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Glioblastoma (GBM) is the most common and aggressive 

primary brain tumor in adults. Median survival is less than 

2  years from diagnosis.1 Standard therapy includes max-

imal safe surgical resection, chemotherapy, and radiother-

apy. Molecular diagnosis is becoming integrated into the 

management of glioma tumors along with the classical 

histological findings of necrosis, pseudopalisading, and 

microvascular proliferation.2 Gliomas are a highly vascular 

tumor. Increased vascular density is associated with glioma 

aggressiveness and correlates with worse patient prog-

nosis.3 There are a number of mechanisms by which glio-

mas acquire a blood supply.4 Tumor cell migration initially 
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Abstract

Background. Glioblastoma (GBM) is an aggressive and highly vascular tumor with median survival below 2 years. 

Despite advances in surgery, radiotherapy, and chemotherapy, survival has improved modestly. To combat gli-

oma vascular proliferation, anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) were intro-

duced. Preclinically these agents were effective, yet they did not improve overall survival in phase III trials. We 

tested the hypothesis that ganciclovir (GCV)-mediated killing of proliferating endothelial cells expressing herpes 

simplex virus type 1 thymidine kinase (HSV1-TK) would have direct antitumor effects, and whether vessel ablation 

would affect the antitumor activity of anti-VEGF antibodies and radiotherapy.

Methods. Proliferating endothelial cells were eliminated using GCV-mediated killing of proliferating endothelial 

cells expressing HSV1-TK (in Tie2-TK-IRES-GFP mice). Syngeneic NRAS/p53 (NP) gliomas were implanted into the 

brains of Tie2-TK-IRES-GFP mice. Endothelial proliferation activates the Tie2 promoter and HSV1-TK expression. 

Administration of GCV kills proliferating tumor endothelial cells and slows tumor growth. The effects of endothelial 

cell ablation on anti-angiogenic therapy were examined using anti-VEGF antibodies or irradiation.

Results. GCV administration reduced tumor growth and vascular density, increased tumor apoptosis, and pro-

longed survival. Anti-VEGF antibodies or irradiation also prolonged survival. Surprisingly, combining GCV with 

irradiation, or with anti-VEGF antibodies, reduced their individual therapeutic effects.

Conclusion. GCV-mediated killing of proliferating endothelial cells expressing HSV1-TK, anti-VEGF antibodies, or 

irradiation all reduced growth of a murine glioma. However, elimination of microvascular proliferation decreased 

the efficacy of anti-VEGF or irradiation therapy. We conclude that, in our model, the integrity of proliferating vessels 

is necessary for the antiglioma effects of anti-VEGF and radiation therapy.
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occurs along existing blood vessels through vessel co-

option.5,6 The existing vasculature is eventually unable to 

support tumor growth resulting in hypoxia and expres-

sion of hypoxia inducible factor 1α (HIF-1α).7,8 In response 

to HIF-1α, gliomas undergo an “angiogenic switch” and 

increase secretion of pro-angiogenic growth factors. The 

most important growth factor induced by HIF-1α is vas-

cular endothelial growth factor (VEGF), the expression 

of which has been shown to correlate with tumor grade 

and patient survival.9 Due to its central role in angiogen-

esis, inhibition of VEGF has been a general strategy for 

the treatment of glioma. Bevacizumab is a humanized 

monoclonal antibody that neutralizes VEGF, thus prevent-

ing its interaction with VEGF receptors and subsequent 

angiogenesis.10 Bevacizumab was approved for recurrent 

glioma in 2009 after demonstrating increased progres-

sion-free survival (PFS) in clinical trials.11 Despite early 

promise, 2 large phase III trials involving bevacizumab 

failed to demonstrate an overall survival (OS) benefit in 

unselected patient populations compared with standard 

combination temozolomide and radiation followed by 

cyclic temozolomide.12–14 The impact of bevacizumab on 

PFS indicates that anti-VEGF therapy is biologically active; 

however, tumor escape mechanisms may prevent a dur-

able treatment response.

Cellular and molecular mechanisms of resistance to anti-

angiogenics are not well understood. VEGF-independent 

mechanisms of angiogenesis may be important contribu-

tors to treatment resistance.15 Glioma patients resistant to 

anti-VEGF therapy have increased plasma levels of alterna-

tive pro-angiogenic factors such as fibroblast growth fac-

tor 2, stromal cell derived factor 1, platelet derived growth 

factor, angiopoietin 1 and 2, and c-Met.16 Additionally, 

dual inhibition of VEGF and angiopoietin 2 improved OS 

in a murine glioma model.17 Angiogenesis may also occur 

through migration of bone marrow–derived endothelial 

precursor cells to the tumor, such as Tie2 positive mono-

cytes and macrophages.18 Simultaneous targeting of mul-

tiple angiogenesis pathways may overcome anti-VEGF 

treatment resistance.

To understand the role of tumor blood vessel integrity 

on glioma progression, we studied the effect of inducible 

genetic ablation of proliferating vascular endothelium on 

OS in a murine glioma model. We tested the hypothesis 

that the therapeutic effect of anti-VEGF and radiation ther-

apy in glioma would be potentiated by eliminating cells 

that contribute to the repair and growth of blood vessels in 

the brain (ie, vascular endothelial cells and bone marrow–

derived monocytes).

Our results indicate that killing of cells that contribute to 

the repair and growth of glioma blood vessels prolonged 

the survival of Tie2-TK mice implanted with syngeneic 

glioma cells. To our surprise, however, in our model, dis-

ruption of the glioma microvasculature inhibited the anti-

tumor effect of anti-VEGF or radiation. We conclude that, 

in our model, intact tumor blood vessels are necessary for 

the long-term effectiveness of antiglioma therapy such as 

anti-VEGF or irradiation. Clinically, our results suggest that 

careful consideration ought to be given to the effects of 

antiglioma drugs, especially when administered concomi-

tantly with irradiation and/or bevacizumab.

Materials and Methods

Animal Strains

Six- to 8-week-old transgenic Tie2p/e LV [Tie2-TK-IRIS-

GFP] Friend virus B mice were genetically engineered to 

conditionally express thymidine kinase specifically within 

Tie2-expressing cells. These mice were a kind gift from Dr 

Luigi Naldini (see Supplementary material for details). All 

animals were maintained and experiments conducted in 

accordance with the Unit for Laboratory Animal Medicine 

at the University of Michigan.

Glioblastoma Cell Lines

A primary glioma cell line expressing NRAS and reduced 

levels of p53 (NP) was generated from a mouse bearing an 

NP-glial tumor induced by the Sleeping Beauty system19 

(see Supplementary material).

Stereotactic Tumor Implantation and Processing 
of Tissue Samples

NP neurospheres (1.0 × 103 cells in 1 μL) were stereotactic-

ally injected into the right striatum of Tie2-TK adult mice, 

as previously described20; see Supplementary material for 

details.

Importance of the study

This study addresses the role of proliferating vessel 

endothelial cells in glioma growth using a transgenic 

mouse model in which we can ablate proliferating 

endothelial cells. This model allowed us to test the role 

of endothelial proliferation on tumor growth, on its own 

and in combination with other treatments. Elimination 

of endothelial proliferation, radiation, or bevacizumab 

increased animal survival. To our surprise, by com-

bining the elimination of endothelial proliferation 

with either of the other two treatments, we obtained 

a reduced survival response. Bevacizumab is thought 

to act through vessel normalization, and glioma irradi-

ation requires adequate tissue oxygenation, to reduce 

tumor growth. Our results show formally that, in our 

model, intact tumor blood vessels are necessary for the 

antitumor effects of bevacizumab and radiotherapy. The 

clinical implications of our results suggest that the sta-

tus of tumor vascularization is an important parameter 

to consider when evaluating tumor responses to poten-

tially vessel-disrupting agents.
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Immunohistochemistry and Hematoxylin-Eosin 
Staining

Immunohistochemistry (IHC) and hematoxylin and eosin 

(H&E) staining was performed on vibratome and paraffin 

brain sections of mice treated with phosphate buffered 

saline (PBS), ganciclovir (GCV), ionizing radiation (IR), 

IR+GCV, VEGF, and VEGF+GCV. IHC and H&E protocols can 

be found in the Supplementary material.

Ganciclovir Administration

NP tumor bearing Tie2-TK mice were treated twice daily 

with 25 mg/kg of the prodrug, GCV (Boitang, cat # RG001) 

or PBS via intraperitoneal injection.21 Injections were per-

formed from day 4 to 11 post tumor implantation.

Anti-VEGF Therapy

NP tumor implanted mice were treated with mouse anti-

VEGF antibody (Genentech #5563) on days −1, 2, 5, 8, 11, 

14, and 17 at a dose of 40 mg/kg i.p.

Radiation Treatment

Five days post implantation, Tie2-TK mice were irradiated 

with 20 Gy IR (2 Gy/day for 10 days).

Quantification of Immune Infiltration

The following groups were quantified for the detection of 

immune infiltration: PBS, GCV, IR, IR+GCV. Immune infil-

tration was made up of neutrophil nests, which were com-

posed of >90% neutrophils, as determined by a pathologist 

(H.A.). Immune infiltration (ie, neutrophil nests) were quan-

tified using ImageJ from images taken randomly from each 

tumor. A mean of 13 images per tumor were used, and we 

analyzed 2–5 tumors per group.

Statistical Analysis

Statistical analyses were performed using GraphPad 

Prism 7.  Data were analyzed with a Student’s t-test or 

ANOVA as specified in Fig. legends. Data are represented 

as mean  ±  SEM. Values were considered significant at 

P  ≤  0.05. Kaplan–Meier survival curves were analyzed 

using the Mantel–Cox log-rank method.

Results

Characterization of Anti-Angiogenesis in a 
Tie2-TK Glioma Model

Tie2-TK mice were genetically engineered to express the 

conditionally cytotoxic gene thymidine kinase from herpes 

simplex virus type 1 thymidine kinase (HSV1-TK) under the 

transcriptional control of the endothelial Tie2 promoter. 

This promoter was also linked to green fluorescent protein 

(GFP) by an internal ribosomal entry site (IRES) element 

(Fig.  1A). In these mice, Tie2-positive TK-expressing pro-

liferative endothelial cells were selectively killed by the 

administration of GCV (Fig. 1B). TK converts GCV to GCV 

triphosphate, a purine analog that inhibits DNA replication 

selectively in proliferating Tie2-positive cells and leads to 

their apoptosis (Fig. 1B). IHC demonstrates that tumor ves-

sels from Tie2-TK mice are positive for GFP and express 

cluster of differentiation (CD)31 (Fig.  1C). Co-localization 

confirms TK expression specifically in endothelial cells. 

Endogenous GFP expression from the Tie2 promoter and 

IRES is not strong enough alone to be detected without 

IHC (Fig.  1C3). GFP expression within the blood vessels 

co-localized with CD31 expression demonstrated at low-

power (Fig. 1C4) and high-power (Fig. 1C5) merged images. 

We also examined the invasion pattern of NP tumors in 

an intracranial orthotopic model established in Tie2-TK 

mice. Confocal imaging of CD31 expression revealed that 

NP tumor cells (shown in green) were associated with the 

blood vessels (shown in red) at the invasive tumor border, 

as indicated by white arrowheads (Fig. 1D1 and D2).

GCV Treatment Impairs Tumor Induced 
Angiogenesis in Tie2-TK Mice

We hypothesized that GCV treatment of Tie2-TK mice 

bearing NP tumors would result in reduction of neoan-

giogenesis. We analyzed blood vessel morphology and 

density across the tumors among 4 treatment groups (IR 

alone, GCV alone, IR+GCV, and PBS). Microscopic analysis 

revealed the presence of avascular regions within the cen-

ter of GCV treated tumors (Fig. 2A5, A6, and A7). We also 

observed reduced blood vessel density in the IR+GCV 

treated group (Fig. 2A13, A14, and A15). Blood vessel dens-

ity within the center of the tumor in PBS and IR treated mice 

was not affected (Fig. 2A1, A2, A3, and A9, A10, A11). No dif-

ferences were observed in vessel density at the tumor per-

iphery (Fig. 2A4, A8, A12, and A16). ImageJ quantification 

of CD31 expression demonstrated a statistically significant 

reduction in blood vessel density at the tumor core in GCV 

treated (**P < 0.048) and IR+GCV (**P < 0.05) treated mice 

(Fig. 2B2 and B4). However, there was no significant differ-

ence in blood vessel density from tumor core to tumor bor-

der in PBS or IR treated mice (Fig. 2B1 and B3).

Direct Blood Vessel Killing Prolongs Survival of 
Glioma-Bearing Tie2-TK Mice

Inhibition of tumor angiogenesis with anti-VEGF therapy 

has failed to increase glioma patient survival in phase III 

trials.13,22 Therefore, we wanted to determine if disrupting 

the proliferation of tumor vasculature through direct ves-

sel cytotoxicity (ie, Tie2-HSV1-TK mice + GCV), alone or in 

combination with radiotherapy or anti-VEGF therapy, pro-

longs survival (Fig.  3A). Kaplan–Meier survival analysis 

was performed for 4 treatment groups: PBS, GCV, IR, and 

GCV+IR (Fig.  3B). The mice in the GCV treatment group 

exhibited increased median survival compared with the 

PBS group (OS: PBS = 12 vs GCV = 18 days, **P ≤ 0.001) 

(Fig.  3B). IR treatment alone prolonged median sur-

vival compared with PBS treated mice (OS: IR  =  25 vs 
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PBS = 12 days, ***P ≤ 0.0001). However, the combination 

IR+GCV treatment resulted in lower median survival com-

pared with IR alone (OS: IR  =  25 vs IR+GCV  =  19  days; 

Fig. 3B). These results demonstrate that (i) GCV-mediated 

killing of proliferating endothelial cells in the tumor cor-

related with significantly prolonged survival of Tie2-TK 

mice and (ii) OS was reduced in IR+GCV treated mice com-

pared with IR alone (OS: IR = 25 vs IR+GCV = 19 days). This 

Tie2 PROM. TK IRES GFPLV Vector

A

Tie2-TK-IRES-GFP transgenic mice

Thymidine

Kinase  

B

NP tumor cells (green) exhibit 

perivascular invasion at tumor border

CD31

40 µm

40 µm

NP Tumor / CD311

2

VEGF Angiogenesis

GCV

GCV P P P

Activation of 

Tie2 promoter

Tumor Endothelial
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anti-GFP anti-CD31 No-pri-Ab.

Immunofluorescence of GFP and CD31 in the brain of Tie2-TK-GFP mice.

100 µm 100 µm 100 µm
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Merge
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2
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Inhibition of
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PGK, NDK
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Fig. 1 TK-GCV mediated killing of proliferating endothelial cells in Tie2p/e LV [TgN(Tie2-TK-IRES-GFP)] mice. (A) Schematic representation 
of transgenic vector encoding herpes simplex virus for thymidine kinase, and GFP with an IRES element under endothelial specific promoter 
Tie2. (B) TK-GCV mediated killing of proliferating endothelial cells in the presence of GCV. GCV is monophosphorylated by HSV-TK, and further 
phosphorylated by guanylate kinase, phosphoglycerate kinase (PGK), and nucleoside diphosphate kinase (NDK). The triphosphate form of GCV 
(deoxythymidine triphosphate) is a purine analog that inhibits DNA replication and leads to apoptosis of dividing endothelial cells. (C) IHC of 
Tie2-TK mouse brain against GFP and CD31. (C1) Fluorescence confocal imaging of Tie2-TK mouse brain sections depicting GFP expression 
in brain microvessels. (C2) Brain microvessels from the same mouse immuno-labeled with endothelial-specific anti-CD31; white arrowheads 
illustrate GFP expression in endothelial cells. (C3) GFP expression was not detected in sections without primary anti-GFP antibody. (C4) Low and 
(C5) high magnification merged images confirm expression of GFP in brain microvasculature of Tie2-TK mice. (D) GFP expressing green NRAS/
sh-P53 (NP) neurosphere tumor cells exhibit perivascular invasion. Fluorescence confocal image of GFP expressing NP tumor cells within the 
Tie2-TK mouse brain (left) and CD31 expressing microvasculature in red (right). White arrowheads indicate microvasculature-associated tumor 
invasion.
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indicates that GCV-mediated killing of proliferating endo-

thelial cells attenuates the efficacy of IR sensitivity on NP 

tumor progression in Tie2-TK mice.

Histopathologic analysis of tumors from these treatment 

groups revealed that tumors from GCV treated mice had 

large necrotic regions with invasion of polymorphonuclear 
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cells compared with PBS treatment (Fig.  3C4 and C5). 

Furthermore, blood vessels in GCV or GCV+IR treated 

mice displayed enlarged lumina and thinning of endothe-

lial cells, likely leading to vessel leakiness. Blood vessels 

in PBS and IR treated groups appeared intact (Fig. 3C6 and 

C12). Tumors of GCV treated mice displayed extensive nec-

rotic areas, mainly within the tumor centers (Fig. 3D). High 

power images of the necrotic areas demonstrated an abun-

dance of dying round-shaped tumor cells, as indicated by 

white arrowheads in (Fig. 3D6 and D12). Tumors from PBS 

treated mice or IR alone did not exhibit necrosis (Fig. 3D1, 

D3, and D7). We next compared the pattern of HIF-1α immu-

noreactivity in each group by IHC. GCV and IR+GCV treated 

groups showed highest levels of HIF-1α immunoreactivity; 

in the GCV group the distribution was centered around the 

tumor periphery, while in the GCV+IR group it was centrally 

located (Fig. 3E). Higher expression of HIF-1α in the IR+GCV 

group compared with IR alone suggests that activation 

of the HSV1-TK system disrupts the tumor blood supply, 

thereby reducing tumor oxygenation, stimulating expres-

sion of HIF-1α, and thus reducing sensitivity to radiation. 

We further investigated the extent of inflammation (mostly 

polymorphonuclear infiltration) in brain sections from 

moribund mice (Fig.  3F). ImageJ analysis revealed that 

polymorphonuclear cells were significantly increased in the 

IR group compared with all other groups. Mice treated with 

GCV or IR+GCV had significantly reduced numbers of infil-

trating polymorphonuclear cells compared with IR treated 

mice. Lower infiltration of inflammatory cells in the IR+GCV 

group suggests that GCV-mediated killing of proliferating 

endothelial cells reduces inflammatory infiltration, which 

could contribute to reducing the effects of IR therapy.

Endothelial Cell Death Increases Tumor Cell 
Apoptosis and Reduces Tumor Proliferation

GCV treatment blocked angiogenesis by disrupting reactive 

blood vessels, as shown in Fig. 3. We further investigated the 

effect of GCV treatment on the proliferation of tumor cells. 

Ki67 expression was assessed in PBS, GCV, IR, and GCV+IR 

treatment groups. Analysis revealed a lower Ki67 index 

in GCV (Fig. 4A4  to A6), IR (Fig. 4A7 to A9), and IR+GCV 

(Fig. 4A10 to A12) treatment groups within the tumor core 

compared with the PBS group (Fig. 4A1 and A3), as indi-

cated by the white arrowheads. Tumor cell proliferation at 

the tumor border was not affected by GCV treatment (data 

not shown). Total Ki67-positive cells were significantly lower 

in GCV (***P  <  0.0003), IR (***P  <  0.0002), and IR+GCV 

(***P < 0.0027) groups relative to the PBS treatment group 

(Fig. 4B). Decreased Ki67-positive cells in GCV and GCV+IR 

treatment groups correlated with increased survival of 

Tie2-TK mice implanted with NP tumors.

GCV-Mediated Killing of Proliferating 
Endothelial Cells Enhances Cleaved Caspase-3 
Immunoreactivity

We analyzed brains from moribund mice treated with PBS, 

GCV, IR, or GCV+IR for expression of cleaved caspase-3 

(CC3), a marker of apoptosis. The tumor cells from ani-

mals treated with GCV (Fig. 5A3 to A6), IR (Fig. 5A7 to A9),  

or GCV+IR (Fig.  5A10 to A12) exhibited extensive apop-

tosis within the center of the tumor compared with PBS 

treatment (Fig.  5A1 to A3). The tumor border for all 4 

treatment conditions did not demonstrate CC3 positivity 

(data not shown). Quantification of the total number of 

CC3-positive cells in each treatment group revealed that 

tumors from mice treated with either GCV (***P < 0.0001), 

IR (***P < 0.0001), or GCV+IR (***P < 0.0005) had signifi-

cantly higher CC3-positive tumor cells compared with the 

PBS control (Fig.  5B). However, NP tumor bearing mice 

treated with IR+GCV had a lower number of CC3-positive 

cells compared with IR alone (Fig. 5B). The increased num-

ber of CC3-positive cells in the GCV and IR treatment 

groups correlates with increased survival.

GCV-Mediated Killing of Proliferating Endothelial 
Cells Attenuates the Efficacy of Anti-VEGF 
Therapy

To determine whether inhibition of proliferating vascular 

endothelium can increase the efficacy of anti-VEGF therapy, 

we studied the effect of combination anti-VEGF and GCV 

treatments on the OS of NP tumor bearing Tie2-TK mice. 

We treated 4 groups (n = 4/group) of NP tumor implanted 

Tie2-TK mice with (i) PBS (control), (ii) GCV, (iii) anti-VEGF 

antibodies, and (iv) GCV+anti-VEGF antibody and monitored 

tumor progression (Fig. 6A). GCV therapy alone significantly 

increased the survival of tumor bearing Tie2-TK mice (OS: 

GCV = 18 days) (Fig. 3B). Treatment with anti-VEGF antibod-

ies alone extended the median OS of NP tumor bearing 

mice (OS: anti-VEGF = 25 days) compared with control (OS: 

PBS = 13 days) (Fig. 6B). However, mice treated with com-

bined anti-VEGF plus GCV resulted in lower median survival 

compared with anti-VEGF antibody alone (OS: anti-VEGF = 25 

vs anti-VEGF+GCV = 19 days) (Fig. 6B). Given the significant 

improvement in survival observed in mice treated with anti-

VEGF therapy alone, but not with dual anti-VEGF plus GCV 

therapy, this prompted us to investigate the tumor vascu-

lar integrity and normalization in these treatment groups. 

CD31 IHC staining was performed for each treatment group. 

Microscopic analysis revealed that PBS treated tumors had 

increased angiogenesis. As previously demonstrated, GCV 

treated mice had a significant decrease in vessel density, 

with the most pronounced effect at the center of the tumor 

(Fig. 6C4 to C6). Tumors from mice treated with anti-VEGF 

therapy displayed a high density of intact and pathological 

blood vessels, suggesting a greater extent of vessel normal-

ization after anti-VEGF therapy (Fig. 6C7 to C9). Blood vessel 

morphology in dual GCV and anti-VEGF therapy treated mice 

was disrupted and vessel normalization was not observed 

(Fig. 6C10 to C12). Low blood vessel density was observed 

in tumors of mice that received GCV treatment alone or in 

combination with anti-VEGF therapy. These data suggest that 

GCV-mediated killing of proliferating endothelial cells limits 

the efficacy of anti-VEGF treatment.

Discussion

Neoangiogenesis is a central biological process for gli-

oma progression. Inhibiting the tumor blood supply is an 
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attractive therapeutic strategy. Bevacizumab is a monoclo-

nal antibody that binds VEGF and is the most comprehen-

sively studied anti-angiogenic therapy for the treatment of 

glioma. Clinical trials indicate that bevacizumab extends 

PFS in patients with primary gliomas.13,14 However, mul-

tiple phase III randomized controlled trials failed to dem-

onstrate improved OS.12–14,23,24 The basis of bevacizumab’s 

mechanism of action, the role of tumor neoangiogenesis 
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Error bars = mean ± SEM.
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on tumor progression, and the mechanisms of resist-

ance to bevacizumab are only partially understood. We 

examined the effects of bevacizumab and irradiation in a 

transgenic model of inducible elimination of proliferating 

endothelial cells. In this model, elimination of proliferating 

endothelial cells reduced the efficacy of both treatments.

Several mechanisms have been proposed to explain 

the resistance to anti-VEGF therapy in glioma patients. 

Recruitment of vascular progenitors such as Tie2-positive 

monocytes from the bone marrow and activation of Tie2/

angiopoietin 225 pathways are associated with resistance 

to bevacizumab.26 We have targeted VEGF independent 

mechanisms of angiogenesis by using a transgenic GBM 

mouse model with inducible, selective ablation of prolifer-

ating vascular endothelial cells. In this model, HSV1-TK is 

selectively expressed in vascular endothelium under tran-

scriptional control of the Tie2 promoter. Administration of 

GCV leads to cytotoxic activity of TK and selective killing of 

proliferating endothelial cells.

Our data demonstrate that elimination of neoangiogene-

sis decreases tumor growth and prolongs animal survival. 

In these mice, tumor necrosis is more abundant in the cen-

ter of the tumor, likely due to hypoxia and impaired angio-

genesis caused by HSV1-TK. Further, our data demonstrate 

that there is a reduction in tumor cell proliferation and an 

increase in caspase-3 mediated apoptosis. A study by De 

Palma et al18 demonstrates that GCV-mediated elimination 

of Tie2 expressing monocytes reduced tumor angiogen-

esis and tumor growth in N202 tumors implanted subcuta-

neously in mice.18 However, this study did not evaluate the 

effect of TK-GCV on the antitumor efficacy of radiation and 

anti-VEGF therapy.

We also demonstrate that targeting Tie2-TK express-

ing cells preferentially eliminates endothelial cells from 

the center of the tumor. Hypoxic conditions are more 

prevalent in the tumor center, leading to increased acti-

vation and proliferation of endothelial cells and increased 

cell death upon administration of GCV. As per our6 and 

others’27 previous data, tumor cells toward the periph-

ery are mainly located along remaining intact blood 

vessels. Radiosensitivity of tumor cells is determined in 

part by the concentration of dissolved tissue oxygen and 

reduction reactive oxygen species.28 In our experiments, 

radiation therapy alone improved survival. However, acti-

vation of the HSV1-TK system counteracted the thera-

peutic effects of radiation. We demonstrate that activation 

of the HSV1-TK system disrupts the tumor blood supply, 

thereby reducing tumor oxygenation and sensitivity to 

radiation. This is consistent with recent phase III trials 

(AVAglio and RTOG 0825) in which no increased OS was 

observed when bevacizumab was combined with radi-

ation therapy.13,14

Although the direct inhibition of proliferating endo-

thelial cells prolongs survival in this in vivo glioma 

model, it fails to induce complete growth arrest and 

tumor regression. This suggests that tumor progression 

occurs independently of angiogenesis. We and others 

have previously demonstrated that glioma cell growth 

and invasion occur by vessel co-option and perivas-

cular invasion.6,29 The subjugation of the native blood 

supply of adjacent normal parenchyma may also be an 

escape mechanism by which a growing tumor evades 

anti-angiogenic therapy. This mechanism is independent 

of the inhibition of neoangiogenesis attributed to anti-

VEGF therapy or by selective ablation of proliferating 

vascular endothelium as we have done in the Tie2-TK 

mice. In our model, the elimination of reactive blood 

vessels, contrary to our predictions, reduced the effi-

cacy of anti-VEGF therapy. This may indicate that intact 

blood vessels and the induction of vessel normaliza-

tion are necessary conditions for bevacizumab’s thera-

peutic effect. Irradiation is known to increase the influx 

of inflammatory cells into tumors.17,30 

Stimulation of inflammatory cell influx is likely to have 

an inhibitory effect on tumor growth. It is thus possible 

that GCV-mediated killing of proliferating endothelial 

cells may reduce the entry of inflammatory cells into 

tumors. Indeed, IR treated mice have the highest amount 

of infiltrating polymorphonuclear cells, and the highest 

survival. Treating these animals with GCV reduces both 

inflammatory infiltration and survival. GCV-mediated 

killing of proliferating endothelial cells may, at least in 

part, inhibit the therapeutic effect of radiation therapy. 

In summary, treatment of a murine glioma implanted 

into transgenic mice (expressing HSV1-TK in endothe-

lial cells and precursors) with (i) GCV, (ii) anti-VEGF 

antibodies, or (iii) radiation prolongs animal survival. If, 

however, GCV and bevacizumab, or GCV and radiation, 

are administered concurrently, GCV-mediated killing of 

proliferating endothelial cells reduces the efficacy (ie, 

survival) of anti-VEGF therapy or radiation. These find-

ings suggest that in our model intact blood vessels are 

necessary for full therapeutic efficacy of anti-VEGF and 

radiation. Whether in human patients the efficacy of anti-

VEGF antibodies or radiation treatment is also depend-

ent on the presence of intact blood vessels remains to 

be determined. Equally, whether any treatment (ie, 

radiation or temozolomide) that induces devasculariza-

tion can inhibit later treatment with bevacizumab also 

requires further investigation.

Supplementary Material

Supplementary material is available at Neuro-Oncology 

online.
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