
Moiré interferogram phase extraction: a ridge

detection algorithm for continuous wavelet transforms

Heng Liu, Alexander N. Cartwright, and Cemal Basaran

We present a procedure using continuous wavelet transforms �CWTs� to extract the phase information
from moiré interferograms. The relationship between precise ridge detection of the two-dimensional
CWT magnitude map and accurate phase extraction is detailed. A cost function is introduced for the
adaptive selection of the ridge, and a computationally inexpensive implementation of the cost function
ridge detection algorithm is explored with dynamic programming optimization. The results of the
proposed ridge detection algorithm on actual interferograms are illustrated. Moreover, the resulting
extracted phase is demonstrated to be smooth and accurate. As a result, the sensitivity of the moiré
interferometry method is improved to obtain a pixel-by-pixel in-plane strain distribution map. © 2004
Optical Society of America

OCIS codes: 120.2650, 100.2000, 100.3010, 100.5070.

1. Introduction

With the rapid development of the semiconductor in-
tegrated circuit industry, electronics packaging has
become more essential to improve the overall inte-
grated circuit performance. As a great number of
functions and components are integrated on a die or
chip, the reliability of the packages is becoming even
more important. It is well known that the major
failure mode of the common multilayered structure
used in electronics packaging is due to the coefficient
of thermal-expansion mismatch of the different ma-
terials in the adjacent layers. In-plane strain of the
multilayer packages that results from thermal load-
ing, vibration loading, and high-density electrical
loading is well documented. Moiré interferometry,1

which was demonstrated as a high-sensitivity nonde-
structive tool to measure the in-plane deformation,
has been widely used to study the mechanical reli-
ability problem in the electronics packaging area.2–4

In moiré interferometry, a holographic diffraction
grating pattern is applied to the cross section of a
specimen. The two symmetric incoming laser
beams are each diffracted from this grating normal to

the specimen surface. The two diffracted beams
thus form an interference fringe pattern. The defor-
mation of the specimen, i.e., the deformation of the
diffraction grating, is ascertained by the change of
the observed fringe pattern. The analysis of the
moiré fringe pattern enables us to calculate the in-
plane strain distribution and understand the re-
sponse of the package to external factors, such as
temperature variation, environmental vibration, and
high-density electrical current. The details of moiré
interferometry have been addressed by Post et al.,1

and the application to electronics packaging has been
demonstrated by a number of groups.2–4

Generally, in any interferometer the acquired in-
terferogram is readily expressed as a modulation of
the phase of the intensity:

I � I0�1 � � cos ��, (1)

where I0 is the average image intensity, � is the
fringe visibility, and � is the phase of the interfero-
gram. More importantly, � is directly related to the
physical parameter of interest. The analysis of the
mechanical problem with moiré interferometry is
usually based on fringe analysis. According to the
definition of the in-plane strain, one can easily derive
the relationship between the strain and the fringe
count.1 The magnitude of the strain is directly pro-
portional to the density of the fringes. The most
common grating used in moiré interferometry has a
pitch density of 1200 lines�mm, which leads to a
deformation sensitivity of 0.417 �m�fringe.1
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With the continuing reduction of the size of micro-
electronic components and their packages, such
micrometer-level sensitivity cannot resolve the strain
at the dimensions of interest to industry. Thus a
number of methods have been introduced to improve
the sensitivity of this technique. For example, spa-
tial carrier fringes have been introduced.5 In this
case the interferometer is intentionally misaligned to
produce a dense fringe pattern in the interference
field, which are called carrier fringes. The existence
of the spatial carrier fringes results in more fringe
lines for the same amount of deformation. There-
fore the sensitivity, i.e., the actual deformation rep-
resented by each fringe line, is improved. However,
although the sensitivity is improved, there is an ac-
companying reduction in the accuracy when spatial
carrier fringes are used.6 Generally an error as
large as one tenth of a fringe is present in the mea-
surement of a fringe center. Therefore the more
fringes that are involved, the more error is intro-
duced.

A second method for improving the sensitivity is to
directly determine the phase distribution of the in-
terferogram. All the phase information is actually
present in the interferogram. The fringe analysis
mentioned above is just a simplified version of phase
analysis. Specifically, with the fringe counting
method, only locations where � is a multiple of 2� are
considered. In moiré interferometry1 we use the
density of the fringes to calculate the in-plane strain,
resulting in the 0.417-�m�fringe sensitivity for a
1200-lines�mm grating. Therefore, if we can recon-
struct the phase map out of the fringe patterns, the
in-plane strains can be expressed as a function of the
phase map:
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1

2�f

��u

� x
,
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2�f

��v

� y
,

�xy �
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2�f
���u

� y
�

��v

� x
� , (2)

where f is the virtual grating frequency; �u and �v are
the phase of the horizontal and vertical interfero-
grams, respectively; and εx, εy are normal strains and
�xy is the shear strain to be measured.

A number of noise issues must be considered to
precisely extract phase information from a fringe pat-
tern taken by a monochromatic CCD camera. For
example, spurious reflections, beam power fluctua-
tions and nonuniformity, dust diffraction, and grat-
ing defects all lead to random variations of the
background and fringe visibility. Because of the
specific features of these localized noise types, a con-
tinuous wavelet transform- �CWT-� based filter that
beats the conventional Fourier-transform-based filter
is becoming a more accepted tool for interferogram
image processing.7–9 Basically, in fast Fourier
transform, the frequency spectrum represents the

characteristic of the whole image and the local infor-
mation is unavailable. On the contrary, CWT anal-
ysis eliminates the noise based on the local frequency
distribution. As a result, CWT can be used to ad-
dress more-complicated local noise. The details of
CWT-based filtering are described in Section 2. As
we show, CWT can fulfill the task of denoising as well
as provide the ability to directly extract the phase
information from fringe patterns. In the procedure
to extract the phase, we apply CWT on each line of
the interferogram image, obtain the two-dimensional
transform magnitude map, select the ridge of the
two-dimensional map, and track the phase of the
ridge. We prove that the phase of the ridge is iden-
tical to the phase of the interferogram. The accu-
racy of the CWT process relies greatly on the ridge
detection.8,10 In this study we propose a new ridge
detection algorithm based on dynamic optimiza-
tion.11 We demonstrate that these techniques are
reliable for the determination of the ridge and can be
implemented at a low computation cost.

2. Continuous Wavelet Transform Process

The CWT can be understood as a correlation of the
signal and a pulse mother wavelet function:

S�a, b� �
1

a �
	





s�t� M�t � b

a
�db, (3)

where a, b are the scaling parameter and the shifting
parameter, respectively; s�t� is the time and position
domain signal; and S�a, b� is the two-dimensional
transform as a function of a and b. It is well known
that the interferogram fringe patterns can be repre-
sented as a frequency-modulated sinusoidal function
as in Eq. �1�. Therefore we select the Morlet wave-
let, which is a Gaussian-weighted complex function
with sinusoidal characteristics,

M� x� � exp�	
x2

2
�exp� j�0 x�, (4)

to use in moiré image filtering. In this study we set
�0 to be 2�. The ridge of the CWT is defined as the
location where the CWT magnitude reaches its local
maximum along the scaling direction a.8–10 By as-
suming a slowly varying fringe contrast � and instan-
taneous spatial frequency �s, we can derive the ridge
of the CWT magnitude map as

S�a0, b� �
1

2
I0��2� exp��j�s b�. (5)

Obviously it can be seen from Eq. �5� that the ridge
contains the phase information �sb of the original
interference signal. In the case of a monotonically
increasing �or decreasing� fringe-order distribution,
the phase of the ridge is exactly the same as the phase
of the signal. Otherwise, a phase-shifting method
would need to be utilized to determine the sign of the
gradient of the phase.
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3. Ridge Detection Algorithms

A. Direct Maximum Ridge Detection

As described in Section 2, once the image has been
processed with CWT, the problem is reduced to the
development of a reliable method to detect the ridge
of the two-dimensional CWT. By definition, the
ridge corresponds to the maximum of the CWT mag-
nitude. Therefore the direct algorithm is to detect
the maximum magnitude of all S�a, bi� curves for
every bi position. We refer to this method as the
direct maximum ridge detection algorithm. An ex-
ample of this method is shown in Fig. 1. Specifi-

cally, as shown in Fig. 1�a�, the simulated signal is a
truncated chirp sinusoidal signal without noise. As
a result of the perfect signal quality, in the two-
dimensional map of the CWT magnitude as shown in
Fig. 1�b�, the white part, which corresponds to the
largest gray-scale intensity, clearly distinguishes it-
self from the dark part. Therefore the simple ridge
detection equation

ridge�bi� � max��S�aj, bi���, (6)

where j equals all of the scaling parameters, works
well. The selected ridge index k, where ak is selected
as the ridge, of all bi positions is shown in Fig. 1�c�.

Fig. 1. Simulation of the direct ridge detection method: �a� original signal—a truncated chirped cosine signal, �b� the CWT magnitude,

�c� the ridge index, �d� the real part of the detected ridge, �e� the phase extracted from the ridge.
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Figures 1�d� and 1�e� are the real part and the phase
of the corresponding selected ridge, respectively.
Obviously, the frequency of the resulting ridge shown
in Fig. 1�d� follows the instantaneous frequency of the
original signal closely, and the phase extracted from
the ridge represents that of the signal.

Unfortunately, although the above result from a
noiseless sinusoidal signal is satisfying, actual real-
world signals will inevitably be affected by a number
of noise sources. In this case, one would need to
consider how the noise sources would contribute to
the CWT magnitude. Actually, in moiré interferom-
etry most noise sources result in higher frequencies
than that of the signal in a local area. This serves as
the basis for differentiating the interferogram sig-
nals from the coexisting noise. In the given range
of the potential scaling parameters array a, the
magnitude of the CWT is the result of both the noise
and the signal. With good signal-to-noise ratio,
i.e., if the human eye can easily resolve the fringes
from the noise, the contribution of the signal will be
much larger than that of the noise. As a result, the
ridge detected by the direct maximum algorithm is
clearly located at the signal frequency. However, in
the case of a low signal-to-noise ratio, the magnitude
of the CWT from the noise might be as strong as that
from the signal. In this case, we will have difficulty
in deciding which scaling position a corresponds to
the signal frequency. If the image quality degrades
further, the noise part of the CWT might even dom-
inate. The direct maximum ridge detection will in-
correctly extract the noise frequency as the signal
frequency. Therefore, to process an image with less
than perfect image quality, which is usually the case
in an actual experiment as shown in Fig. 2, a more
robust algorithm to fulfill ridge detection is needed.

B. Cost Function Ridge Detection

Fortunately, for the problem discussed above, there
exists a solution based on the nature of interferome-
try. In our study, moiré interferometry is used to
measure the in-plane displacement of electronic
packages under vibration or temperature cycling.
For a continuous solid medium, the in-plane displace-
ment should be continuous. As a reflection of the
deformation, the fringe spatial frequency should

change only gradually. Therefore we can utilize the
continuity of the instantaneous spatial fringe fre-
quency to reliably ignore the noise-induced strong
CWT magnitude and accurately select the ridge in
noisy interferograms. Specifically, a cost function is
introduced as an effective tool for a new ridge detec-
tion algorithm:

cos t��b�, b� � 	C0 �
b

�S��b�, b� �2db

� C1 �
b

����b�

�b
�2

db, (7)

where ��b� corresponds to the scaling parameter a as
a parameter curve of the shifting parameter b; and
C0, C1 are two positive constants that are the weights
of the transform magnitude and the gradient of the
parameter curve ��b�. Obviously, according to Eq.
�7� there would be a small cost for signals with large
magnitude and a smooth parameter curve. There-
fore our task of searching for the ridge of the CWT
magnitude reduces to minimizing the cost function
for all possible parameter curves in the two-
dimensional CWT magnitude map. For simplicity,
we set the coefficient C0 to 1. The selection of C1

depends on the values of the CWT coefficients. Gen-
erally, the direct maximum ridge detection is applied
to the obtained CWT coefficients. If the resulting
ridge fringe pattern deviates from the original fringe
pattern, the proposed cost function is applied. Sub-
sequently, any pixel with large ridge detection error
is analyzed to determine the coefficient C1. C1 is
thus selected to equalize the weight of the scaling
index discontinuity and the weight of the difference of
the CWT coefficients at the noise-induced local max-
ima and the true local maxima for this pixel.

The most straightforward way to implement the
cost function is to exhaustively search all possible
curves. For an image with 30 � 500 pixels, as
shown in Fig. 2, there are a total of 30500 possible
curve combinations. Although we can constrain the
search range to the pixels that have relatively large
magnitude and ignore the small-magnitude pixels,
the exhaustive searching is still computationally ex-
pensive. Inspired by the Viterbi decoding algo-
rithm12 that is widely used in telecommunications, in
Subsections 3.B.1–3.B.3 we propose the dynamic op-
timization algorithm for cost function ridge detection.

1. Dynamic Optimization

For simplicity of explanation, we use C0 � C1 � 1
here. For this case, the cost function along the ridge
can be written as

cost � �
k�2

L

�	�S��k�, k� �2 � ���k� � ��k � 1��2�, (8)

where L is the width of the interferogram; k is the
discrete shifting parameter; and ��k� is the discrete

Fig. 2. Original noisy interferogram.
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version of ��b� in Eq. �7� taking on values from a�1� to
a�N�, where N is the number of the scaling parameter
array. Assuming that the optimal path goes
through point �m, j�, i.e., �� j� � m, then the cost can
be revised as

cost � (�k�2

j	1

�	�S��k�, k� �2 � ���k� � ��k � 1��2�)
� 	�S�m, j��2 � �m � �� j � 1��2�

� ( �
k�j�1

L

�	�S��k�, k� �2 � ���k�

� ��k � 1��2�) . (9)

From Eq. �9� we can see that, at a given point �m, j�,
the optimization of the complete path can be divided
into two parts—the optimization for path ��1� � �� j�
and the optimization for path �� j� � ��L�. This is
actually an application of the principle of optimality
defined by Bellman.11 In another words, we can al-
ways decide the optimal path step by step by scan-
ning from k � 1 to k � L.

Furthermore, if we have the knowledge of the be-
ginning part of the optimal path ending at �m, j� and
denote cost�m, j� as

cost�m, j� � min
� [(�k�2

j	1

�	�S��k�, k� �2 � ���k�

� ��k � 1��2�) � 	�S�m, j��2

� �m � �� j � 1��2�], (10)

we can thus express the cost of �n, j � 1� as

cost�n, j � 1� � min
m

�cost�m, j� � �S��n�, j � 1� �2

� �n � m�2�. (11)

As explained above, the minimization of the com-
plete path is the minimization of the subpath end-
ing at each node in each step. To determine the
optimal subpath ending at �n, j � 1�, we need to
compare the paths coming from N nodes of the pre-
vious step, the jth step. The subpath providing the
minimum cost�m, j� 	 �S��n�, j � 1��2 � �n 	 m�2 is
the survivor path with respect to node �n, j � 1�, and
	�S��n�, j � 1��2 � �n 	 m�2 can be defined as the
path cost.

Moreover, if the second derivative of the parameter
function ��k� is also included in the cost function to

find the optimal path, we can simply modify the
above algorithm to implement the optimization with

cost � �
k�3

L

�	�S��k � 1�, k � 1� �2 � ���k

� 1� � ��k � 2��2 � �2��k � 1�

� ��k� � ��k � 2��2�, (12)

cost� p, j � 2� � min
m,n

cost�m, j� � �S�n, j � 1��2

� �n � m�2 � �2m � n � �� j � 1��2

� �S� p, j � 2��2 � � p � n�2

� �2n � m � p�2�. (13)

Thus there are N � N subpaths that need to be
considered to determine the optimal subpath ending
at �p, j � 2�. Each subpath goes through nodes �m,
j� and �n, j � 1� before it reaches �p, j � 2�, i.e., we
need to keep track of two steps back to decide cost�p,
j � 2�.

2. Selecting Candidate Ridge Points

As we suggested above, the computational cost can be
further reduced when we preselect the candidate
ridge points to perform the optimization. Consider-
ing the competition between the strong CWT magni-
tude of the signal frequency and that due to image
noise, we select all local maximums instead of the
global maximum point alone to be the candidates of
the ridge point of this column. This scales down the
computation to a fraction �Nj�N�2, where Nj is the
number of local maximum points of the jth step.
The local maximums feature the change from positive
gradient to negative gradient. Figure 2 shows a typ-
ical two-dimensional moiré interferogram, and the
CWT magnitude of pixel �5, 393� is plotted in Fig. 3.
The curve in Fig. 3 is a typical curve of the CWT
magnitude �S�a, b�� versus scaling parameter array a;
the local maximum points, points 1–3 are thus chosen
as the candidate points of the ridge. In addition, the
candidate list can be expanded to include the neigh-
bors of these local maximum points to compensate for
the slight error-induced difference between the
neighboring columns. We can determine the neigh-

Fig. 3. Typical magnitude curve �b � 393, fifth image row�.

Point 2 is the global maximum of this curve; points 1, 2, and 3 are

three local maximums of the curve.
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bors by simply setting up a threshold. For example,
on the left side of the local maximum, the neighbors
must have a positive gradient and a magnitude
greater than 0.95 of the local maximum; on the right
side of the local maximum, the neighbors must have
a negative gradient and a magnitude greater than
0.95 of the local maximum. Points 4 and 5 in Fig. 3,
for example, will be selected as the neighbors and
thus be included in the candidate list.

Obviously from Fig. 3, the actual magnitudes of the
local maximums, especially those of points 2 and 3,
are close. Because there exists only one instanta-
neous spatial frequency at that image pixel, two of
the local peaks and the corresponding neighbors are
due to the image noise. However, it is difficult to
determine which one is the correct fringe frequency
when we look at this curve only. The local peaks
from the current pixel have to be compared with the
local peaks of its neighboring pixels to decide the
correct fringe frequency. With the help of the cost
function ridge detection and the dynamic optimiza-
tion, not only is the absolute magnitude of the CWT
important but also the gradient of the parameter
curve is incorporated to determine which peak best
fits the slowly varying instantaneous spatial-
frequency assumption. This peak will provide the
most reliable estimate of the ridge point at position
b � 393.

With all the candidate ridge points stored, we can
build a matrix as shown in Fig. 4. The elements of
the matrix are the candidates of a typical image row.
The nodes of the kth column in Fig. 4 represent the
candidate ridge points for the kth pixel of that image
row. The arrows indicate the paths connecting one
candidate of the kth pixel to one candidate of the �k �
1�th pixel. Each node contains the information of
the CWT magnitude and the scaling parameter of
that magnitude. The implementation of the algo-
rithm is presented in Subsection 3.B.3.

3. Implementation of the Cost Function
Optimization

Assume that an optimized path of steps 1 � n is
found. In this case the optimization for the best
approach of steps 1 � �n � 1� will depend only on the
information of the �n � 1�th step and the gradient
from the nth step to the �n � 1�th step. Specifically

in this study, for any point in the k � 1th column, the
beginning of the path should come from a point in the
kth column that contributes the least cost on this
point in the �k � 1�th column. For example, as

Fig. 4. Diagram of the cost function ridge detection algorithm for

a typical image row. The black dots of each column represent the

candidate ridge points for the kth pixel of that image row. The

arrows are the paths from one candidate of the kth pixel to one

candidate of the �k � 1�th pixel.

Fig. 5. Comparison of two ridge detection algorithms on an ex-

ample interference signal �fifth row of Fig. 2�. �a� Two-

dimensional CWT magnitude map; the horizontal axis is the

shifting parameter b and the vertical axis is the scaling parameter

a. �b� The ridge selection by use of the direct maximum ridge

detection and cost function ridge detection. �c� The reconstructed

ridge of the direct maximum ridge detection and cost function ridge

detection, as well as the original noisy interference signal.
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shown in Fig. 4, for the top point in column k, if the
cost on that is available, we can calculate the addi-
tional costs, i.e., the path costs, from this point to all
the candidate points in the next column, b � k � 1.
Therefore the costs on all points of the k � 1 column
are known for the paths starting from �1, k�. Simi-
larly, performing the same calculation for the paths
between �2, k� and �3, k� to �1, k � 1�, �2, k � 1�, �3,
k � 1�, �4, k � 1�, �5, k � 1�, the three costs on each
point in �k � 1�th column are determined. As stated
in the beginning of this paragraph, the minimum of
the three costs is the cost on the corresponding point
in the �k � 1�th column. The path that contributes
to this minimum cost should be selected as the path
ending at that candidate point in �k � 1�th column.
The other two paths fail to survive at this stage.
Applying this procedure from the first column, b � 1,
to the last one, b � 500, the final costs of three sur-
vived paths from the b � 1 to b � 500 will be avail-
able. Again, the path that contributes the minimum
final cost is the one that should be chosen as the ridge
of the two-dimensional CWT magnitude. Therefore
the candidate points coming from localized noise will
be eliminated from the final ridge selection because
they will bring a sudden jump of the instantaneous
spatial frequency and therefore add a large value of
gradient magnitude in the cost function as described
in Eq. �7�.

4. Experiment

The experimental results of the proposed ridge detec-
tion algorithm applied to Fig. 2 are described in this
section. As can be seen in Fig. 5�a�, the two-
dimensional CWT magnitude map of the fifth row of
Fig. 2 has more than one local brightest point for
most of the columns. One can imagine that, for such
a CWT map, the direct maximum ridge detection will
expose its shortcoming as a result of the existence of
the noise. However, we should expect a reliable re-
sult from the cost function ridge detection algorithm
that was introduced in the Subsection 3.B.2.

Fig. 6. Comparison of the direct maximum ridge detection and

the cost ridge detection: �a� filtering with direct maximum ridge

detection, �b� filtering with cost function ridge detection.

Fig. 7. �a� Phase reconstruction, �b� first derivative of the phase

map in the horizontal direction, �c� the normal x strain of the image

in Fig. 2.
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Clearly, comparing the ridge selection results of
both algorithms as shown in Fig. 5�b�, for the curves
of the selected scaling parameter index we can ob-
serve a jump of the ridge index around b � 400 and
b � 460 from the direct maximum detection algo-
rithm; the corresponding index curve resulting from
the cost function algorithm goes up smoothly. As a
result, the real part of the selected ridge, shown in
Fig. 5�c�, from the direct maximum algorithm devi-
ates from the envelope of the actual interferogram
signal between these two positions. However, the
ridge from the cost function ridge detection algorithm
follows the original noisy signal closely, as shown in
Fig. 5�c�. The cost function ridge detection algo-
rithm demonstrates its advantage in this example.
The ridge reconstruction results of both algorithms
on the entire interferogram image are shown in Figs.
6�a� and 6�b�.

As was mentioned above, the ridge has the same
phase as the interference signal. Once the smooth
version of the ridge reconstruction is obtained with
the cost function ridge detection algorithm, the two-
dimensional phase distribution as shown in Fig. 7�a�
is readily obtained. The phase map is smooth, re-
flecting the highest displacement at the right bottom
corner and lowest displacement on the left, as was
observed from the interferogram in Fig. 2. The
smooth and accurate reconstruction of the phase
map, i.e., the smoothness of the instantaneous spatial
frequency, enables us to use the derivative of the
phase to calculate the in-plane strains directly, as
described in Eqs. �2�. The first derivative of the
phase map along the x direction is shown in Fig. 7�b�,
and the normal strain in the x direction εx is shown in
Fig. 7�c�. By applying similar calculations, we can
calculate the normal strain in the y direction and the
shear strain, thus completing the in-plane strain
analysis.

5. Conclusion

A dynamic optimizing cost function ridge detection
algorithm has been demonstrated to be effective to
extract the phase information from an interferogram.
Pixel-by-pixel in-plane strains were successfully ex-
tracted. This has a significant effect on the under-
standing of complicated mechanical problems. For a
CCD with an 8-bit digitized output, i.e., a 256 gray-
level output, the accuracy of the phase is 2��256 �
0.02 rad. The accuracy can be improved with more
degrees of digitization or use of an analog output.
For typical CCD pixel sizes of 9 � 9 �m2 and an
imaging system magnification of 2, we can obtain the
average in-plane strain of an area as small as 20.25
�m2 on the specimen. The information of a smaller
area is available as long as we have smaller pixel
sizes and larger magnification to ensure that the area
of interest on the object is resolvable and occupies
more than one pixel on the CCD sensor.

In this paper only the CWT magnitude and the
gradient of the parameter curve are considered.
One can also include the second derivative in the cost
function10 to further smooth the ridge selection. The
implementation is described in Subsection 3.B.2.
However, the inclusion of only the first derivative is
sufficient for most actual interferograms. Therefore
the second derivative can be neglected, which allows
the computational expense to be minimized.
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mental Analysis for Mechanics and Materials �Springer-

Verlag, New York, 1994�.

2. B. Han and P. Kunthong, “Micro-mechanical deformation

analysis of surface laminar circuit in organic flip-chip package:

an experimental study,” J. Electron. Packaging 122, 294–300

�2000�.

3. Y. Zhao, C. Basaran, A. N. Cartwright, and T. Dishongh,

“Thermomechanical behavior of micron scale solder joints un-

der dynamic loads,” Mech. Mater. 32, 161–173 �2000�.

4. H. Liu, A. N. Cartwright, C. Basaran, and W. Casey, “Moiré
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