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1. Introduction  

During the recent years, there has been a strong growth of thermal imaging market, mainly 

thanks to the development of uncooled focal plane detector arrays [1]–[3]. This market evolution has 

boosted the development of infrared transmitting glasses as more economical solution for infrared 

optics, compared with the generally used germanium and ZnSe. Molded chalcogenide glass optical 

components are now commercially available and the most recent studies are focused on the improvement 

of mechanical properties or far infrared transmission [4]–[8]. 

Among all commercialized chalcogenide optics, no one shows enough transmission in the 

visible region. However, there is an increasing demand for simultaneous imaging in the two highly 

complementary spectral domains which are the visible/SWIR (short wavelength infrared, 0.9 - 1.7 µm) 

region and the thermal infrared region (8-12 µm). These multispectral materials would able the fusion 

of three images simultaneously on a screen and afford a better vision of the space to the users. It will 

lead to many new applications both in commercial and defense fields. As an example, for car driving 

assistance, visible/SWIR image is better for reading road indications and for detecting the presence of 

ice on the road. Thermal image is much better for seeing further and observe pedestrians in foggy 

condition and during the night. For defense applications, it is, for example, easier to move in the dark 

with intensified SWIR image and thermal imaging is indispensable to detect hidden hot target. 

There are many optical components operating either in the visible/SWIR region or in the far 

infrared region. Only two materials, known since long time, ZnS and ZnSe, can be considered for the 

production of multispectral optics even they cover only partially these two spectral bands [9]. These 

materials are manufactured through a long and expensive chemical vapor deposition (CVD). They are 

polycrystalline materials and consequently, no molded optic is possible. The only way to produce 

complex asphero-diffractive optics, indispensable with these materials, is to use the expensive single 

point diamond turning. 
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Among chalcogenide glasses, sulfide glasses possess the largest transmission in the visible range 

with an infrared transmission up to 11-12 µm. In order to increase the transmission in the visible region, 

alkaline halides are generally introduced into the chalcogenide glasses. The most studied glass-forming 

system is certainly the GeS2-Ga2S3-CsCl system in which more than 50 mol% of CsCl can be added and 

the resulted glass is totally colorless [10]–[13]. 

However, the introduction of alkaline halides can affect the chemical durability of the glasses 

[10]. A compromise between an acceptable chemical durability and visible transmission must be found. 

To achieve the synthesis of composition with higher CsCl ratio and thus with better transparency in the 

visible, this work propose to study the impact of a protective coating. Considering the fact that all 

infrared optics will be protected by an antireflection coating containing generally ZnS [14], we have 

undertaken this study to investigate how a ZnS coating can protect the GeS2-Ga2S3-CsCl glasses against 

external attack. 

In this paper, our interest is focus on the potential of this system to establish some multispectral 

optics. Two stable compositions were chosen in the glassy domain allowing the preparation of glasses 

of large diameter. The optical properties, transmission and refractive index, will be described in order 

to find suitable composition transmitting in the whole visible range up to 11.5 µm. To go further, the 

molding ability and the protection against moisture are the last points investigated on these relevant 

compositions.  

2. Experimental  

2.1. Glass preparation 

Bulk samples were prepared from high purity raw materials (Ge, Ga, S and CsCl of 5N). Sulfur 

was purified by distillation under dynamic vacuum and stored with cesium chloride in a glove box under 

argon atmosphere. These compounds were weighed in stoichiometric proportions and introduced in a 

silica ampoule under vacuum (10-4 Pa). The ampoule was placed in a rocking furnace during several 

hours at 850°C and quenched in water at room temperature. The sample was finally annealed near the 

glass transition temperature (Tg) for 4 hours to reduce mechanical stress induce during the quench. The 

rod of 25mm or 45mm diameter was then cut into slices of 2mm thick or prism and thinly polished for 

different measurements.  

2.2. Samples characterizations 

The thermal analysis of the 20Ga2S3-65GeS2-15CsCl sample was determined with a differential 

scanning calorimeter (DSC Q20 Thermal Analysis). A flat piece of glass in a sealed aluminum pan was 

heated following the three steps treatment describes below under nitrogen atmosphere. The 

characteristic temperatures were determined typically with a precision of about +/-2°C. Optical 

transmission was measured with a double beam spectrophotometer (Perkin Elmer Lambda 1050) in the 

visible and near IR ranges. A Brucker Tensor 37 spectrophotometer has been used for middle and far 

infrared transmission.  

 A radio-frequency (RF) magnetron sputtering system was used to deposit protective ZnS thin 

films on the 2 faces of the glasses. All samples were polished to a surface roughness of around Ra=10 

nm and were cleaned with ethanol, acetone and directly placed in the deposition chamber. The samples 

were kept at room temperature and the thin film deposition was performed under 20 sccm Ar gas flow. 

The RF powers and the time were adjusted in order to obtain the same thickness in both face. The 

protective ability of the films was evaluated by measuring the optical transmission of the glass samples 

with and without coating. The molding ability of the two compositions has been performed with a 

Toshiba molding machine and the surface roughness was measured precisely with a Tallysurf equipment 

of Taylor Hobson.   

The Littrow method has been used in order to measure the refractive index in the wavelength 

range of 2-10.7µm with a precision of 4.10-4. A prism of 30 × 30mm size with an angle of 22° has been 



polished to measure the refractive index of one glass composition. For the other wavelengths (633nm, 

825nm, 1061nm, 1311nm and 1511nm) the refractive index has been measured with a Metricon 2010/M 

Prism coupler. This measurement principle is commonly called M-line technique. 

3. Results and discussion:  

3.1. Selected composition in GeS2-Ga2S3-CsCl system 

The Ga2S3-GeS2-CsCl system has been widely investigated from different point of view. The 

vitreous domain and the structure of these glasses has been determined by Tver’yanovich and al. [15], 

[16]. The role of the CsCl addition in Ga2S3-GeS2 glassy matrix has also been highlighted before [12]. 

With the CsCl content augmentation, it induces a shift of the band-gap cutoff to lower wavelength and 

decreases the transition temperature. These glasses have a better stability against crystallization but the 

hygroscopic property of CsCl induces sensitivity to moisture. However, no further investigations were 

conducted on these glasses of high application potential. 

To select a stable composition, the choice was realized among several compositions presenting 

a large difference between the transition temperature (Tg) and the crystallization temperature (Tx). As 

already done with the 15Ga2S3-75GeS2-10CsCl composition [17], a specific thermal treatment 

monitored by DSC reveal the thermal dynamics of crystallization and complete this first criteria. The 

figure 1 shows the result in three steps for the 20Ga2S3-65GeS2-15CsCl composition. The first treatment 

is a heating process at the rate of 10°C/min until Tx+15°C, then the sample is cooled down to 200°C 

and to finish, the last step heat the sample again until Tx+15°C. The DSC curves are voluntarily offset 

for more clarity in the thermal event appreciation.  

 

Figure 1: DSC analysis of 20Ga2S3-65GeS2-15CsCl 

For this 20Ga2S3-65GeS2-15CsCl composition, the first step shows a Tg1 at 378°C and a little 

crystallization peak at Tx1= 535°C. The ramp to cool down the glass shows no particular thermal event. 

The second rise of the temperature shows again a Tg2 at 382°C and a bigger crystallization peak at Tx2= 

529°C. This treatment highlights the stability of the glass and the low crystallization kinetics. The 

synthesis of a sample of 45mm diameter was then realized (figure 2) without any crystallization 

confirming that our composition is stable.  



 

Figure 2: Comparison of 15 Ga2S3 75 GeS2 10 CsCl and 20 Ga2S3 65 GeS2 15 CsCl transmissions and a picture of the 

second composition with a 45mm diameter 

A comparison of the transmissions of these two glasses (showed in figure 2) has been done. In 

one hand, there is a shift in the visible transparency. Indeed, the visible transmission was improved with 

the 20Ga2S3-65GeS2-15CsCl composition. In the other hand, in the infrared region this composition has 

a lower transparency than the 15Ga2S3-75GeS2-10CsCl glass, the Ga2S3/GeS2 and the increase of CsCl 

seems to generate these transmission effects. The ratio Ga2S3/GeS2 has change between these two 

compositions from 0,31 to 0,20 for the 20Ga2S3-65GeS2-15CsCl and 15Ga2S3-75GeS2-10CsCl 

compositions respectively. According to the study of Ga2S3-GeS2 system by X.F. Wang et Al, the 

absorption edge in visible region increase first until 0.25 ratio and then decrease with increasing 

Ga2S3/GeS2 ratio [18]. With our two values slightly above and under 0,25 the contribution of Ga2S3/GeS2 

ratio is not clearly highlight for these two compositions.  

However, the growth of both Ga2S3 and CsCl contents induces more formation of GaS4-xClx 

tetrahedral dispersed in the glass network [19]. Due to this change of structure, the average number of 

Ga-S bonds decreased to the benefit of Ga-Cl bonds. According to previous results [12], the 

electronegativity of such bonds are 0.77 for Ga-S and 1.35 for Ga-Cl. That explains the higher 

electronegativity of the glass when CsCl and Ga2S3 higher proportions are added in the composition. 

This leads to a shift in the visible region to lower wavelength. 

3.2 Refractive index and chromatic dispersion 

The refractive indices of the glasses were measured with the Littrow method. To achieve this 

measurement, a prism of 30mm as shown in figure 3 was cut into a 45mm diameter glass rod. The prism 

was then polished and one face was recover with a thin gold layer to proceed to the measurements.  



 

Figure 3: Refractive index of the two glasses compositions and ZnS, the photograph shows the 20Ga2S3-65GeS2-

15CsCl prism used for refractive index measurements 

The Littrow method allows a precision of at least 4.10-4 for the measured refractive index. The 

chromatic dispersion can be thus calculated and compared with the ZnS [20] and the 15Ga2S3-75GeS2-

10CsCl composition previously studied [17]. In the figure 3, the graphic presented the refractive index 

ranges of these three materials. The new composition 20Ga2S3-65GeS2-15CsCl gave a glass with slightly 

lower refractive index compared with the other glass and strongly lower than the polycrystalline ZnS.   

Dispersion of these two different compositions was evaluated with the calculation of abbe 

numbers. These number are collected in the following table 1.  𝑉𝑑 = 𝑛𝑑− 1𝑛𝐹− 𝑛𝐶  ,  𝑉3−5 = 𝑛4− 1𝑛3− 𝑛5   and   𝑉8−12 = 𝑛10− 1𝑛8− 𝑛12 

Where Vd, V3-5 and V8-12 are the Abbe numbers for the visible, 3-5µm and 8-12µm windows. In V8-12 and 

V3-5 formulas, nx is the refractive index at different wavelength in µm. For Vd calculation, nd, nF and nC 

are the refractive indices of the glasses at 587, 486 and 656 nm, respectively. 

Table 1: Abbe numbers of the two glass compositions and ZnS in the visible, and IR regions 

Composition Vd V3-5 V8-12 

20Ga2S3-65GeS2-15CsCl 15 128 24 

15Ga2S3-75GeS2-10CsCl 17 129 25 

ZnS Cleartran® 16 113 23 

 

The three materials show similar values in the visible and 8-12µm infrared ranges. One 

interesting fact is the higher value of the two glasses in the 3-5µm near infrared image compared to ZnS. 

This difference would provide a new possibility as optical lens material for multispectral imaging 

system. Indeed, to eliminate chromatic aberration, the combination of two lenses of different values of 



the dispersion is needed in a spectral band [21]. For the visible and 8-12µm, the similar values reveal 

reduced choice to correct chromatic aberration in these bands for optical system.  

3.3 Protective coating deposition 

As previously mentioned, the halide addition in chalcogenide glasses has already been 

investigated to extend the transparency in the visible or increase the ionic conductivity [22], [23]. 

However, addition of alkali halide also induces a reduction of the chemical durability of the glasses.  

Antireflective coatings already exist to improve the infrared transmission. Several solutions 

exist, a three layers coating based on ZnSe and PbF2 has been performed on KCl material by Atanassov 

and al. [24] or a double layer coating based on ZnS and YbF3 [14]. Considering the efficiency of ZnS 

coatings to prevent from corrosion this last treatment would be a good solution to combine both aspects 

(anticorrosion and antireflection). 

RF magnetron sputtering is a commonly used technique for ZnS deposition [25]–[28]. In the 

figure 4, the evolution of the transmission is shown for the 20Ga2S3-65GeS2-15CsCl composition: an 

uncoated glass (left figure) and a glass with thin ZnS layer deposited by sputtering on the two faces 

(right figure). From an optical point of view, the atmosphere action on an uncoated chalcogenide glass 

will lead to the growth of hydroxyl and water absorption bands located respectively at 2.9µm and 6.3µm. 

The surface defects created will lead to scatterings, hence decreasing the transmission threshold. A thin 

layer (<1µm) of ZnS has been applied on the two surfaces. The maximum transmittance and the 

absorption peaks depth remain unchanged (after 21 days), the evolution of the absorption bands is 

stopped. The thickness was calculated from optical measurement with a spectrophotometer. Using the 

envelope method [29], the two faces had a calculated thickness of 608nm and 570nm with a precision 

of ±0,5nm.  

 

Figure 4: Evolution of the transmission of the uncoated glass 20 Ga2S3 65 GeS2 10 CsCl (left) and with a ZnS coating 

(right) after 1 day and 21 days 

 

It is important to point out that the antireflection coating for the 8-12 µm range has generally a 

thickness of several microns [14], much thicker than the 600nm tested in this study. Thus, the 

antireflection coating should provide an efficient protection against ambient moisture for these glasses. 

These results allow to consider in the future the synthesis of composition with higher CsCl ratio and 

thus more transparent in the visible.  

3.4 Molding tests 

Because of their viscoplastic properties glasses can be easily shaped under pressure at a 

temperature above Tg [4]. The two compositions highlighted previously can be synthesize in diameter 



of 25 and 50mm. The figure 5 demonstrates the feasibility to mold at Tg +100°C these two alkali-halide 

glasses under complex shape (aspheric on this example).  

 

Figure 5: Molding of the compositions 15Ga2S3-75GeS2-10CsCl (aspherical shape: A-1 and A-2) and 20Ga2S3-65GeS2-

15CsCl (flat shape: B-1 and B-2)   

For the first composition 15Ga2S3-75GeS2-10CsCl, the picture A-2 shows the aspherical shape 

obtained by one step molding for a 25mm diameter. The thickness decreases from 2mm to 1.68mm. For 

the second composition 20Ga2S3-65GeS2-15CsCl, the molding was realized for a flat shape design. The 

pictures B-1 and B-2 present these samples with a thickness of 2.94mm for the base glass and 1.07mm 

after molding.  

For both flat and aspherical shapes, no crystallization occurs during the molding process. The 

transmissions measured before and after the molding step for the 20Ga2S3-65GeS2-15CsCl composition 

is presented in figure 6. The increase of absorption band after the molding process can be explained by 

the delay between the synthesis and the molding operation (sample was stand in air). However, the 

transmission threshold remains unchanged at 80% of transmission.  

 

Figure 6: Transmission of the 20Ga2S3 65GeS2 15CsCl before and after molding   

The roughness of the glass before and after the molding step was measured for the aspherical 

glass. A value of Ra = 1.63nm and Ra = 4.6nm for the initial glass and molded glass respectively was 

measured. The profile showed in the figure 7 exhibits the roughness Ra of the molded glass. Considering 

the roughness of the initial glass, the Ra increase due to the metal mold surface that demonstrate a similar 



value of Ra. Nevertheless, this value attests a good shaping of the material and its ability to form 

complex optics with a single molding.    

 

Figure 7: Control of the roughness of the aspherical shape 

Conclusions  

In this study, two chalcogenide glasses for multispectral imaging, especially visible and thermal 

imaging, have been developed and characterized. After a confirmation of their great thermal stability 

against the crystallisation, different optical properties were studied in detail. These glasses are 

transparent from 0.5 to 11µm and thus cover a huge spectral band. The refractive indices were precisely 

measured in this particular range in order to study the chromatic dispersion particularly in the three 

windows of high interest (visible, SWIR and Thermal infrared). It is interesting to notice that these 

glasses are less dispersive than the ZnS in the SWIR band, offering a much more economic alternative 

of materials for optical designer. To evaluate the possibilty of protecting these glasses against moisture 

with an antiflecting coating, a ZnS layer has been deposited by sputtering on both surfaces of the 

samples. The measurement of the absorption bands due to water indicates that an efficient protection 

can be achieved with a coating of less than 1 µm. The molding ability was also successfully 

demonstrated on complex aspheric surfaces without any crystallization and with an excellent quality of 

molded surfaces. 
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