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Abstract

Generating emotional language is a key

step towards building empathetic natural

language processing agents. However, a

major challenge for this line of research

is the lack of large-scale labeled training

data, and previous studies are limited to

only small sets of human annotated sen-

timent labels. Additionally, explicitly con-

trolling the emotion and sentiment of gen-

erated text is also difficult. In this paper,

we take a more radical approach: we ex-

ploit the idea of leveraging Twitter data

that are naturally labeled with emojis.

We collect a large corpus of Twitter con-

versations that include emojis in the re-

sponse and assume the emojis convey the

underlying emotions of the sentence. We

investigate several conditional variational

autoencoders training on these conversa-

tions, which allow us to use emojis to con-

trol the emotion of the generated text. Ex-

perimentally, we show in our quantitative

and qualitative analyses that the proposed

models can successfully generate high-

quality abstractive conversation responses

in accordance with designated emotions.

1 Introduction

A critical research problem for artificial intelli-

gence is to design intelligent agents that can per-

ceive and generate human emotions. In the past

decade, there has been significant progress in sen-

timent analysis (Pang et al., 2002, 2008; Liu,

2012) and natural language understanding—e.g.,

classifying the sentiment of online reviews. To

build empathetic conversational agents, machines

must also have the ability to learn to generate emo-

tional sentences.

Figure 1: An example Twitter conversation with

emoji in the response (top). We collected a large

amount of these conversations, and trained a rein-

forced conditional variational autoencoder model

to automatically generate abstractive emotional re-

sponses given any emoji.

One of the major challenges is the lack of large-

scale, manually labeled emotional text datasets.

Due to the cost and complexity of manual anno-

tation, most prior research studies primarily focus

on small-sized labeled datasets (Pang et al., 2002;

Maas et al., 2011; Socher et al., 2013), which are

not ideal for training deep learning models with a

large number of parameters.

In recent years, a handful of medium to large

scale, emotional corpora in the area of emotion

analysis (Go et al., 2016) and dialog (Li et al.,

2017b) are proposed. However, all of them are

limited to a traditional, small set of labels, for ex-

ample, “happiness,” “sadness,” “anger,” etc. or

simply binary “positive” and “negative.” Such

coarse-grained classification labels make it diffi-

cult to capture the nuances of human emotion.

To avoid the cost of human annotation, we

propose the use of naturally-occurring emoji-rich

Twitter data. We construct a dataset using Twit-

ter conversations with emojis in the response. The

fine-grained emojis chosen by the users in the re-

sponse can be seen as the natural label for the emo-

tion of the response.

We assume that the emotions and nuances of

emojis are established through the extensive us-

age by Twitter users. If we can create agents that
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are able to imitate Twitter users’ language style

when using those emojis, we claim that, to some

extent, we have captured those emotions. Using a

large collection of Twitter conversations, we then

trained a conditional generative model to automat-

ically generate the emotional responses. Figure 1

shows an example.

To generate emotional responses in dialogs, an-

other technical challenge is to control the tar-

get emotion labels. In contrast to existing

work (Huang et al., 2017) that uses information

retrieval to generate emotional responses, the re-

search question we are pursuing in this paper, is

to design novel techniques that can generate ab-

stractive responses of any given arbitrary emo-

tions, without having human annotators to label a

huge amount of training data.

To control the target emotion of the response,

we investigate several encoder-decoder genera-

tion models, including a standard attention-based

SEQ2SEQ model as the base model, and a more so-

phisticated CVAE model (Kingma and Welling,

2013; Sohn et al., 2015), as VAE is recently

found convenient in dialog generation (Zhao et al.,

2017).

To explicitly improve emotion expression, we

then experiment with several extensions to the

CVAE model, including a hybrid objective with

policy gradient. The performance in emotion ex-

pression is automatically evaluated by a separate

sentence-to-emoji classifier (Felbo et al., 2017).

Additionally, we conducted a human evaluation to

assess the quality of the generated emotional text.

Results suggest that our method is capable of

generating state-of-the-art emotional text at scale.

Our main contributions are three-fold:

• We provide a publicly available, large-scale

dataset of Twitter conversation-pairs natu-

rally labeled with fine-grained emojis.

• We are the first to use naturally labeled emo-

jis for conducting large-scale emotional re-

sponse generation for dialog.

• We apply several state-of-the-art generative

models to train an emotional response gener-

ation system, and analysis confirms that our

models deliver strong performance.

In the next section, we outline related work on

sentiment analysis and emoji on Twitter data, as

well as neural generative models. Then, we will

introduce our new emotional research dataset and

formalize the task. Next, we will describe the neu-

ral models we applied for the task. Finally, we

will show automatic evaluation and human evalua-

tion results, and some generated examples. Exper-

iment details can be found in supplementary ma-

terials.

2 Related Work

In natural language processing, sentiment anal-

ysis (Pang et al., 2002) is an area that in-

volves designing algorithms for understanding

emotional text. Our work is aligned with

some recent studies on using emoji-rich Twit-

ter data for sentiment classification. Eisner

et al. (2016) proposes a method for training

emoji embedding EMOJI2VEC, and combined with

word2vec (Mikolov et al., 2013), they apply the

embeddings for sentiment classification. Deep-

Moji (Felbo et al., 2017) is closely related to

our study: It makes use of a large, naturally la-

beled Twitter emoji dataset, and train an atten-

tive bi-directional long short-term memory net-

work (Hochreiter and Schmidhuber, 1997) model

for sentiment analysis. Instead of building a sen-

timent classifier, our work focuses on generating

emotional responses, given the context and the tar-

get emoji.

Our work is also in line with the recent progress

of the application of Variational Autoencoder

(VAE) (Kingma and Welling, 2013) in dialog gen-

eration. VAE (Kingma and Welling, 2013) en-

codes data in a probability distribution, and then

samples from the distribution to generate exam-

ples. However, the original frameworks do not

support end-to-end generation. Conditional VAE

(CVAE) (Sohn et al., 2015; Larsen et al., 2015)

was proposed to incorporate conditioning option

in the generative process. Recent research in di-

alog generation shows that language generated

by VAE models enjoy significantly greater di-

versity than traditional SEQ2SEQ models (Zhao

et al., 2017), which is a preferable property toward

building a true-to-life dialog agents.

In dialog research, our work aligns with

recent advances in sequence-to-sequence mod-

els (Sutskever et al., 2014) using long short-

term memory networks (Hochreiter and Schmid-

huber, 1997). A slightly altered version of this

model serves as our base model. Our modifica-

tion enabled it to condition on single emojis. Li
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184,500 9,505 5,558 2,771

38,479 9,455 5,114 2,532

30,447 9,298 5,026 2,332

25,018 8,385 4,738 2,293

19,832 8,341 4,623 1,698

16,934 8,293 4,531 1,534

17,009 8,144 4,287 1,403

15,563 7,101 4,205 1,258

15,046 6,939 4,066 1,091

14,121 6,769 3,973 698

13,887 6,625 3,841 627

13,741 6,558 3,863 423

13,147 6,374 3,236 250

10,927 6,031 3,072 243

10,104 5,849 3,088 154

9,546 5,624 2,969 130

Table 1: All 64 emoji labels, and number of con-

versations labeled by each emoji.

et al. (2016) use a reinforcement learning algo-

rithm to improve the vanilla sequence-to-sequence

model for non-task-oriented dialog systems, but

their reinforced and its follow-up adversarial mod-

els (Li et al., 2017a) also do not model emotions

or conditional labels. Zhao et al. (2017) recently

introduced conditional VAE for dialog modeling,

but neither did they model emotions in the con-

versations, nor explore reinforcement learning to

improve results. Given a dialog history, Xie et.

al.’s work recommends suitable emojis for current

conversation. Xie et. al. (2016)compress the dia-

log history to vector representation through a hi-

erarchical RNN and then map it to a emoji by a

classifier, while in our model, the representation

for original tweet, combined with the emoji em-

bedding, is used to generate a response.

3 Dataset

We start by describing our dataset and approaches

to collecting and processing the data. Social me-

dia is a natural source of conversations, and people

use emojis extensively within their posts. How-

ever, not all emojis are used to express emotion

and frequency of emojis are unevenly distributed.

Inspired by DeepMoji (Felbo et al., 2017), we use

64 common emojis as labels (see Table 1), and col-

lect a large corpus of Twitter conversations con-

Before: @amy miss you soooo much!!!

After: miss you soo much!

Label:

Figure 2: An artificial example illustrating prepro-

cess procedure and choice of emoji label. Note

that emoji occurrences in responses are counted

before the deduplication process.

taining those emojis. Note that emojis with the dif-

ference only in skin tone are considered the same

emoji.

3.1 Data Collection

We crawled conversation pairs consisting of an

original post and a response on Twitter from 12th

to 14th of August, 2017. The response to a con-

versation must include at least one of the 64 emoji

labels. Due to the limit of Twitter streaming API,

tweets are filtered on the basis of words. In our

case, a tweet can be reached only if at least one

of the 64 emojis is used as a word, meaning it has

to be a single character separated by blank space.

However, this kind of tweets is arguably cleaner,

as it is often the case that this emoji is used to wrap

up the whole post and clusters of repeated emojis

are less likely to appear in such tweets.

For both original tweets and responses, only En-

glish tweets without multimedia contents (such as

URL, image or video) are allowed, since we as-

sume that those contents are as important as the

text itself for the machine to understand the con-

versation. If a tweet contains less than three alpha-

betical words, the conversation is not included in

the dataset.

3.2 Emoji Labeling

Then we label responses with emojis. If there are

multiple types of emoji in a response, we use the

emoji with most occurrences inside the response.

Among those emojis with same occurrences, we

choose the least frequent one across the whole cor-

pus, on the hypothesis that less frequent tokens

better represent what the user wants to express.

See Figure 2 for example.
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3.3 Data Preprocessing

During preprocessing, all mentions and hashtags

are removed, and punctuation1 and emojis are sep-

arated if they are adjacent to words. Words with

digits are all treated as the same special token.

In some cases, users use emojis and symbols

in a cluster to express emotion extensively. To

normalize the data, words with more than two re-

peated letters, symbol strings of more than one re-

peated punctuation symbols or emojis are short-

ened, for example, ‘!!!!’ is shortened to ‘!’, and

‘yessss’ to ‘yess’. Note that we do not reduce du-

plicate letters completely and convert the word to

the ‘correct’ spelling (‘yes’ in the example) since

the length of repeated letters represents the inten-

sity of emotion. By distinguishing ‘yess’ from

‘yes’, the emotional intensity is partially preserved

in our dataset.

Then all symbols, emojis, and words are tok-

enized. Finally, we build a vocabulary of size 20K

according to token frequency. Any tokens outside

the vocabulary are replaced by the same special

token.

We randomly split the corpus into 596,959

/32,600/32,600 conversation pairs for train /vali-

dation/test set2. Distribution of emoji labels within

the corpus is presented in Table 1.

4 Generative Models

In this work, our goal is to generate emotional re-

sponses to tweets with the emotion specified by

an emoji label. We assembled several generative

models and trained them on our dataset.

4.1 Base: Attention-Based

Sequence-to-Sequence Model

Traditional studies use deep recurrent architecture

and encoder-decoder models to generate conver-

sation responses, mapping original texts to target

responses. Here we use a sequence-to-sequence

(SEQ2SEQ) model (Sutskever et al., 2014) with

global attention mechanism (Luong et al., 2015)

as our base model (See Figure 3).

We use randomly initialized embedding vectors

to represent each word. To specifically model the

1Emoticons (e.g. ‘:)’, ‘(-:’) are made of mostly punctua-
tion marks. They are not examined in this paper. Common
emoticons are treated as words during preprocessing.

2We will release the dataset with all tweets in its original
form before preprocessing. To comply with Twitter’s policy,
we will include the tweet IDs in our release, and provide a
script for downloading the tweets using the official API. No
information of the tweet posters is collected.

Figure 3: From bottom to top is a forward pass of

data during training. Left: the base model encodes

the original tweets in vo, and generates responses

by decoding from the concatenation of vo and the

embedded emoji, ve. Right: In the CVAE model,

all additional components (outlined in gray) can be

added incrementally to the base model. A separate

encoder encodes the responses in x. Recognition

network inputs x and produces the latent variable z

by reparameterization trick. During training, The

latent variable z is concatenated with vo and ve and

fed to the decoder.

emotion, we compute the embedding vector of the

emoji label the same way as word embeddings.

The emoji embedding is further reduced to smaller

size vector ve through a dense layer. We pass the

embeddings of original tweets through a bidirec-

tional RNN encoder of GRU cells (Schuster and

Paliwal, 1997; Chung et al., 2014). The encoder

outputs a vector vo that represents the original

tweet. Then vo and ve are concatenated and fed to

a 1-layer RNN decoder of GRU cells. A response

is then generated from the decoder.

4.2 Conditional Variational Autoencoder

(CVAE)

Having similar encoder-decoder structures,

SEQ2SEQ can be easily extended to a Conditional

Variational Autoencoder (CVAE) (Sohn et al.,

2015). Figure 3 illustrates the model: response

encoder, recognition network, and prior network
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are added on top of the SEQ2SEQ model. Re-

sponse encoder has the same structure to original

tweet encoder, but it has separate parameters. We

use embeddings to represent Twitter responses

and pass them through response encoder.

Mathematically, CVAE is trained by maximiz-

ing a variational lower bound on the conditional

likelihood of x given c, according to:

p(x|c) =

∫
p(x|z, c)p(z|c)dz (1)

z, c and x are random variables. z is the la-

tent variable. In our case, the condition c =
[vo; ve], target x represents the response. De-

coder is used to approximate p(x|z, c), denoted

as pD(x|z, c). Prior network is introduced to ap-

proximate p(z|c), denoted as pP (z|c). Recogni-

tion network qR(z|x, c) is introduced to approx-

imate true posterior p(z|x, c) and will be absent

during generation phase. By assuming that the la-

tent variable has a multivariate Gaussian distribu-

tion with a diagonal covariance matrix, the lower

bound to log p(x|c) can then be written by:

−L(θD, θP , θR;x, c) = KL(qR(z|x, c)||pP (z|c))

−EqR(z|x,c)(log pD(x|z, c))

(2)

θD, θP , θR are parameters of those networks.

In recognition/prior network, we first pass the

variables through an MLP to get the mean and log

variance of z’s distribution. Then we run a repa-

rameterization trick (Kingma and Welling, 2013)

to sample latent variables. During training, z by

the recognition network is passed to the decoder

and trained to approximate z′ by the prior network.

While during testing, the target response is absent,

and z′ by the prior network is passed to the de-

coder.

Our CVAE inherits the same attention mecha-

nism from the base model connecting the original

tweet encoder to the decoder, which makes our

model deviate from previous works of CVAE on

text data. Based on the attention memory as well

as c and z, a response is finally generated from the

decoder.

When handling text data, the VAE models that

apply recurrent neural networks as the structure

of their encoders/decoders may first learn to ig-

nore the latent variable, and explain the data with

the more easily optimized decoder. The latent

variables lose its functionality, and the VAE de-

teriorates to a plain SEQ2SEQ model mathemati-

cally (Bowman et al., 2015). Some previous meth-

ods effectively alleviate this problem. Such meth-

ods are also important to keep a balance between

the two items of the loss, namely KL loss and re-

construction loss. We use techniques of KL an-

nealing, early stopping (Bowman et al., 2015) and

bag-of-word loss (Zhao et al., 2017) in our models.

The general loss with bag-of-word loss (see sup-

plementary materials for details) is rewritten as:

L′ = L+ Lbow (3)

4.3 Reinforced CVAE

In order to further control the emotion of our gen-

eration more explicitly, we combine policy gradi-

ent techniques on top of the CVAE above and pro-

posed Reinforced CVAE model for our task. We

first train an emoji classifier on our dataset sepa-

rately and fix its parameters thereafter. The classi-

fier is used to produce reward for the policy train-

ing. It is a skip connected model of Bidirectional

GRU-RNN layers (Felbo et al., 2017).

During the policy training, we first get the gen-

erated response x′ by passing x and c through the

CVAE, then feeding generation x′ to classifier and

get the probability of the emoji label as reward R.

Let θ be parameters of our network, REINFORCE

algorithm (Williams, 1992) is used to maximize

the expected reward of generated responses:

J (θ) = Ep(x|c)(Rθ(x, c)) (4)

The gradient of Equation 4 is approximated using

the likelihood ratio trick (Glynn, 1990; Williams,

1992):

∇J (θ) = (R− r)∇

|x|∑
t

log p(xt|c, x1:t−1) (5)

r is the baseline value to keep estimate unbiased

and reduce its variance. In our case, we directly

pass x through emoji classifier and compute the

probability of the emoji label as r. The model then

encourages response generation that has R > r.

As REINFORCE objective is unrelated to re-

sponse generation, it may make the generation

model quickly deteriorate to some generic re-

sponses. To stabilize the training process, we pro-

pose two straightforward techniques to constrain

the policy training:
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1. Adjust rewards according to the position of

the emoji label when all labels are ranked

from high to low in order of the probabil-

ity given by the emoji classifier. When the

probability of the emoji label is of high rank

among all possible emojis, we assume that

the model has succeeded in emotion expres-

sion, thus there is no need to adjust param-

eters toward higher probability in this re-

sponse. Modified policy gradient is written

as:

∇J ′(θ) = α(R− r)∇

|x|∑
t

log p(xt|c, x1:t−1)

(6)

where α ∈ [0, 1] is a variant coefficient. The

higher R ranks in all types of emoji label, the

closer α is to 0.

2. Train Reinforced CVAE by a hybrid objective

of REINFORCE and variational lower bound

objective, learning towards both emotion ac-

curacy and response appropriateness:

minθL
′′ = L′ − λJ ′ (7)

λ is a balancing coefficient, which is set to 1

in our experiments.

The algorithm outlining the training process of

Reinforced CVAE can be found in the supplemen-

tary materials.

5 Experimental Results and Analyses

We conducted several experiments to finalize the

hyper-parameters of our models (Table 2). During

training, fully converged base SEQ2SEQ model is

used to initialize its counterparts in CVAE models.

Pretraining is vital to the success of our models

since it is essentially hard for them to learn a latent

variable space from total randomness. For more

details, please refer to the supplementary materi-

als.

In this section, we first report and analyze the

general results of our models, including perplex-

ity, loss and emotion accuracy. Then we take a

closer look at the generation quality as well as our

models’ capability of expressing emotion.

5.1 General

To generally evaluate the performance of our mod-

els, we use generation perplexity and top-1/top-5

Emoji Accuracy

Model Perplexity Top1 Top5

Development

Base 127.0 34.2% 57.6%

CVAE 37.1 40.7% 75.3%

Reinforced CVAE 38.1 42.2% 76.9%

Test

Base 130.6 33.9% 58.1%

CVAE 36.9 41.4% 75.1%

Reinforced CVAE 38.3 42.1% 77.3%

Table 2: Generation perplexity and emoji accuracy

of the three models.

emoji accuracy on the test set. Perplexity indicates

how much difficulty the model is having when

generating responses. We also use top-5 emoji ac-

curacy, since the meaning of different emojis may

overlap with only a subtle difference. The ma-

chine may learn that similarity and give multiple

possible labels as the answer.

Note that we use the same emoji classifier for

evaluation. Its accuracy (see supplementary ma-

terials) may not seem perfect, but it is the state-

of-the-art emoji classifier given so many classes.

Also, it’s reasonable to use the same classifier in

training for automated evaluation, as is in (Hu

et al., 2017). We can obtain meaningful results

as long as the classifier is able to capture the se-

mantic relationship between emojis (Felbo et al.,

2017).

As is shown in Table 2, CVAE significantly re-

duces the perplexity and increases the emoji ac-

curacy over base model. Reinforced CVAE also

adds to the emoji accuracy at the cost of a slight

increase in perplexity. These results confirm that

proposed methods are effective toward the gener-

ation of emotional responses.

When converged, the KL loss is 27.0/25.5 for

the CVAE/Reinforced CVAE respectively, and re-

construction loss 42.2/40.0. The models achieved

a balance between the two items of loss, confirm-

ing that they have successfully learned a meaning-

ful latent variable.

5.2 Generation Diversity

SEQ2SEQ generates in a monotonous way, as

several generic responses occur repeatedly, while

the generation of CVAE models is of much

more diversity. To showcase this disparity,

we calculated the type-token ratios of uni-

grams/bigrams/trigrams in generated responses as
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Figure 4: Top5 emoji accuracy of the first 32 emoji

labels. Each bar represents an emoji and its length

represents how many of all responses to the origi-

nal tweets are top5 accurate. Different colors rep-

resent different models. Emojis are numbered in

the order of frequencies in the dataset. No.0 is ,

for instance, No.1 and so on.

Top: CVAE v. Base.

Bottom: Reinforced CVAE v. CVAE. If Rein-

forced CVAE scores higher, the margin is marked

in orange. If lower, in black.

the diversity score.

As shown in Table 3, results show that CVAE

models beat the base models by a large margin.

Diversity scores of Reinforced CVAE are reason-

ably compromised since it’s generating more emo-

tional responses.

5.3 Controllability of Emotions

There are potentially multiple types of emotion in

reaction to an utterance. Our work makes it possi-

ble to generate a response to an arbitrary emotion

by conditioning the generation on a specific type

of emoji. In this section, we generate one response

in reply to each original tweet in the dataset and

condition on each emoji of the selected 64 emo-

Model Unigram Bi- Tri-

Base 0.0061 0.0199 0.0362

CVAE 0.0191 0.131 0.365

Reinforced CVAE 0.0160 0.118 0.337

Target responses 0.0353 0.370 0.757

Table 3: Type-token ratios of the generation by

the three models. Scores of tokenized human-

generated target responses are given for reference.

Setting Model v. Base Win Lose Tie

reply CVAE 42.4% 43.0% 14.6%

reply Reinforced CVAE 40.6% 39.6% 19.8%

emoji CVAE 48.4% 26.2% 25.4%

emoji Reinforced CVAE 50.0% 19.6% 30.4%

Table 4: Results of human evaluation. Tests are

conducted pairwise between CVAE models and

the base model.

jis. We may have recorded some original tweets

with different replies in the dataset, but an original

tweet only need to be used once for each emoji,

so we eliminate duplicate original tweets in the

dataset. There are 30,299 unique original tweets

in the test set.

Figure 4 shows the top-5 accuracy of each type

of the first 32 emoji labels when the models gen-

erates responses from the test set conditioning on

the same emoji. The results show that CVAE mod-

els increase the accuracy over every type of emoji

label. Reinforced CVAE model sees a bigger in-

crease on the less common emojis, confirming the

effect of the emoji-specified policy training.

5.4 Human Evaluation

We employed crowdsourced judges to evaluate a

random sample of 100 items (Table 4), each be-

ing assigned to 5 judges on the Amazon Mechan-

ical Turk. We present judges original tweets and

generated responses. In the first setting of human

evaluation, judges are asked to decide which one

of the two generated responses better reply the

original tweet. In the second setting, the emoji

label is presented with the item discription, and

judges are asked to pick one of the two generated

responses that they decide better fits this emoji.

(These two settings of evaluation are conducted

separately so that it will not affect judges’ ver-

dicts.) Order of two generated responses under

one item is permuted. Ties are permitted for an-
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Content sorry guys , was gunna stream tonight but i ’m still feeling like crap and my voice disappeared .
i will make it up to you

Target Emotion

Base i ’m sorry you ’re going to be
missed it

i ’m sorry for your loss i ’m sorry you ’re going to be
able to get it

CVAE hope you are okay hun ! hi jason , i ’ll be praying for you im sorry u better suck u off

Reinforced
CVAE

hope you ’re feeling it hope you had a speedy recovery
man ! hope you feel better soon
, please get well soon

dude i ’m so sorry for that i
wanna hear it and i ’m sorry i
can ’t go to canada with you but
i wanna be away from canada

Content add me in there my bro

Target Emotion

Base i ’m not sure you ’ll be there i ’m here for you i ’m not ready for you

CVAE you know , you need to tell me
in your hometown !

you will be fine bro , i ’ll be in
the gym for you

i can ’t wait

Reinforced
CVAE

you might have to get me hip
hop off .

good luck bro ! this is about to
be healthy

i ’m still undecided and i ’m still
waiting

Content don ’t tell me match of the day is delayed because of this shit

Target Emotion

Base i ’m not even a fan of the game i ’m not sure if you ever have
any chance to talk to someone
else

i ’m sorry i ’m not doubting you

CVAE you can ’t do it bc you ’re in my
mentions

see now a good point hiya , unfortunately , it ’s not

Reinforced
CVAE

oh my god i ’m saying this as
long as i remember my twitter

fab mate , you ’ll enjoy the
game and you ’ll get a win

it ’s the worst

Content g i needed that laugh lmfaoo

Target Emotion

Base i ’m glad you enjoyed it i ’m not gonna lie i ’m sorry i ’m not laughing

CVAE good ! have a good time i don ’t plan on that me too . but it ’s a lot of me .

Reinforced
CVAE

thank you for your tweet , you
didn ’t know how much i guess

that ’s a bad idea , u gotta hit me
up on my phone

i feel bad at this and i hope you
can make a joke

Table 5: Some examples from our generated emotional responses. Context is the original tweet, and

target emotion is specified by the emoji. Following are the responses generated by each of the three

models based on the context and the target emotion.

swers. We batch five items as one assignment and

insert an item with two identical outputs as the

sanity check. Anyone who failed to choose “tie”

for that item is considered as a careless judge and

is therefore rejected from our test.

We then conducted a simplified Turing test.

Each item we present judges an original tweet, its

reply by a human, and its response generated from

Reinforced CVAE model. We ask judges to de-

cide which of the two given responses is written

by a human. Other parts of the setting are similar

to above-mentioned tests. It turned out 18% of the

test subjects mistakenly chose machine-generated

responses as human written, and 27% stated that

they were not able to distinguish between the two

responses.

In regard of the inter-rater agreement, there are

four cases. The ideal situation is that all five

judges choose the same answer for a item, and in

the worst-case scenario, at most two judges choose

the same answer. In light of this, we have counted

that 32%/33%/31%/5% of all items have 5/4/3/2

judges in agreement, showing that our experiment

has a reasonably reliable inter-rater agreement.

5.5 Case Study

We sampled some generated responses from all

three models, and list them in Figure 5. Given
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an original tweet, we would like to generate re-

sponses with three different target emotions.

SEQ2SEQ only chooses to generate most fre-

quent expressions, forming a predictable pattern

for its generation (See how every sampled re-

sponse by the base model starts with “I’m”). On

the contrary, generation from the CVAE model is

diverse, which is in line with previous quantita-

tive analysis. However, the generated responses

are sometimes too diversified and unlikely to re-

ply to the original tweet.

Reinforced CVAE somtetimes tends to gener-

ate a lengthy response by stacking up sentences

(See the responses to the first tweet when condi-

tioning on the ‘folded hands’ emoji and the ‘sad

face’ emoji). It learns to break the length limit of

sequence generation during hybrid training, since

the variational lower bound objective is competing

with REINFORCE objective. The situation would

be more serious is λ in Equation 7 is set higher.

However, this phenomenon does not impair the

fluency of generated sentences, as can be seen in

Figure 5.

6 Conclusion and Future Work

In this paper, we investigate the possibility of

using naturally annotated emoji-rich Twitter data

for emotional response generation. More specifi-

cally, we collected more than half a million Twit-

ter conversations with emoji in the response and

assumed that the fine-grained emoji label chosen

by the user expresses the emotion of the tweet.

We applied several state-of-the-art neural models

to learn a generation system that is capable of giv-

ing a response with an arbitrarily designated emo-

tion. We performed automatic and human evalu-

ations to understand the quality of generated re-

sponses. We trained a large scale emoji classifier

and ran the classifier on the generated responses

to evaluate the emotion accuracy of the generated

response. We performed an Amazon Mechanical

Turk experiment, by which we compared our mod-

els with a baseline sequence-to-sequence model

on metrics of relevance and emotion. Experimen-

tally, it is shown that our model is capable of gen-

erating high-quality emotional responses, without

the need of laborious human annotations. Our

work is a crucial step towards building intelli-

gent dialog agents. We are also looking forward

to transferring the idea of naturally-labeled emo-

jis to task-oriented dialog and multi-turn dialog

generation problems. Due to the nature of social

media text, some emotions, such as fear and dis-

gust, are underrepresented in the dataset, and the

distribution of emojis is unbalanced to some ex-

tent. We will keep accumulating data and increase

the ratio of underrepresented emojis, and advance

toward more sophisticated abstractive generation

methods.
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