
0-89791-993-9/97 $10.00 1997 IEEE

MOGAC: A Multiobjective Genetic Algorithm for the
Co-Synthesis of Hardware-Software Embedded Systems

Robert P. Dick and Niraj K. Jha

Department of Electrical Engineering
Princeton University

Princeton, New Jersey 08544

Abstract
In this paper, we present a hardware-software co-
synthesis system, called MOGAC, that partitions and
schedules embedded system specifications consisting of
multiple periodic task graphs. MOGAC synthesizes
real-time heterogeneous distributed architectures using
an adaptive multiobjective genetic algorithm that can
escape local minima. Price and power consumption
are optimized while hard real-time constraints are met.
MOGAC places no limit on the number of hardware or
software processing elements in the architectures it syn-
thesizes. Our general model for bus and point-to-point
communication links allows a number of link types to be
used in an architecture. Application-specific integrated
circuits consisting of multiple processing elements are
modeled. Heuristics are used to tackle multi-rate sys-
tems, as well as systems containing task graphs whose
hyperperiods are large relative to their periods. The ap-
plication of a multiobjective optimization strategy allows
a single co-synthesis run to produce multiple designs
which trade off different architectural features. Exper-
imental results indicate that MOGAC has advantages
over previous work in terms of solution quality and run-
ning time.

1 Introduction
Hardware-software co-design is the process of concur-
rently defining the hardware and software portions of
an embedded system while considering dependencies be-
tween the two [1]. Designers rely on their experience
with past systems when estimating the resource require-
ments of a new system. Since ad hoc design exploration
is time-consuming, an engineer typically selects a conser-
vative architecture after little experimentation, result-
ing in an unnecessarily expensive system. Most research
in the area of hardware-software co-design has focused
on easing the process of design exploration. Automating
this process falls within the more specialized realm of co-
synthesis. Given an embedded system specification, a co-
synthesis system determines the hardware and software
processing elements (PEs) needed as well as the commu-
nication links to be used. In addition, the system assigns
each task to a PE and determines the PEs to which each
link is connected. Finally, a schedule is provided for each
PE and communication link such that all real-time con-
straints are met [2]. Co-synthesis systems generate fea-
sible, low-cost architecture descriptions without designer
intervention.

There are four tasks which must be carried out by a

This work was supported in part by an NSF Graduate Fellowship and in
part by NSF under Grant No. MIP-9423574.

co-synthesis system:
� Allocation: Determine the quantity of each type of

PE and communication link to use.
� Assignment: Select a PE to execute each task

upon. Choose a link to use for each communication
event.

� Scheduling: Determine the time at which each
task and communication event occurs.

� Performance evaluation: Compute the price,
speed, and power consumption of the solution.

Related work often limits the co-synthesis solution
space to architectures consisting of one CPU and one
application-specific integrated circuit (ASIC). Most real-
life embedded systems are composed of multiple general-
purpose processors and ASICs, i.e., they are distributed
heterogeneous architectures [1]. We will consider the
general problem in which the numbers and types of PEs
and links in an architecture are not bounded.

Optimal co-synthesis is an intractable problem. Allo-
cation/assignment and scheduling are each known to be
NP-complete for distributed systems [3]. It is, therefore,
not surprising that all co-synthesis systems which rely
on optimal mixed integer linear programming [4] and ex-
haustive exploration [5] can only be applied to small in-
stances of the co-synthesis problem. Heuristics have seen
some success with larger instances of the distributed sys-
tem co-synthesis problem. The constructive algorithm
used in [6] was the first to target low power. However,
like iterative improvement algorithms [2], [7], conven-
tional constructive algorithms may become trapped in lo-
cal minima. A genetic algorithm was previously applied
to the hardware-software partitioning problem [8]. How-
ever, in this work only one general-purpose processor was
allowed, there were no provisions for synthesizing sys-
tems with multi-rate periodic task graphs, and commu-
nication links were not modeled. In addition, run-times
were not given and the genetic algorithm only optimized
one variable: price.

MOGAC synthesizes distributed heterogeneous em-
bedded systems. Price and power consumption are opti-
mized under a number of hard constraints. MOGAC uses
a communication model that is capable of synthesizing
systems with multiple busses and point-to-point commu-
nication links. ASICs consisting of multiple PEs are mod-
eled. MOGAC applies heuristics which allow multi-rate
systems to be scheduled in reasonable time even when
the least common multiple (LCM) scheduling method [9]
would otherwise require a large number of task graph
copies to be made. MOGAC’s use of a multiobjective ge-
netic algorithm allows it to provide a designer with mul-
tiple solutions which trade off different system costs.

2 Preliminaries
In this section, we present preliminary concepts used in
co-synthesis algorithms and genetic algorithms.
2.1 Embedded System Model
In this subsection, we provide high-level descriptions of
the data types MOGAC operates on. Information about
the computations carried out upon them can be found in
Section 3.
Cost: A cost is a variable that a co-synthesis system
attempts to minimize. Price, power consumption, and
schedule length are examples of costs.
Task graph: A task graph is a directed acyclic graph
in which each node is associated with a task and each
edge is associated with a scalar describing the amount
of data that must be transferred between the two con-
nected tasks. The period of a task graph is the amount
of time between the earliest start times of its consecu-
tive executions. A node with no outgoing edges is called
a sink node. A deadline, the time by which the task asso-
ciated with the node must complete its execution, exists
for every sink node. However, other nodes may also have
deadlines associated with them. The deadline of a task
graph is the maximum of all the deadlines specified in it.
Processing element: A PE executes tasks. Two types
of PEs are modeled: grouped PEs and independent PEs.
Independent PEs represent general-purpose processors
which can only execute one task at a time. However, mul-
tiple grouped PEs may be located on the same integrated
circuit (IC), upon which multiple tasks may execute si-
multaneously. This provides a model for ASICs which are
capable of carrying out different tasks at the same time.
The following information establishes the relationships
between tasks and independent PEs:

� A two-dimensional array indicating the worst-case
execution time of each task on each independent PE.

� A two-dimensional array indicating the average
power consumption of each task on each indepen-
dent PE.

In addition to these arrays, independent PEs have price
and idle power consumption values. The following infor-
mation establishes the relationship between tasks and
grouped PEs:

� A two-dimensional array indicating the relative
worst-case execution time of each task on each
grouped PE.

� A two-dimensional array indicating the relative av-
erage power consumption of each task on each
grouped PE.

� A two-dimensional array indicating the peak power
consumption of each task on each grouped PE.

Grouped PEs do not have an inherent price. However,
each grouped PE is assigned to an IC which does have
a price. The following variables are associated with
ICs: price, pin count, device count, idle power consump-
tion, peak power dissipation, speed, and power efficiency.
Each grouped PE places device count and pin count re-
quirements on the IC to which it is assigned. For an ar-
chitecture to be valid, each IC must meet the pin count
and device count requirements of the grouped PEs as-
signed to it. In addition, each IC must meet the peak
power dissipation requirements of the tasks assigned to
the grouped PEs implemented on it.

The worst-case execution time for a task assigned to
a grouped PE is equivalent to its relative worst-case ex-
ecution time divided by the speed of the IC on which the

grouped PE is implemented. The task’s average power
consumption is its relative average power consumption
divided by the power efficiency of the IC on which the
task’s grouped PE is implemented.

Communication link: Communication links have the
following attributes: packet size, average power con-
sumption per packet, worst-case communication time per
packet, price, number of contacts, and idle power con-
sumption.

Each task graph edge must be assigned to a commu-
nication link. The worst-case communication time and
average power consumption of an edge are linearly de-
pendent on the number of packets of data transferred
through its link. The number of contacts a link supports
is the number of ICs it can connect, i.e., a link with two
contacts is a point-to-point link. A link with more than
two contacts is a bus. In previous distributed comput-
ing work, it is commonly assumed that communication
between tasks which are assigned to the same IC con-
sumes an insignificant amount of time and power. We
also make this assumption.

Constraints: If one of the system’s costs is higher than
its hard constraint, the system is invalid. For example,
the schedule length of a task graph cannot exceed its
hard real-time constraint. Valid systems may have costs
which are higher than their soft constraints, although it
is desirable to reduce a cost until it is lower than its soft
constraint.

Strings: The PE allocation string is an array of inte-
gers. Each integer represents the number of instances of
a PE type present in a solution. For a genetic algorithm
to function properly, it is important for its strings to pre-
serve locality, i.e., similar entries must be located closer
to each other in a string than dissimilar entries [10]. As
mentioned earlier, the relationship between tasks and
PEs is defined by a collection of two-dimensional arrays.
For the purpose of characterizing a PE type, the one-
dimensional arrays corresponding to that PE type are se-
lected from these two-dimensional arrays. Thus, each PE
can be characterized by a collection of one-dimensional
arrays and some scalars. The first step in ordering the
PE allocation string is to collapse each PE type’s arrays
into scalars. This conversion is done by taking a sum
of each array’s entries and weighting each entry with the
number of tasks, of the type corresponding to that entry’s
position, which exist in the embedded system specifica-
tion. After this step, each PE is described by a collection
of scalars, i.e., a vector. A locality-preserving heuristic is
then used to impose an order on these vectors. The link
allocation string and IC allocation string are similar to
the PE allocation string and they are ordered using sim-
ilar algorithms.

The task assignment string is an ordered string of PE
instance references specifying the PE to which each task
is assigned. This string is ordered by conducting a depth-
first traversal of all the task graphs in the system spec-
ification. The grouped PE assignment string is an or-
dered string of IC instance references specifying the IC
to which each grouped PE is assigned.

The link connectivity string is an ordered string of IC
and independent PE instance references specifying the
ICs and independent PEs to which each communication
link is connected. The order of link types in this string is
based on their order in the link allocation string.

2.2 Genetic Algorithms
Genetic algorithms maintain a pool of solutions which
evolve in parallel over time. Genetic operators are ap-
plied to the solutions in the current pool to obtain a new
generation of solutions. The lowest quality solutions are
then removed from the pool [10]. Genetic algorithms
excel at simultaneously optimizing multiple conflicting
costs. They have the ability to escape local minima and
communicate information between solutions.

Next, we define some basic terms used to discuss ge-
netic algorithms. In a conventional genetic algorithm,
every solution is represented by a string of values (usu-
ally Boolean). Although we discuss the genetic algo-
rithm used by MOGAC in conventional terms, no prim-
itive Boolean string is ever computed. As discussed in
Section 2.1, strings in MOGAC are more intricate than
those used in conventional genetic algorithms. Genetic
operators are applied directly to the complex data struc-
tures which represent a solution. Such algorithms are
sometimes called evolutionary algorithms.

In conventional genetic algorithms, all changes to
strings are brought about by three operators. Repro-
duction makes a copy of a solution. Mutation randomly
changes part of a solution’s description. Conventionally,
a bit in the solution’s string is inverted. Cross-over com-
bines parts of different solutions. This is the operator
that gives genetic algorithms their strength; it allows
different solutions to share information with each other.
Conventionally, two strings are cut at the same offset
from their starting points and the portions following the
cut are swapped. The operators used by MOGAC are
analogous to, but more complicated than, conventional
genetic operators.
2.3 Multiobjective Optimization
The co-synthesis problem is inherently one of multiob-
jective optimization. There are numerous costs and im-
proving one cost of a system often results in the degra-
dation of another. Most past co-synthesis systems have
dealt with this optimization problem by using a linear
weighted sum to collapse all of the system costs into one
variable and optimizing this variable. For this method to
be successful, the weighting array used must be appro-
priate for the problem instance as well as the designer’s
desired solution. Unfortunately, the co-synthesis prob-
lem is too complicated for an instance’s best weighting
array to be known without first exploring that instance’s
Pareto-optimal set of solutions, i.e., those solutions which
can only be improved in one area by being degraded in
another. It is impossible, however, to explore the Pareto-
optimal set of solutions if an arbitrary weighting array
has been used to collapse all costs into a single value.

Multiobjective genetic algorithms avoid the problems
associated with collapsing multiple costs into one value.
In such algorithms, solutions are ranked relative to each
other, i.e., a solution’s rank is the number of other solu-
tions to which it is not in some way inferior. The use of
a multiobjective genetic algorithm allows MOGAC to ex-
plore the Pareto-optimal solution set instead of relying
on an arbitrary weighting array to guide its search.

3 Algorithm Description
In this section, we give a description of the algorithms
used in MOGAC.
3.1 Overview of the Algorithm
In this subsection, we present a high-level descrip-
tion of MOGAC’s hierarchical genetic algorithm for co-

synthesis. Initially, there are approximately 400 mem-
bers in MOGAC’s solution pool. As shown in Figure 1,
the pool is broken into clusters of solutions. Every so-
lution within a cluster has the same allocation strings.
However, each solution’s link connectivity and assign-
ment strings may differ from those of other solutions
within the cluster. Allocation string cross-over only oc-
curs between clusters of solutions. Assignment string
cross-over and link connectivity string cross-over only oc-
cur between solutions in the same cluster.�

�

�

�Solution Cluster

Allocation
cross-over

Assignment cross-over

Link connectivity cross-over

Figure 1: Solution clusters
Each solution’s allocation string is initialized with a

heuristic constructive algorithm; PEs are randomly se-
lected until there exists at least one PE upon which each
task can execute. Despite the simplicity of this heuris-
tic, it frequently produces high-quality allocations. From
this starting point, the genetic algorithm searches for
higher-quality allocations. During the first generation
or two, many of the solutions are invalid because there
are not sufficient resources available to carry out tasks
rapidly enough to meet the system’s real-time dead-
lines. As the allocation strings mutate, more PEs and
links become available and are incorporated into solu-
tions through assignment string mutation and connec-
tivity string mutation.

At this point, the evolve-evaluate cycle starts to sup-
ply feedback to the genetic algorithm. Solutions, which
have adequate resources to meet their real-time con-
straints, consume little power, and make the best use of
these resources, dominate other solutions. Non-inferior
solutions, those which are not dominated by any other so-
lutions, reproduce more often than dominated solutions.
Occasionally, dominated solutions reproduce as well. In-
frequently, allocation cross-over occurs, changing an en-
tire cluster of solutions simultaneously.

MOGAC treats all non-inferior solutions equally even
if they violate hard constraints. After each generation,
MOGAC displays the costs of the members of its non-
inferior solution set. At any time, the designer may halt
the system and examine an individual solution in de-
tail. If the designer chooses not to interfere with the co-
synthesis run, MOGAC automatically adapts its param-
eters based upon its solution pool’s rate of improvement.
At the end of a run, the system presents its user with all
of the valid non-inferior solutions it found.
3.2 Parameter Adaptation
In this subsection, we discuss the manner in which
MOGAC adapts its own parameters. In general, each pa-
rameter has a starting value and an adaptation rate. At
the end of each generation in which the quality of the so-
lution pool did not improve, the relevant parameters are
adjusted by their adaptation rates. When an improve-
ment occurs, the relevant parameters are reset to their
initial values. If a pre-specified number of generations
pass without improvement, the co-synthesis run halts.

MOGAC has a number of static parameters. Although
these parameters can be changed from run to run, they
do not adapt during a run. There are a fixed number of

clusters in the solution pool and each cluster contains a
fixed number of solutions. In addition, the ratio of real to
total task graph copies is constant throughout a run (see
Section 3.3).

Most parameters are dynamic; they adapt based upon
the rate at which the quality of the solution pool is im-
proving. The frequency with which each genetic opera-
tor is applied is parametric and adaptable. There are a
number of parameters which control the aggressiveness
of MOGAC’s genetic operators. Other parameters con-
trol the probability of a superior solution being replaced
by an inferior one. If desired, these values can be set
to monotonically decrease during a co-synthesis run, al-
lowing MOGAC to approximate a simulated annealing
algorithm.

3.3 Multi-Rate Systems
As mentioned in Section 1, co-synthesis systems which
use the results in [9] to guarantee valid schedules for
multi-rate systems have difficulty synthesizing architec-
tures in which the hyperperiod, i.e., the LCM of the pe-
riods of all task graphs, is much larger than the periods
of individual task graphs. For such systems, it is neces-
sary to assign and schedule the tasks and communica-
tion events in numerous copies of some task graphs. The
number of copies of a task graph is the system’s hyperpe-
riod divided by the graph’s period. Past work has dealt
with this problem by forcing corresponding tasks in dif-
ferent copies of the same task graph to be assigned to the
same PE instance [2]. Although this does reduce the com-
plexity of assignment and scheduling, it decreases the
flexibility of a co-synthesis system. To derive the most
efficient architecture for a given system specification, it
may be necessary to assign corresponding tasks in dif-
ferent copies of a task graph to different PEs. MOGAC
uses two heuristics to tackle system specifications with
large hyperperiods. The first of these is an extension of a
method used in real-time computing [11].
Hyperperiod contraction: The problems caused by
large hyperperiods can be reduced by tightening the pe-
riods of some task graphs. Consider a system consisting
of two periodic task graphs, where the first has a period
of 12, and the second has a period of 13. The hyperperiod
is, therefore, 156. If we tighten the period of the second
task graph to 12, however, the system’s hyperperiod re-
duces to 12.

The designer has full control over the aggressiveness
with which the hyperperiod contraction heuristic is ap-
plied. MOGAC allows the designer to specify the max-
imum and minimum acceptable periods for each task
graph in the system. Subject to these constraints, a pe-
riod for each task graph is calculated such that the num-
ber of task graph copies needed for LCM scheduling is
minimized.
Scalable implicit task graph copies: We have devel-
oped a method in which some of the task graph copies in
the hyperperiod are implicit and some are real (see Fig-
ure 2). Each implicit copy has a real parent. Implicit
copies are not entered in a solution’s task assignment
string; they share the assignment strings of their par-
ents. Although it is still necessary to schedule implicit
task graph copies, there is no need to prioritize the nodes
of these copies; the implicit task graph node priorities
are equivalent to the parent task graph node priorities
(see Section 3.6). Additionally, the absence of implicit
copies from a solution’s task assignment string reduces

the size of the genetic algorithm’s solution space, thus
speeding optimization. Selecting a ratio of the number of
real task graph copies to the total number of task graph
copies involves making a trade-off between potential so-
lution quality and MOGAC’s run-time. This decision is
left to the designer.'

&

$

%

Implicit Task Graph Copies

Real Task Graph Copies

Parent
Parent

Parent

Figure 2: Task graph copies

3.4 Ranking and Reproduction
In this subsection, we explain the manner in which solu-
tions and clusters are selected for reproduction.
Solution ranking and reproduction: Solutions
within a cluster are ranked using the method presented
in Section 2.3. In each generation, a pre-specified num-
ber of solutions within each cluster are eliminated to
make space for the reproduction of other solutions. So-
lutions are selected for reproduction by indexing inward
from the highest-ranking solution with a Gaussian ran-
dom variable. The inverse of the variance of this vari-
able is defined as elitism. MOGAC’s elitism is specified
by the user. A designer can choose to protect the highest-
ranked solutions in the solution pool from mutation and
cross-over or to allow the modification of any solution.
Cluster ranking and reproduction: Ranking clus-
ters is more complicated than ranking solutions. Each
solution has one set of costs. Thus, determining whether
it dominates another solution is straightforward. Clus-
ters, however, contain numerous solutions; each cluster
is associated with many sets of costs. We extend the
concept of domination to take partial domination into ac-
count. Cluster domination is represented by a scalar in-
stead of a Boolean value. The definition of rank must also
be adjusted when it is applied to clusters. Let x and y be
clusters. nis (x) is the set of non-inferior solutions in x.
dom (a; b) is 1 if a is not dominated by b and 0 otherwise.
Then,

clust dom (x; y) = max
a2nis(x)

X
b2nis(y)

dom (a; b)

and,

rank[x] =
X

y2
set of

clusters
^ y 6=x

clust dom (x; y)

Once cluster ranks have been determined, cluster repro-
duction is analogous to solution reproduction.
3.5 Evolution
In this subsection, we give an overview of mechanisms
through which the solution pool evolves. Evolution in
MOGAC is hierarchical. The cluster-level genetic oper-
ators simultaneously affect every solution in a cluster,
while solution-level operators only affect individual solu-
tions within a cluster. Solution-level operators are typ-
ically applied more frequently than cluster-level opera-
tors.

Cluster-level operators: PE allocation mutation
causes a PE to be added or removed from a cluster’s al-
location. PE allocation cross-over selects two PE type
cut-points at random and two clusters at random. The
PE counts of the PE types between the cut-points are
swapped between the selected clusters. The link alloca-
tion and IC allocation operators are analogous to the PE
allocation operators.
Solution-level operators: Task assignment mutation
causes a randomly selected task to assign itself to a dif-
ferent PE instance. Task assignment cross-over selects
two task cut-points at random and two solutions at ran-
dom. The PE assignments of the tasks between the cut-
points are swapped between the selected solutions.

Grouped PE assignment mutation causes a randomly
selected grouped PE to assign itself to a different IC in-
stance. Grouped PE assignment cross-over selects two
grouped PE assignment cut-points at random and two
solutions at random. The IC assignments of the grouped
PEs between the cut-points are swapped between the se-
lected solutions.

Link connectivity mutation causes a link instance to
randomly reconnect itself to IC and independent PE in-
stances. Link connectivity cross-over selects two link
cut-points at random and two solutions at random. For
each link between the cut-points, the list of IC and inde-
pendent PE instances to which the link is connected is
swapped between the selected solutions.
3.6 Scheduling
Scheduling occurs in MOGAC’s inner loop. Since the
use of a sophisticated, but slow, algorithm would re-
duce the design space that can be explored in a given
amount of time, we use a heuristic list scheduling algo-
rithm that, in the theoretical worst case, runs in time
O
�
edges2 + nodes2

�
. However, the typical run-time is

O (edges+ nodes). The scheduling algorithm is tailored
to periodic systems and can even handle the case when
task graphs have periods less than their deadlines.
Prioritization: The priority of every task in each of
the system’s real task graph copies is calculated. Each
task graph copy has an earliest start time (EST) which
is determined by multiplying its position in the hyperpe-
riod by its period. The EST of every task is determined by
conducting a topological sort beginning at the start node
of each real task graph copy and propagating the exe-
cution times of the tasks along each path forward. The
latest start time (LST) of every node is determined sim-
ilarly, by propagating the execution times of tasks back-
ward from the nodes which have deadlines.

A node’s slack is the difference between its LST and
EST. A node’s cumulative slack is the sum of the slacks of
the nodes along the highest-slack path from that node to
the graph’s start node. A topological sort of the graph,
beginning at the start node, allows each node’s cumu-
lative slack to be calculated. At re-converging paths,
the maximum of the cumulative slacks of the parents is
propagated forward. Nodes with low cumulative slacks
have higher priorities than nodes with high cumulative
slack. This prioritization method was selected because of
its speed (O (nodes+ edges)) and the ease with which it
can be applied to multi-rate systems. Cumulative slack
provides reasonable relative priorities for nodes in differ-
ent task graphs. Additionally, this prioritization method
is compatible with the scalable implicit task graph copy
heuristic described in Section 3.3.

Once node priorities have been determined, the nodes
from the first copy of each task graph are introduced into
a priority-ordered list. When a graph copy’s start time
is reached, the next real or implicit copy of that graph
is introduced into the priority list. An offset is added to
the cumulative slack of the nodes of all of the subsequent
copies of each graph. This offset is a weighted sum of
the task graph’s highest cumulative slack and its period,
multiplied by the index of the task graph copy, i.e.,
offset = (k1 �max cum slack + k2 � period) � graph index

where k1 and k2 are constants.
Edge scheduling: Before a node is scheduled, all of its
incoming edges are scheduled. For each incoming edge,
the earliest possible finish time for the associated com-
munication event is noted. For each link that may be
used to carry out communication along a given edge, com-
munication time is computed in the following manner,

commun time = time per packet �

�
data quantity

packet size

�

The communication event finish time is found by locating
the earliest unused time slot in the link’s schedule with
a size equal to or larger than the commun time which
starts after the parent task finishes executing. As a re-
sult of this step, the total time required to schedule edges
is actually

O

�
max links

on edge
�

number

of edges
�

max events

on link

�

Fortunately, max links on edge is rarely greater than 3
and max events on link is usually significantly less than
number of edges.

Once the earliest finish time for each edge has been
computed, the communication events are scheduled in
order of decreasing earliest finish time. Scheduling an
edge may affect the earliest finish times of the remain-
ing edges. Therefore, the earliest finish time of each edge
is recomputed immediately before it is scheduled. How-
ever, the edges are not re-prioritized after each schedul-
ing event because this would significantly slow down the
scheduling algorithm.
Node scheduling: The PE instance to which each
node is assigned is determined by the genetic algorithm.
After all of a node’s incoming edges have been scheduled,
the node’s task is scheduled to its PE in the earliest time
slot which is large enough to allow execution and starts
after the latest incoming communication event has com-
pleted.
3.7 Performance Evaluation
Performance evaluation consists of calculating a solu-
tion’s costs and determining how severely they violate
the soft and hard constraints imposed by the designer. In
this subsection, we will explain how MOGAC does perfor-
mance evaluation and then describe the process by which
raw performance metrics are converted into system costs.
Cost calculation: System price, task graph comple-
tion time, and system power consumption are computed
during cost calculation. System price is determined by
taking the sum of the prices of all ICs, independent PEs,
and links in the allocation strings. The completion time
of each node in a task graph is recorded during schedul-
ing (see Section 3.6). Therefore, the completion times of
all nodes with deadlines are available for inspection. Sys-
tem power consumption is computed by stepping through

Table 1: Hou’s examples
Hou COSYN MOGAC

Example
Price CPU Time (s) Price CPU Time (s) Price CPU Time (s) Tuned CPU Time (s)

Hou 1 & 2 (unclustered) 170 10,205 N. A. N. A. 170 5.7 2.8
Hou 3 & 4 (unclustered) 210 11,550 N. A. N. A. 170 8.0 1.6

Hou 1 & 2 (clustered) 170 16.0 170 6.9 170 5.1 0.7
Hou 3 & 4 (clustered) 170 3.3 N. A. N. A. 170 2.2 0.6

each PE and link’s hyperperiod schedule, obtaining the
system energy required (this includes the idle PE/link
energy), and dividing the energy by the hyperperiod [6].
Constraint violation: A system’s constraint viola-
tions are derived from its costs and the constraints im-
posed by the designer. Solutions have a number of hard
constraints. Although solutions in which one or more
hard constraints have been violated are invalid, MOGAC
treats them no differently than other solutions during its
run. Solutions which violate their hard constraints are
removed only at the end of a co-synthesis run.

Each system specification has price and average
power consumption soft constraints. Typically, the de-
sired price is set to 0. Thus,

price violation = max (0; price� desired price)

A system’s average power violation is calculated in a sim-
ilar manner.

Every task graph has one or more nodes with specified
deadlines. A system’s hard real-time constraint violation
is the sum of the time constraint violations of all such
nodes in all of the real and implicit task graph copies in
the system. For every IC, the peak power dissipation, pin
count, and device count requirements of all the grouped
PEs assigned to that IC are summed. When an IC is not
capable of meeting the requirements of the grouped PEs
assigned to it, the appropriate hard constraint violations
in the solution are increased.

4 Experimental Results
MOGAC is a prototype consisting of approximately
18,000 lines of C++ and Bison code. Our results were ob-
tained on a 200 MHz Pentium Pro system with 96 MB
of main memory running the Linux operating system.
We compare our results with those of Yen [2], Hou [7],
and COSYN [6], which were obtained on a SPARCsta-
tion 20, as well as those of Prakash and Parker [4], which
were obtained on a Solbourne Series5e/900 (similar to a
SPARC 4/490). The CPU times are given in seconds.

MOGAC’s input consists of two ASCII files. The first
file specifies the attributes of each PE, IC, and link type
which may be used to implement an architecture. In ad-
dition, this file specifies the relationships between PEs
and tasks, i.e., for each PE it contains arrays specifying
the worst-case execution times, average power consump-
tions, and peak power consumptions of each task on that
PE. The second file specifies the topologies, periods, dead-
lines, tasks, and communication flows associated with all
of the task graphs comprising the system specification.
MOGAC outputs one or more solutions. Each solution
is a system architecture consisting of a price, power con-
sumption, PE allocation, IC allocation, link allocation,
grouped PE assignments, task assignments, link connec-
tivities, task schedules for each PE, and communication
event schedules for each link.

4.1 Price Optimization
MOGAC has a slew of parameters which can be modified
to tune its performance. Although every problem has its
own optimal parameter settings, it would be inappropri-
ate to only report the CPU time necessary to achieve a
given solution if significantly more time was spent find-
ing a good set of parameters. We, therefore, use the same
set of parameters for all of the examples presented in
this subsection. In addition, the same value is used to
seed MOGAC’s random number generator for every re-
sult presented in this paper.

It was necessary to trade off run-time against solu-
tion quality when selecting a general parameter set for
the examples in this subsection. Using a smaller solu-
tion pool and cluster pool would allow MOGAC to pro-
duce low-cost solutions for simple examples more rapidly.
However, the solution quality for more complicated ex-
amples would suffer. For illustrative purposes, run-times
achieved by tuning MOGAC’s parameters to an indi-
vidual problem’s complexity, as well as the run-times
which resulted from using the general parameter set, are
shown in the price optimization tables.

Table 1 compares MOGAC’s performance with that
of COSYN [6] and Hou’s system when each is run on
the clustered and unclustered versions of Hou’s task
graphs [7]. Task clustering is the process of using a pre-
pass to collapse multiple tasks into a cluster of tasks.
This cluster is treated like a single task during assign-
ment and scheduling, i.e., all the tasks in a cluster are ex-
ecuted on the same PE. Clustering reduces the complex-
ity of the co-synthesis problem by decreasing the num-
ber of tasks which must be assigned. It is important,
however, that tasks which communicate a large amount
of data with each other be placed in the same cluster.
This is due to the fact that communication between tasks
which are assigned to the same PE is less expensive than
communication between tasks which are assigned to dif-
ferent PEs. Hou used a task clustering algorithm which
takes communication quantity and task execution effi-
ciency into account. We use the same clusters as Hou
when comparing our results with those of his system’s,
and those of COSYN.

It is interesting to observe the impact of increased
problem complexity upon MOGAC and Hou’s system.
MOGAC’s CPU time increases slightly when it solves the
unclustered versions of Hou’s examples instead of the
clustered versions. In contrast, Hou’s system takes ap-
proximately 1,000 times as long to produce solutions. De-
spite consuming significantly less CPU time, in one case
MOGAC produces a lower-price architecture than Hou’s
system.

The hyperperiod contraction heuristic described in
Section 3.3 was applied to the clustered and unclustered
versions of the task graphs called Hou 3 & 4. The pe-
riod of one of the task graphs in these examples was con-
tracted by 5%.

Table 2: Prakash & Parker’s examples
Example Prakash & Parker COSYN MOGAC

hPerformancei Price CPU Time (s) Price CPU Time (s) Price CPU Time (s) Tuned CPU Time (s)

Prakash & Parker 1 h4i 7 28 N. A. N. A. 7 3.3 0.2
Prakash & Parker 1 h7i 5 37 5 0.2 5 2.1 0.1
Prakash & Parker 2 h8i 7 4,511 N. A. N. A. 7 2.1 0.2
Prakash & Parker 2 h15i 5 385,012 5 1.5 5 2.3 0.1

Table 3: Yen’s large random examples
Yen MOGAC

Example
Price CPU Time (s) Price CPU Time (s) Tuned CPU Time (s)

Yen’s Random 1 281 10,252 75 6.4 0.2
Yen’s Random 2 637 21,979 81 7.8 0.2

Table 4: Power consumption examples
MOGAC Ignoring Power MOGAC Optimizing Power

Example
Price Power CPU Time (s) Price Power CPU Time (s)

Hou 1 & 2 (unclustered) 170 66.4 8.3 170 53.3 39.4
Hou 3 & 4 (unclustered) 170 69.0 8.3 170 64.4 47.2

Hou 1 & 2 (clustered) 170 71.2 6.5 170 56.1
190 55.1 18.4
290 51.4

Hou 3 & 4 (clustered) 170 47.1 2.2 170 43.3
200 36.6 23.9
270 34.9

Prakash & Parker 1 h4i 7 75.4 3.4 7 75.4 10.3
Prakash & Parker 1 h7i 5 44.4 2.2 5 44.4 5.9
Prakash & Parker 2 h8i 7 70.6 2.2 7 49.8 7.2
Prakash & Parker 2 h15i 5 48.0 1.5 5 48.0

7 26.8 16.6
12 22.0

Yen’s Random 1 75 26.3 6.8 75 17.4
173 6.4
293 5.8
299 5.4

228.4

323 3.4
339 2.9

Yen’s Random 2 68 48.5 14.4 68 38.5
81 34.1
119 24.9
158 15.8
200 13.9

571.7

214 9.9
338 7.0
530 5.7

Table 2 compares MOGAC’s performance with that of
Prakash and Parker’s optimal mixed integer linear pro-
gramming approach and COSYN when they are applied
to Prakash and Parker’s task graphs. The performance
number shown by each task graph is the worst-case fin-
ish time for the task graph. For instance, “Prakash &
Parker 1 h4i,” refers to Prakash and Parker’s first task
graph with a worst-case finish time of 4 time units. In
these graphs, an unconventional model for communica-
tion is used [4]. A task may begin executing before all of
its input data have arrived. We converted their specifi-
cations into graphs which conform to the conventional

communication model, i.e., a task can only begin exe-
cution when all of its input data have arrived. Their
model implies that part of each task is independent of
the task’s input data. This is expressed by splitting each
task into a portion which depends on input data and a
portion which is independent of its input data. We as-
sure that each task’s subtasks are assigned to the same
PE. For Prakash & Parker 2, a point-to-point communi-
cation model is used. For each of these examples, we can
see that MOGAC also obtains optimal results.

Table 3 compares MOGAC’s performance with that of
Yen’s system when each system is applied to Yen’s large

random task graphs [2]. Random 1 consists of 6 task
graphs, each of which contains approximately 20 tasks.
There are 8 PE types available in this example. Random
2 consists of 8 task graphs, each of which contains ap-
proximately 20 tasks. There are 12 PE types available in
this example. Neither of these examples contains com-
munication links; all communication costs are 0.

The task graph periods in these systems are co-prime.
Therefore, the hyperperiod contraction heuristic pre-
sented in Section 3.3 significantly reduces the number of
task graph copies that MOGAC is required to schedule.
The heuristic was prevented from specifying task graph
periods to be less than the corresponding deadlines, or
greater than the periods specified in [2].

4.2 Multi-Objective Power and Price
Optimization

Table 4 displays the results of simultaneously optimiz-
ing the price and power consumption of system architec-
tures based on examples presented in past work. The
database for the example called Yen’s Random 2 con-
tains two IC types and two grouped PE types in addi-
tion to the independent PE types specified by Yen, for
a total of 14 PE types. The values shown in the “Ig-
noring Power” column indicate the results of running
MOGAC, in single objective price optimization mode, on
the same embedded system specifications. MOGAC was
given the same parameters when doing multiobjective
optimization for all of the examples in this subsection,
although the general parameter set used for multiob-
jective price and power optimization differs from that
used for price optimization. The database files used
for these examples are available via anonymous FTP at
ftp://ftp.ee.princeton.edu/pub/dickrp/

The advantage of multiobjective optimization, over
the use of a linear weighted sum, can clearly be seen in
Table 4. When MOGAC simultaneously optimizes power
and price, it provides a designer with its entire set of non-
inferior solutions. For each system specification, only a
single co-synthesis run was necessary to produce all of
the corresponding architectures whose costs are listed in
Table 4.'

&

$

%
4

6

8

10

12

14

16

100 150 200 250 300

P
ow

er

Price

Power = 5.8
Price = 293

Power = 6.4
Price = 173

Figure 3: Non-inferior solutions
for Yen’s Random 1 Example

MOGAC provides information about the shape of a
problem’s Pareto-optimal solution set instead of merely

producing a single solution. This approach allows a de-
signer to see the relationship between the costs of dif-
ferent architectures which satisfy the same system spec-
ification. Figure 3 illustrates the danger of selecting a
solution without knowing the shape of a system’s non-
inferior solution curve. Although all of MOGAC’s solu-
tions for Yen’s Random 1 example are non-inferior, a de-
signer would rarely select the solution with a price of
293 and a power consumption of 5.8 when, for a power
penalty of only 0.6, a solution with a price of 173 can be
obtained. Exploration of the problem instance’s Pareto-
optimal curve gives the designer information about the
trade-offs available between different implementations
of an embedded system.

5 Conclusions
In this paper, we have presented a method for the co-
synthesis of low-power real-time multi-rate heteroge-
neous hardware-software distributed embedded systems.
A novel multiobjective genetic algorithm, which allows
exploration of the Pareto-optimal set of architectures in-
stead of providing a designer with a single solution, has
been practically applied to a number of examples found
in the literature. MOGAC has been shown to rapidly syn-
thesize architectures with costs that are lower than or
equal to those presented in previous work. When applied
to large system specifications, MOGAC produces signif-
icantly lower-cost solutions than previous co-synthesis
systems, despite requiring orders of magnitude less run-
time. It has been demonstrated that adaptive multiob-
jective genetic algorithms are well suited to solving the
co-synthesis problem.

References
[1] W. H. Wolf, “Hardware-software co-design of embedded

systems,” Proc. IEEE, vol. 82, pp. 967–989, July 1994.
[2] T.-Y. Yen, Hardware-Software Co-Synthesis of Distributed

Embedded Systems. PhD thesis, Dept. of Electrical Engg.,
Princeton University, June 1996.

[3] M. R. Garey and D. S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, NY, 1979.

[4] S. Prakash and A. Parker, “SOS: Synthesis of application-
specific heterogeneous multiprocessor systems,” J. Parallel
& Distributed Computers, vol. 16, pp. 338–351, Dec. 1992.

[5] J. D’Ambrosio and X. Hu, “Configuration-level hard-
ware/software partitioning for real-time systems,” in Proc.
Int. Workshop Hardware/Software Codesign, vol. 14,
pp. 34–41, Aug. 1994.

[6] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN:
Hardware-software co-synthesis of embedded systems,” in
Proc. Design Automation Conf., pp. 703–708, June 1997.

[7] J. Hou and W. Wolf, “Process partitioning for dis-
tributed embedded systems,” in Proc. Int. Workshop Hard-
ware/Software Codesign, pp. 70–76, Mar. 1996.

[8] D. Saha, R. Mitra, and A. Basu, “Hardware software par-
titioning using genetic algorithm approach,” in Proc. Int.
Conf. VLSI Design, Jan. 1997.

[9] E. L. Lawler and C. U. Martel, “Scheduling periodically
occurring tasks on multiple processors,” Information Pro-
cessing Letters, vol. 7, pp. 9–12, Feb. 1981.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, Reading,
MA, 1989.

[11] S. Kim and J. Browne, “A general approach to mapping of
parallel computations upon multiprocessor architectures,”
in Proc. Int. Conf. Parallel Processing, vol. 2, pp. 1–8, Aug.
1988.

