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Modulus and Phase of the Reduced

Logarithmic Derivative of the Cylindrical

Bessel Function

By Andres Cruz and Javier Sesma

Abstract. The modulus and phase of the reduced logarithmic derivative of the cylindrical

Bessel function

zJ'v(z)IJv(z),

for complex variable z and real order v, are investigated. Special attention is paid to the

location of saddle points and their trajectories as v varies.

1. Introduction. Quantum scattering by optical potentials is of considerable in-

terest in that part of nuclear physics known as heavy-ion physics. The analysis of some

mathematical aspects of quantum scattering, such as those discussed in a recent paper

by the present authors [1], requires a good knowledge of the reduced logarithmic deriv-

ative of the cylindrical Bessel function

(1.1) Fv(z) = zJ'v(z)Uv(z),

for complex variable z and positive half-integer index v (physical angular momentum

1= v- 1 ¡2). Speedy preliminary approximate solutions of the Schrödinger equation

are greatly facilitated by a plot of the modulus and phase of Fv(z) in the complex z-

plane. In this paper we discuss the main features of such a plot for real values of the

index v going from -°° to +°°.

The recurrence relation for the Bessel functions [2, Eq. 9.1.27] allows us to write

(1.2) Fv(z) = v-zJv+x(z)Vv(z).

Since Jv(z) is, for real v, a real function of z [2, Eq. 9.1.40], we have obviously

(1.3) Fv(z~) = Fjz),      oreal,

where the bar denotes complex conjugate. Furthermore, the analytic continuation

of Jv(z) [2, Eq. 9.1.35] gives

(1.4) Fv(-z) = Fv(z),      .»real.
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In view of (1.3) and (1.4),we need consider only the first quadrant in the z-plane, the two

positive semiaxes included. Moreover, it is evident that Fv(z) is real on these two semi-

axes.

For negative integer values of the index v, the relation [2, Eq. 9.1.5]

0-5) /_„(z) = (-l)nJ„(z),      «integer,

substituted in Eq. (1.2), gives immediately

(1.6) F_n(z) =-Fn(z),      n an integer ¥= 0.

Knowledge of the location of zeros, poles, and saddle points is of great aid for

drawing a modulus and phase plot of Fv(z).  Zeros and poles are briefly reviewed in

Section 2. Saddle points deserve a more detailed analysis in Section 3. Finally, some

plots are presented in Section 4. Because of the symmetries contained in Eqs. (1.3)

and (1.4), we consider only values of z such that

Rez>0,      lmz>0,

in all what follows, unless otherwise explicitly stated.

2. Zeros and Poles. All the contour Unes in the z-plane corresponding to constant

phase of Fv(z) pass through the zeros and poles of Fv(z). The location of these points

for real v can be immediately obtained, as they correspond to the zeros of J'v(z) and

Jv(z), respectively. These have been extensively studied in the past and tables are

available in the literature. References can be found in classical treatises on special func-

tions ([2, pp. 370-372 and 388-389], [3, pp. 146-147]) and in the more recent one

by Luke [4, pp. 403—412]. To summarize, let us discuss the qualitative behavior of

zeros and poles of Fv(z) as v varies from +°° to —°° through real values.

For real positive v, Fv(z) has an infinity of real zeros and poles, to the right of

the point z= v. Zeros and poles alternate from left to right, starting with a zero. As v

decreases, they all move along the real axis towards the origin. The first zero enters

the origin for v = 0. As v goes from 0 to -1, it moves on the imaginary axis, re-

turning to the origin for v = -1. Also the first pole and the second zero reach the

origin for v = -1. In general, whenever v approaches a negative integer, -m<v, m =

1,2,3,..., 2(m + 1) zeros and 2m poles in the whole z-plane tend to the origin. As

v decreases below -m, they leave the origin, making a trip in the complex z-plane and

coming back to the origin for v = -(m + 1).  Two new (symmetric) real zeros and poles

enter the origin for this value of v.

3. Saddle Points. Let us now investigate the location of points zn in which the

modulus of Fv(z) presents a saddle. In these points, one has

(3.1) dFviz)ldz = 0    for z = z„.

On the other hand, /\,(z) satisfies the differential equation

(3.2) zdFv(z)ldz + (Fv(z))2 + z2 - v2 = 0,
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obtained immediately from the Bessel differential equation [2, Eq. 9.1.1] and the defini-

tion (1.1). The condition (3.1), substituted in (3.2), gives for the saddle points

(3.3) (Fv(zn))2 = v2 = >-2 - z2
n

This relation can be used to obtain numerically the values zn. For the calculation of

Fv(z), (1.2), use of a continued fraction expansion [2, Eq. 9.1.73] for the quotient of

Bessel functions seems to be the most convenient. The convergence of such continued

fraction expansions has been recently studied by Gautschi and Slavik [5]. Alternatively,

Fv(z) can be evaluated using rational approximations [4, pp. 364 ff.].  In this way,

and using the "steepest descent" method to solve (3.3), we have obtained the lowest

values of zn for varying v. The results are shown in Figures 1 and 2.

Re Zn

lm Zn

Figure 1

Saddle points, zn, of the reduced logarithmic derivative of the cylindrical

Bessel function.   The real and imaginary parts of the first seven saddle

points are drawn as functions of the order i>. For v < -«, the location of

the nth saddle point is shown in Figure 2.
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Re Zn

Im Zn

Figure 2

Saddle points, zn, of the reduced logarithmic derivative of the cylindrical

Bessel function.   The behavior is shown of the real and imaginary parts

of the saddle points as v varies between two consecutive negative integers.

This figure complements Figure 1.

It is not difficult to find analytic expressions giving the values zn to desirable

accuracy. A possible procedure is that used by Fettis et al. [6] to obtain the saddle

points of the complementary error function.  The method consists, basically, of ex-

panding Fv(z) as a Taylor series in the vicinity of the saddle point and, after that,

inverting the series. Using a more convenient notation

_2(3.4) s s z-

one obtains for the Taylor expansion

Gv(s) = Fv(z),

(3.5)
Gv(s) =gn- (2\2snTl(s - sn)2 + (3\2s2nTl(gn + 2)(s - s„)3

-(4!2S3r1fe„+2)0f„+3)(s-v>4 + ---,
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where we have denoted

(3-6) i»=0>2-sH)11*-

By expanding gn and s~m in power series of (s - s„), (3.5) becomes

Gv(s) = g + (s- s^gT1 -is- S„)24-1[(2^3r1 + r1]

+ (s - sj34-1[(4^5r1 + & - 1X3S2)-1]

(3.7)
- is - sn)44-1 {5(32g1rl + [1 + (2 + g)(g - 5)/12]r3

-(6^2r'} + ---,
with the abbreviation

(3.8) g = (v2-Syi2.

Let us now introduce a new variable,

(3.9) t = Gv(s)-g,

vanishing at the saddle points. The inversion of the series in (3.7) gives

(3.10) s„=s-blt~ b2t2 - b3t3 - V4

where

(3.11, a) ô,=2g,

(3.11, b) b2 = 1 + 2g3ls,

(3.11, c) b3 = (4g2/s)[l + g2(\ + 2g)/3s],

(3.11, d) ¿4 = fe/3s){15/2 + (^2/s)[10 + 31* + fe2/s)(4 + 14? + 12g2)]},

The repeated application of (3.10), starting with a value s not far from sn, allows one

to obtain sn with the desired accuracy.

The symmetry property given by (1.6) causes some saddle points to enter the

origin whenever v reaches negative integer values. Let us study in which form these

saddle points tend to the origin as v tends to -m.

If we replace (1.2) in (3.3), we obtain for the saddle points either of the two

conditions

(3.12, a) tJv+lbnWM = " + ("2 -zn)l/2>

(3.12, b) znJv+x(zn)Uv(zn) = v-(v2- z2)1/2.

For values of v near negative integers,

(3.13) v = -m + e,      \e\ « 1,

we can use approximate expressions, deduced from the usual ascending series expan-

sion of the Bessel functions, to obtain from (3.12, a)

(3.14, a)        z„ ^2[-m(m + l)!m!e]1/2(m + 1),      «2=1,2,3,...,

and from (3.12, b)

(3.14, b) z„-2[(m-l)!(m-2)!e//w]1/2('"-1>,      m = 2, 3,4.
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From these two equations we see that, as v tends to a negative integer value, -m,

saddle points tend to the origin along the straight lines

(3.15, a) Arg z = k-n\2im + 1),      k = 1, 3, 5, . . . < m + 1,

(3.15, b) Arg z = far/2(«i - 1),      k = 0,2, 4, . . . <m - 1, m > 1,

for e > 0, and along

(3.16, a) Arg z = far/2(w + 1),      fc = 0, 2, 4, . . .< m + 1,

(3.16, b) Arg z = far/2(m - 1),      ¡t = 1, 3, 5, . . . <m - 1,

for e < 0. The trajectories of these saddle points leaving the origin as v decreases

from -m and coming back to the origin as v reaches the value -m - 1 are shown

in Figure 2.  It is interesting to notice that, for v < -1, there is one saddle point on

the positive real semiaxis and another one on the positive imaginary semiaxis.

ImZ

ReZ

Figure 3

Modulus and phase of the reduced logarithmic derivative of the cylindrical

Bessel function of order v = .5. The numbers aside lines indicate the value

of the modulus (continuous lines) or the phase in units n/6 (dashed lines).

The constant phase lines connect zeros and poles.  Saddle points are indica-

ted by the intersection of their constant phase lines.

4. Modulus and Phase Plots. As an illustration, we present, in Figures 3 and 4, plots

of the modulus and phase of F„(z) for v = .5 and v = -5.5, respectively. The contour

unes corresponding to constant modulus or constant phase have been obtained numerically

from (1.2), with a continued fraction expansion for the quotient of the Bessel func-

tions.  Of course, both families of modulus and phase lines are orthogonal.  In the
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figures we have marked the position of the saddle points. The modulus and phase of

Fviz) at these points come immediately from (3.3).

The modification required by the plots as v varies can be easily deduced from

the discussion concerning zeros, poles, and saddle points done in Sections 2 and 3.

Figure 4

Modulus and phase of the reduced logarithmic derivative of the cylindrical

Bessel function of order v — -5.5. The notation is the same as in Figure 3.
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