kk + Kcs,

Kk = − ln

[

i

|L|2
∫

〈2V ∧ eiω2 , 2V ∗ ∧ e−iω2〉
]

= − ln

[−2i

|L|2
∫

2V ∧ 2V ∗ ∧ ω2 ∧ ω2

]

= − ln

[

−(τ + τ̄ )
1

2
X̃ij(t

i + t̄i)(tj + t̄j)

]

, (2.18)

Kcs = −2 ln

[

i

8

∫

〈e−φe2V ∧V ∗

Ω2, e−φe2V ∧V ∗Ω2〉
]

= −2 ln

[

− i

2

∫

(

e−2φV ∧ V ∗ ∧ Ω2 ∧ Ω∗
2

)

]

= −2 ln

[

−i

∫

(

e−2φV ∧ V ∗ ∧ ω2 ∧ ω2

)

]

= −2 ln
[

e−2D
]

= 4D,

where 〈 , 〉 is the Mukai pairing whose action on polyforms A,B is given by 〈A,B〉 =

A ∧ ̟(B)|6−form. The operator ̟ acts on forms by inverting the order of its coordinate

indices, and |6−form means that we keep only the six-form part. We also used the explicit

expansion of the fields given in (2.8). In the second to last step we used the SU(2)-structure

condition ω2∧ω2 = 1
2Ω2∧Ω∗

2 and in the last step we introduced the four-dimensional dilaton

7Strictly speaking our setup is an asymmetric orbifold T 6/(Z2 × (−1)FLZ2) with a single orientifold

projection. The generators of the orbifold group together with the single orientifold projection then give

rise to both O5- and O7-planes. Since our compact space is the special type of asymmetric orbifold given

above, it should still be possible to use supergravity. We thank Ralph Blumenhagen for bringing this issue

to our attention.
8See appendix A for the four-dimensional action and potential D-term contributions to the scalar po-

tential.
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D that satisfies e−2D = e−2φvol6. We have written Kcs in terms of the four-dimensional

dilaton to facilitate the discussion of the formal T-duality below. For the explicit form of

Kcs in terms of the complex structure moduli see (3.10). The volume of the compact space

is given by vol6 = −i
∫

V ∧ V ∗ ∧ ω2 ∧ ω2 = −|L|2x1
2X̃ijk

ikj,9 where in our conventions

the Kähler moduli are all positive x, ki > 0 and the intersection number X̃ij will have

negative entries. In terms of the polyforms F =
∑

Fp and C =
∑

Cp the superpotential is

given by

W = − i

2L

∫

〈2V ∧ ei(ω2−iB), F − i (d + H3∧)
(

eBe−φIm(e2V ∧V ∗ ∧ Ω2) + iC
)

〉. (2.19)

The parity assignments of B and Ω2 imply that their wedge product cannot combine to

the unique four-form Y (4++) and hence must vanish, so that we have eB ∧ Ω2 = Ω2. In

terms of the complex fields (2.8) the superpotential therefore becomes

W = − i

2L

∫

〈2V ∧ eiω
c

, F − i(d + H3∧)(Ωc
2 + Ωc

4)〉 (2.20)

= − i

2L

∫

〈2V +2iV ∧ ωc−V ∧ ωc ∧ ωc, F1+(F3−idΩc
2)+(F5−iH3 ∧ Ωc

2−idΩc
4)〉

= − i

2
T a

(

ǫab

[

f b − iX̂ABhbAzB − X̃ijt
i

(

iebj + zAr̂bjA +
1

2
mbtj

)]

− iX̄IJwIrJa

)

.

2.4 T-duality to type IIA on SU(3)-structure manifolds

We now proceed by showing that the above scalar potential is formally T-dual to the

scalar potential obtained by compactifying type IIA on an SU(3)-structure space with

non-geometric fluxes (so called Q-fluxes [78]). The resulting Kähler and superpotential for

such compactifications are [79, 80]

K(IIA) = − ln

[

1

6
κabc(t

a
(IIA) + t̄a(IIA))(t

b
(IIA) + t̄b(IIA))(t

c
(IIA) + t̄c(IIA))

]

+4D(IIA), (2.21)

W(IIA) = − i

2

[

−f (6) + ita(IIA)f
(4)
a +

1

2
κabct

a
(IIA)t

b
(IIA)f

(2)c − i

6
f (0)κabct

a
(IIA)t

b
(IIA)t

c
(IIA)

+ih
(3)
K ZK

(IIA) + raKta(IIA)Z
K
(IIA) −

i

2
κabcq

a
Ktb(IIA)t

c
(IIA)Z

K
(IIA)

]

, (2.22)

where f (p) denote the RR-fluxes, h
(3)
K the H3-flux, raK the metric fluxes and qaK the non-

geometric fluxes. ta(IIA) are the Kähler moduli and ZK
(IIA) are the complex structure moduli.

We can formally T-dualize the type IIB models along either Y
(1−+)
1 or Y

(1−+)
2 to

go to type IIA. The T-duality along Y
(1−+)
1 leaves all the moduli invariant, and we can

reinterpret the type IIB Kähler and superpotential as type IIA superpotential arising from a

compactification on an SU(3)-structure manifold. After a Kähler transformation W(IIA) →

9The value of |L|2 is fixed through equation (3.8) to be |L|2 = 1
x

q

X̄IJ vIvJ

X̂ABuAuB
so that we have vol6 =

−
q

X̄IJ vIvJ

X̂ABuAuB

1
2
X̃ijk

ikj .
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−iW(IIA) that leaves the Kähler potential invariant, one can compare the Kähler and

superpotential and finds that they are identical if one identifies

ta(IIA) = (τ, ti), ZK
(IIA) =

(

zA

wI

)

, D(IIA) = D, (2.23)

f (6) = f2, f (4)
a = (f1, X̃ije

2j), f (2)a = (−m2,−e1i), f (0) = −m1,

h
(3)
K =

(

X̂ABh2B

X̄IJr
J
1

)

, raK =

(

X̂ABh1B X̃ij r̂
2j
A

−X̄IJr
J
2 0

)

, qaK =

(

0 −r̂1j
A

0 0

)

,

and the only non-vanishing components of the symmetric triple intersection number are

κ1ij = −X̃ij. This all agrees nicely with the T-duality rules of [81, 82] and the rule [78, 79],

which state that generalized NSNS-fluxes with no leg along the T-duality direction are

invariant while the ones with a leg along the T-duality direction transform into other types

of generalized NSNS-fluxes. In particular we see that models for which r̂1i
A 6= 0 are formally

T-dual to SU(3)-structure compactifications with non-geometric fluxes.

For a T-duality along Y
(1−+)
2 we find that the Kähler modulus τ in front of Y

(1−+)
2

gets inverted τ → τ ′ = 1
τ . We transform the superpotential W → τ ′W and the Kähler

potential K → K − ln(τ ′) − ln(τ̄ ′). This results in a type IIB Kähler potential as given

in (2.18) with τ replaced by τ ′ and the superpotential is as given in (2.20) where the only

change is that T a = (i,−τ) → (iτ ′,−1). After this transformation we can again identify

our superpotential and Kähler potential as arising from a compactification of type IIA on

an SU(3)-structure space with non-geometric fluxes. In particular we find that they agree,

if we make the following identifications

ta(IIA) = (τ ′, ti), ZK
(IIA) =

(

zA

wI

)

, D(IIA) = D, (2.24)

f (6) = −f1, f (4)
a = (f2,−X̃ije

1j), f (2)a = (m1,−e2i), f (0) = −m2,

h
(3)
K =

(

−X̂ABh1B

X̄IJr
J
2

)

, raK =

(

X̂ABh2B −X̃ij r̂
1j
A

X̄IJr
J
1 0

)

, qaK =

(

0 −r̂2i
A

0 0

)

,

where again the only non-vanishing components of the symmetric triple intersection number

are κ1ij = −X̃ij.

This shows that a formal T-duality along either of the two 1-cycles corresponding to

the two 1-forms leads to a compactification on type IIA on a space with SU(3)-structure

that is generically only locally geometric. In particular, SU(2)-structure compactifications

for which r̂1i
A 6= 0 and r̂2i

A 6= 0 are not T-dual to any geometric compactification of type IIA

on SU(3)-structure manifolds.

3 Analysis of supersymmetric vacua of type IIB on SU(2)-structure com-

pactifications

In this section we discuss the existence of supersymmetric vacua in compactifications of type

IIB theory on SU(2)-structure manifolds in the presence of O5- and O7-planes. We study
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the F-term equations arising from the Kähler potential (2.18) and superpotential (2.20).

While there are no obstructions in finding fully stabilized AdS vacua, it is not possible

to stabilize all moduli in supersymmetric Minkowski vacua. We also discuss consistency

conditions like the tadpole condition and the possibility of obtaining large volume and

small string coupling in these compactifications.

3.1 Supersymmetric Minkowski vacua

In [25, 83] the authors show that for geometric compactifications of type IIA on SU(3)-

structure spaces it is not possible to stabilize all moduli in a supersymmetric Minkowski

vacuum. However, in [83] the authors argue that with non-geometric fluxes it is possible to

find supersymmetric Minkowski vacua. Since our type IIB compactifications are formally

T-dual to certain type IIA compactifications on SU(3)-structure spaces with non-geometric

fluxes the question of whether they allow for fully stabilized supersymmetric Minkowski

vacua is of obvious interest.

In order to find supersymmetric Minkowski vacua we have to find solutions for which

the superpotential (2.20)

W = − i

2
T a

(

ǫab

[

f b − iX̂ABhbAzB − X̃ijt
i

(

iebj + zAr̂bjA +
1

2
mbtj

)]

− iX̄IJwIrJa

)

,

(3.1)

and its derivatives with respect to all the moduli vanish. This means that we have to

solve an over-determined system of equations since we have one complex equation for

every complex modulus plus the extra complex equation W = 0. So for generic fluxes

one expects no solution.10 However, one can hope that for special values of the fluxes

it is possible to find solutions that stabilize all moduli. Recalling that T a = (i,−τ) the

equations for supersymmetric Minkowski vacua are

0 = W, (3.2)

0 = ∂τW = − i

2

(

f1−iX̂ABh1AzB−X̃ijt
i

(

ie1j+zAr̂1j
A +

1

2
m1tj

)

+iX̄IJw
IrJ2

)

, (3.3)

0 = ∂tiW =
i

2
T aǫabX̃ij

(

iebj + zAr̂bjA + mbtj
)

, (3.4)

0 = ∂zAW =
i

2
T aǫab

(

iX̂ABhbB + X̃ijt
ir̂bjA

)

, (3.5)

0 = ∂wIW = −1

2
X̄IJT

arJa =
1

2
τX̄IJr

J
2 − i

2
X̄IJr

J
1 . (3.6)

Taking the real part of the last equation and using that the Kähler modulus x > 0 and

that the intersection number X̄IJ is invertible we find

0 = 2Re(∂wI W ) = xX̄IJr
J
2 ⇒ rJ2 = 0, ∀J. (3.7)

This then implies that 0 = 2i∂wI W = X̄IJr
J
1 and we can conclude that only manifolds

that have rJa = 0,∀a, J can potentially have Minkowski vacua. Furthermore, we see from

10There is always the solution in which all moduli are zero. We neglect this trivial solution, which

corresponds to a compact space with zero volume, since our supergravity analysis is certainly not applicable

in this case.
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the superpotential (3.1) that in that case the superpotential does not depend on the wI

which means that any supersymmetric Minkowski vacuum will always have the wI as flat

directions. So we can conclude that there are no fully stabilized supersymmetric Minkowski

vacua possible in these kind of compactifications.

Nevertheless, one could proceed to analyze the F-term equations further and check

how many moduli one can actually stabilize. However, from the tadpole condition (2.14)

we see that rJa = 0 ⇒ dF1 = 0 = 4[δO7]. This means that it is impossible to satisfy this

condition in our setup. A way around this would be to cancel the O7-plane charge using

D7-branes. However, this would lead to open string moduli associated with the D7-branes,

which we do not consider in this paper. Another possibility is not to do the orientifold

projection that leads to the O7-planes. This should give a four-dimensional N = 2 theory.

Both of these possibilities are beyond the scope of this paper and we do not explore them

any further.

3.2 Supersymmetric AdS vacua

In order to calculate the F-term equations we need the derivatives of the Kähler poten-

tial (2.18) and therefore would like to have an explicit expression of the Kähler potential

in the complex structure sector. We can get this by using the SU(2)-structure condition

0 = Ω2 ∧ Ω2 = Re(Ω2) ∧ Re(Ω2) − Im(Ω2) ∧ Im(Ω2)

⇒ Re(Ω2) ∧ Re(Ω2) = Im(Ω2) ∧ Im(Ω2), (3.8)

where the mixed term Re(Ω2) ∧ Im(Ω2) vanishes since there is no odd/odd four-form. We

therefore have

Ω2 ∧ Ω∗
2 = 2Re(Ω2) ∧ Re(Ω2) = 2Im(Ω2) ∧ Im(Ω2). (3.9)

Using the explicit expansion of the fields as given in (2.8) we can rewrite the Kähler

potential in the complex structure sector as an explicit function of the complex moduli in

the complex structure sector (we assume constant dilaton φ)

Kcs = −2 ln

[

− i

8

∫

(

e−2φ2V ∧ 2V ∗ ∧ Ω2 ∧ Ω∗
2

)

]

= −2 ln

[

−|L|2x
2

e−2φ

∫

(

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Re(Ω2) ∧ Re(Ω2)

)

]

= − ln

[

−|L|2x
2

e−2φ

∫

(

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Re(Ω2) ∧ Re(Ω2)

)

]

− ln

[

−|L|2x
2

e−2φ

∫

(

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Im(Ω2) ∧ Im(Ω2)

)

]

(3.10)

= − ln

[

−|L|2x
2

(

1

|L|4x2
X̄IJv

IvJ
)]

− ln

[

−|L|2x
2

X̂ABuAuB
]

= − ln

[

1

2
X̂ABuAuB

1

2
X̄IJv

IvJ
]

= − ln

[

1

64
X̂AB(zA + z̄A)(zB + z̄B)X̄IJ (wI + w̄I)(wJ + w̄J)

]

.
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Using this explicit form for the Kähler potential we can spell out the F-term equations

DW = ∂W + W∂K = 0 for supersymmetric AdS vacua11

0 = DτW

= − i

2

(

f1 − iX̂ABh1AzB − X̃ijt
i

(

ie1j + zAr̂1j
A +

1

2
m1tj

)

+ iX̄IJw
IrJ2

)

− 1

2x
W,

0 = DtiW =
i

2
T aǫabX̃ij

(

iebj + zAr̂bjA + mbtj
)

− X̃ijk
j

X̃klkkkl
W, (3.11)

0 = DzAW =
i

2
T aǫab

[

iX̂ABhbB + X̃ijt
ir̂bjA

]

− X̂ABuB

X̂CDuCuD
W,

0 = DwIW = −1

2
X̄IJT

arJa − X̄IJv
J

X̄KLvKvL
W =

1

2
τX̄IJr

J
2 − i

2
X̄IJr

J
1 − X̄IJvJ

X̄KLvKvL
W.

3.3 The tadpole condition and the validity of the supergravity approximation

The fluxes in the superpotential are not all independent but have to satisfy several con-

straints. As mentioned above in equations (2.14) there are tadpole conditions corresponding

to the O5- and O7-planes as well as NS5-branes

dF1 = marIaY
(2−+)
I = 4[δO7],

dF3 + H3 ∧ F1 =
(

−eair̃bAi + haAmb
)

Y (1−+)
a ∧ Y

(1−+)
b ∧ Y

(2+−)
A = [δO5], (3.12)

dH3 = −ǫabh
aAr̂biA Y

(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−−)
i = 0.

Above in (2.13) we also derived the constraints arising from demanding that d2 = 0 when

acting on our basis forms. However, the metric fluxes need to satisfy a stronger constraint.

On a parallelizable manifold we have a set of globally defined one-forms en, n = 1, . . . 6.

The metric fluxes are then defined by den = −1
2fnmpe

m∧ǫp and from demanding that d2 = 0

on the one-forms we find

fn[mpf
r
s]n = 0, (3.13)

which in particular implies that d2 = 0 when acting on our expansion forms. Note however,

that (3.13) is generically not implied by (2.13).

In equation (2.9) we have expanded the H3- and RR-fluxes in forms that are not all in

cohomology. Since one can always shift the B- and RR-axions to set any exact part of the

fluxes to zero, we have generically redundant parameters in our general superpotential (3.1).

Explicitly, if we make the constant shift in the axions

cA(2) → cA(2) + δcA(2),

cI(4) → cI(4) + δcI(4), (3.14)

bi → bi + δbi,

11For some recent discussion of non-supersymmetric AdS-vacua, see e.g., [84, 85].
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then this leads to the following changes in the fluxes

F3 = eaiY (1−+)
a ∧ Y

(2−−)
i + d

(

cA(2)Y
(2+−)
A

)

→
(

eai + r̂aiA δcA(2)

)

Y (1−+)
a ∧ Y

(2−−)
i + d

(

cA(2)Y
(2+−)
A

)

,

F5 = faY (1−+)
a ∧ Y (4++) + d

(

cI(4)Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I

)

(3.15)

→
(

fa + ǫabX̄IJr
J
b δcI(4)

)

Y (1−+)
a ∧ Y (4++) + d

(

cI(4)Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I

)

,

H3 = haAY (1−+)
a ∧ Y

(2+−)
A + d

(

biY
(2−−)
i

)

→
(

haA + r̃aAi δbi
)

Y (1−+)
a ∧ Y

(2+−)
A + d

(

biY
(2−−)
i

)

.

We see that we can choose the δbi to set any exact part of the H3-flux to zero and δcA(2)
and δcI(4) for the exact parts of F3 and F5, respectively.

As long as we are discussing a generic compactification it is not possible to say which

parts of the H3- and the RR-fluxes are exact and which metric fluxes are non-vanishing

so that the generic superpotential (3.1) cannot be simplified. However, for any concrete

model with metric fluxes there will be flux parameters that can be set to zero by shifting

an axion. In the concrete models of the next section we will always set the exact part of

the H3- and RR-fluxes to zero.

We can only neglect corrections to our supergravity analysis when the volume of the

compactification space is large and the string coupling is small. While for generic flux

compactifications of type IIA on Calabi-Yau manifolds there exists a limit of large F4-flux

that leads simultaneously to large volume and small string coupling [13], we are not aware of

any such generic statement in compactifications of type IIA on SU(3)-structure manifolds.

This is certainly an interesting question whose answer should translate to our type IIB

compactifications on SU(2)-structure manifolds. Rather than pursuing this question we

will content ourselves with pointing out that the tadpole constraints (3.12) do not involve

the F5-flux since the last equation in (2.14) is automatically satisfied. Furthermore, as we

will see in an explicit example below, not all the flux parameters are necessarily constrained

by the tadpole conditions. So one generically expects to have unconstrained fluxes and

can hope to use these to obtain a large volume and a small string coupling so that the

supergravity analysis is valid. We will demonstrate that this is possible in an explicit

example in 4.1.

4 Explicit models

In this section we discuss several explicit examples of the SU(2)-structure compactifications

introduced in the previous sections. We start out by analyzing compactifications of type

IIB supergravity on cosets models [42, 76] with SU(2)-structure and O5- and O7-planes.

Then we discuss compactifications on spaces obtained from a base-fiber splitting [25, 45].

In all concrete models we restrict ourselves to only bulk moduli and fluxes for simplicity.12

For concreteness, we will choose the following expansion forms, where en, n = 1, . . . 6, are

12For a discussion of blow-up moduli in IIA flux compactifications, see e.g. [13].
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1-forms: Y
(1−+)
1 = e1, Y

(1−+)
2 = e2,

2-forms: Y
(2−−)
1 = e36, Y

(2−−)
2 = e45

Y
(2+−)
1 = e34, Y

(2+−)
2 = e56

Y
(2−+)
1 = e35, Y

(2−+)
2 = e46

Table 2. One-and two-forms and their transformation properties under the O5- and O7-orientifold

projections of table 1.

globally defined one-forms on the compact space, and we suppressed the wedge product

such that enm = en ∧ em. We choose the orientation of the internal manifold such that

1 = −
∫

e123456 which then gives

X̃12 = X̃21 = −1, X̂12 = X̂21 = −1, X̄12 = X̄21 = 1, (4.1)

with the other components vanishing. The metric fluxes are defined by den = −1
2fnmpe

m∧ǫp

so that we find

(

r1
a

r2
a

)

=

(

−fa35
−fa46

)

,

(

r̃a11 r̃a12

r̃a21 r̃a22

)

=

(

−f6
a4 f5

a3

−f3
a5 f4

a6

)

, (4.2)

(

r̂a11 r̂a12

r̂a21 r̂a22

)

=

(

−f4
a6 −f5

a3

f3
a5 f6

a4

)

,

for a = 1, 2.

We now discuss four explicit examples of coset spaces with SU(2)-structure and then

discuss examples obtained by twisting T 2 × T 4/Z2. For the simplest coset example we

solve the F-term equations (3.11) explicitly and obtain fully stabilized supersymmetric

AdS vacua with large volume and small string coupling.

4.1 SU(3)×U(1)
SU(2)

For this model, the non-vanishing metric fluxes relevant for our compactification are f1
35 =

−f1
46 =

√
3/2, cyclic. The left-invariant two-forms in the presence of the O5- and O7-planes

of table 1 read:13

type under O5/O7 basis name

odd/even 1-form e1, e2 Y
(1−+)
a

odd/odd 2-form e36 + e45 Y (2−−)

even/odd 2-form e34 + e56 Y (2+−)

odd/even 2-form e35 − e46 Y (2−+)

13We have relabeled the vielbeine used in [34, 42] so that the two one-forms of the SU(2)-structure are

e1 and e2.
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This means that, compared with the more generic discussion above, we have only half

as many two-forms and hence t1 = t2 ≡ t, z1 = z2 ≡ z and w1 = −w2 ≡ w. Choosing

x > 0 and k > 0, the necessary condition for metric positivity14 is uv < 0.

Next we expand the background fluxes in our basis. According to (2.9) we get for the

RR fluxes15

F1 = m1e1 + m2e2 ,

F3 = f (3)(e236 + e245) ,

F5 = −f1e13456 ,

(4.3)

where the exact parts of F3 and F5 (i.e. the (e136 + e145) part of F3 and the e23456 part of

F5) are put to zero since they can be absorbed into a shift of C2 and C4, respectively. For

the H3-flux we choose

H3 = 0 , (4.4)

since the absence of NS5-branes requires the closure of H3 and the exact part can be

absorbed into a shift of B (the three-forms have a trivial cohomology as b3 = 0 [76]). Using

the expression for the superpotential (3.1) we calculate

W = − i

2

(

−2f (3)t + im2(t)2 +
√

3w + f1τ − 2
√

3t z τ + m1(t)2τ
)

. (4.5)

For the Kähler potential we obtain from (2.18) and (3.10)

K = − ln
(

(τ + τ̄)(t + t̄)2
)

− ln

(

1

16
(z + z̄)2(w + w̄)2

)

. (4.6)

To demonstrate that it is possible to stabilize all moduli in a supersymmetric AdS vacuum,

we will explicitly solve the F-term equations (3.11) for this very simple model. From the

Kähler and superpotential given above we find

0 = DτW = − i

2

(

f1 − 2
√

3t z + m1(t)2
)

− 1

2x
W, (4.7)

0 = DtW = if (3) + m2t + i
√

3z τ − im1t τ − 1

k
W, (4.8)

0 = DzW = i
√

3t τ − 1

u
W, (4.9)

0 = DwW = −i

√
3

2
− 1

v
W. (4.10)

From DwW = 0 we find Re(W ) = 0 which gives

√
3c(4) = −2f (3)b − f1y + b2(m2 + m1y) + 2b

(

km1x +
√

3(−ux + c(2)y)
)

−k
(

k(m2 + m1y) − 2
√

3(c(2)x + uy)
)

. (4.11)

14We refer the interested reader to [19, 22, 46] for the calculation of the metric.
15In order to avoid confusion between the one-forms en and the expansion forms eai of the F3 flux, we use

a different label in the expansion of the F3-flux. The minus sign in front of f1 is due to Y (4++) = −e3456

(c.f. (2.9)).
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Since Re(W ) = 0 we can easily solve Re(DzW ) = −
√

3(k y − b x) = 0 to find

b =
ky

x
, (4.12)

Re(DtW ) = 0 to find

k =

√
3(c(2)x + u y)

m2
, (4.13)

and Re(DτW ) = 0 which leads to

c(2) =
uy(m2 − m1y)

x(m2 + m1y)
. (4.14)

Next we solve Im(DtW ) = 0 and find

v =
−f1x2(m2 + m1y)2 + 12u2y2

(

2m2y + m1
(

x2 + y2
))

√
3x(m2 + m1y)2

(4.15)

and from Im(DzW ) = 0 we get

u =
f (3)x(m2 + m1y)

2
√

3y (2m2y + m1 (x2 + y2))
. (4.16)

Finally, we solve Im(DτW ) = 0, which is a quartic polynomial in x. There are two positive

solutions, and we choose

x =
1

2

√

f1 (m1)2 y

[

(

f (3)
)2

(m2 − m1y) − 4f1m1y2(2m2 + m1y)

−f (3)
√

m2 − m1y

√

−16f1m1m2y2 +
(

f (3)
)2

(m2 − m1y)

]1/2

. (4.17)

We are now left with

0 = Im(DwW )

=

√
3
(

−f1y
(

2m2y + m1
(

x2 + y2
))2

+
(

f (3)
)2 (

2m1y
(

x2 + y2
)

+ m2
(

x2 + 3y2
))

)

2y (2m2y + m1 (x2 + y2))
(

−
(

f (3)
)2

+ f1 (2m2y + m1 (x2 + y2))
) ,

where x is as given above. One can solve this equation analytically for y. However, the

resulting expression is not very illuminating and rather long so we do not write it down ex-

plicitly. The fluxes in the solution above are constrained by the tadpole conditions (2.14)

dF1 = −
√

3

2
m1(e35 − e46) = 4[δO7] = 4NO7(e

35 − e46),

dF3 + H3 ∧ F1 =
√

3f (3)(e1234 + e1256) = [δO5] = NO5(e
1234 + e1256),

where we have expanded the orientifold contributions in our forms. So we see that the

tadpole condition fixes m1 and f (3). However, the fluxes m2 and f1 are still unconstrained
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and one can make them large. Solving Im(DwW ) = 0 as given above gives a scaling of

y ∼ |f1|0|m2|1 for large |f1| and |m2|. From this and the solutions for the other moduli

we find

x ∼ |f1|0|m2|1,
u ∼ |f1|1/2|m2|0,
v ∼ |f1|1|m2|1,
k ∼ |f1|1/2|m2|0.

This leads to the following scaling for the four- and ten-dimensional dilaton

e−D ∼
√

|uv| ∼ |f1|3/4|m2|1/2,

e−φ =
e−D√
vol6

∼
√

|uv|
xk2

∼ |f1|1/4|m2|0.

So we see that if we make simultaneously |f1| and |m2| large then we will have a large

volume with x, k ≫ 1 and small four- and ten-dimensional dilaton eD, eφ ≪ 1. In this

limit we can trust our supergravity analysis and we have therefore found a large number

of trustworthy, fully stabilized supersymmetric AdS vacua. We present a few more explicit

models but leave it to the interested reader to solve the F-term equations and find fully

stabilized AdS vacua for the other models.

4.2 SU(2)2

U(1) × U(1)

The non-vanishing metric fluxes relevant for this compactification are f1
35 = 1, cyclic, and

f1
46 = −1. The left-invariant two-forms in the presence of our O5- and O7-planes are

type under O5/O7 basis name

odd/even 1-form e1, e2 Y
(1−+)
i

odd/odd 2-form e36 + e45 Y (2−−)

even/odd 2-form e34 + e56 Y (2+−)

odd/even 2-form e35 , e46 Y
(2−+)
I

This means that comparing with the more generic model above we have to set t1 =

t2 ≡ t and z1 = z2 ≡ z. For the background fluxes we get

H3 = 0 ,

F1 = m1e1 + m2e2 ,

F3 = f (3)(e236 + e245) ,

F5 = f1e13456 ,

(4.18)

where we again set the exact parts of H3, F3 and F5 to zero and chose H3 to be closed.

The superpotential thus reads

W = − i

2

(

−2f (3)t + im2(t)2 + w1 − w2 + f1τ − 2t z τ + m1(t)2τ
)

. (4.19)
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For the Kähler potential we obtain

K = − ln
(

(τ + τ̄)(t + t̄)2
)

− ln

(

− 1

16
(z + z̄)2(w1 + w̄1)(w2 + w̄2)

)

. (4.20)

Necessary conditions for metric positivity are x > 0, k > 0 and v1v2 < 0, uv1 < 0.

4.3 SU(2) × SU(2)

The non-vanishing metric fluxes relevant for the compactification on SU(2)×SU(2) are

f1
35 = f2

46 = 1, cyclic. For this model, the forms given in table 2 form the basis for the

left-invariant one- and two-forms. The background fluxes are chosen

H3 = 0 ,

F1 = m1e1 + m2e2 ,

F3 = f (3)1(e136 + e245) + f (3)2(e145 + e236) ,

F5 = 0 .

(4.21)

The superpotential reads for this choice

W = − i

2

(

f (3)1(−t1 + it2τ) + f (3)2(−t2 + it1τ) + im2t1t2 + m1t1t2τ

+ it1z2 + it2z1 − t1z1τ − t2z2τ − iw1τ − w2
)

.
(4.22)

The Kähler potential reads

K = − ln
(

(τ + τ̄ )(t1 + t̄1)(t2 + t̄2)
)

− ln

(

− 1

16
(z1 + z̄1)(z2 + z̄2)(w1 + w̄1)(w2 + w̄2)

)

.

(4.23)

Necessary conditions for metric positivity are x > 0, k1 > 0, k2 > 0 and v1v2 < 0, u1u2 > 0

and u2v2 > 0.

4.4 SU(2) × U(1)3

The analysis of this model is quite similar to the analysis of the model SU(2)×SU(2), as

one only turns off the structure constant f2
46 = 0. Therefore, we choose the same expansion

forms as in the model above. The only difference is in the choice of background fluxes,

since the cohomology changes, and we choose

H3 = 0 ,

F1 = m1e1 + m2e2 ,

F3 = f (3)1e236 + f (3)2e245 ,

F5 = f1e13456 ,

(4.24)

such that the superpotential reads

W = − i

2

(

−f (3)1t2 − f (3)2t1 + im2t1t2 − w2 + f1τ − t1z1τ − t2z2τ + m1t1t2τ
)

, (4.25)

and the Kähler potential is as in eq. (4.23).
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4.5 Twisted tori from the base-fiber splitting

In this subsection we study models that are twisted T 2 × T 4/Z2 and can be obtained from

a base-fiber construction [25, 44–50]. The basic idea for this construction is to split our

compact space into a base space and a fiber. If we know the T-duality group of the fiber,

we can associate a T-duality element to every non-trivial cycle in the base space. Then

we can twist the fiber by this T-duality element, if we go around the non-trivial cycle in

the base. The resulting space is often called “twisted torus”, if one starts with a torus (or,

as in our case, a toroidal orientifold), but the reader should keep in mind that the new

space has in general nothing to do with a torus anymore. It is a different topological space.

For a twist by a generic T-duality element the resulting space is only locally geometric.

Since the underlying string theory is invariant under T-duality one expects that the new

“space” is nevertheless still a good string background. We however are working on the level

of supergravity and need a geometric compactification space for our analysis to be valid.

Therefore, we restrict ourselves to twists by T-duality elements that are generated by the

geometric subgroup of the T-duality group (for a torus GL(d; Z) ⊂ SO(d, d; Z)) and shifts

of the B field. Although, the basic idea is very simple the explicit calculations are fairly

lengthy. We therefore present only the results in the main body of the paper and work out

the details of one explicit example in appendix B.

To do a full classification one needs to consider all possible splittings of the T 2×T 4/Z2

into a base space and a fiber. This splitting needs to be invariant under the orbifold and

orientifold projection. We consider all cases in which the basis and fiber are parallel or per-

pendicular to the coordinate axis. Due to the symmetry of our space there are 19 different

possibilities. Denoting for example a one-dimensional base extending along the first direc-

tion by {1} they are {1}, {3}, {1, 2}, {1, 3}, {3, 4}, {3, 5}, {3, 6}, {1, 2, 3}, {1, 3, 4}, {1, 3, 5},
{1, 3, 6}, {3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 3, 4, 5}, {3, 4, 5, 6}, {1, 2, 3, 4, 5},
{1, 3, 4, 5, 6}. Calculating the possible metric fluxes resulting from twisting the fiber over

these base spaces we find the following non-vanishing NSNS fluxes:

{1} : H134, H156, f3
15, f4

16, f5
13, f6

14

{3} : H134, H234, f1
35, f2

35, f5
13, f5

23

{1, 2} : H134, H156, H234, H256, f3
15, f3

25, f4
16, f4

26, f5
13, f5

23, f6
14, f6

24

f3
25f

5
13 − f3

15f
5
23 = 0, f4

26f
6
14 − f4

16f
6
24 = 0

{1, 3} : H156, H234, f2
35, f4

16, f5
23, f6

14

{3, 4} : f1
35, f1

46, f2
35, f2

46, f5
13, f5

23, f6
14, f6

24,

f1
35f

6
14 + f2

35f
6
24 = 0, f1

46f
5
13 + f2

46f
5
23 = 0

{3, 5} : H134, H156, H234, H256

{3, 6} : H134, H156, H234, H256, f1
35, f1

46, f2
35, f2

46, f4
16, f4

26, f5
13, f5

23

f1
35f

4
16 + f2

35f
4
26 = 0, f1

46f
5
13 + f2

46f
5
23 = 0

{1, 2, 3} : H156, H256, f4
16, f4

26, f6
14, f6

24

f4
16f

6
24 − f4

26f
6
14 = 0
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{1, 3, 4} : H156, f2
35, f2

46, f5
23, f6

24

f2
35f

6
24 = 0, f2

46f
5
23 = 0

{1, 3, 5} : H234, H256, f4
16, f6

14

{1, 3, 6} : H234, H256, f2
35, f2

46, f4
26, f5

23

f2
35f

4
26 = 0, f2

46f
5
23 = 0

{3, 4, 5} : H156, H256, f1
46, f2

46, f6
14, f6

24

{1, 2, 3, 4} : H156, H256

{1, 2, 3, 5} : f4
16, f4

26, f6
14, f6

24

f4
26f

6
14 − f4

16f
6
24 = 0

{1, 3, 4, 5} : H256, f2
46, f6

24

{1, 2, 3, 6} , {3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 3, 4, 5, 6} : No H3- or metric flux

where we also spelled out any constraints arising from the Bianchi identities (3.13).

The explicit expansion forms for these models are given in table 2. The superpotential

for these models is as given in (3.1) and the Kähler potential is given in (2.18), (3.10)

where all indices run from 1 to 2 and the intersection numbers are given in (4.1). The

NSNS fluxes from above lead to h11 = H134, h12 = H156, h21 = H234, h22 = H256 and the

metric flux matrices are as given in (4.2). The necessary conditions for metric positivity

are x > 0, k1 > 0, k2 > 0 and v1v2 < 0, u1u2 > 0 and u2v2 > 0.

5 Cosmological aspects of SU(2)-structure compactifications of type IIB

supergravity

As we have seen in the previous sections, type IIB compactifications on SU(2)-structure

manifolds have the interesting property that their scalar potentials generically depend on

all moduli at tree level and allow for stabilized supersymmetric anti-de Sitter vacua. In this

section we discuss whether these potentials could also provide cosmologically interesting

solutions such as meta-stable de Sitter vacua and/or slow-roll inflation models in some

other regions of moduli space. We start out by showing that our general setup of SU(2)-

structure manifolds with O5- and O7-planes evades previous general no-go theorems against

dS vacua and slow-roll inflation [30, 32, 33] in tree-level IIB compactifications. For models

that are formally T-dual to type IIA compactifications on SU(3)-structure manifolds with

O6-planes and no non-geometric fluxes the no-go theorems derived in [30, 32–35] on the

IIA side could be used to rule out also the corresponding IIB models where applicable.

We will derive a number of no-go theorems directly in type IIB, some of which can be

viewed as the IIB translations of the above mentioned IIA theorems. In general, however,

the IIB compactifications studied here are formally T-dual to non-geometric type IIA

compactifications, and hence the corresponding no-go theorems proven here extend the

IIA no-go theorems of [30, 34, 35]. The dS vacua of [54] with non-geometric fluxes together

with the unstable dS extrema of [34, 35] suggest that there is no general no-go theorem for

the class of compactifications we are considering in this paper.
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5.1 Review of previous no-go theorems in type IIB

We start by reviewing the scaling of the terms in type IIA/IIB supergravity with respect

to ρ ≡ (vol6)
1/3 and q ≡ e−D = e−φ

√
vol6 = e−φρ3/2 on which the no-go theorems of [30]

are based. The Einstein term in string frame is

S ⊃ 1

2

∫

d10x

√

−g(10)e−2φR(10) =
1

2

∫

d4x

√

−g(4)vol6e
−2φ

(

R(4) + . . .
)

, (5.1)

so that we have to define g
(4)
µν = 1

q2
g
(E)
µν to go to the four-dimensional Einstein frame

S ⊃ 1

2

∫

d4x

√

−g(4)vol6e
−2φ

(

R(4) + . . .
)

=
1

2

∫

d4x

√

−g(E)
(

R(E) + . . .
)

. (5.2)

From the type II supergravity action

S =
1

2

∫

d10x

√

−g(10)

(

e−2φ

(

R(10) + 4(∂µφ)2 − 1

2
|H3|2

)

−
∑

p

|Fp|2
)

(5.3)

and the scaling g
(6)
µν ∼ ρ, we then find the following scaling for the contributions to the four-

dimensional scalar potential coming from the H3 and RR fluxes as well as the Ricci scalar,

VH ∼ q−2ρ−3,

Vp ∼ q−4ρ3−p, (5.4)

Vf ∼ q−2ρ−1.

Note that VH , Vp ≥ 0 while Vf can have either sign.

For Dp-branes and Op-planes we find from SDp/Op ∼ ±µp
∫

dp+1x
√−ge−φ that

VDp/Op ∼ ±q−3ρ
p−6
2 , (5.5)

where VDp ≥ 0 and VOp ≤ 0. Although we will not use it here, we also summarize the scaling

for NS5-branes and KK-monopoles, which can be obtained from SNS5 ∼
∫

d6x
√−ge−2φ

and SKK ∼
∫

d7x
√−ge−2φgψψ [30, 86]

VNS5 ∼ q−2ρ−2,

VKK ∼ q−2ρ−1. (5.6)

In principle one could also consider the addition of so called non-geometric Q- and R-

flux [54, 87] (or even the corresponding sources). By T-duality arguments one finds

VQ ∼ q−2ρ1,

VR ∼ q−2ρ3. (5.7)

For type IIB compactifications with only D3/O3-sources, H3- and F3-flux, all terms scale

like ρ−6 times a certain power of the dilaton eφ (not q), and one finds the simple relation [30]

− ρ∂ρV = 6V, (5.8)
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which shows that de Sitter vacua cannot exist. One can however choose the dilaton and

complex structure moduli such that the potential V vanishes, corresponding to Minkowski

vacua with ρ being a classically flat direction. These are of course nothing but the no-scale

solutions of [6], and quantum effects as in [7] may be used to change this behaviour. If one

wants to stay at a purely classical level, this simple argument against de Sitter vacua or

inflation could in principle also be circumvented by including metric fluxes (or Op-planes

for p 6= 3).

A natural question therefore is whether one can obtain cosmologically interesting mod-

els by studying type IIB on SU(3)-structure manifolds (first assuming only O3-planes). Due

to the extra terms involving the metric fluxes [1, 23, 80] it might be possible to stabilize

the geometric moduli. Furthermore, using the scalings given above we can show that it

is impossible to have a no-go theorem in the (ρ, q)-plane for type IIB on SU(3)-structure

manifolds with O3-planes, H3- and F3-fluxes. Indeed, for a no-go theorem we would have

to show that, along an arbitrary direction in the (ρ, q)-plane, we have

DV ≡ (a∂ρ + b∂q)V ≥ c V, c > 0. (5.9)

Since VH , V3 ≥ 0, VO3 < 0 and Vf can have either sign we need to find a, b such that

DVH/3 = cH/3VH/3, DVO3 = cO3VO3, DVf = cVf , cH , c3 ≥ c, cO3 ≤ c. (5.10)

It is straightforward to check that there is no such solution. So in principle these models

seem interesting and deserve further study. However, in our concrete examples we restrict

ourselves to the bulk moduli for simplicity. If one wants to have a bulk O3-plane then one

needs an orientifold projection that reverses all six coordinates. Since the metric fluxes fpmn
have to be invariant under the orientifold projection, one finds that bulk O3-planes and

bulk metric fluxes are incompatible. Therefore, for interesting examples in this direction

one would have to include for example blow-up modes and have either the O3-planes or

the metric fluxes being nontrivial in the twisted sector only.16 In [32] the authors look at

the quantity 4ac
b2

in type IIA compactifications, where a contains all terms that scale with

q−2, b all terms that scale like q−3 and c all terms that scale like q−4. This quantity is

therefore independent of q, and one can show that a de Sitter minimum requires that 4ac
b2

has a minimum in ρ and the remaining moduli at which 4ac
b2

≈ 1 [31]. In type IIA without

non-geometric fluxes and only O6/D6 sources one finds

4ac

b2
∼
∑

p

Ap

(

AHρ−p + Afρ
2−p
)

, (5.11)

where the As are coefficients such that for example Vp = Apq
−4ρ3−p. From the positivity

of VH we have that AH ≥ 0. To evade a no-go theorem from [30, 31, 76] one would need

Af > 0 as well, which corresponds to spaces with negative scalar curvature (see also [88]).

If there is no flux with p < 2, then the minimum in the ρ direction is at ρ = ∞, i.e. we

have a runaway direction that leads to a decompactification. So the conclusion is that, in

the above setup, one needs the Romans mass parameter in type IIA.

16We thank D. Robbins and G. Dall’Agata for discussions on this point.
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In [32] it is further speculated that, by analogy to the Romans mass for type IIA, the

F1 flux might be useful for classical type IIB de Sitter vacua. So let us look at type IIB

compactifications with H3-flux, Fp-flux, metric flux and only On sources for one fixed n.

We find
4ac

b2
∼
∑

p

Ap

(

AHρ−p + Afρ
2−p
)

ρ6−n. (5.12)

So we see that one needs F1 flux for n = 5, while for the standard case with O3-planes

F3 flux is sufficient to avoid this no-go theorem, as we have already shown above. For

cases with only n = 7 or n = 9 O-plane sources, not even F1 flux is sufficient to avoid the

no-go theorem.

So, to summarize, we have argued that type IIB compactifications on SU(3)-structure

manifolds with O3-planes might in principle be cosmologically interesting, but they would

require to go beyond the study of just bulk moduli. Using instead O5-planes, one would

need F1-flux, which, however, cannot be turned on on an SU(3)-structure manifold unless

it is actually an SU(2)-structure manifold. As we have also shown that having only one

kind of Op-plane with p = 7, 9 would not work, it follows that IIB compactifications on

strict SU(3)-structure manifolds cannot lead to classical dS vacua or slow-roll inflation if

we have only one kind of Op-planes with p = 5, 7, 9, or they would require going beyond

the bulk moduli for p = 3.

Turning to cases with two different types of Op-planes (and requiring some unbro-

ken supersymmetry in the action), the only other potentially interesting SU(3)-structure

compactifications then have either O3- and O7-planes, or O5- and O9-planes. For the

O3/O7-plane case one has again the problem we discussed above due to the O3-planes.

The case with O5- and O9-planes is beyond the scope of this paper, as the O9-plane

charge cannot be canceled by fluxes, and we therefore have to introduce D9-branes and

worry about open string moduli. So our SU(2)-structure compactifications with F1-flux

and O5/O7-planes remain as a very tractable class of models that evades all previously

discussed no-go theorems.

5.2 No-go theorems for type IIB compactifications on SU(2)-structure mani-

folds

In this section we will derive several no-go theorems for type IIB compactifications of type

IIB on SU(2)-structure manifolds in the presence of O5- and O7-planes. The idea behind

the no-go theorems is to find a direction in moduli space along which the slope is of the

same order as the value of the potential which then leads to a slow-roll parameter ǫ of order

one. This then excludes slow-roll inflation as well as de Sitter vacua.

The directions in moduli space we look at will generically involve the dilaton and some

of the Kähler moduli. We also use the complex structure moduli but never the axionic

moduli coming from C2, C4 and B. The no-go theorems will be in the spirit of the no-go

theorems derived in [34, 35] for type IIA compactifications on SU(3)-structure manifolds.

There the authors used a split of the Kähler and/or complex structure moduli into two

sets. A priori such a split seems rather unnatural for a generic SU(3)-structure manifold,

but among the cosets spaces and twisted tori spaces studied in [34, 35] this split turns out
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to be generically present. In the SU(2)-structure manifolds we study here, the split likewise

appears naturally. The Kähler moduli split into τ and the ti, while the complex structure

moduli split into the zA and the wI . We will make use of this split by studying directions

in moduli space that only involve for example τ and not the ti. In the concrete models we

will study there are further splits since the intersection forms X̃ij , X̂AB , X̄IJ have only off

diagonal entries so that for example X̃ijt
itj = −2t1t2 is compatible with a further split of

the ti into t1 and t2. This allows us to study also directions that involve for example only

t1 but not t2.

Generically the no-go theorems we derive will only apply to models that satisfy some

restrictions on the NSNS fluxes. Such restrictions set in certain cases the flux contribution

to the O5- and/or O7-tadpole conditions to zero. This requires one to introduce D-branes

or consider cases with fewer O-planes that potentially preserve more supersymmetry in four

dimensions. This is beyond the scope of this paper. Nevertheless, we write down these

no-go theorems since they make use of the natural splitting in the Kähler and complex

structure sector and they apply to some of the twisted tori one can obtain from the base-

fiber splitting.

To start with, we calculate the explicit scalar potential (2.17) using the Kähler poten-

tial (2.18), (3.10) and superpotential (2.20). We redefine

uA = q sUA, vI =
q

s
VI , (5.13)

with q = e−D such that X̂ABUAUBX̄IJVIVJ = 4. We have summarized a couple of useful

results related to the Kähler potential in appendix C. Using these one finds after a long

but straightforward calculation the following contributions to the scalar potential

VH =
s2

16(−X̃ijkikj) q2
K̂ABX̂ACX̂BDMab

(

haC − r̃aCi bi
)

(

hbD − r̃bDi bi
)

, (5.14)

Vf =
1

16(−X̃ijkikj) q2

{

Mab

[

− 1

s2
ǫacǫbdrIcr

J
d X̄IKX̄JLK̄KL +

s2

4
r̃aAi r̃bBj K̃ijX̂ACX̂BDK̂CD

−s2X̂AB(X̃−1)ij r̃aAi r̃bBj X̃klk
kklX̂CDUCUD

]

− 8X̄IJX̃ijk
irIar̂

aj
A UAVJ

}

, (5.15)

V1 =
(−X̃ijk

ikj)Mabm
amb

16q4
, (5.16)

V3 =
K̃ijX̃ikX̃jlMab

(

eak + r̂akA cA(2) − mabk
)(

ebl + r̂blAcA(2) − mbbl
)

16(−X̃ijkikj) q4
, (5.17)

V5 =
1

4(−X̃ijkikj) q4
Mab (5.18)

×
(

fa − ǫacX̄IJr
I
c c
J
(4) + X̂ABhaAcB(2) − X̃ij

(

eai + r̂aiA cA(2)

)

bj +
1

2
maX̃ijb

ibj
)

×
(

f b − ǫbdX̄IJr
I
dc
J
(4) + X̂ABhbAcB(2) − X̃ij

(

ebi + r̂biAcA(2)

)

bj +
1

2
mbX̃ijb

ibj
)

,
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VO5 =−s ǫabX̂ABUA
(

eair̃bBi + mahbB
)

4q3
, (5.19)

VO7 =−X̄IJm
arIaVJ

4s q3
, (5.20)

where we used

(Mab) =
1

Re(τ)

(

|τ |2 Im(τ)

Im(τ) 1

)

,

K̃ij = Kij̄ , (5.21)

K̂AB =
1

s2q2
KAB̄,

K̄IJ =
s2

q2
KIJ̄ .

Here, K∗∗̄ denotes the inverse Kähler metric that splits into the four pieces Kτ τ̄ , Kij̄, KAB̄

and KIJ̄ as can be seen from the Kähler potential (2.18), (3.10), and we defined K̂AB and

K̄IJ so that the dependence on q and s is fully explicit in the scalar potential. For VO5 we

used the Bianchi identities (2.13) arising from demanding that d2 on the forms gives zero,

and for VH we also used that dH3 = 0 (c.f. (2.15)).

Note that τ = x + iy appears in the scalar potential only through Mab and that

MabA
aAb =

1

x

[

x2(A1)2 + (A2 + A1y)2
]

≥ 0, (5.22)

so that VH , V1, V3, V5 ≥ 0, since metric positivity requires x > 0 and in our conventions

−X̃ijk
ikj > 0.

The expression for ǫ is

ǫ = V −2

{

Kτ τ̄ ∂V

∂τ

∂V

∂τ̄
+ Kij̄ ∂V

∂ti
∂V

∂t̄j̄
+ KAB̄ ∂V

∂zA
∂V

∂z̄B̄
+ KIJ̄ ∂V

∂wI

∂V

∂w̄J̄

}

, (5.23)

or, using the real fields,

ǫ ≥ 1

4V 2

{

4x2

(

(

∂V

∂x

)2

+

(

∂V

∂y

)2
)

+ K̃ij

(

∂V

∂ki
∂V

∂kj

)

+ q2

(

∂V

∂q

)2

+ s2

(

∂V

∂s

)2
}

,

(5.24)

where we only spelled out the contributions relevant for us and have neglected a positive

semi-definite contribution from the axions and the UA and VI .
For several no-go theorems we will use the following inequality (see appendix C)

K̃ij ∂V

∂ki
∂V

∂kj
=
(

2kikj
) ∂V

∂ki
∂V

∂kj
+
(

2kikj − 2(X̃−1)ijX̃klk
kkl
) ∂V

∂ki
∂V

∂kj
≥ 2

(

ki
∂V

∂ki

)2

.

(5.25)

With these explicit expressions for V and ǫ we can now derive several new no-go theorems

in the spirit of [34, 35]. All the no-go theorems that involve the τ modulus will come in

pairs, because we can always find a related no-go theorem that uses the new coordinate
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τ ′ = x′ + iy′ ≡ 1
τ . Since the scalar potential depends only through Mab on τ , its form in

terms of Mab is unchanged, and the matrix Mab has to be written in terms of τ ′ as

(Mab) =
1

Re(τ ′)

(

1 −Im(τ ′)

−Im(τ ′) |τ ′|2

)

, (5.26)

so that now

(M)abA
aAb =

1

x′

[

(x′)2(A2)2 + (A1 − A2(y′))2
]

≥ 0, (5.27)

since metric positivity required x > 0 which then implies that x′ = x
x2+y2 > 0. The form

of ǫ does not change under this coordinate transformation, since

4x2

(

(

∂V

∂x

)2

+

(

∂V

∂y

)2
)

= 4(x′)2

(

(

∂V

∂x′

)2

+

(

∂V

∂y′

)2
)

. (5.28)

Mab written in terms of τ ′ can be brought into the form (5.21) if we exchange a, b = 1 and

a, b = 2 everywhere and simultaneously change the sign of y′

(Mab)

1↔2
y′→−y′−→ (M ′

ab) =
1

Re(τ ′)

(

|τ ′|2 Im(τ ′)

Im(τ ′) 1

)

.

Therefore, for every no-go theorem involving x and y, we can find a corresponding one

involving x′ and −y′, if we exchange a, b = 1 and a, b = 2.

5.2.1 The IIB version of the HKTT no-go theorem

We start out by re-deriving, for our type IIB compactifications, a no-go theorem that

has appeared in the context of type IIA flux compactifications on CY3 manifolds in [30].

There the authors showed that, using the overall volume and dilaton modulus, there is a

lower bound ǫ ≥ 27
13 if one allows for RR-fluxes, H3-flux and O6-planes. Since our setup is

formally T-dual to a type IIA compactification with O6-planes one can ask how this no-go

theorem can be translated to our setting. Since H3-flux and metric fluxes get mixed under

the formal T-duality, one expects that we need to restrict the H3-flux and metric flux in

our setting. Indeed, if we demand that

h1A = rI2 = r̃aAi = 0 (5.29)

(recall that r̂aiA = −X̂AB(X̃−1)ij r̃aBj ) then we find that

(−3q∂q − x∂x − ki∂ki)V ≥ 9V, (5.30)

where −x∂x − ki∂ki = −ρ∂ρ with ρ = (vol6)
1/3 =

(

−x1
2X̃ijk

ikj
)1/3

. From the explicit

expression for ǫ (5.24) we have

ǫ ≥ 1

4V 2

{

4x2

(

∂V

∂x

)2

+ 2

(

ki
∂V

∂ki

)2

+ q2

(

∂V

∂q

)2
}
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=
1

V 2

{

1

39

[

(−3q∂q − x∂x − ki∂ki)V
]2

+

+
1

52

[

(q∂q − 4(x∂x + ki∂ki)V
]2

+
1

6

[

(2x∂x − ki∂ki)V
]2
}

≥ 1

V 2

{

1

39

[

(−3q∂q − x∂x − ki∂ki)V
]2
}

≥ 27

13
.

Similarly, we can introduce the new variable τ ′ ≡ 1
τ as discussed above and demand that

h2A = rI1 = r̃aAi = 0 from which we find

(−3q∂q − x′∂x′ − ki∂ki)V ≥ 9V, (5.31)

and therefore again ǫ ≥ 27
13 .

We have chosen the assumption (5.29) such that a formal T-duality along the 1-

direction (c.f. (2.23)) would lead to a manifold without geometric and non-geometric fluxes

in IIA. As was discussed in [31, 32, 76], this no-go theorem can be extended on the type IIA

side by allowing certain metric fluxes, i.e. non-Ricci flat manifolds: as long as the result-

ing compact space has positive curvature everywhere in moduli space, the no-go theorem

of [30] is still applicable. We can likewise ask which of our restrictions (5.29) on the fluxes

are really needed in the IIB version. From

(−3q∂q − x∂x − ki∂ki)VH (5.32)

= 9VH − 2
s2

16(−X̃ijkikj) q2
K̂ABX̂ACX̂BD

(

h1C − r̃1C
i bi

) (

h1D − r̃1D
i bi

)

,

we see that we have to require that h1C − r̃1C
i bi = 0 everywhere in moduli space, i.e. for

all values of bi. This leads to h1A = r̃1A
i = 0. Using this and making the extra assumption

r̃2A
i = 0 we find

(−3q∂q − x∂x − ki∂ki)Vf = 9Vf + 2
1

16(−X̃ijkikj) q2

1

s2
rI2r

J
2 X̄IKX̄JLK̄KL ≥ 9Vf . (5.33)

So we see that Vf satisfies the no-go theorem even when rI2 6= 0. It is easy to see that

the same is true for all other contributions to the scalar potential so we conclude that the

no-go theorem applies to all models that satisfy only h1A = r̃aAi = 0. In a concrete model

it is also possible to relax the condition r̃2A
i = 0 if the model still satisfies

(−3q∂q − x∂x − ki∂ki)Vf ≥ 9Vf . (5.34)

Again a similar conclusion can be reached considering x′ and exchanging a = 1 and a = 2

in the previous discussion.

5.2.2 Factorization in the Kähler sector

Based on our factorization of the Kähler moduli into τ and the ki we have two more obvious

directions in moduli space along which we could look for no-go theorems [35]. If one can

show that

− 2q∂qV − ki∂kiV ≥ 6V, (5.35)
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which is certainly true if r̃aAi (and hence also r̂ajA via (2.12)) vanish, then one finds from

the explicit expression for ǫ that

ǫ ≥ 1

4V 2

{

2

(

ki
∂V

∂ki

)2

+ q2

(

∂V

∂q

)2
}

=
1

V 2

{

1

18

[

(−2q∂q − ki∂ki)V
]2

+
1

36

[

(−q∂q + 4ki∂ki)V
]2
}

(5.36)

≥ 1

V 2

{

1

18

[

(−2q∂q − ki∂ki)V
]2
}

≥ 2.

As was pointed out in [34] the assumption r̃aAi = 0 can be relaxed, and it is sufficient to

show that any particular model satisfies

− 2q∂qVf − ki∂kiVf ≥ 6Vf , (5.37)

in order to exclude the existence of dS vacua and the possibility of slow-roll inflation.

Another possible no-go theorem arises if

− q∂qV − x∂xV ≥ 3V, (5.38)

which is always satisfied if h1A = r̃1A
i = rI2 = 0. In this case it does not seem possible to

relax these constraints. We find a lower bound on the slow-roll parameter

ǫ ≥ 1

4V 2

{

4x2

(

∂V

∂x

)2

+ q2

(

∂V

∂q

)2
}

=
1

V 2

{

1

5
[(−q∂q − x∂x)V ]2 +

1

20
[(−q∂q + 4x∂x)V ]2

}

(5.39)

≥ 1

V 2

{

1

5
[(−q∂q − x∂x)V ]2

}

≥ 9

5
.

Since this no-go theorem involves the x-direction we again have a related no-go theorem

involving x′, if h2A = r̃2A
i = rI1 = 0.

5.2.3 Factorization in the Kähler and complex structure sector

Just as in [35] we can make use of the factorization in the Kähler sector and at the same

time of the factorization in the complex structure sector, where we have the two sets of

moduli zA and wI . This can easily be done by looking at directions that involve both q

and s. For example, if h1A = r̃1A
i = rIa = 0, one finds that

(−2q∂q + s∂s − x∂x)V ≥ 7V. (5.40)

Using this we can derive a bound on ǫ

ǫ ≥ 1

4V 2

{

4x2

(

∂V

∂x

)2

+ q2

(

∂V

∂q

)2

+ s2

(

∂V

∂s

)2
}

=
1

V 2

{

1

21
[(−2q∂q + s∂s − x∂x)V ]2 +

1

420
[(−2q∂q + s∂s + 20x∂x)V ]2 (5.41)

+
1

20
[(q∂q + 2s∂s)V ]2

}

≥ 7

3
.
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Again there is a related no-go theorem involving x′ under the assumption that h2A = r̃2A
i =

rIa = 0.

We can also find a no-go theorem using only the complex structure moduli. If rIa = 0,

then we have

(−q∂q + s∂s)V ≥ 4V, (5.42)

and find the following bound on ǫ

ǫ ≥ 1

4V 2

{

q2

(

∂V

∂q

)2

+ s2

(

∂V

∂s

)2
}

=
1

V 2

{

1

8
[(−q∂q + s∂s)V ]2 +

1

8
[(q∂q + s∂s)V ]2

}

≥ 2. (5.43)

5.2.4 No-go theorems for a complete factorization in the Kähler and complex

structure sector

In our concrete models the volume does not only factor into x and X̃ijk
ikj , but we actually

have vol6 = xk1k2. This means that we can also study directions involving k1 or k2 or a

combination of x with k1 or k2. This leads to no-go theorems very similar to the ones dis-

cussed above. Furthermore, we can use the fact that X̂ABUAUBX̄IJVIVJ = −4U1U2V1V2

to study other directions that generalize the above discussion where we used q and s. For

each of the cases the restriction we have to put on the NSNS fluxes vary, but we still find

the same bound on ǫ. There are of course many more no-go theorems one can derive for

these concrete models. We will just discuss two more in detail since we will need them to

analyze our explicit models. Since X̂12 = X̂21 = −1 and X̄12 = X̄21 = 1 we have

ǫ ≥ V −2

{

KAB̄ ∂V

∂zA
∂V

∂z̄B̄
+ KIJ̄ ∂V

∂wI

∂V

∂w̄J̄

}

(5.44)

≥ V −2

{

(

uA
)2
(

∂V

∂uA

)2

+
(

vI
)2
(

∂V

∂vI

)2
}

.

It will be convenient to use the uA and vI . Their explicit dependence can be read off

from (5.14)–(5.20) if we change UA → uA

q s , VI → vIq
s and q4 → −u1u2v1v2. After this

replacement we see that for example

− u1∂u1V ≥ V, (5.45)

if r̃a2i = ha2 = 0. Therefore, we find the bound

ǫ ≥ V −2

{

(

u1
)2
(

∂V

∂u1

)2
}

≥ 1. (5.46)

A similar statement applies for v1 under the assumptions r2
a = 0. In both cases there are

related no-go theorems if we exchange A = 1 and A = 2, or I = 1 and I = 2, respectively.

5.3 Analysis of concrete examples

We can now analyze our concrete examples and check whether the existence of dS vacua

and slow-roll inflation is not possible due to one of the no-go theorems from the previous

subsection.
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SU(3)×U(1)
SU(2)

. For this model we have f1
35 = −f1

46 =
√

3/2, cyclic. Calculating Vf we find

Vf =
3V(V + 8x k s2U)

16x k2s2q2
. (5.47)

Recalling that we need k > 0 and UV < 0 so that the metric is positive definite, we find that

− 2q∂qVf − k∂kVf = 6Vf −
3UV
2kq2

≥ 6Vf (5.48)

and therefore that the condition in (5.37) is satisfied and one has ǫ ≥ 2. Under a formal

T-duality along the cycle dual to Y
(1−+)
2 one obtains a geometric type IIA compactification

on the same manifold, which was studied in [34], where the authors found the same bound

on ǫ.

SU(2)2

U(1)
× U(1). For this model we have f1

35 = 1, cyclic, and f1
46 = −1. This leads to

Vf =
(V1)2 + 4x ks2U(V1 − V2) + (V2)2

8x k2s2q2
. (5.49)

Recalling that we need k > 0, UV1 < 0 and UV2 > 0 so that the metric is positive definite,

we find that

− 2q∂qVf − k∂kVf = 6Vf +
−UV1 + UV2

2kq2
≥ 6Vf (5.50)

and therefore that the condition in (5.37) is satisfied and one again has ǫ ≥ 2. Under a

formal T-duality along the cycle dual to Y
(1−+)
2 one obtains a geometric type IIA com-

pactification on the same manifold, which was studied in [34], where the authors found the

same bound on ǫ.

SU(2)×SU(2). In [34, 35] it was shown that compactifications of type IIA on this space

can lead to dS extrema with one tachyonic direction. In [54] (based on the earlier work

[87, 89, 90]) the authors found fully stabilized dS vacua for type IIA on an SU(3)-structure

space with non-geometric fluxes that is very similar to the formally T-dual version of the

SU(2)×SU(2) model studied in the present paper. It is therefore very interesting to ask

whether this space allows for geometric dS minima in IIB. We have analyzed the correspond-

ing scalar potential using Mathematica and with the aid of the package STRINGVACUA

[91] but due to its complexity we were only able to find one particular solution with numer-

ically vanishing ǫ. For the ease of presentation we have rounded the values of our solution

to six significant digits17

x ≈ 0.267585, k1 ≈ 1.76189, k2 ≈ 1.97367,

u1 ≈ 2.38469, u2 ≈ 0.0406036, v1 ≈ −0.00820371, v2 ≈ 0.0512969,

y ≈ 0.624470, b1 ≈ −6.22664, b2 ≈ −3.41528, (5.51)

c1
(2) ≈ 4.99938, c2

(2) ≈ 6.53845, c1
(4) ≈ 18.2884, c2

(4) ≈ −14.8650,

m1 ≈ 1.26529, m2 ≈ −1.92725, f (3)1 ≈ −6.09473, f (3)2 ≈ 10.5444.

17The solution we found has ǫ ≈ 10−20. The rounded values in equation (5.51) give only ǫ ≈ 6.5 × 10−3.
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This solution has η ≈ −3.1 similar to the numerical type IIA dS extrema found in [34, 35].

Besides this tachyonic direction there is another tachyonic direction corresponding to an

eigenvalue of the η matrix of approximately -0.00039. While the above solution is not in a

regime in which we can trust supergravity, it nevertheless shows that for this model there

cannot exist a no-go theorem similar to the ones discussed earlier in this section.

It would be very interesting to study the SU(2)×SU(2) model further to check whether

one can prove that there is always at least one tachyonic direction or whether it allows for

metastable dS vacua with large volume and small string coupling. Understanding the

tachyonic directions better should also allow to decide whether there are points in the

moduli space that allow for slow-roll inflation in this model.

SU(2) ×U(1)3. For this model we have f1
35 = 1, cyclic. This leads in terms of τ ′ = 1

τ to

Vf =
1

8q2s2x′k1k2

{

(k1s2U1)2 + (k2s2U2)2 +
(

(x′)2 + (y′)2
)

(V2)2 (5.52)

−2(k1s2U1)(k2s2U2) − 2x′V2(k1s2U1 + k2s2U2)
}

.

We recall that we need x′ > 0, ki > 0, U1U2 > 0 and UAV2 > 0 so that the metric is

positive definite. Then we can assume that one of the three quantities |x′V2|, |k1s2U1|,
|k2s2U2| is the biggest. We will choose |x′V2| ≥ |k1s2U1| and |x′V2| ≥ |k2s2U2| which

leads to

−2q∂qVf−ki∂kiVf = 6Vf +
−(k1s2U1 − k2s2U2)2 + x′V2(k1s2U1 + k2s2U2)

4q2s2x′k1k2
≥ 6Vf (5.53)

and therefore the condition in (5.37) is satisfied and one has ǫ ≥ 2. One can reach a similar

conclusion, if for example |k1s2U1| is the biggest quantity, by looking at the direction

−2q∂q − k2∂k2 − x′∂x′ . Under a formal T-duality along the cycle dual to Y
(1−+)
2 one

obtains a geometric type IIA compactification on the same manifold, which was studied

in [34], where the authors found the same bound on ǫ.

The twisted T 2
×T 4/Z2. The particular twisted tori models discussed above all satisfy

the conditions for one no-go theorem similar to the ones explicitly discussed in section 5.2

(see in particular the discussion in subsection 5.2.4). From the possible H3- and metric

fluxes given in (4.26) one finds

no-go theorem model

ǫ ≥ 7
3

{1}, {3}, {3, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6},
{3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 3, 4, 5, 6}

ǫ ≥ 2 {1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {3, 4, 5}, {1, 3, 4, 5}
ǫ ≥ 9

5 {3, 6}
ǫ ≥ 1 {1, 3}, {3, 4}

where again {. . .} denote the chosen base over which we twisted the complementary part

of the torus. Unlike the situation for the coset spaces, where only the SU(2)×SU(2)-space

T-dualized to a non-geometric compactification in type IIA, the twisted tori in the above

table generically become non-geometric spaces in IIA, and the no-go theorems proven here
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are hence in general not covered by the no-go theorems proven in [35]. The no-go theorem

corresponding to ǫ ≥ 1 also makes use of a different direction in moduli space as the no-go

theorems considered in [35].

It is also possible to allow combinations of NSNS-fluxes that cannot be explicitly con-

structed from the base-fiber splitting. Then it is not a priori clear that there is an actual

compact space that corresponds to such metric fluxes. However, there are certainly exam-

ples where this is the case like for example SU(2)×SU(2), which cannot be constructed from

a base-fiber splitting of a torus but which is nevertheless a good geometric compactification

spaces. In such a case one can hope to evade all no-go theorems related to the ǫ parameter

and find dS extrema in the potential. This was shown to be the case in [35] in type IIA

compactifications on SU(3)-structure manifolds, where the authors found (unstable) dS

extrema by using metric fluxes that can be obtained from a base-fiber splitting but also

had examples of dS extrema that could not be constructed in this way.

6 Conclusion

In this paper we have studied type IIB compactifications on six-dimensional SU(2)-

structure manifolds in the presence of O5- and O7-planes, H3- and RR-fluxes. We have

spelled out the resulting classical four-dimensional N = 1 supergravity action and studied

the scalar potential for the closed string moduli. We have shown that it is possible to

stabilize all bulk closed string moduli at tree-level in supersymmetric AdS vacua with large

volume and small string coupling, which we made fully explicit for a specific model. We

found that, by contrast, supersymmetric Minkowski vacua are not possible in this setup.

We discussed many explicit examples of six-dimensional SU(2)-structure manifolds in detail

and discussed their cosmological properties. We derived potential no-go theorems against

dS vacua and slow-roll inflation for our class of models and were able to use them to exclude

all but one of our explicit models. However, there is no known generic no-go theorem that

forbids dS vacua or slow-roll inflation in this class of models, which makes it interesting

to study further models. Also for one of our explicit models we found a dS solution with

numerically vanishing ǫ and two tachyonic directions. It would be interesting to study this

further in particular since it was shown in [54] that it is possible to obtain fully stabilized

dS vacua in non-geometric compactifications of type IIA on SU(3)-structure spaces, and

our setup is formally T-dual to compactifications of this type.

A straightforward extension of our work would be to consider type IIB on SU(2)-

structure manifolds and include only one kind of orientifold planes. In that case it would

be interesting to find out whether it is still possible to stabilize all closed string moduli

at tree-level in the resulting four-dimensional N = 2 theory (see [92–94] for related work

on dS vacua in flux compactifications with N > 1 SUSY). It would also be interesting to

extend the work of [71] and study type IIA compactifications on SU(2)-structure manifolds

in the presence of two different kinds of O-planes. One can also analyze our setup from a

10-dimensional point of view as was done for type IIA on SU(3)-structure manifolds in [33].

We hope to come back to some of these issues in the future.
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A D-terms in type IIB

In this appendix we discuss the additional terms in the scalar potential that arise, if the

SU(2)-structure manifold has forms Y
(2++)
α that are even under both the O5- and the

O7-orientifold projections.

We define the additional symmetric intersection form

X̆αβ =

∫

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y (2++)

α ∧ Y
(2++)
β . (A.1)

Acting with d on the forms can now lead to new contributions for Y
(2−+)
I (c.f. (2.10)) and

we also allow for the non-closure of the Y
(2++)
α forms

dY
(2−+)
I = r̄aαI Y (1−+)

a ∧ Y (2++)
α ,

dY (2++)
α = r̆aIα Y (1−+)

a ∧ Y
(2−+)
I .

The two new matrices are not independent but rather satisfy r̆aIα = −X̆αβ

(

X̄−1
)IJ

r̄aβJ . De-

manding that d squares to zero on the forms one finds the necessary conditions (c.f. (2.13))

X̄IJr
I
ar̆
bJ
α = ǫabr̃

aA
i r̂bjA = ǫabr̂

ai
A r̃bBi = ǫabr̄

aα
I r̆bJα = ǫabr̆

aI
α r̄bβI = 0. (A.2)

From the RR form C4 we now also get U(1) vector fields

C4 = Aaα
µ dxµ ∧ Y (1−+)

a ∧ Y (2++)
α . (A.3)

Note that due to the self-duality of F5 not all of these gauge fields are independent. Half

of them are the magnetic duals of the other half.

The four-dimensional action is uniquely determined in terms of three functions. The

Kähler potential K (2.18), (3.10), the holomorphic superpotential W (2.20) and the holo-

morphic gauge-kinetic coupling f(aα)(bβ).
18 The bosonic part of the action is

S(4) = −
∫

M4

{

−1

2
R ∗ 1 + KMN̄dφM ∧ ∗dφ̄N̄ + V ∗ 1

+
1

2
Re(f(aα)(bβ))F

aα ∧ ∗F bβ +
1

2
Im(f(aα)(bβ))F

aα ∧ F bβ

}

, (A.4)

18We will stick to our notation in which the different U(1) gauge fields are distinguished by two different

indices a and α. To increase legibility we will group the four indices on the gauge-kinetic function in groups

of two indices by using parenthesis.
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where ∗ is the four-dimensional Hodge star, KMN̄ = ∂M ∂̄N̄K, KMN̄ is its transposed

inverse, F aα = dAaα, and DMW = ∂MW + (∂MK)W and M,N run over all scalar fields,

i.e. over {a, i, A, I}. Our main interest is in the scalar potential

V = eK
(

KMN̄DMW DNW − 3|W |2
)

+
1

2
(Re(f))−1 (aα)(bβ) DaαDbβ. (A.5)

The D-terms Daα for the U(1) gauge groups coming from reducing C4 are

Daα =
i

W
δaαφMDMW = i∂MKδaαφM + i

δaαW

W
, (A.6)

where δaαφM and δaαW are the variations of the field φM and superpotential W under a

gauge transformation. The equation (A.6) is not valid for W = 0 but our compactification

will have δaαW = 0, so that the explicit D-terms determined below are also valid for W = 0.

The holomorphic gauge-kinetic coupling can be read off directly from the 10-

dimensional action. See [77] for an explicit derivation for type IIB on SU(3)-structure

manifolds.

We have seen that the RR field C4 gives rise to U(1) gauge fields and axions through

the expansion

C4 = Aaα
µ dxµ ∧ Y (1−+)

a ∧ Y (2++)
α + cI(4)Y

(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I . (A.7)

Doing a gauge transformation of C4 we find

C4 → C4 + dΛ(3−+)

= C4 + d
(

λaα(x)Y (1−+)
a ∧ Y (2++)

α

)

= C4 + ∂µλ
aαdxµ ∧ Y (1−+)

a ∧ Y (2++)
α − ǫabλ

aαr̆bIα Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I (A.8)

=
(

Aaα
µ + ∂µλ

aα
)

dxµ ∧ Y (1−+)
a ∧ Y (2++)

α +
(

cI(4) − ǫabλ
aαr̆bIα

)

Y
(1−+)
1 ∧ Y

(1−+)
2 ∧ Y

(2−+)
I ,

so we see that Aaα transforms as a U(1) gauge field and that the axions cI(4) also transform,

i.e. they carry the charge −ǫabr̆
bI
α under the Aaα gauge group. All other fields are invariant

so that we find the following D-terms

Daα = −i
∂K

∂wI
ǫabr̆

bI
α = i

X̄IJv
J

X̄KLvKvL
ǫabr̆

bI
α , (A.9)

where we have used that

δaαW = −iT cX̄IJ

(

−iǫabr̆
bI
α

)

rJc = 0, (A.10)

due to the first constraint in (A.2).

So the D-term potential is

VD = −1

2
(Re(f))−1 (aα)(bβ)

(

X̄IJv
J

X̄KLvKvL
ǫacr̆

cI
α

)(

X̄IJv
J

X̄KLvKvL
ǫbdr̆

dI
β

)

. (A.11)
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B Base-fiber construction

In this appendix we will explain the base-fiber construction [25, 44–50] using one particular

example as illustration. For a more detailed discussion and several explicit examples we

refer the reader to [25, 49].

For the base-fiber construction we split the internal space into a (6 − n)-dimensional

base and an n-dimensional fiber. The only requirement for this split is that base and fiber

do not mix under the orbifold and orientifold actions. If we know the T-duality group of

the fiber and the base space is not simply-connected, then when going around a non-trivial

cycle in the base we can twist the fiber by an element of the T-duality group. Since the

underlying string theory is invariant under the T-duality group, the resulting space is a

valid string compactification. However, in general the resulting space is not globally but

only locally geometric. Since we are interested in supergravity compactifications, we will

restrict ourselves to geometric twists.

We will now study an explicit twist of the space T 2 × T 4/Z2 with coordinates xp ∼
xp + 1, p = 1, . . . 6. The Z2 acts by

θ : (x1, x2, x3, x4, x5, x6) → (x1, x2,−x3,−x4,−x5,−x6). (B.1)

Furthermore, we want to allow for O5- and O7-planes that can be obtained from the

projections ΩpσO5 and (−1)FLΩpσO7 where

σO5 : (x1, x2, x3, x4, x5, x6) → (−x1,−x2, x3, x4,−x5,−x6), (B.2)

σO7 : (x1, x2, x3, x4, x5, x6) → (x1, x2, x3,−x4, x5,−x6). (B.3)

Now for our concrete example we choose the base to be spanned by xb, b = {1, 2, 3, 5} and

the fiber by xf , f = {4, 6}. We will use indices b for the base and f for the fiber. Since

the fiber is a T 2 (moduli the orbifold and orientifold projections which we will take into

account below), the T-duality group for the fiber is SO(2, 2; Z). Now for each base index

we choose an element in the Lie algebra of the T-duality group19

Mb =

(

−f f2bf1 Hbf1f2

02×2 f f1bf2

)

(B.4)

that corresponds to an infinitesimal twist of the fiber when moving along the circle direction

xb. From the action of the T-duality group on the fields one can identify the entries in

these matrices with H3-flux and metric flux fmnp [25]. To be consistent with the orbifold and

orientifold projections, we have to demand that the fmnp are invariant under θ, σO5, σO7 while

H3 needs to be even under θ and odd under σO5 and σO7. This gives the following matrices

M1 =











0 −f6
14 0 0

−f4
16 0 0 0

0 0 0 f4
16

0 0 f6
14 0











, M2 =











0 −f6
24 0 0

−f4
26 0 0 0

0 0 0 f4
26

0 0 f6
24 0











, M3 = M4 =











0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











.

(B.5)

19The lower block in the Mb corresponds to non-geometric Q-flux which we have set to zero.

– 37 –



J
H
E
P
0
4
(
2
0
1
0
)
0
1
1

So we see that this particular setup does not allow H3-flux and we can have at most four

different metric fluxes.

There are two more requirements the Mb have to satisfy. If we move around a trivial

cycle in the base the resulting twist has to be trivial since we can shrink the cycle to zero.

This requirement is implemented by demanding that [Mb1 ,Mb2 ] = 0 which in our case gives

[M1,M2] =











−f4
16f

6
24 + f4

26f
6
14 0 0 0

0 f4
16f

6
24 − f4

26f
6
14 0 0

0 0 f4
16f

6
24 − f4

26f
6
14 0

0 0 0 −f4
16f

6
24 + f4

26f
6
14











= 0.

(B.6)

This constraint is the Bianchi identity (3.13).

The final constraint that arises from the base fiber splitting is that eMb ∈ SO(2, 2; Z). This

constraint gives us the right quantization of the NSNS fluxes in our new space. For the

generic case in which Mb is not nil-potent one finds that the NSNS fluxes are not integers

but rather real numbers [25, 49]. It is also possible that the quantization condition forces

certain fluxes to vanish, e.g. if one finds that e
f

f1
bf2 , e

−f
f1
bf2 ∈ Z. In our example we find

cosh

(

√

f4
a6

√

f6
a4

)

,

√

f6
a4 sinh (

√

f4
a6

√

f6
a4)

√

f4
a6

,

√

f4
a6 sinh (

√

f4
a6

√

f6
a4)

√

f6
a4

∈ Z, a = 1, 2.

(B.7)

C Useful relations for the calculation of the explicit scalar potential

The type IIB Kähler potential (cf. (2.18), (3.10))

K = − ln

[

−(τ + τ̄)
1

2
X̃ij(t

i + t̄i)(tj + t̄j)

]

(C.1)

− ln

[

1

64
X̂AB(zA + z̄A)(zB + z̄B)X̄IJ(w

I + w̄I)(wJ + w̄J)

]

has the following useful properties

eK =
1

8q4vol6
,

∂τK = − 1

2x
, ∂tiK = − X̃ijk

j

X̃klkkkl
,

∂zAK = − 1

s q

X̂ABUB
X̂CDUCUD

, ∂wI K = −s

q

X̄IJVJ
X̄KLVKVL

,

Kτ τ̄ = 4x2, Kij̄ = 4kikj − 2(X̃−1)ijX̃klk
kkl,

KAB̄ = q2s2
(

4UAUB − 2(X̂−1)ABX̂CDUCUD
)

,

KIJ̄ =
q2

s2

(

4VIVJ − 2(X̄−1)IJX̄KLVKVL
)

,

Kτ τ̄∂τ̄K = −2x, Kij̄∂t̄jK = −2ki,

KAB̄∂z̄BK = −2qsUA, KIJ̄∂w̄J K = −2q

s
VI ,
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where q = e−D = e−φ
√

vol6, vol6 = −1
2xX̃ijk

ikj and Re(zA) = qsUA, Re(wI) = q
sVI such

that X̂ABUAUBX̄IJVIVJ = 4.

This Kähler potential satisfies the scaling condition

Kτ τ̄∂τK∂τ̄K+Kij̄∂tiK∂t̄jK+KAB̄∂zAK∂z̄BK+KIJ̄∂wIK∂w̄J K = 1+2+2+2 = 7. (C.2)
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[42] P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS4 compactifications on cosets,

interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [SPIRES].

[43] A. Chatzistavrakidis, P. Manousselis and G. Zoupanos, Reducing the heterotic supergravity

on nearly-Kähler coset spaces, Fortschr. Phys. 57 (2009) 527 [arXiv:0811.2182] [SPIRES].

[44] C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065

[hep-th/0406102] [SPIRES].

[45] A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds,

JHEP 05 (2006) 009 [hep-th/0512005] [SPIRES].

[46] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on

twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [SPIRES].

[47] C.M. Hull, Global aspects of T-duality, gauged σ-models and T-folds, JHEP 10 (2007) 057

[hep-th/0604178] [SPIRES].

[48] C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].
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