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Abstract The lithospheric structure of Antarctica is still underexplored. Moho depth estimate studies

are in disagreement by more than 10 km in several regions, including, for example, the hinterland of the

Transantarctic Mountains. Taking account the sparseness of seismological stations and the

nonuniqueness of potential field methods, inversions of Moho depth are performed here based on

satellite gravity data in combination with currently available seismically constrained Moho depth

estimates. Our results confirm that a lower density contrast at the Moho is present under East Antarctica

than beneath West Antarctica. A comparison between the Moho depth derived from our inversion and an

Airy‐isostatic Moho model also reveals a spatially variable buoyancy contribution from the lithospheric

mantle beneath contrasting sectors of East Antarctica. Finally, to test the plausibility of different Moho

depths scenarios for the Transantarctic Mountains‐Wilkes Subglacial Basin system, we present 2‐D

lithospheric models along the Trans‐Antarctic Mountain Seismic Experiment/Gamburtsev Mountain

Seismic experiment seismic profile. Our models show that if a moderately depleted lithospheric mantle of

inferred Proterozoic age underlies the region, then a shallower Moho is more likely beneath the Wilkes

Subglacial Basin. If however, refertilization processes occurred in the upper mantle, for example, in

response to Ross‐age subduction, then a deeper Moho scenario is preferred. We conclude that 3‐D

lithospheric modeling, coupled with the availability of new seismic information in the hinterland of the

Transantarctic Mountains, is required to help resolve this controversy, thereby also reducing the

ambiguities in geothermal heat flux estimation beneath this key part of the East Antarctic Ice Sheet.

Plain Language Summary Antarctica is a vast and remote continent that is mostly buried

beneath the largest ice sheets left on Earth. Consequently, its deep structure is still poorly known,

despite its importance as the cradle on which the overlying ice sheets flow. By studying anomalies in the

gravitational field of the Earth as measured by satellites and using independent constraints derived by

measuring seismic wave travel times from distant earthquakes, we investigate the variations in the depth

of the boundary between Earth's crust and mantle (known as the Moho) beneath Antarctica. Our

models confirm that the older cratonic regions of East Antarctica have generally deeper Moho compared

to the younger geological provinces of West Antarctica. They also highlight that large regions of East

Antarctica may exhibit contrasting mantle characteristics, and this lends further weight to recent

geological and geophysical studies, indicating that East Antarctica is composed of different Precambrian

provinces. In our study we re‐evaluated in particular two Moho depth scenarios derived from previous

seismic studies for the hinterland of the Transantarctic Mountains, where the enigmatic Wilkes

Subglacial Basin lies. We show that if an old Precambrian mantle is assumed, then a thin crust scenario

beneath the basin is more likely, but if the mantle has been in part modified by more recent (ca. 500 Ma

old) subduction, then a thicker crust scenario would become more viable. Overall, our study calls for

combining gravity, seismological, and petrological modeling for enhanced Antarctic lithosphere and

isostatic studies.

1. Introduction

The lithosphere of the Antarctic continent is still poorly known, despite several major airborne geophysical

campaigns including the acquisition of extensive gravity and magnetic measurements and recent

continental‐scale data compilations (e.g., Aitken et al., 2014, Aitken et al., 2016; Chiappini et al., 2002;

Ferraccioli, Armadillo, Jordan, et al., 2009, Ferraccioli, Armadillo, Zunino, et al., 2009, Ferraccioli et al.,

2011; Scheinert et al., 2016; Golynsky et al., 2006, 2018) and a variety of recent seismological studies (e.g.,
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An et al., 2015a; Chaput et al., 2014; Hansen et al., 2014; Ramirez et al., 2016; Ramirez et al., 2017; Shen et al.,

2017; Shen et al., 2018).

In the last two decades, several Antarctic seismological campaigns have been carried out, in particular

within the Fourth International Polar Year (2007–2008). These led to a more robust and comprehensive

insight of the crustal thickness and upper mantle structure of Antarctica, and their results have been

incorporated in continental‐scale Moho depth models. Still, seismological investigations suffer from limited

station coverage over large areas. This can lead to large discrepancies in estimates of Moho depth or upper

mantle velocities. For example, differences inMoho depth estimation can add up to 10 km, even for the same

station (see the supporting information of An et al., 2015a). These differences affect other fields of Antarctic

research. Glacial isostatic adjustment studies, for instance, require reliable and robust lithospheric models.

Ice sheet dynamics is strongly related to basal melting and geothermal heat flow, which in turn is influenced

by crustal thickness variations. It is therefore necessary to attempt to reconcile the different existing data sets

by the use of additional geophysical information.

Satellite data are particularly well suited to overcome the remoteness of the Antarctic continent, as they have

an almost global uniform coverage (Ebbing et al., 2018). In contrast to surface and airborne surveys, satellite

measurements also contain consistent long‐wavelength (>150 km) information, which is mainly influenced

by deep subsurface structures (Sebera et al., 2018). They are furthermore less affected by near‐surface density

changes, which are associated with intracrustal geological features. However, potential field methods like

gravity suffer inherently from nonuniqueness and thus need additional constraints. In relation to crustal

thickness, this can be a certain density contrast at the Moho, in combination with a reference depth,

and/or certain depth constraints, for example, from seismology.

Using gravity data, Block et al. (2009) inverted Antarctica's crustal thickness from gravity data by application

of the Parker‐Oldenberg technique and found Moho depths of ~45 km beneath the southern Transantarctic

Mountains (TAM) and the Gamburtsev Subglacial Mountains (GSM). However, seismological studies esti-

mate crustal thickness values of 35–40 km beneath the TAM (Ramirez et al., 2017) and up to 58 km beneath

the GSM (Hansen et al., 2010; Heeszel et al., 2013; Ramirez et al., 2016). Considering different values for the

density contrast at theMoho, O'Donnell and Nyblade (2014) inverted the crustal thickness of East Antarctica

(EANT) and West Antarctica (WANT) with Parker‐Oldenberg algorithms separately and used seismic

inferred depth values to constrain their results. Their depth values are closer to those from seismological stu-

dies but still differ significantly in some regions, for example, the southern TAM. Furthermore, O'Donnell

and Nyblade (2014) examined the correlation between the topography and the inverted crustal thickness

and recognized missing buoyancy support from the crust for the GSM and Dronning Maud Land in terms

of isostatic balance. They suggest alternative mechanisms, such as anomalous middle‐to‐lower mantle struc-

tures, as plausible explanations that could affect the isostatic balance in these regions.

In our study, we invert the depth of the Antarctic Moho with satellite gravity data from the GOCO05s model

by using the tesseroid method from Uieda and Barbosa (2017), constrained by seismic depth estimates.

Second, we compare our new inversion results with existing seismological Moho depth models and an

Airy‐isostatic Moho model. High discrepancies are found in some regions, and we discuss these in terms

of the potential for different modes of isostatic compensation and upper mantle composition variations

beneath different parts of EANT. Specifically, we focus on evaluating two markedly different seismologically

derived Moho depth estimations in the hinterland of the TAM in the Wilkes Subglacial Basin region, along

the Trans‐Antarctic Mountain Seismic Experiment (TAMSEIS)‐GAmburtsev Mountain SEISmic experiment

(GAMSEIS) profile (Hansen et al., 2009; Lawrence et al., 2006a, 2006b) by using 2‐D models of the litho-

sphere and the sublithospheric upper mantle. These models incorporate isostasy, the thermal field, seismic

velocities, mantle petrology, geoid, and heat flow estimations. Using this approach, we demonstrate that both

thinner and thicker crusts beneath the Wilkes Subglacial Basin can lead to an acceptable fit of the observed

satellite gravity data. However, we also show that the thinner‐crust scenario is preferred if the region is

underlain by a moderately depleted lithospheric mantle of inferred Proterozoic age, while the thicker crust

is more likely if refertilization processes likely linked to Ross‐age (ca. 500 Ma) subduction (e.g., Ferraccioli

et al., 2002) along the margin of the composite East Antarctic craton are invoked. Overall, we conclude that

satellite gravity data can complement seismological observations thereby providing an important tool for the

development of new 2‐D and 3‐D models of the Antarctic crust and deeper lithosphere.
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2. Data

2.1. Bedrock Topography and Gravity Data

Bedmap2 is a compilation of the ice thickness and the bedrock topography

(Figure 1) of Antarctica up to latitude 60°S and is mainly based on air-

borne radar surveys (Fretwell et al., 2013). Even though some areas are

not well covered and exhibit large uncertainties of up to >1,000 m, it is

the best ice thickness model currently available for Antarctica. The data

set is provided as an interpolated grid with 1‐km spacing.

We use the combined gravity model GOCO05s (Mayer‐Guerr, 2015) to

obtain the geoid undulation and the vertical gravity over Antarctica

(Figure 2). In order to suppress contributions in the signal from below

the lithosphere, the geoid is calculated in spherical harmonics from

degree and order 12 up to 280 (maximum of the GOCO05s model). The

truncation of N < 12 is commonly done to eliminate long‐wavelength

components from the signal, which are associated with sublithospheric

sources (Fullea et al., 2009, and references therein). The geoid is in parti-

cular used in the 2‐D modeling (ch. 4).

Second, we take the gravity disturbance signal (Figure 2) at a height of

50 km from the GOCO05s model. The gravity disturbance is a form of free

air anomaly reduced to the surface of the normal Earth ellipsoid (Li &

Götze, 2001). The representation of the field at 50 km is chosen, as it offers

a higher level of detail in the signal than at satellite altitude (~250–

500 km) and ensures that the noise amplification is still acceptable for

the purposed of crustal thickness and lithospheric modeling (e.g. Sebera

et al., 2014).

The total gravity signal originates from several sources, and the free‐air

anomaly is largely affected by topography and its isostatic compensation.

However, we are interested in the Moho geometry and therefore compute the Bouguer gravity anomaly,

where the signal arising from the bedrock topography and ice thickness variations is corrected for. In the

Bouguer anomaly, the density contrast at the crust‐mantle boundary in most cases has a dominating influ-

ence on the gravity signal. Even though the remaining signal possibly still contains effects from density var-

iations within the crust or the mantle, or an imperfect topographic reduction model, the Bouguer anomaly

can be regarded as suitable for an inversion of the Moho geometry. To compute the Bouguer anomaly above

Antarctica, we use density values for water (ρwater= 1,028 kg/m3), ice (ρice= 917 kg/m3), and bedrock eleva-

tion (ρtopo= 2,670 kg/m3) together with the ice thickness and topography information from Bedmap2. In our

gravity data processing, we also account for far‐field and edge effects from masses outside the model area.

Szwillus et al. (2016) demonstrated that both topographic masses and isostatic effects need to be considered

in a global backgroundmodel for continental‐scale areas of interest. We use the ETOPO1 (Amante & Eakins,

2009) data set to compute a global topographic correction model and a simple Airy‐isostatic Moho model

(zref = 30 km, Δρ = 450 kg/m3). For both models, Antarctica is cut out because we have the better topo-

graphic model from Bedmap2, and the Moho is to be inverted for the continent. The result is a Bouguer

gravity anomaly above Antarctica (Figure 3), which most closely corresponds to the signal from the crust‐

mantle boundary.

2.2. Seismological Models

We make use of previous seismological studies in two ways. First, we use points of seismic Moho depth

estimates to constrain our gravity inversion and thereby attempt to overcome the inherent ambiguity of

potential field methods. Second, we evaluate existing continent‐wide Moho depth models based on seismol-

ogy in terms of their gravity signal and compare them with our inversion results. Thus, a set of points with

Moho depth estimations as well as a gridded Moho depth model is needed for our purpose. In this study we

revert to the models (a) “AN1‐Moho” from An et al. (2015a), which is a 3‐D S wave velocity model resulting

from Rayleigh wave dispersion analyses, and (b) “ANT‐Moho” from Baranov and Morelli (2013), which is a

Figure 1. Bedrock topography of Antarctica from Bedmap2model (Fretwell

et al., 2013). WANT = West Antarctica; EANT = East Antarctica;

DML = Dronning Maud Land; GSM = Gamburtsev Subglacial Mountains;

IAAS = Indo‐Australo‐Antarctic Suture; QEL = Queen Elizabeth Land;

TAM = Transantarctic Mountains.
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compilation of regional seismological surveys, interpolated with the standard kriging method (Figure 4).

More recent studies exist (e.g., Ramirez et al., 2016; Ramirez et al., 2017; Shen et al., 2018, 2017) but do

not cover whole Antarctica or do not provide both single points and areal Moho depth estimation.

Although the AN1‐Moho and the ANT‐Moho reflect the strong contrast in crustal thickness betweenWANT

(~25 km) and EANT (~40 km), they disagree in large parts and differ up to 20 km in depth (Figure 4). In

particular, the crustal thickness of Wilkes Land (compare Figure 1) is estimated to be ~40 km in the AN1

model, while the ANTmodel shows values of ~30 km. Not only do the two seismological models exhibit wide

disparities in many regions of Antarctica but they also contradict the observed gravity signal when a certain

density contrast at the Moho is assumed. Figure 4 shows the mismatch of both models against the Bouguer

Figure 2. Gravity disturbance at 50‐km altitude (left) and geoid (right) from GOCO05s model. The geoid is computed from spherical harmonics expansion from

degree and order N = 12 to 280.

Figure 3. Bouguer gravity anomaly above Antarctica used as input for the Moho depth inversion. Gravity data from

GOCO05s in 50 km height corrected for effects from ice, water, and bedrock topography. In addition, the effect from a

global Airy‐isostatic Moho outside the model area is subtracted. The point sets of seismologically constrained Moho depth

values are represented by colored triangles (AN1 model) and circles (ANT model).
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gravity anomaly after forward computation of their gravity signal. This disagreement is independent from

the applied Moho reference depth and density contrast. Merely, the amplitude of the misfit varies.

Considering the calculated Bouguer anomaly to be correct, this implies that either the density contrast at

the Moho varies strongly across Antarctica or the seismological models do not represent the actual Moho

depth, or a combination of these factors.

Both models are constrained by a set of seismic station points from other studies (see An et al., 2015a;

Baranov & Morelli, 2013, and references therein), where the Moho depth is regarded as well constrained

(Figure 3). Yet, even though many stations are included in both the ANT and the AN1 model, they indicate

different Moho depth values, depending on the applied seismological method. This certainly had an influ-

ence on the discrepancy between the final models. We take these point sets as a benchmark for the Moho

depth models in the gravity inversion. The points from the AN1 and the ANT model will first be used sepa-

rately, and additionally in combined set to evaluate the gravity‐inverted Moho depth models.

3. Moho Depth Inversion From Gravity

3.1. Methodology

We follow the methodology of Uieda and Barbosa (2017), who applied a nonlinear inversion algorithm on

gravity and seismic data for South America with the Python code package Fatiando. A tesseroid model is

created to reproduce the preprocessed gravity signal, parametrized by (1) a regularization parameter, which

controls the smoothness of the model; (2) the reference depth (normal Earth Moho depth: zref); and (3) the

density contrast Δρ at the Moho. The regularization parameter is estimated by the inversion of multiple test

sets, derived from the original data set. The parameter value that results in the least mean square error

Figure 4. Top: Depthmaps of seismicMoho depthmodels. Left: “AN1‐Moho” is derived from an Swave velocitymodel based on Rayleighwave dispersion analyses

(An et al., 2015a); center: “ANT‐Moho” is a compilation of regional surveys (Baranov & Morelli, 2013). The strongest differences (right figure) between both

models occur in the Wilkes Land, Dronning Maud Land, the periphery of the Gamburtsev Subglacial Mountains, and the Antarctic Peninsula. Bottom: Misfit of

forward‐calculated gravity effects from seismological Moho depth models (left: AN1; right: ANT) compared to satellite‐inferred gravity data at 50 km height. Both

models show large disagreement with the gravity data and between each other.
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(MSE) in predicting the original data set is taken to be optimal. However,

we did not find a local minimum within our interval of values for the

regularization parameter (10−10 … 10−4). We therefore chose the value

of 10−6 from which on no further improvement in the MSE can be

observed (Figure 5).

The two other parameters zref and Δρ span a parameter space for given

intervals. Since the mean depth of the Moho and its density contrast are

poorly known for Antarctica, we set a wide range for both parameters:

The reference depth in 2.5 km steps from 25 to 40 km, and the density con-

trast in 25 kg/m3 steps from 250 to 550 kg/m3. For each pair of reference

depth and density contrast in this discretized parameter space, the inver-

sion is performed with the previously estimated regularization parameter.

Afterward, the results are evaluated against a set of points with verified

Moho depth values from seismic experiments. Finally, the model that

gives the smallest MSE in this evaluation is taken as the best fitting one.

Further details of the methodology are described by Uieda and

Barbosa (2017).

Since the Fatiando Python code demands an equiangularly discretized

gravity data set to create a similarly discretized tesseroid model, all data

sets used for the inversion are relocated from the South Pole to the equator. The geographical coordinates

from the Antarctic environment are projected into Cartesian coordinates with a Lambert Equal Area projec-

tion and subsequently reprojected into geographical coordinates at the equatorial region from 30°W to 30°E

and 30°S to 30°N. This is done with a spherical Earth in order to avoid distortions due to the use of the

WGS84 ellipsoid.

We perform three separate inversions for individual sets of seismological Moho depth points: at first for the

point set that was used by An et al. (2015a) to constrain their Moho depth model (“AN1”), second for the

point set used for the kriging‐interpolated compilation from Baranov and Morelli (2013) (“ANT”), and third

a combined set of both (“comb”). Additionally, we aim to address the different tectonic settings of WANT

and EANT in separate inversions, using only seismic points inside the respective area.

3.2. Inversion Results

Depending on the point set of seismological Moho depth values, different pairs of reference depth and den-

sity contrast yield the best fit (Figure 6). While the least error for the “AN1” set is found at zref = 27.5 km and

Δρ = 350 kg/m3, the “ANT” set is best fitted with zref = 30 km and Δρ = 450 kg/m3. The optimum of the

combined set is at zref = 30 km and Δρ = 425 kg/m3. Consequently, the inverted Moho depths differ. The

maximum depth of all models is about 45 km, consistent with the gravity inversion results from Block et al.

(2009), and they overall agree in EANT. In WANT, however, the model inverted with the point set “AN1”

shows a 3‐ to 5‐km shallower Moho than the other two, which comes along with the lower density contrast.

As O'Donnell and Nyblade (2014) emphasize, a single inversion for the whole continent with one constant

density contrast and Moho reference depth results in a compromise between the distinct blocks of cratonic

EANT and rift‐dominated WANT. We too see this effect very apparent in the map images and the mismatch

histograms in Figure 6. The latter show two distinct Gaussian curves, reflecting the western and the eastern

part of Antarctica. Thus, we also conducted the inversion procedure with seismic points from the combined

set constrained to the respective area of WANT and EANT (Figure 7). For WANT we find a well‐resolved

optimal reference depth of ~25 km. The density contrast, however, is rather diffuse without a clear optimum.

We interpret this as an indication of a strong heterogeneity in the region. Compared with this, we also find a

distinct reference depth for EANT at zref = 35 km but also a better resolved optimal density contrast of

Δρ = 625 kg/m3. In this particular case, the reference depth seems reasonable and corresponds to the

cratonic nature of EANT. However, the density contrast is most likely overestimated, since the gravity signal

needs to be reproduced over the whole study area, including WANT and oceanic areas. Regardless of this,

the derived Moho topography beneath EANT reflects the best fit according to the seismic depth points inside

the area. In both parts of Antarctica, the misfit concerning the seismic depth points is decreased significantly

Figure 5. Cross‐validation curve of the regularization parameter. No local

minimum exists. The value of 10
−6

is chosen since lower values do not

lead to a significantly lower mean square error.
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Figure 6. Top: Resulting Moho depth maps from the inversion for different seismic depth point sets (from left to right: AN1, ANT, and combined). The colored

circles indicate the differences in depth between the seismic constraint and the inverted depth. Second row: root mean square (RMS) error within the applied

parameter space. The best fitting pair of reference depth and density contrast is marked by the star symbol. Underneath: histograms of Moho depth difference and

corresponding RMS. Bottom: histograms of gravity residuals.
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compared to the inversion for the whole continent. Still, the density contrast could not be determined reli-

ably in the separate inversions.

3.3. Comparison With Seismological Moho Depth Models

Although the applied inversion methodology is taking account of the seismic‐inferred depth points, the

resulting Moho depth model still has to reproduce the gravity data and is not expected to fit the seismic data

perfectly. This is reflected in Figure 6 (bottom) by the small mismatch in the gravity signal (RMS≈ 3.5 mgal)

and the relatively high residual in the Moho depth (RMS ≈ 8 km). While in Figure 6 the gravity‐inverted

Moho depth is compared with the seismic points (indicated by the colored circles), Figure 8 shows the com-

plete depth differences between the gravity inverted and the areal seismological models.

Large parts of EANT are within the typical range of seismological uncertainty in Moho depth estimation

(approximately ±4 km). On the other hand, strong differences occur beneath the GSM and in Queen

Elizabeth Land (compare Figure 1) for both models. The TAM, in particular their southernmost part, and

whole WANT have a much higher crustal thickness in the gravity inverted models than seismic estimations

indicate. The same pattern is reflected by the gravity misfit of the original seismological models (Figure 4).

Figure 7. Top: resulting Moho depth maps from the inversion with separate seismic points for EANT (left) and WANT (right). The colored circles indicate the

differences in depth between the seismic estimate and the inverted depth. Bottom: root mean square error of gravity‐inverted Moho depth to seismic points.

While still a rather clear optimum could be found for EANT at zref = 35 km and Δρ = 625 kg/m
3
, the inversion for WANT shows only a distinct reference depth of

~25 km. The density contrast, on the other hand, is rather diffuse, which is pointing toward a strong heterogeneity in the area. WANT = West Antarctica;

EANT = East Antarctica.
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3.4. Comparison With Isostatic Moho Model

The discrepancies between the seismological Moho depth estimations and the gravity signal raise questions

about the mass distributions within the Antarctic lithosphere and its isostatic state. For the purpose of this

comparison, we calculate simple Airy‐isostatic Moho depth models for the continent, using the same values

for reference depth and density contrast as derived from the inversion (Figure 9). The residual map reveals

strong deviations from Airy‐isostasy when applying a single density contrast at the Moho boundary. These

patterns are congruent with those of the gravity disturbance (Figure 2) and the gravity residual resulting

from the Airy‐isostatic crustal model (Figure 9). Most prominent are the TAM and Wilkes Land, where

the gravity inverted Moho depth is up to 10 km deeper than Airy‐isostasy is suggesting. The GSM and

Dronning Maud Land are almost not visible in the residual map.

However, in both residual maps we can identify a different signature not only for WANT and EANT but also

within EANT itself: between the TAM and the proposed Indo‐Australo‐Antarctic Suture (Aitken et al.,

2014), where Indo‐Antarctica and Australo‐Antarctica may have collided either during the late

Mesoproterozoic or as late as the early Cambrian (Boger, 2011; Collins & Pisarevsky, 2005), the residual is

substantially lower than for the rest. This may either point at different modes of isostatic compensation

Figure 8. Depth difference between gravity‐inverted and seismological Moho depth models (left: AN1; right: ANT). Most parts are within the typical uncertainty

range of seismological methods. Both seismological models indicate greater Moho depth beneath QEL and the GSM than the gravity inversion. WANT = West

Antarctica; EANT = East Antarctica; GSM = Gamburtsev Subglacial Mountains; QEL = Queen Elizabeth Land; TAM = Transantarctic Mountains.

Figure 9. Left: Airy‐isostatic Moho depth calculated with density contrast and reference depth from the inversion with combined seismic data point set; center:

depth difference between gravity‐inverted and Airy‐isostatic Moho; right: gravity residual resulting from the Airy‐isostatic Moho. IAAS = Indo‐Australo‐

Antarctic Suture; DML = Dronning Maud Land; TAM = Transantarctic Mountains.
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(e.g., lithospheric mantle densities) or imply that topography is partly supported by dynamic (i.e., deeper

mantle) effects.

4. 2‐D Lithospheric Cross‐Sections

Our analysis shows that the mass distribution in the crust and upper mantle is expected to have a significant

role in the isostatic state and gravity field of Antarctica. In the following, we discuss the potential upper

mantle contribution by 2‐D modeling across the Wilkes Subglacial Basin region of EANT in particular.

As mentioned previously, large disagreements exist between different Moho depth models and studies in

EANT. Moho depth estimates from seismological studies differ for the same station by up to 10 km, even

along a relatively well‐studied profile (Figure 10). The profile stretches from the TAM to the GSM (Creyts

et al., 2014; Paxman et al., 2016) crossing the southern Wilkes Subglacial Basin (Ferraccioli et al., 2001;

Ferraccioli, Armadillo, Jordan, et al., 2009; Ferraccioli & Bozzo, 2003; Jordan et al., 2013; Paxman et al.,

2018, 2019; Studinger et al., 2004). Seismic data have been acquired by deployments from the TAMSEIS

(Hansen et al., 2009; Lawrence et al., 2006a, 2006b) and the GAMSEIS (Kanao et al., 2014) experiments.

Figure 10. Top: Bedrock topography (Fretwell et al., 2013) with combined profile (A‐A′) of seismic stations from the

Trans‐Antarctic Mountain Seismic Experiment (blue circles) and Gamburtsev Mountain Seismic experiment (orange

circles) surveys. Cyan‐colored circles indicate further seismic stations used to constrain the AN1‐Moho model.

GSM = Gamburtsev Subglacial Mountains; LV = Lake Vostok; TAM = Transantarctic Mountains; WSB = Wilkes

Subglacial Basin. Bottom: Moho depth estimations from different studies: Rayleigh wave analyses from Lawrence et al.

(2006b) show a shallow Moho at ~30 km (green diamonds), while S wave receiver functions from Hansen et al. (2009)

indicate an ~10‐km deeper Moho (red diamonds). Solid lines indicate depth of seismic (AN1‐Moho and ANT‐Moho) and

gravity‐inverted Moho with combined point set.
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Yet the respective studies are not consistent and yield different Moho depth estimations, ranging from a rela-

tively shallow (~33 km, Rayleigh wave analyses; Lawrence et al., 2006b) to a significantly deeper (~43 km, S

wave receiver functions; Hansen et al., 2009) Moho beneath the southern Wilkes Subglacial Basin. Similar

discrepancies exist between the AN1‐Moho model (deep), which incorporates estimates from Hansen

et al. (2009), and the ANT‐Mohomodel (shallow), involving results from Lawrence et al. (2006b). Such a con-

siderable difference of ~10 km in crustal thickness has, of course, strong implications for the characteristics

of the crust itself and the underlying mantle in terms of density, temperature, and composition and therefore

the tectonic and geodynamic history of the region. In case of pure Airy‐isostasy, for example, 10 km in crustal

thickness would correspond to 1,500 m in topography, when assuming a rock density of 2,670 kg/m3 and a

Moho density contrast of 400 kg/m3. Figure 10 (bottom) shows the different Moho depth estimates along the

profile. For purpose of comparison, the gravity‐inverted Moho based on the combined seismic point set is

shown as well. Its huge deviations from the seismic estimates again illustrate the consequences of neglecting

varying crustal and mantle densities, particularly in the GSM region, where a very low density contrast of

~55 kg/m3 at the crustal root has been modeled in order to fit both gravity and seismologically derived esti-

mates of crustal thickness (Ferraccioli et al., 2011).

In order to examine in further detail the crustal and lithosphere properties that would be required in the

thick versus thin crust scenario for the southern Wilkes Subglacial Basin, we use LitMod2D v1.6 (Afonso

et al., 2008), a software that has successfully been applied in a number of studies (e.g., Jones et al., 2014).

It solves the corresponding equations for conductive heat flow, thermodynamic, geopotential, and isostasy

in the finite differences method simultaneously. Output data are density, temperature and pressure fields,

surface heat flow, seismic body wave velocities, geoid, gravity anomalies, and isostatic elevation (topogra-

phy). The underlying properties are functions of temperature, pressure, and composition. In case of mantle

material, they are thermodynamically modeled with the software Perple_X (Connolly, 2005) based on a pre-

defined peridotitic composition. Further details of the methodology are described by Afonso et al. (2008).

According to the different Moho depth estimates, we set up two alternative models along the model profile

(Figure 10): one with a shallow and one with a deep Moho boundary.

Petrological properties are required as input parameters for crust andmantle. We use values for bulk density,

thermal expansion coefficient, and compressibility (Table 1) of the crustal layers that result in in situ densi-

ties being thought to represent a global average (e.g., Christensen &Mooney, 1995; Rudnick et al., 1998, and

references therein). For thermal parameters (heat production and thermal conductivity), we take the same

values as An et al. (2015b, and references therein) to get comparable results. The petrology of the upper

mantle of central EANT is unknown, but it has been speculated that an igneous and metamorphic belt of

Mesoproterozoic (1–1.4 Ma) age is present at crustal levels on the periphery of the GSM (Elliot et al.,

2015; Ferraccioli et al., 2011; Goodge et al., 2017). Thus, we assume a mean Proterozoic lithospheric mantle

composition beneath the interior of EANT in our models. However, seismic S wave and Rayleigh wave

velocity studies beneath the 250‐km‐thick (An et al., 2015b) craton indicate that the lithosphere of the

GSM region may have been formed during earlier Archaean and Paleoproterozoic times (Heeszel et al.,

2013). Following these seismic interpretations, we introduce a lithospheric mantle of Archaean composition

in our models beneath the GSM. In our modeling, we use the oxide compositions for representative

Phanerozoic, Proterozoic, and Archaean peridotites from Afonso et al. (2008).

4.1. Results and Discussion

We fitted the models to topography and geoid by minor adjustments of crustal densities (see Table 1 for the

parameters used and compare upper and lower table), Moho depth, and lithospheric thickness. Themodeled

lithospheric density structure (Figure 11, bottom) directly affects the resulting geoid and isostatic elevation,

which in turn are used as constraining observables. While the model with the shallow Moho beneath the

southern Wilkes Subglacial Basin could be fitted with a uniform lithospheric mantle of Proterozoic compo-

sition, the deep Moho boundary required a denser lithospheric mantle to be in isostatic balance. Overall,

both the deeper and the shallower Moho scenarios can fit the topography and geoid but require different

mantle compositions.

Further comparison with upper mantle S wave velocities (An et al., 2015a) and surface heat flow (An et al.,

2015b) can be done for model validation and discussion. Remarkably different geothermal heat flow estima-

tions exist for Antarctica (e.g., Fox Maule et al., 2005; Martos et al., 2017; Shapiro & Ritzwoller, 2004). Here
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we compare our predictions to the heat flux estimates from An et al. (2015b) since they originate from a

similar model setup (conductive heat transfer within the lithosphere) and are thus best suited for our 2‐D

modeling purposes. The calculated surface heat flow of both 2‐D models (Figure 11) is in the range of heat

flow data provided by An et al. (2015b). Notably, the largest effect is in the coastal region of the TAM (close to

profile point A) where heat flow differs from 55 to more than 65 mW/m2 between the two models. Such a

difference would be expected to have a significant effect in modeling of the ice sheet history (e.g.,

Rogozhina et al., 2012) and estimates of present‐day basal melting rates, which in turn can influence

subglacial hydrology and ice sheet dynamics. Regarding seismic velocities, both models are in first‐order

Table 1

Petrophysical Parameters of Crustal Layers in the 2‐D Models

Body No. Type Heat prod. Therm. cond. Density Compressibility

Model with deep Moho after Hansen et al. (2009)

1a Upper crust 1.0 2.1 2.65 6e‐11

1b Upper crust 1.0 2.1 2.80 5e‐11

2a Lower crust 0.4 2.1 2.70 6e‐11

2b Lower crust 0.5 2.2 2.80 6e‐11

(μW/m
3
) (W/mK) (g/cm

3
) (GPa

−1
)

Model with shallow Moho after Lawrence et al. (2006b)

1a Upper crust 1.0 2.1 2.65 6e‐11

1b Upper crust 1.0 2.1 2.78 5e‐11

2a Lower crust 0.4 2.1 2.70 6e‐11

2b Lower crust 0.3 2.2 2.78 7e‐11

(μW/m
3
) (W/mK) (g/cm

3
) (GPa

−1
)

Note. The body numbers correspond to Figure 11.

Figure 11. LitMod2D modeling results along the profile shown in Figure 10. Left: thin crust after Lawrence et al. (2006b); right: thick crust after Hansen et al.

(2009). Both models are fitted for topography and geoid (top) and are largely consistent with heat flow estimations. A thick crust requires higher lithospheric

mantle density to be in isostatic equilibrium. TAM = Transantarctic Mountains; SWSB = Southern Wilkes Subglacial Basin; VH = Vostok Highlands;

GSM = Gamburtsev Subglacial Mountains.
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agreement with the S wave model from An et al. (2015a) down to a depth of ~150 km (Figure 12). At profile

kilometer 1,200–1,300, a transition from low to high velocities takes place at depths of 50–150 km, which is a

response to the thick underlying lithosphere. However, the LitMod2D framework assumes an adiabatic

temperature gradient in the sublithospheric mantle and does not include thermal anomalies there. Thus,

the seismic velocities are only comparable when assuming thermal steady state. Considering that, the

slightly better resemblance of the deep Moho model with the AN1 velocity model should not be considered

as a robust indication of a more realistic model. The comparison of Swave velocities alone cannot validate or

reject one of the two models, either.

A depleted mantle composition of Proterozoic age that would best fit with the thick crust scenario would be

consistent with the hypothesis that the Mawson Craton of Archaean‐Paleoproterozoic age that comprised

the Antarctic Terre Adélie Craton and the Australian Gawler Craton prior to Gondwana breakup extends

to our model profile and may extend even much further south to the Shackleton Range in Queen

Elizabeth Land (Boger, 2011; Paxman et al., 2017). The notion that the Mawson Craton extends to our study

area is also supported by independent observations from surface geology in the central TAM and from

studies of glacial erratics. Detrital zircons from Lake Vostok, for example, are partly dated to 1.6–1.8 Ga

(Leitchenkov et al., 2016) and have potentially been transported from ice sheet‐covered cratonic terrains

located in the Wilkes Land region. Goodge et al. (2017) collected and analyzed glacial clasts in the central

TAM region, relatively close to our modeling profile. Their results indicate that ~1.6‐Ga magmatic belts of

the Gawler Craton may extend into central EANT. The transport distance of the individual clasts, however,

is uncertain. Distinctly younger ages (ca. 1.3 to 1.0 Ga) are also observed, and their origin could be located in

a putative ~1,000‐km‐distant source region in the GSM province, where Ferraccioli et al. (2011) hypothe-

sized that a major coeval orogenic belt exists, based on their aeromagnetic and airborne gravity interpreta-

tion. Aeromagnetic studies also suggest that the cratonal margin of EANT, at least at crustal level, gets much

closer to the coast along our modeling profile compared to the northern parts, where the Ross Orogen

appears to be considerably wider (Ferraccioli, Armadillo, Jordan, et al., 2009; Ferraccioli, Armadillo,

Zunino, et al., 2009; Ferraccioli et al., 2002; Golynsky et al., 2018).

As this sector of the Mawson Craton and the Ross Orogen in EANT were formerly contiguous with the

Gawler Craton and the Delamerian Orogen in Australia, respectively (e.g., Finn et al., 1999), it is useful to

make some first‐order comparisons between these two continents in terms of crustal thickness estimates.

Seismic crustal thickness estimates of 30–35 km have been derived for parts of the Delamerian Orogen in

South Australia (Kennett et al., 2011; Kennett et al., 2012; Salmon et al., 2013), suggesting that this

subduction‐related orogenic belt did not lead to major crustal thickening. A similar setting may be envisaged

in particular for the back‐arc regions of the Ross Orogen that may in parts underlie the Wilkes Subglacial

Basin (e.g., Ferraccioli, Armadillo, Jordan, et al., 2009; Jordan et al., 2013). However, there are complicating

effects in EANT, due to the much more recent Cenozoic uplift of the TAM (at the former site of the Ross

Orogen) and the associated lithospheric flexure of the craton and its margin beneath the Wilkes

Subglacial Basin (e.g., Paxman et al., 2018, 2019, and references therein). Irrespectively, however, we also

note that some potentially conjugate Precambrian terranes in Australia that lie along the eastern edge of

the Gawler Craton appear to have anomalously thick crust, most notably the seismically defined Numil

terrane that has crust up to 45 km thick close to a proposed major suture zone of inferred

Paleoproterozoic or even older Archaean age (Betts et al., 2016; Curtis & Thiel, 2019). Another potentially

conjugate craton region for the Wilkes Subglacial Basin basement is the Australian Curnamona Craton that

is also underlain by 40‐ to 45‐km‐thick crust (Kennett et al., 2011; Kennett et al., 2012; Salmon et al., 2013).

Taken together, this comparison with crustal thickness patterns observed over the much better understood

Australian continent coupled with previous aeromagnetic interpretations and geological studies in this

sector of EANT tends to lend more weight to the Proterozoic lithosphere model beneath the TAMSEIS

seismic line.

The younger and more fertile Phanerozoic lithospheric mantle composition, which is required in the model

with a deep Moho beneath the southern Wilkes Subglacial Basin, is instead apparently inconsistent with

the presumed Proterozoic age of the crust (Goodge et al., 2010). However, this model cannot be ruled out

either, considering the broader tectonic history of the region: the inherited TAM margin formed in the

course of the late Neoproterozoic breakup of Rodinia (Elliot et al., 2015; Goodge & Finn, 2010) and exten-

sive subduction‐related metamorphism and magmatism took place during the subsequent Ross Orogeny in
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Cambrian‐Ordovician times (Elliot et al., 2015; Ferraccioli, Armadillo, Jordan, et al., 2009; Ferraccioli,

Armadillo, Zunino, et al., 2009; Ferraccioli et al., 2002; Ferraccioli et al., 2002, 2009; Goodge et al., 2012).

Considering the above, far‐field effects of Ross‐age subduction in an inferred back‐arc setting for the

WSB region (Ferraccioli, Armadillo, Jordan, et al., 2009) could potentially have affected the degree of

depletion of the mantle lithosphere beneath the hinterland of the TAM. Overall, it is possible that

subduction‐related processes may have led to a refertilization of the lithospheric mantle over a broader area

than surface exposures or interpretations of crustal geology alone appear to support. We contend that ruling

out either the thinner or the thicker crust models for the Wilkes Subglacial Basin is therefore somewhat

premature based on our alternative 2‐D end‐member models alone. Overall, it is clear that more extensive

seismological station coverage is required to reduce the ambiguities in crustal and lithospheric modeling in

this remote frontier of EANT.

5. Conclusions

Our inversion results of the Moho depth of Antarctica from satellite gravity data, constrained by indepen-

dent seismological estimates, are broadly consistent with previous gravity studies (Block et al., 2009;

O'Donnell & Nyblade, 2014). Our main results and conclusions are summarized hereafter:

Figure 12. S wave velocities for the alternative models. Top: velocity model from An et al. (2015a); middle and bottom:

velocities from LitMod2D models. Although the amplitude differs (partly due to the choice of attenuation parameters),

the velocity pattern is widely similar down to a depth of 150 km. In the LitMod2D models only mantle velocities are

calculated.
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1. A strong contrast in crustal thickness is confirmed between WANT (~25 km) and the composite East

Antarctic craton (~40–45 km) and the larger misfits between gravity inversions and seismologically

derived estimates of Moho depth likely stem from different density contrasts at the Moho in these geolo-

gically distinct parts of the continent. A separate inversion forWest and EANT therefore provides a better

fit to the seismic constraints and thus yielded improved Moho depth estimates. However, we found that

the different density contrasts at the Moho could not be resolved reliably from gravity inversions alone,

especially beneath WANT, suggesting that there could be significant additional variability in upper

mantle densities beneath the different Phanerozoic domains that make up WANT.

2. By comparing our results with an Airy‐isostatic Moho depth model we showed that different modes of

compensation likely exist in EANT and WANT. Notably, we found that the region of Wilkes Land also

differs considerably from the rest of EANT. It is therefore reasonable to conclude that some sectors of

Antarctica may not be in isostatic equilibrium and that significant additional buoyancy contributions

from the lithospheric mantle are present even in EANT, in general agreement with the findings of

O'Donnell and Nyblade (2014).

3. In our quest to better comprehend crustal and deeper lithospheric architecture in interior EANT, we

performed targeted 2‐D lithospheric modeling over the southern Wilkes Subglacial Basin region along

the TAMSEIS‐GAMSEIS passive seismic profile. We showed that a shallow Moho beneath the basin

can be fitted by introducing a moderately depleted lithospheric mantle composition, which would match

well with the notion of a Proterozoic age lithosphere underlying the region. An alternative end‐member

model with a deeper Moho fits the satellite gravity and the topography equally well but requires a higher

mantle density, as might be expected for a younger and more fertile Phanerozoic lithospheric mantle.

Although the latter model appears to be at odds with our current knowledge of this part of the

Mawson Craton, based on surface geology, erratics, and interpretations of aeromagnetic anomaly data,

we propose that it cannot be ruled out either. For example, far‐field effects of Ross‐age subduction in a

distal back‐arc setting (Ferraccioli et al., 2002; Ferraccioli, Armadillo, Jordan, et al., 2009) could in prin-

ciple have modified the original Proterozoic lithosphere beneath parts of the Wilkes Subglacial Basin,

affecting the degree of depletion of themantle lithosphere. Given the importance of validating or refuting

these competing models for the crustal structure of the Wilkes Subglacial Basin, both for comprehending

the processes that affected the margin of the composite East Antarctic Craton and for geothermal heat

flow estimation, we recommend new seismological deployments in this frontier region, coupled with

the development of enhanced 3‐D lithosphere modeling approaches.
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