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ABSTRACT: The modulus of rupture of concrete, which characterizes the bending strength 
of unreinforced beams, is known to depend on the beam size. Because there is no large 
stable growth of a crack before the maximum load is reached, this size effect, unlike that 
in many other types of failure of concrete structures, cannot be explained by energy 
release due to fracture. Rather, this size effect must be explained by the fact that dis­
tributed microcracking and slips with strain softening take place in the boundary layer 
of the beam before the maximum load is reached. The beam is considered to fail before 
any macroscopic cracks are formed. A simple formula describing the size effect is derived. 
Asymptotic analysis of the strain softening in the boundary layer shows that the excess 
of the modulus of rupture over the direct tensile strength is inversely proportional to the 
beam depth and proportional to the thickness of the boundary layer, which itself is 
approximately proportional to the maximum aggregate size. The proposed formula agrees 
with the existing experimental data quite well. The formula is further generalized to 
describe the effect of the gradient of normal strains near the concrete surface. Finally, 
it is shown that approximate analysis of the size effect by linear elastic fracture mechanics 
yields similar formulas. Those formulas, however, have some questionable features; for 
example, they indicate the size effect magnitude depends on the span-to-depth ratio of 
the beam, which has not been observed in experiments. 

The modulus of rupture, which characterizes the apparent tensile strength of concrete beams, 
has for a long time been known to depend on the size of the beam. Initially, it was thought that 
the source of this dependence is statistical, caused by randomness of the intrinsic material 
strength. However, this explanation ignores the stress redistributions caused by cracking prior 
to the maximum load. This is a deterministic effect, which must be taken into account before 
statistical analysis. Furthermore, it is questionable (and not indicated by the available test data) 
that the statistical theory predicts the size effect to be much weaker in three-point-bend beams 
than in four-point-bend beams (because the zone of maximum stress is much shorter in the 
former). It is of course likely that there is at least some statistical size effect, but this size effect 
is probably small. Anyway, it would have to be included in the analysis only after the deterministic 
size effect is taken into account. However, as we will see, the deterministic size effect alone 
can explain the existing test data adequately. 

The basic explanation of the size effect on the modulus of rupture is to be found in the theory 
of quasi-brittle fracture, describing materials of heterogeneous microstructure in which the 
formation of distinct fractures is preceded by distributed cracking. The failure of a beam begins 
by distributed cracking that develops in a boundary layer. The thickness of this layer for different 
beam sizes is about the same, provided the same concrete is considered. Hillerborg et al. (1976) 
showed by numerical calculations that the stress distribution at the peak load has a maximum 
that lies at a certain distance from the tensile face. This distance is determined by the softening 
stress-displacement relation of the cohesive (fictitious) crack model. Hillerborg et al. also dem­
onstrated that numerical calculations based on the cohesive crack model can match the published 
test results on the influence of beam size. This is of course logical to expect, since the predictions 
of fracture mechanics generally exhibit a size effect. 

The calculations of Hillerborg relied on a relatively sophisticated model-the fictitious crack 
model. The solution had to be obtained numerically, by finite elements. The purpose of the 
present paper is to describe the effect of beam size (or, more generally, of the strain gradient) 
on the modulus of rupture by a short formula, the use of which would be simpler than a finite­
element solution. 
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DERIVATION OF FORMULA BASED ON DISTRIBUTED MICROCRACKING 

The size effect caused by formation of the fracture process zone in the boundary layer is the 
principal reason for the difference between the direct tensile strength!; and the so-called modulus 
of rupture 

[,. = 6M"Ibh 2 (I) 

f: represents the apparent maximum stress in the cross section calculated from the bending 
theory; M" = ultimate bending moment, obtained on a simply supported beam of a constant 
rectangular cross section; and h = depth and b = width of the cross section [Fig. I(a)]. Eq. 
(I) presumes a linear stress distribution throughout the cross section [Fig. I(d)]. In reality, near 
the tensile face, there must be a layer of some thickness If [Fig. l(c)] in which the stress is 
reduced [segment 13 in Fig. lee)] due to cracking. To describe the stress reduction, there are 
now two possible hypotheses. 

One possible hypothesis is that, up to the peak load, the cracking remains distributed, being 
stabilized against localization by the restraint provided by uncracked concrete [concrete above 
line 71 in Fig. I(e)]. In that case, the reduction of stress due to cracking [segment 23 in Fig. 
I(e)] is properly described according to continuum damage mechanics. This means that. for 
uniaxial stress, the effect of cracking on stress can be approximately described by a stress-strain 
diagram with postpeak strain softening. For the sake of simplicity, we may consider this diagram 
to be approximately triangular, characterized by linear softening of slope E, «0), direct tensile 
strength!;, and Young's elastic modulus E of concrete, as shown in Fig. I (b). The consequence 
of the postpeak softening is that the stress distribution in Fig. 1 (d l.js changed to that in Fig. 
I (e). Near the tensile face there is a layer of reduced stress (segment 13) up to a certain unknown 
depth If' with stress reduction given by kIf at the tensile face. From the fracture mechanics 
viewpoint, the thickness If of the boundary layer represents the effective depth of the fracture 
process zone at maximum load. 

Another possible hypothesis is that there is no distributed cracking but a vertical crack growing 
from the tensile face. As is known from fracture mechanics of concrete [see e.g. ACI Committee 
446 (1992)], a crack in concrete must be considered as a cohesive crack transmitting crack­
bridging (cohesive) stresses, as described by the fictitious crack model of Hillerborg et al. (1976). 
The bridging stress (J is a function of the crack opening displacement 1', which may be approx­
imately considered as linear, characterized by stress (J = r at l' = 0 and stress (J = 0 at a 
certain displacement ,'( signifying complete separation. The length of the crack is determined 
from the condition that the combined stress intensity factor due to both the applied load and 
the crack-bridging stress is zero. 

In the present study, we adopt the former hypothesis, assuming that, up to the peak load, 
the cracking in the layer of thickness If [Fig. I(c)] is forced to remain distributed because of the 
restraint provided by the uncracked concrete [concrete above the line 71 in Fig. I(e)], which 
stabilizes the cracking against localization (Bazant and Cedolin 1991). After the peak load, the 
cracking of course localizes into one major crack. but we do not need to analyze the postpeak 
behavior. The first hypothesis is also simpler. It does not require the use of fracture mechanics 
and thus it blends better with the philosophy of American Concrete Institute (ACI) code. Both 
hypotheses, however, may be expected to yield approximately equivalent results for the three­
point-bend beam specimens. The crack opening l' in the cohesive (fictitious) crack model is 
approximately equal to the average cracking strain Eer times the effective width w, [Fig. I (a)] 
of the cracking zone, which means that E"we = I', where Eer ~ (f; - (J)(E- 1 

- E,-I). Profile 
I' is considered as linear, which is often an acceptable approximation. 

From the condition of plane cross sections, we obtain, for If « h12, the approximation 
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FIG. 1. Stress and Strain Distributions in Critical Cross Section as Influenced by Boundary layer and 
Deduced from Strain-Softening Analysis 
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where E, < O. To solve the problem according to the bending theory, it is now convenient to 
replace the triangular area 1231 in Fig. l(e) by an equal trapezoidal area 45624 of thickness 0, 
shown in Fig. l(f). If these two areas are equal and if I( « h, the bending moment remains 
approximately the same (except for a higher order error). The replacement of the areas yields 
a linear stress-strain diagram with a shifted neutral axis and maximum tensile stress a l = 6M.,! 
b(1! - 8)2. From the condition of equal areas, klJI2 = alo, we have 

kl} kl? 
8 = - = - (3) 

2CT I 2f: 

According to the definition of the modulus of rupture 1" M" = f,bh 2/6, which yields 

f,h' 
CT I = (h - 8)2 

(4) 

At the same time, because of the approximate similarity of triangles 0170, 0240, and 0'560' in 
Fig. l(d-f), we have a 1/[(hI2) - 0] = 56/0'5 = 71107 = /:I[(hI2) - I,] or CT I = f;(1 - 201h)1 
(1 - 21[lh). Setting this equal to (4), we obtain 

f, 1 - (28Ih) (h - 8)2 

f: 1 - (2/,lh) h 2 
(5) 

This expression can be simplified for 0 « hand 1«< hl2 by noting the Taylor series expansion 
(1 - 21(lh)-1 = 1 + 21f ll! + 4111h2 + .. '. Introducing also the expressions (3) and (2), we 
get 

f: (I) 4£ (I)' 1+2i+Ffi + (6) 

Assuming that the fracture process zone is short compared to the half-depth of the beam, i.e., 
If « h12, we may drop the terms higher than linear. Thus we obtain the following simple result: 

f, 2 -=1+-1 
f: h ' 

(7) 

which gives the first approximation of the size effect on the ratio of the modulus of rupture to 
the direct tensile strength. 

ANALYSIS AND VERIFICATION OF PROPOSED FORMULA 

According to the ACI Standard [ACI Committee 318 (1992)], f; = 6VJ:. and I, = 7.5VJ:., 
where f~ = standard cylindrical compression strength. This means that ACI assumes f,lf; = 
1.25, which implies that If = hl8 in (7). This value of I( is of the same order of magnitude as 
the maximum aggregate size do in typical test beams, which does not seem unreasonable. 

Although f, = 1.25f; is not a bad estimate of the experimental values for normal beam sizes 
and normal aggregates, very different ratios are observed for unusual beam depths h and unusual 
aggregate sizes du. Formula (7) provides a better estimate, provided that, of course, the depth 
I[ of the boundary layer of cracking at the maximum load is known. An important property is 
that this formula gives the ratio of these two tensile strength measures as a function of h, and 
thus also of d" if If is assumed roughly proportional to d". This property is born out by the test 
data existing in the literature, including Reagel and Willis (1931), Kellerman (1932), Wright 
and Garwood (1952), Nielsen (1954), Lindner and Sprague (1953), Walker and Bloem (1957), 
Ma\'cov and Karavaev (1968), and Avram (1981). Comparisons of (7) with these eight data sets 
and their regression lines are shown in Figs. 2 and 3. Because most authors reported only I, but 
not f;, the f: values have been obtained from the regressions. For the data of Ma\'cov, only the 
ratios f,lf; were reported, and the typical concrete tensile strength f: = 500 psi was assumed 
for these data. Further extensive data on fr were presented by Mayer (1967), but they have an 
insufficient range of specimen sizes. 

The value of I( cannot be expected to be the same as the effective length c, of the fracture 
process zone in front of a very large crack. Both, however, may be expected to be roughly 
proportional to the maximum aggregate size d" and represent a material property. The probable 
approximate proportionality of II to du cannot be verified from the existing data, because most 
experimenters have not reported the value of du. It might be possible to determine I, theoretically, 
by means of an energy argument of the type explained in Sec. 12.6 of Bazan! and Cedolin (1991) 
[or a refined argument of this type made to determine the maximum depth of the distributed 
cracking zone in sea ice; see Bazant and Li (1993)]. Such an investigation, however, is beyond 
the scope of this paper. 

Because the data were obtained on very different concretes, they are first fitted by (7) 
individually. This is easily accomplished by linear regression; see Fig. 2. Subsequently, in order 
to show how well the formula fits the data overall, all the plots are combined in Fig. 3, in which 
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FIG. 2. Optimum Fits of Proposed Formula to Test Results from Literature, Obtained by Linear Regres­
sion 
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FIG. 4. Depth of Cracking at Maximum Load and 
Stress Distribution in Presence of Strain Gradient 

the coordinate is X = 2lf lh. where all the If values are taken from the individual optimum fits 
in Fig. 2. 

The same data were used in a pioneering study by Hillerborg et al. (1976). They showed that 
the difference between the modulus of rupture and the direct tensile strength can be explained 
by nonlinear fracture mechanics. particularly the cohesive (or fictitious) crack model. Their 
study. however. was strictly numerical; they did not attempt to derive any formula fort:ll;. 
Hillerborg et al.·s calculations are shown in Fig. 3 by the dashed curve. They are seen to be 
also in good agreement with the data, even though the model. consisting of a single cohesive 
(fictitious) crack at midspan. was different. This is not surprising. since. as already commented, 
the stress distribution at the cohesive crack is similar to that in Fig. l(e). 

However, there are differences from Hillerborg's model. The three-point loading used causes 
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the bending moment to decay rapidly from midspan. This limits the length of the cracking zone, 
causing it to be well represented by a single cohesive crack. If four-point loaded beams were 
used, or if the length-to-depth ratio were unusually large, fitting of the results with the cohesive 
crack model might require considering several cohesive cracks. The spacing of these cracks 
cannot be determined from the cohesive crack model as defined by Hillerborg, and would have 
to be given. Especially, it would be necessary to ensure that the spacing cannot be less than a 
certain minimum [see ACI Committee 446 (1992)]. The idea that a certain minimum crack 
spacing ought to be introduced as an additional characteristic of the cohesive (fictitious) crack 
model has been proposed in Bazant (1986) and has been theoretically supported in more detail 
by Planas and Elices (1992). To decide these questions experimentally, it would be necessary 
to compare the values of the modulus of rupture not only for different beam sizes, but also for 
other span-to-depth ratios and for four-point bending, and compare the deflections as well. 

Note that formula (7) does not involve the strain-softening modulus E, [this modulus affects 
only the higher-order small terms in (6)]. This provides a useful simplification, since the value 
of E{ is quite uncertain. The only case in which the value of E{ would affect (and also invalidate) 
this formula is the case of a sudden stress drop, I E,I ---'> ex. But that is not the real behavior of 
concrete; it is only an approximation for the combined behavior of the fracture process zone 
and the structural element (or finite element), in which the sudden stress drop is only an apparent 
characteristic representing an instability caused by energy release [chapter 13 in Bazant and 
Cedolin (1991)]. 

The simplicity of formula (7) makes it possible to determine the direct tensile strength I; and 
the boundary layer thickness It by the linear regression plots shown in Fig. 2. It is simply necessary 
to test similar beams of a sufficiently large range of depths h, made of the same concrete. Fig. 
2 also shows the data points from the aforementioned published studies. Fig. 3 shows the 
regression of the eight groups of test data normalized by their It and I; values. It is seen that 
the deviations from the regression line are quite acceptable. 

It may be noted that a formula similar to (7) has been proposed on the basis of different 
arguments by Zhu (1990). His formula reads I)I; = 1 + 2(s/j;)I/h, where s, is the normal 
stress at the tensile face. For the special case 5, = I;, this formula coincides with (7). The f 
value, according to Zhu, can be obtained for a certain critical value of I" which is similar to I, 
but is not considered by Zhu as a material property. A formula similar to (7) was also proposed 
on a purely empirical basis by Mal'cov and Karavaev (1968). Finally, it may be remarked that 
(7) coincides with the first two terms of a general asymptotic expansion of the size effect on 
nominal strength for failures at crack initiation, which was derived by Bazant (1994) by dimen­
sional analysis. 

GENERALIZATION: STRAIN GRADIENT EFFECT 

CONCLUSIONS 

From the foregoing analysis it is clear that the size effect on the modulus of rupture is caused 
by the strain gradient of,loZ, where z is the coordinate normal to the face of beam and Ex is 
the normal strain in direction x parallel to the face (Fig. 4). At maximum load, the strain gradient 
in the beam (unreinforced) is approximately oEjoZ = 2I;lhE, from which h = 2/;/(EoE,loz). 
Substituting this into (7), we obtain the general formula 

f, liE OE, . 

f
-; = 1 + -I' - If > 1, else 1 
{ { oZ 

(8) 

where f is now more generally interpreted as the strength limit, at the surface for normal stress 
cr, parallel to the surface, at any strain distribution in the body, linear or curved, caused by a 
combination of moment and normal force or otherwise; oE,IoZ is taken positive when E, increases 
toward the surface. The limitation that Irlf; > 1 in (8) is due to the fact that for the case Of,! 
oz > 0 (strain increasing away from the surface) it would be unreasonable to expect a strength 
increase because, if a crack forms, it must in that case quickly propagate deep into the body. 

Note, however, that if the maximum load is reached only after the crack emanating from an 
un notched surface becomes much longer than If' then (8) and (7) are inapplicable and the size 
effect due to energy release operates. 

1. The hypothesis that cracking remains distributed up to the maximum load and is thus 
characterized by a strain-softening stress-strain diagram leads to the conclusion that the 
maximum of the stress distribution in the cross section at maximum load occurs at a 
certain finite distance from the tensile face, which is approximately a material property 
related to the maximum inhomogeneity size (maximum aggregate size). 

2. The formula resulting from this hypothesis predicts that the modulus of rupture depends 
on the beam size or on the magnitUde of the strain gradient at the surface (as well as 
other factors). The first-order approximation of the size effect is independent of the 

JOURNAL OF STRUCTURAL ENGINEERING 743 



ACKNOWLEDGMENT 

strain-softening slope of the stress-strain diagram; it depends only on the ratio of the 
boundary layer thickness to the beam depth. 

3. The formulation also implies the hypothesis that localized fractures appear only after 
the maximum load is reached. Consequently, analysis according to linear elastic fracture 
mechanics cannot give realistic results. This analysis, too, predicts the ratio of the 
modulus of rupture to the direct tensile strength to depend on the beam size. However, 
it predicts this ratio to depend also on the ratio of the beam span to the depth, which 
is not substantiated by the existing test results. Further it predicts a similar size effect 
to occur in direct tension tests, which is likewise not corroborated by the existing test 
results. 

4. Predictions of the proposed simple formula agree well with the existing test results, as 
far as the random scatter permits it to say. The agreement with the test data is as good 
as that of the numerical calculations of Hillerborg et al. using the cohesive (fictitious) 
crack model. 

5. Due to the linear form of the proposed formula, the thickness of the boundary layer 
can be determined by linear regression of the test results on the size dependence of the 
modulus of rupture. The proposed formula can also be used as an indirect method to 
predict tensile strength from bending tests. 
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APPENDIX I. COMMENTS ON ALTERNATIVE LEFM APPROACH 

According to linear elastic fracture mechanics (LEFM), the initiation of crack growth from 
a smooth surface would require an infinite load because for a finite load the stress intensity 
factor is zero as the crack length tends to zero. Obviously, for LEFM to be meaningful at all, 
it is necessary to assume that the fracture growth starts from a crack (or initial flaw) of a certain 
finite initial length, a = ao. A crack of this length (a macrocrack, rather than microscopic flaws) 
forms by localization of distributed cracking. This cannot happen before the maximum load 
(Fig. 5), because LEFM predicts the load on beams to decrease with increasing a. Thus the 
initial crack (a macrocrack) can form either right after the maximum load or later. In the former 
case, the maximum load can be calculated from the condition of propagation of the initial 
macroscopic crack. The basic assumption is that the length ao of this crack is, at least approx­
imately, a material property. In other works, ao is the same for specimens of various sizes, and 
also for bending specimens [Fig. 6(a)] and direct tension specimens [Fig. 6(b)]. 

According to LEFM, the stress intensity factor of the crack in a three-point -bend [Fig. 6( a)] 
specimen of span L = 4h is K, = av7Ui;;F,,(a) where a = aolh; a = 6M/bh 2

; and F,,(a) = 
TI- 1/2 [1.99 - a(1 - a)(2.15 - 3.93a + 2.72(2)](1 + 2a)-I(l - a)-1/2 (Tada et al. 1985). In 
a direct tension specimen, fracture initiates by a one-sided crack [Fig. 6(b)], for which K, = 
av:rra;;F{(a) with F{(a) = 1.12 - O.23a + 1O.6a2 + ... (Tada et al. 1985). Considering that 
the direct tensile strength t: corresponds to h ....... oc, i.e.!; = t: n we ha~~f{( a) = F{(O) = 1.12, 
and setting K, for the beam of size h equal to K'n we have K,c = j,YTIaoF,,(a) = !;YTIa,,P{(O). 
Therefore, noting the binominal series expansion (1 - a)'12 = I - 1.5a - 2.625a2 

- ••• , 

j;!!; = 1.12/F,,(a) = 1.I2V:;;:(l + 2a)(l - a)'/2/y = 1.12V:;;:(l + O.5a + O.375a2 + .. . )/y, 
where Y = 1.99 - 2.15a + 6.08a2 + .. '. By polynomial division, we then get for Uh = 4 
the result 

LOPf / (a) 

I~ 
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FIG. 5. (a) Load-Deflection Diagrams (b) Cor­
responding Variation of Energy Required for Crack 
Growth; (c) Variation of Load with Depth of Crack­
ing or Length of Fracture 
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FIG. 6. Bending and Direct Tension Specimens 
Considered in LEFM Analysis 



I, = 1 + 1 58 ~ _ 3 97 (~) C + .. . I:x . h _. h (for Llh = 4) (9) 

For a beam with Llh = 8, we have Fb(a) = 1.11 - 2.12a + 7.71ac - 13.55a' + 
from 1,11:7 = 1.12IF,,(a) we get by polynomial division 

14.23a~, and 

I, a" (ao)C I:x = 1 + 1.94 h - 3.34 h +... (for Llh = 8) (10) 

For the direct tension test, setting K, for size h equal to KJc = I:V7ia:F,(O), one gets 

I: a" (ao)C - = 1 + 0.21 - - 9.42 - + ... 
I~ h h 

(11) 

However, the foregoing LEFM solutions invite several questions the answers to which are 
not clear at present: 

I. First of all, it is unclear whether a sharp crack forms right after the maximum load or 
later. Most likely it depends on the size; for very large sizes the localization happens 
right at the peak load, and for very small sizes much later (this would also mean that 
an, unlike I" is not a constant). 

2. The size dependence is predicted to be different for different Llh, while according to 
(7) it is the same. But no clear effect of Llh has been observed in experiments. It might 
be that a possible effect of Llh has been obscured by inevitable statistical scatter. To 
clarify this point, it would be necessary to conduct a series of tests with both a large 
size range and a large range of Llh, using the same concrete. 

3. The direct tensile strength is predicted, by the LEFM analysis, to be also size dependent. 
However, no clear size effect trend, such is that in Figs. 2 and 3, is known for I: (except 
perhaps for a statistical size effect). On the other hand, the type of argument that led 
to (7) predicts no size effect for I:. 

4. It does not seem quite realistic to assume that K, and ao are the same for different sizes. 
One must expect the effective K/ to vary according to an R-curve; see [(Fig. 5(b)]. 
However, there are two difficulties with introducing the R-curve into the foregoing 
analysis: (I) The R-curves depend on the specimen shape; and (2) no effective R-curve 
for the start of a crack from a smooth surface is known. 

For these reasons, the foregoing LEFM-based equations do not seem very realistic. The actual 
behavior is probably that sketched in Fig. 5(a and c) showing that LEFM is approached only 
for larger deflections corresponding to a large crack [Fig. 5(c)], provided that the ligament is 
long enough. Right after the peak one would need to use nonlinear fracture mechanics on which 
we already commented. Nevertheless, it is interesting to know what LEFM would predict. 
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