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We theoretically study the electronic structure of magic-angle twisted bilayer graphene with dis-
ordered moiré patterns. By using an extended continuum model incorporating non-uniform lattice
distortion, we find that the local density of states of the flat band is hardly broadened, but splits into
upper and lower subbands in most places. The spatial dependence of the splitting energy is almost
exclusively determined by the local value of the effective vector potential induced by heterostrain,
whereas the variation of local twist angle and local moiré period give relatively minor effects on
the electronic structure. We explain the exclusive dependence on the local vector potential by a
pseudo Landau level picture for the magic-angle flat band, and we obtain an analytic expression of
the splitting energy as a function of the strain amplitude.

I. INTRODUCTION

Twisted bilayer graphene (TBG) exhibits various ex-
otic quantum phenomena with a wide variety of cor-
related phases [1–19]. These quantum states originate
from moiré-induced flat bands, which emerge when two
graphene layers stacked with a magic-angle (∼ 1◦)[20–
23]. The flat band is usually described by a theoretical
model assuming a regular moiré superlattice with a per-
fect periodicity [20–35]. However, the moiré interference
pattern is highly sensitive to a slight distortion of un-
derlying structure. In TBG, an atomic displacement of
graphene’s lattice is magnified in the moiré superlattice
by factor of the inverse twist angle [36], leading to un-
avoidable disorder in the moiré superlattice. Indeed, the
moiré patterns in actual TBG samples are not perfectly
regular, but exhibit non-uniform structures including lo-
cal distortion and variance of the twist angle [4–7, 37–51].

It is expected that such a disorder in the moiré pat-
tern would strongly affect the flat band and its electronic
properties in the one-body level. Generally, non-uniform
moiré systems are hard to treat theoretically, because
one needs to consider a number of moiré periods each
of which contains huge number of atoms. In previous
works, the effect of the twist angle disorder in TBG was
investigated using various theoretical approaches, such as
a real-space domain model composed of regions with dif-
ferent twist angles [52], transmission calculations through
one-dimensional variation of twist angle [53–55], and a
Landau-Ginzburg theory to study the interplay between
electron-electron interactions and disorder [56].

In this paper, we study the electronic structure of
magic-angle TBG in the presence of non-uniform moiré
patterns as shown in Fig. 1, generated from random
lattice distortion of graphene layers. The model auto-
matically contains possible moiré disorder components,
including various types of local strains and local rota-
tions. We calculate the energy spectrum by using an ex-
tended continuum model incorporating non-uniform lat-
tice distortion [57]. We find that the local density of
states (LDOS) of the flat band is hardly broadened but
splits place by place. Remarkably, the spatial variation
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FIG. 1. Moiré patterns of magic-angle TBG (𝜃 = 1.05◦)
with random non-uniform distortion of 𝜖 = 0, 0.0006, 0.0012
and 0.0018, where the characteristic wave length is 𝜆 = 7𝐿𝑀 ,
and the super-cell size (big parallelogram) is 𝑛SM = 8. The
bright region represents local AA stack and the dark region
represents AB/BA stack. The red dots are the AA spots of
the non-distorted TBG for reference.

of the splitting energy is totally uncorrelated with local
twist angle or local periodicity, but it is almost exclu-
sively determined by the local value of the effective vector
potential caused by heterostrain, or relative strains be-
tween layers. We explain the exclusive dependence on the
strain-induced vector potential by using a pseudo Landau
level picture for the magic-angle flat band [58], and ob-
tain an analytic expression for the splitting energy as a
function of the strain amplitude. The strain-induced flat
band splitting is an analog of that in uniformly-distorted
TBGs [5, 59–65], and the strong coincidence between
the splitting energy and the local strain tensor in non-
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uniform TBGs reflects a highly-localized feature of the
flat band wave function.

This paper is organized as follows. Before we con-
sider non-uniform moiré disorder, we present in Sec. II
a detailed study on a TBG with uniform distortion. We
investigate the effects of different types of strain compo-
nents independently, and show that the flat band split-
ting is mainly caused by shear and anisotropic-normal
heterostrain. We derive an approximate expression for
the splitting energy by using the pseudo Landau level
analysis. In Sec. III, we calculate the LDOS of magic-
angle TBG with non-uniform moiré patterns, and demon-
strate a strong relationship between the LDOS split and
the strain-induced vector potential. A brief conclusion is
given in Sec. IV.

II. TBG WITH A UNIFORM DISTORTION

A. Atomic structure

We first consider a TBG with a uniform lattice distor-
tion and investigate its effect on the flat band. We define
the lattice vectors of monolayer graphene as a1 = 𝑎(1, 0)
and a2 = 𝑎(1/2,

√
3/2) where 𝑎 = 0.246 nm is the lattice

constant, and define b 𝑗 as the corresponding reciprocal
lattice vectors to satisfy a𝑖 · b 𝑗 = 𝛿𝑖 𝑗 . In a perfect TBG
without distortion, the lattice vectors of layer 𝑙 (= 1, 2)
are given by a(𝑙)

𝑗
= 𝑅(∓𝜃/2)a 𝑗 where ∓ is for 𝑙 = 1 and 2,

respectively, 𝑅 is a two-dimensional rotation matrix, and
𝜃 is the twist angle.
We introduce a uniform distortion to layer 𝑙, whch is

expressed by a matrix,

E (𝑙) =

(
𝜖
(𝑙)
𝑥𝑥 −Ω(𝑙) + 𝜖 (𝑙)𝑥𝑦

Ω(𝑙) + 𝜖 (𝑙)𝑥𝑦 𝜖
(𝑙)
𝑦𝑦

)
. (1)

The E (𝑙) represents a deformation such that a carbon
atom at a position r in a non-distorted system is shifted

to r + E (𝑙)r. Here 𝜖 (𝑙)𝑥𝑥 and 𝜖 (𝑙)𝑦𝑦 represent normal strains

in 𝑥 and 𝑦 directions, respectively, 𝜖 (𝑙)𝑥𝑦 is a shear strain,

and Ω(𝑙) is a rotation from the original twist angle For
later arguments, we also define the isotropic/anisotropic
components of the normal strain by

𝜖
(𝑙)
± =

1

2
(𝜖 (𝑙)𝑥𝑥 ± 𝜖 (𝑙)𝑦𝑦 ), (2)

and the interlayer difference of each strain/rotation com-
ponent as

𝜖± = 𝜖
(1)
± − 𝜖 (2)± ,

𝜖𝑥𝑦 = 𝜖
(1)
𝑥𝑦 − 𝜖 (2)𝑥𝑦 ,

Ω = Ω(1) −Ω(2) . (3)

In the presence of distortion, the lattice vectors change

to a(𝑙)
𝑗

= (1+E (𝑙) )𝑅(∓𝜃/2)a 𝑗 . In the following, we assume

the original twist angle and the distortion is sufficiently

small (𝜃,Ω(𝑙) , 𝜖 (𝑙)𝜇𝜈 � 1), so that

a(𝑙)
𝑗

≈
[
𝑅 (∓𝜃/2) + E (𝑙) ]a 𝑗 . (4)

Similarly, the reciprocal lattice vectors are written as

b(𝑙)
𝑗

≈
[
𝑅 (∓𝜃/2) − E (𝑙)T]

b 𝑗 , (5)

where 𝑇 is the matrix transpose.
In an intrinsic monolayer graphene, six corner points

of the Brillouin zone (BZ) are given by 𝜉K 𝑗 ( 𝑗 = 1, 2, 3),
where 𝜉 = ±1 label the valley degree of freedom, and

K 𝑗 = 𝑅
(
𝜙 𝑗

) 4𝜋
3𝑎

(−1, 0), 𝜙 𝑗 =
2𝜋

3
( 𝑗 − 1), (6)

are equivalent points in the BZ. Corresponding vectors
for the disroted TBG are written as

K (𝑙)
𝑗

≈
[
𝑅 (∓𝜃/2) − E (𝑙)T]

K 𝑗 . (7)

Figure 2 illustrates the schematics of BZ for (a) a non-
distorted TBG and (b) a distorted TBG. In each panel,
blue and orange hexagons on the left represent the first
BZ of graphene layer 𝑙 = 1 and 2, respectively, where the

corner points are given by 𝜉K (𝑙)
𝑗
. We define interlayer

shift of the corner points by

q 𝑗 = K (1)
𝑗

−K (2)
𝑗

( 𝑗 = 1, 2, 3), (8)

as shown in Fig. 2. The q 𝑗 ’s can be expressed only by
the interlayer rotation and strain components as

q 𝑗 =
4𝜋

3𝑎

[
𝑅

(
𝜙 𝑗

) (
𝜖+

𝜃 −Ω

)
+ 𝑅

(
−𝜙 𝑗

) (
𝜖−
𝜖𝑥𝑦

)]
. (9)

The reciprocal lattice vectors of the moiré pattern are

given by G𝑀
𝑗

= b(1)
𝑗

− b(2)
𝑗
, which are also written as

GM
1 = q2−q1, GM

2 = q3−q2. In Fig. 2, a green hexagon on
the right side represents the moiré Brillouin zone defined
by GM

𝑗
’s

B. Continuum model and Band calculation

We use the continuum model [22, 24–35, 57–67] to de-
scribe a strained TBG. The effective Hamiltonian for val-
ley 𝜉 is written as

H ( 𝜉 ) (k) =
(
𝐻1 (k) 𝑈†

𝑈 𝐻2 (k)

)
, (10)

where 𝐻𝑙 (k) is the 2 × 2 Hamiltonian of distorted mono-
layer graphene, and 𝑈 is the interlayer coupling matrix.
The Hamiltonian[Eq. (10)] works on the four-component

wave function (𝜓 (1)
𝐴
, 𝜓

(1)
𝐵
, 𝜓

(2)
𝐴
, 𝜓

(2)
𝐵

), where 𝜓
(𝑙)
𝑋

repre-
sents the envelope function of sublattice 𝑋 (= 𝐴, 𝐵) on
layer 𝑙 (= 1, 2).
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The 𝐻𝑙 (k) is given by

𝐻𝑙 (k) = −ℏ𝑣
[(
𝑅 (∓𝜃) + E (𝑙)

)−1 (
k + 𝑒

ℏ
A(𝑙)

)]
· σ, (11)

where ∓ is for 𝑙 = 1 and 2, respectively, 𝑣 is the graphene’s
band velocity, σ =

(
𝜉𝜎𝑥 , 𝜎𝑦

)
and 𝜎𝑥 , 𝜎𝑦 are the Pauli ma-

trices in the sublattice space (𝐴, 𝐵). We take ℏ𝑣/𝑎 = 2.14
eV [25]. The A(𝑙) is the strain-induced vector potential
that is given by [68–70]

A(𝑙) = 𝜉
3

2

𝛽𝛾0

𝑒𝑣

(
𝜖 (𝑙)−
−𝜖 (𝑙)𝑥𝑦

)
, (12)

where 𝛾0 = 2.7 eV is the nearest neighbor transfer energy
of intrinsic graphene and 𝛽 ≈ 3.14. Note that the strain-
induced vector potential, Eq. (12), depends only on 𝜖 (𝑙)−
and 𝜖 (𝑙)𝑥𝑦 , while not on 𝜖 (𝑙)+ or Ω(𝑙) .
The interlayer coupling matrix 𝑈 is given by

𝑈 =

3∑︁
𝑗=1

𝑈 𝑗e
i𝜉q 𝑗 ·r,

𝑈1 =

(
𝑢 𝑢′

𝑢′ 𝑢

)
, 𝑈2 =

(
𝑢 𝑢′𝜔−𝜉

𝑢′𝜔+𝜉 𝑢

)
,

𝑈3 =

(
𝑢 𝑢′𝜔+𝜉

𝑢′𝜔−𝜉 𝑢

)
.

(13)

The parameters 𝑢 = 79.7 meV and 𝑢′ = 95.7 meV are in-
terlayer coupling strength between AA/BB and AB/BA
stack region, respectively. The difference between 𝑢 and
𝑢′ effectively arise from the in-plane lattice relaxation and
from the out-of-plane corrugation effect [25, 57]. The in-
terlayer matrix 𝑈 depends on the strain via q 𝑗 ’s [Eq. (9)].
Below we investigate the effect of lattice distortion

on the energy bands using the effective Hamiltonian,
Eq. (10). In fact, the electronic structure is mainly
affected by the interlayer asymmetric components of
the strain tensor [Eq. (3)] , and in particular, the flat
band is highly sensitive to 𝜖− and 𝜖𝑥𝑦. To demonstrate
this, we calculate the energy bands of the magic-angle
TBG (𝜃 = 1.05◦) in the presence of asymmetric strain
E (1) = −E (2) = E/2, where different types of strain com-
ponents Ω, 𝜖+, 𝜖−, 𝜖𝑥𝑦 are considered independently. Fig-
ure 3 shows the band dispersion and the density of state
(DOS) in individual strain components, where black,
green, red, and blue lines represent the strain amplitude
(i.e., value of Ω, 𝜖+, 𝜖−, 𝜖𝑥𝑦) of 0, 0.001, 0.002 and 0.004,
respectively.

We clearly observe that the central flat band is partic-
ularly sentsitive to 𝜖− and 𝜖𝑥𝑦, where a small distortion
of 0.001 leads to a significant split of the flat band about
20 meV. In constrast, 𝜖+ and Ω gives relatively minor
effects. 𝜖+ moves the Dirac points at 𝜅 and 𝜅′ in the op-
posite directions in energy, resulting in a smaller DOS
split. Ω shifts the twist angle from the magic angle and
slightly broadens the flat band. The strain-induced flat
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FIG. 2. Brillouin zones of (a) a non-distorted TBG and
(b) a distorted TBG. Blue and orange hexagons on the left
represent the first Brillouin zone of graphene layer 1 and 2
(twisted by ∓𝜃/2), respectively, and red arrows are the dis-
placement vectors from the layer 2’s 𝐾+ point to layer 1’s. A
green hexagon on the right side is the moiré Brillouin zone.

band splitting was also found the previous work, which
considered the effect of uniaxial heterostrain in TBG
[5, 60, 62, 63], which corresponds to 𝜖− and 𝜖𝑥𝑦 in our
notation.
It should also be noted that the split flat bands in

Fig. 3 are not completely separated, but stick together
at certain points near 𝛾 (off the path shown in Fig. 3)
[60]. These Dirac points are originally located at 𝜅 and
𝜅′ in the non-distorted TBG, and when a uniform distor-
tion is applied, they move without gap opening under the
protection of the 𝐶2𝑧𝑇 symmetry. The two Dirac points
cannot pair-annihilate because they have the same Berry
phase [71].

C. Pseudo Landau Level approximation

As shown in the previous section, the flat band is split
significantly by anisotropic normal strain 𝜖− and shear
strain 𝜖𝑥𝑦, while not much by other components. We
explain this by using the pseudo Landau level picture of
TBG [58], which describes the flat band as the Landau
level (LL) under a moiré-induced fictitious magnetic field.
We apply the same formulation to the strained TBG,
Eq. (10), and analytically estimate the flat-band split
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5

energy.
The pseudo-LL Hamiltonian is obtained by rewrit-

ing the Hamiltonian matrix [Eq. (10)] in the basis

(𝜓+
𝐴
, 𝜓+

𝐵
, 𝜓−

𝐴
, 𝜓−

𝐵
) where 𝜓±

𝑋
= (𝜓 (1)

𝑋
± i𝜓 (2)

𝑋
)/
√
2, and

then expanding it in r with respect to the origin
(the AA-point) upto the first order [58]. We ignore(
𝑅 (∓𝜃/2) + E (𝑙) )−1 in Eq. (11), which gives only higher
order effects. The detailed calculation is presented in
Appendix A.

As a result, the effective Hamiltonian is written as

𝐻PLL =

(
𝐻+ 𝑉†

𝑉 𝐻−

)
, (14)

where

𝐻± = −ℏ𝑣
(
k ± 𝑒

ℏ
a(r)

)
· σ, (15)

a(r) = 𝜉 2𝜋𝑢
′

𝑒𝑣𝑎
(𝜃 −Ω)

(
−𝑦
𝑥

)
. (16)

Eq. (15) is essentially the Dirac Hamiltonian under a
uniform magnetic field ∇ × (±a) = (0, 0,±𝑏eff ) with
𝑏eff = 𝜉 [4𝜋𝑢′/(𝑒2𝑣𝑎)] (𝜃−Ω). Note that the pseudo vector
potential a(r) originates from the inter-sublattice cou-
pling 𝑢′ in the moiré interlayer Hamiltonian [Eq. (13)],
and it should be distinguished from the strain-induced
vector potential A(𝑙) .

The off-diagonal matrix 𝑉 is given by

𝑉 =

(
−3i𝑢𝐼2 −

𝑒𝑣

2
A · σ

)
e−i

2𝑒
ℏ
𝜒 (r) , (17)

where 𝐼2 is a 2×2 identity matrix, 𝑢 is the intra-sublattice
coupling in moiré interlayer Hamiltonian [Eq. (13)], and

A = A(1) −A(2) = 𝜉
3

2

𝛽𝛾0

𝑒𝑣

(
𝜖−

−𝜖𝑥𝑦

)
, (18)

𝜒(r) = 𝜉 𝜋𝑢
′

𝑒𝑣𝑎

[
(𝑥2 + 𝑦2)𝜖+ + (𝑥2 − 𝑦2)𝜖− + 𝑥𝑦𝜖𝑥𝑦

]
. (19)

Here A(𝑙) is the strain-induced vector potential argued
in the previous section.

In the absence of the off-diagonal matrix 𝑉 , the eigen-
states are given by the pseudo LLs of sector 𝐻±. For
𝜉 = + valley, it is explicitly written as

|+, 0, 𝑚〉 =
©­­­«

0
𝜑0,𝑚
0
0

ª®®®¬ , |−, 0, 𝑚〉 =
©­­­«

0
0

𝜑0,𝑚
0

ª®®®¬ , (20)

where 𝜑0,𝑚 (r) ∝ 𝑒−𝑖𝑚𝜙𝑒−𝑟
2/(4𝑙2eff ) is the 0th LL wavefunc-

tion with angular momentum 𝑚 expressed in the polar

coordinate r = 𝑟 (cos 𝜙, sin 𝜙), and 𝑙eff =
√︁
ℏ/(𝑒𝑏eff ). The

0th LLs in Eq. (20) have exactly opposite sublattice po-
larization (i.e., |+, 0, 𝑚〉 on B, and |−, 0, 𝑚〉 on A), be-
cause the Dirac Hamiltonians 𝐻± have opposite pseudo
magnetic fields ±𝑏eff .

In the absence of distortion (A = 𝜒 = 0), the 0th LLs
remain the zero-energy eigenstates even we include the
off-diagonal terms −3i𝑢𝐼2 [Eq. (17)], because 𝐼2 does not
mix different sublattices. The flat band of TBG is un-
derstood by these degenerate 0th LLs. Since the effective
Hamiltonian Eq. (20) is based on the linear expansion
around r = 0 (the AA spot), the approximation is valid
for the LL wavefunctions with small angular momenta
𝑚’s, which are well localized to r = 0.
When we switch on the disortion terms, the 0th Lan-

dau levels are immediately hybridized by A · σ in the
off-diagonal matrix 𝑉 , and split into 𝐸 = ±Δ𝐸/2, where

Δ𝐸 = 𝑒𝑣 |A| = 3

2
𝛽𝛾0

√︃
𝜖2− + 𝜖2𝑥𝑦 . (21)

Note that the pseudo gauge potential 𝜒(r) only con-
tributes to the phase factor of the coupling matrix el-
ements [Eq. (17)], giving a higher order correction to the
splitting energy (see, Appendix A). Eq. (21) explains the
exclusive dependence of the flat band splitting on 𝜖− and
𝜖𝑥𝑦. Considering (3/2)𝛽𝛾0 ≈ 13 eV, a distortion (𝜖−, 𝜖𝑥𝑦)
of the order of 10−3 corresponds to a split width Δ𝐸 ∼ 10
meV.
In Fig. 3, horizontal red lines represent ±Δ𝐸/2 of

Eq. (21), showing a good agreement with the actual split
width of the DOS. In the energy bands, the structures at
𝜅, 𝜅′ and 𝜇𝑖 are nicely explained by this simple splitting
picture. On the other hand, the energy bands around 𝛾
point is rather complicated and cannot be captured by
the same approximation. This is consistent with the fact
that the wavefunction at 𝛾 is extended over the entire
moiré pattern unlike those at 𝜅, 𝜅′ and 𝜇𝑖 concentrating
on AA points [72–75], and hence the pseudo LL approx-
imation (assuming the localization at AA point) fails.
The Dirac band touching mentioned above actually oc-
curs near 𝛾.

III. TBG WITH NON-UNIFORM DISTORTION

A. Theoretical modelling

In this section, we construct a theoretical model to
simulate a non-uniform distortion in TBG. We consider
a super moiré unit cell composed of 𝑛SM × 𝑛SM original
moiré units (𝑛SM: integer), and assume that the lattice
distortion is periodic with the super period as illustrated
in Fig. 1. The primitive lattice vectors for the super unit
cell are given by LSM

𝑗
= 𝑛SMLM

𝑗
and the corresponding

reciprocal lattice vectors are GSM
𝑗

= GM
𝑗
/𝑛SM.

We define the in-plane displacement vector of layer 𝑙 =
1, 2 as

u(𝑙) (r) =
∑︁
p

C (𝑙)
p e−(𝜆 |p |/2𝜋)2eip·r, (22)

which represents a deformation such that a carbon atom
of layer 𝑙 at a position r is shifted to r + u(𝑙) (r). Here
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p runs over p = 𝑚1G
SM
1 + 𝑚2G

SM
2 , and 𝜆 is the charac-

teristic wave length of the spatial dependence of u(𝑙) (r).
The amplitude C (𝑙)

p = (𝐶 (𝑙)
p,𝑥 , 𝐶

(𝑙)
p,𝑦) is a two-dimensional

random vector which satisfy C (𝑙)
−p = C (𝑙)∗

p for real-valued

u(𝑙) (r). We assume that different components of C (𝑙)
p are

totally uncorrelated such that

〈𝐶 (𝑙)
p,𝑖𝐶

(𝑙′)∗
p′, 𝑗 〉 = 𝛿𝑙,𝑙′𝛿p,−p′𝛿𝑖, 𝑗𝐶

2
0 , (23)

where 〈〉 is the sampling average and 𝐶0 is a length pa-
rameter to characterize the amplitude of the random dis-
placement field.
The local strain tensors and the rotation angle can be

expressed in terms of u(𝑙) (r) as

𝜖
(𝑙)
𝑖 𝑗

(r) = 1

2

(
𝜕𝑖𝑢

(𝑙)
𝑗

+ 𝜕 𝑗𝑢 (𝑙)𝑖

)
(24)

Ω(𝑙) (r) = 1

2

(
𝜕𝑥𝑢

(𝑙)
𝑦 − 𝜕𝑦𝑢 (𝑙)𝑥

)
. (25)

As in the uniform case, we define 𝜖 (𝑙)± (r) by Eq. (2), and
relative strain components 𝜖± (r), 𝜖𝑥𝑦 (r),Ω(r) by Eq. (3).
We introduce the magnitude of distortion, 𝜖 , as the root
mean square of the interlayer difference of the strain ten-
sor elements [Eq. (3)], or,

𝜖 ≡
√︁
〈|𝜖± |2〉 =

√︃
〈|𝜖𝑥𝑦 |2〉 =

√︁
〈|Ω|2〉 =

√︄
𝜋3

2

𝐶2
0𝑆SM

𝜆4
, (26)

where 𝑆SM = |LSM
1 ×LSM

2 | is the area of the super moiré
unit cell.

Figure 1 show examples of distorted moiré patterns in
the magic-angle TBG(𝜃 = 1.05◦) with different values of
𝜖 = 0, 0.0006, 0.0012, 0.0018, where 𝑛SM = 8 (indicated
by a big parallelogram) and 𝜆 = 7𝐿𝑀 . We adopted a con-
tinuous color code to express the stacking sequence [76],
where the bright region represents local AA stack and the
dark region represents AB/BA stack. The red dots are
the AA spots of the non-distorted TBG for reference. It
should be noted that a small distortion in graphene lat-
tice of the order of 𝜖 is magnified to the moiré disorder
of 𝜖/𝜃 ∼ 60𝜖 .
We calculate the energy spectrum by using an ex-

tended continuum model incorporating non-uniform lat-
tice distortion [57]. The Hamiltonian is given by Eq. (10),
where the diagonal blocks are replaced by

𝐻𝑙 (k) = −ℏ𝑣
(
k + 𝑒

ℏ
A(𝑙) (r)

)
· σ, (27)

with the local strain-induced vector potential

A(𝑙) (r) = 𝜉 3
2

𝛽𝛾0

𝑒𝑣

(
𝜖 (𝑙)− (r)
−𝜖 (𝑙)𝑥𝑦 (r)

)
, (28)

and the interlayer coupling 𝑈 is replaced with,

𝑈 =

3∑︁
𝑗=1

𝑈 𝑗 e
i𝜉 [q 𝑗 ·r +K 𝑗 · (u(2) (r)−u(1) (r)) ] . (29)

Here 𝑈 𝑗 are defined in Eq. (13), K 𝑗 are the corner points
of an intrinsic graphene [Eq. (6)] and q 𝑗 are interlayer
corner-point shifts [Eq. (8)] of non-distorted TBG. In
the diagonal matrix, we neglected the rotation matrix(
𝑅 (∓𝜃) + E (𝑙) )−1 in Eq. (11), which gives a minor effect
in the uniform distortion case.
While in this paper we focus on the in-plane compo-

nents of lattice displacement, real TBG samples also con-
tain out-of-plane corrugations [77–79]. The primary ef-
fect of the corrugation is to differentiate the lattice spac-
ing of AA-stacking and AB-stacking regions, which is ef-
fectively incorporated by the difference between 𝑢 and
𝑢′ parameters in the matrix 𝑈 [25, 57], as already men-
tioned. We may also have an additional effect from non-
uniform corrugation, which is left for future work.

B. Energy spectrum and flat-band splitting

Using the model obtained above, we calculate the lo-
cal density of states (LDOS) for the magic-angle TBG
(𝜃 = 1.05◦) with a randomly-generated displacement con-
figuration u(𝑙) (r). First, we take 𝜖 = 0.0004, 𝜆 = 7𝐿𝑀 ,
and 𝑛SM = 12. Figure 4(a) illustrates the moiré struc-
ture, where the distortion is barely observed as a slight
shift of AA points (yellow spots) with respect to the reg-
ular red dots. In Fig. 4(b), we plot the LDOS along line
𝑋𝑋 ′, which is defined by a broken line in Fig. 4(a). We
can see that the LDOS of the flat band separates into
upper and lower parts by a splitting energy depending
on the position. This is quite different from the case of
a random electrostatic potential which simply broadens
the band width. Figure 4(d) shows the spatial distri-
bution of the splitting energy Δ𝐸 , which is defined by
the energy distance between the two LDOS peaks. Here
a hexagonal tile corresponds to a single moiré unit cell,
and its color represents Δ𝐸 at the center of the hexagon
(the AA point).

Actually, the local split width of the flat band is almost
solely determined by the local value of the interlayer dif-
ference of the strain-induced vector potential,

A(r) = A(1) (r) −A(2) (r), (30)

and the local splitting energy is approximately given by
Δ𝐸 ∼ 𝑒𝑣 |A(r) | as in the uniform case [Eq. (18)]. To
demonstrate this, we show a contour plot of 𝑒𝑣 |A(r) | in
Fig. 4(e). We observe a nearly perfect agreement with the
distribution of Δ𝐸 in Fig. 4(d). We also present a scat-
tered plot of Δ𝐸 and 𝑒𝑣 |A| (averaged in every moiré unit
cell) in Fig. 4(f), where we have a high correlation coeffi-
cient 𝑟 ≈ 0.93, and a fitted line is given by Δ𝐸 ≈ 0.7𝑒𝑣 |A|.
The strong correlation between the splitting width and
the strain-induced vector potential is a special property
of the magic-angle flat band, as it relies on its peculiar
Landau level like wavefunction. On the other hand, the
position of the satellite peaks (around ±80 meV in Fig. 4)
is totally uncorrelated with 𝑒𝑣 |A| (the correlation coeffi-
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FIG. 4. (a) Moiré pattern of a disordered magic-angle TBG with 𝜖 = 0.0004, 𝜆 = 7𝐿M. The distortion is observed as slight
shifts of AA points (yellow spots) relative to the regular red dots. (b) LDOS along line 𝑋𝑋 ′ [defined by a broken line in (a)].
(c) (Black, solid) LDOS at the points of 𝑝1, 𝑝2, 𝑝3 in (a). (Red, dashed) LDOS at the AA point of the corresponding uniform
TBG with the strain tensors fixed to the local value. (d) The spatial distribution of the splitting energy Δ𝐸, or the energy
distance between the two LDOS peaks. A hexagonal tile corresponds to a single moiré unit cell, and its color represents Δ𝐸 at
the center of the hexagon (the AA point). (e) A contour plot of the interlayer difference of the strain-induced vector potential,
𝑒𝑣 |A(r) |

. (f) A scattered plot of Δ𝐸 and 𝑒𝑣 |A| (averaged in every moiré unit cell).

cient about 𝑟 ∼ 0.1), but it is weakly correlated with the
local twist angle Ω (𝑟 ∼ 0.5).

These results suggest that the local electronic structure
in the flat band region of non-uniform TBG is well de-
scribed by a uniform Hamiltonian with the strain tensors
fixed to the local value. In Fig. 4(c), we plot the LDOS
of the non-uniform TBG at the points of 𝑝1, 𝑝2, 𝑝3 in
Fig. 4(a), and the local density of states of the corre-
sponding uniform TBGs at AA point. Indeed, we see a
nice agreement between the two curves. We also note
that the LDOS is never completely gapped out at 𝐸 = 0,
in accordance with the calculation of uniformly-strained
TBGs where the two flat bands are always connected by
the Dirac points.

The approximation with the local Hamiltonian is usu-
ally expected to be valid in a long-range limit with

𝜆 � 𝐿𝑀 , but actually it works fairly well down to a
short-ranged distortion. Figure 5 shows the plots simi-
lar to Fig. 4 calculated for different characteristic wave
lengths, 𝜆 = 5𝐿𝑀 , 3𝐿𝑀 , 𝐿𝑀 . The correlation coefficient
between Δ𝐸 and 𝑒𝑣 |A| is found to be 0.90 at 𝜆 = 3𝐿𝑀 ,
and it is still 0.73 at 𝜆 = 𝐿𝑀 . We presume that it reflects
the strongly localized feature of the flat-band wavefunc-
tions.

Figure 6 plots the total DOS of non-uniform TBG in
different distortion amplitudes 𝜖 with 𝜆 = 7𝐿𝑀 , For each
curve, we take an overage over different random config-
urations. We see that the two-level splitting feature in
the LDOS still remains as a double peak structure in the
total DOS. In increasing 𝜖 , the curve is simply extended
horizontally, as expected the relationship Δ𝐸 ∼ 𝑒𝑣 |A|.
The form of the DOS curve is roughly determined by the
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FIG. 5. Plots similar to Figs. 4(d)-(f) calculated for different characteristic wave lengths 𝜆 = 5𝐿𝑀 , 3𝐿𝑀 , 𝐿𝑀 .

distribution function 𝐷 ( |A|), which is plotted as broken
line in Fig. 6 for the current model. Here we scale the hor-
izontal axis by 𝐸 = 0.7𝑒𝑣 |A| in accordance with Fig. 4(f).

By using the formula Eq. (21), we can roughly estimate
the flat band split energy in real TBG samples. In a re-
cent local measurement of the magic-angle TBG [44] has
shown that the local twist angle varies from 𝜃 = 1.05◦ to
1.18◦, which amounts to Ω ' 0.001 (rad). By assuming

that the strain tensor elements, 𝜖±, 𝜖𝑥𝑦, Ω have compa-
rable magnitudes, the typical value of the flat band split
width on this sample is estimated at Δ𝐸 ' 10 meV using
Eq. (21). These results suggest that, in realistic magic-
angle TBGs with non-uniform moiré disorder, the flat
band is not actually a single band cluster but it splits
by a sizable energy in most places. It is consistent with
the STM measurements of TBGs near the magic angle
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FIG. 6. The total DOS of disordered magic-angle TBGs
with different distortion amplitudes 𝜖 . For each curve, we
take an average over different random configurations. Broken
lines are the distribution function 𝐷 ( |A|) with horizontal axis
scaled by 𝐸 = 0.7𝑒𝑣 |A|.

[4, 7], where a significant separation of the LDOS was
observed. The local flat-band separation may also be re-
sponsible for the pronounced Landau fan at the charge
neutral point which is commonly observed in the trans-
port experiments [2, 3, 10, 44], since the two separate
bands are always touching as argued in Sec. II. The split-
ting of the flat band would affect the ground state prop-
erties in the presence of the electron-electron interaction,
since the Hilbert space of the half-split flat band is dif-
ferent from the original full flat band.

While we focus on the strain effect in this calculation,
the distortion of the moiré pattern should also give rise
to a non-uniform electrostatic potential via an inhomoge-
neous charge distribution[28, 64, 72, 80]. We expect that
the effect is roughly captured by including a local shift
of the energy in the present calculation. At the filling
factor 𝜈 = 2 (i.e. half-filling of the upper flat band), for
instance, the upper LDOS peak would be aligned to the
Fermi energy without changing the local splitting width,
to achieve the homogeneous electron density of 𝜈 = 2. We
leave a detailed calculation including the electrostatic po-
tential for future works.

IV. CONCLUSION

We have studied the electronic structure of the magic-
angle TBG with non-uniform moiré distortion by using

an extended continuum model. We found that the local
density of states of the flat band is split by the local inter-
layer difference of anisotropic normal strain 𝜖− and shear
strain 𝜖𝑥𝑦, while isotropic strain 𝜖+ and rotation Ω give
relatively minor effects. The splitting of the flat band can
well be described by a pseudo landau level picture for the
magic-angle flat band, and an analytical expression of the
splitting energy is obtained [Eq. (21)]. The coincidence
between the splitting energy of the LDOS and the lo-
cal strain is maintained even in a short-ranged distortion
with 𝜆 ∼ 𝐿𝑀 , reflecting a highly-localized feature of the
flat band wave function.
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Appendix A: Pseudo Landau Level Hamiltonian

In this appendix, we derive the pseudo landau level
Hamiltonian Eq. (14) by applying the method of Ref. [58]
to the disordered TBG. By defining

𝜓±
𝑋 = (𝜓 (1)

𝑋
± i𝜓 (2)

𝑋
)/
√
2 (𝑋 = 𝐴, 𝐵), (A1)

the Hamiltonian matrix of Eq. (10) is written in the basis
(𝜓+

𝐴
, 𝜓+

𝐵
, 𝜓−

𝐴
, 𝜓−

𝐵
) as

𝐻 =
©­­«
ℎ+ +

i

2
(𝑈 −𝑈†) ℎ− + i

2
(𝑈 +𝑈†)

ℎ− − i

2
(𝑈 +𝑈†) ℎ+ −

i

2
(𝑈 −𝑈†)

ª®®¬ , (A2)

where

ℎ+ = −
(
ℏ𝑣k + 𝑒𝑣A

(1) +A(2)

2

)
· σ

ℎ− = −𝑒𝑣A
(1) −A(2)

2
· σ. (A3)

In the following, we neglect the homostrain component
A(1)+A(2) , and focus on the heterostrain partA = A(1)−
A(2) .
Since the wavefuncton of the flat band is localized

around the AA region, we expand the interlayer coupling
matrix 𝑈 (r) around the AA stacking point (r = 0) to the
linear order of 𝑟/𝐿𝑀 . As a result, we have

𝑈 +𝑈†

2
=

3∑︁
𝑗=1

𝑈 𝑗 cos q 𝑗 · r ≈ 3𝑢𝐼2 (A4)

i
𝑈 −𝑈†

2
=

3∑︁
𝑗=1

𝑈 𝑗 sin q 𝑗 · r ≈
3∑︁
𝑗=1

𝑈 𝑗q 𝑗 · r. (A5)
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By using Eqs. (A5) and (9), the diagonal part of the
Hamiltonian (A2) is written as

ℎ+ ±
i

2
(𝑈 −𝑈†) = −ℏ𝑣

[
k ± 𝑒

ℏ
(a(r) + ∇𝜒(r))

]
· σ (A6)

where a(r) is the pseudo vector potential of Eq. (16) and
the 𝜒(r) is the gauge potential of Eq. (19). Finally, the
effective Hamiltonian Eq. (14) is obtained by applying a
gauge transformation,(

𝜓
(+)
𝑋

𝜓
(−)
𝑋

)
=

(
e−i

𝑒
ℏ
𝜒 0

0 e+i
𝑒
ℏ
𝜒

) (
𝜓
(+)
𝑋

𝜓
(−)
𝑋

)
. (A7)

The coupling matrix elements in the 0th LLs are given
by

〈−, 0, 𝑚′ |𝑉 |+, 0, 𝑚〉 = 𝑒𝑣

2
A · σ〈𝜑0,𝑚′ |e−i 2𝑒ℏ 𝜒 (r) |𝜑0,𝑚〉

≈ 𝑒𝑣

2
A · σ

[
𝛿𝑚,𝑚′ − 2i

𝑒

ℏ
〈𝜑0,𝑚′ |𝜒(r) |𝜑0,𝑚〉

]
. (A8)

Therefore, the gauge potential 𝜒 only contributes to a
higher order correction in the 0th LL splitting.
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79 X. Lin, D. Liu, and D. Tománek, Phys. Rev. B 98, 195432
(2018).

80 I. Yudhistira, N. Chakraborty, G. Sharma, D. Y. H. Ho,
E. Laksono, O. P. Sushkov, G. Vignale, and S. Adam,
Phys. Rev. B 99, 140302 (2019).

http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/ 10.1103/PhysRevLett.109.196802
http://dx.doi.org/ 10.1103/PhysRevB.92.155409
http://dx.doi.org/10.1103/PhysRevB.98.235402
http://dx.doi.org/10.1103/PhysRevB.98.235402
http://dx.doi.org/ 10.1038/s41467-019-14207-w
http://dx.doi.org/ 10.1038/s41467-019-14207-w
http://dx.doi.org/10.1038/s41586-020-2255-3
http://dx.doi.org/ 10.1038/s41565-020-0708-3
http://dx.doi.org/ 10.1103/PhysRevLett.127.126405
http://dx.doi.org/ 10.1103/PhysRevResearch.2.023325
http://dx.doi.org/ 10.1103/PhysRevResearch.2.023325
http://dx.doi.org/ 10.1103/PhysRevResearch.2.033458
http://dx.doi.org/ 10.1103/PhysRevResearch.2.033458
http://dx.doi.org/10.1103/PhysRevB.104.075144
http://dx.doi.org/10.1103/PhysRevB.103.125138
http://dx.doi.org/10.1103/PhysRevB.103.125138
http://dx.doi.org/10.1103/PhysRevB.101.195425
http://dx.doi.org/10.1103/PhysRevB.101.195425
http://dx.doi.org/ 10.1103/PhysRevB.99.155415
http://dx.doi.org/ 10.1103/PhysRevLett.120.156405
http://dx.doi.org/10.1103/PhysRevB.100.035448
http://dx.doi.org/10.1103/PhysRevB.100.035448
http://dx.doi.org/ 10.1103/PhysRevB.104.045403
http://dx.doi.org/ 10.1103/PhysRevB.104.045403
http://dx.doi.org/10.1103/PhysRevResearch.4.013209
http://dx.doi.org/10.1103/PhysRevResearch.4.013209
http://dx.doi.org/10.1103/PhysRevB.102.201107
http://dx.doi.org/ 10.1103/PhysRevLett.127.027601
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1103/PhysRevResearch.3.013033
http://dx.doi.org/10.1103/PhysRevResearch.3.013033
http://dx.doi.org/10.1103/PhysRevB.98.235158
http://dx.doi.org/10.1103/PhysRevB.98.235158
http://dx.doi.org/ 10.1103/PhysRevResearch.1.033072
http://dx.doi.org/10.1103/PhysRevB.102.155149
http://dx.doi.org/10.1103/PhysRevB.102.155149
http://dx.doi.org/ 10.1088/2053-1583/ac044f
http://dx.doi.org/ 10.1088/2053-1583/ac044f
http://dx.doi.org/10.1103/PhysRevB.96.075311
http://dx.doi.org/10.1103/PhysRevB.96.075311
http://dx.doi.org/10.1103/PhysRevB.98.195432
http://dx.doi.org/10.1103/PhysRevB.98.195432
http://dx.doi.org/ 10.1103/PhysRevB.99.140302

	 Moiré disorder effect in twisted bilayer graphene 
	Abstract
	I introduction
	II TBG with a uniform distortion
	A Atomic structure
	B Continuum model and Band calculation
	C Pseudo Landau Level approximation

	III TBG with non-uniform distortion
	A Theoretical modelling
	B Energy spectrum and flat-band splitting

	IV Conclusion
	 Acknowledgments
	A Pseudo Landau Level Hamiltonian
	 References


