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The immunomodulatory agent, lenalidomide, is a structural analogue of thalidomide approved by the US Food and Drug
Administration for the treatment of myelodysplastic syndrome (MDS) and multiple myeloma (MM). This agent is also currently
under active investigation for the treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma (NHL), as
well as in drug combinations for some solid tumors and mantle cell lymphoma (MCL). Although treatment with lenalidomide
has translated into a significant extension in overall survival in MM and MDS and has superior safety and efficacy relative to
thalidomide, the mechanism of action as it relates to immune modulation remains elusive. Based on preclinical models and
clinical trials, lenalidomide, as well as other structural thalidomide derivatives, enhances the proliferative and functional capacity
of T-lymphocytes and amplifies costimulatory signaling pathways that activate effector responses and suppress inflammation. This
paper summarizes our current understanding of T- and natural killer (NK) cell pathways that are modified by lenalidomide in
hematopoietic neoplasms to inform future decisions about potential combination therapies.

1. Introduction

Lenalidomide (Revlimid, CC-5013) is a second-generation
synthetic derivative of glutamic acid and thalidomide ana-
logue with antiangiogenic, antitumorigenic, and immun-
omodulating activity that was realized due to anecdotal im-
munomodulatory activity in erythema nodosum leprosum
(ENL) [1, 2] and in autoimmune disorders [3–5]. Creation
of synthetic modifications to the thalidomide backbone
led to the discovery of lenalidomide and pomalidomide
with 500-fold greater immunomodulatory potency and
safer side effect profile compared to the parent drug [6, 7].
Use of lenalidomide in proliferative neoplasms has recently
intensified due to the agent’s success in MM and MDS
where it acts to alter immune homeostasis and modulate
inflammation within the bone marrow microenvironment.
Studies in relapsed and refractory B-cell chronic lymphocytic
leukemia (B-CLL) as well as non-Hodgkin’s lymphoma
(NHL) solid malignancies such as central nervous
system, ovarian, and renal cell carcinoma demonstrate

the potential of this drug in diverse neoplastic processes
[8, 9]. While the molecular antitumor mechanism and spec-
ificity have been extensively studied in preclinical and
clinical settings, the future application and design of effective
therapeutic combinations with lenalidomide is dependent
on understanding the immunomodulatory mechanism and
anti-inflammatory properties in the context of the bone
marrow milieu, the microenvironmental interactions, and
bioactivity within adaptive and innate immune cells.

2. Lenalidomide Augments T-Cell
Proliferation and Activation

Immunosurveillance of cancer cells is now a well-established
principle thought to contribute not only to the quantity,
but also to the quality, or immunogenicity, of a tumor
during development [10, 11]. Mechanisms regulating innate
and adaptive immune responses are carefully orchestrated
to detect and remove infected, transformed, or erratically
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growing cells within the body. Immune tolerance, induced
by changes in the microenvironment and within the tumor
cells, contributes to neoplastic expansion. Lenalidomide is
able to enhance the proliferative and functional capacity of
T cells, which augments immune activity through a variety
of mechanisms. Thalidomide was first shown to augment
T-cell proliferation and cytokine production in the absence
of costimulatory molecules without direct mitogenic activity
[12]. Early reports of bone marrow lymphoid aggregates in
lenalidomide-responsive MDS patients implicated immune
modulation in hematological responses to this agent [13].
When a T-cell encounters cognate tumor antigens presented
by antigen presenting cell (APCs), there is an increase in a
variety of costimulatory molecules, most importantly CD28,
that enables a fully competent signal response by T cells
[14]. CD28 binds to B7-1 (CD80) and -2 (CD86) molecules
on APCs to generate the appropriate response to antigen
stimulation. Absence of CD28-APC interaction (Signal 2)
in the presence of T-cell receptor ligation (Signal 1) leads
to inactivation or anergy of naı̈ve T cells. Thalidomide,
and to a greater extent lenalidomide, induces interleukin-2
(IL-2), interferon-γ (IFN-γ), and TNF-α secretion [12] in
the absence of CD28 stimulation, suggesting that the drug
somehow activates the costimulatory-dependent signaling
cascade initiated by Signal 2 [15].

Both Signal 1 (TCR) and Signal 2 (co-stimulation) are
necessary for IL-2 production leading to the hypothesis
that lenalidomide and the other IMiDs function some-
where within this costimulatory pathway [16–18]. Signaling
pathways associated with IL-2 transcriptional activation are
shown in Figure 1 and recently reviewed by [19]. The exact
differential downstream intermediates emanating from the
TCR CD28 are difficult to elucidate because the pathways are
integrally connected. LeBlanc et al. showed that lenalidomide
acts to increase tyrosine-phosphorylation in the intracellular
domain of the CD28 receptor in the absence of costimulatory
molecules [20]. Although it is not known if lenalidomide acts
directly to induce phosphorylation, the presence of down-
stream signaling events after treatment such as NF-κB p65
translocation to the nucleus, and cytokine production, sug-
gests that this pathway may be important for lenalidomide’s
immunomodulatory effect [20]. Others have shown that the
activation of PKC-ζ and NFAT-2 are important mediators
of cytokine production after IMiD treatment [21]. However,
a conflicting report showed that PKC-θ activity and AP-1
DNA binding was increased, without an increase in NF-κB,
OCT-1, and NFAT transcription factor binding, which adds
to the controversy about lenalidomide’s T-cell-associated
molecular mechanism of action [22, 23] (see Figure 1).
These controversial results, however, may be attributed
to the methods used for T-cell stimulation, namely, TCR
stimulation versus calcium channel activation, respectively.
Görgün et al. showed that lenalidomide and pomalidomide
reduce Suppressor of Cytokine Signaling-1 (SOCS1) expres-
sion in T cells, which is an important negative regulator of
cytokine signaling [24]. Even when treated with IFN-γ to
induce SOCS1 expression, the drug was capable of blocking
this inhibitory response and potentiating TCR/anti-CD28
costimulation in effector T cells [24]. Although reduction

in a suppressive signal may be important, this would not
be expected to generate unique responses, such as IL-2, that
specifically require a costimulatory signal.

In addition to the activation of effector T cells and NK
cells, there is a valid concern about the potential effect of
IMiDs on regulatory T (Treg) cells that may deter antitumor
immunity by suppressing immunosurveillance [11, 25]. In
this regard, lenalidomide and pomalidomide were shown to
inhibit the expansion and function of Tregs by downregu-
lating the expression of forkhead box protein 3 (FOXP3) [26,
27]. The preferential augmentation of CD8+ cytotoxic T cells
and inhibition of regulatory T cells makes this drug a very
interesting and potentially valuable therapeutic candidate to
augment immunotherapy responses in cancer patients.

In addition to the specific effects of lenalidomide on
T-cell signaling, our lab and others have shown that the
drug alters homeostatic regulation of T cells [28]. In MDS
and MM, lenalidomide preferentially acts on specific T-
cell memory subsets to reverse immune dysfunction. We
found that erythroid responsive MDS patients displayed a
greater increase in naı̈ve and central memory T-cell subsets
compared to nonresponders. This increase was associated
with a concurrent decrease in effector memory subsets,
potentially indicating that the drug restores immune home-
ostasis [28]. A similar increase in central memory T cells was
observed by Noonan et al. [29] in MM patients that received
lenalidomide in combination with the pneumococcal 7-
valent conjugated vaccine (PCV) to establish the principle
of vaccine combination therapy. Interestingly, the increase
in PCV-specific antibody and cellular responses was specific
to the vaccination schedule favoring administration of
lenalidomide prior to PCV vaccine. B-CLL, like MDS, is
associated with dysfunctional T-cell activity [30, 31] with
defects in actin polarization at the immune synapse [32].
Treatment with lenalidomide in CLL restored IL-2 and IFN-γ
secreting CD4+ and CD8+ T cells to normal levels [33]
and reversed the suppressive signals blocking lytic synapse
formation [32].

Antigen-specific effector T-cell activity in vitro and in
vivo after lenalidomide was demonstrated after treatment
for MM, supporting the idea that T-cell reconstitution may
be important for antileukemia effects and eradication of
myeloma cells [34]. Our studies have shown that lenalido-
mide is capable of increasing proliferation and cytokine
secretion in anergic MDS T cells and indicate that lenalido-
mide not only improves healthy T-cell function, but also
reverses intrinsic cancer-related immune defects associated
with deregulated cancer immunosurveillance.

The evidence from in vitro and in vivo experiments
to date, therefore, indicates that lenalidomide has multiple
effects on T-cell signaling, but the exact molecular target
and mechanism remain elusive. Interestingly, the molecu-
lar target mediating thalidomide’s teratogenic effects was
identified in 2010 by Ito et al. [35]. Using thalidomide-
conjugated beads, an E3 ubiquitin ligase, cereblon (CRBN),
was shown to directly bind to thalidomide and mediate
limb malformation in a zebrafish model. Mutations of
two amino acids (Y374A and W376A) in zebrafish CRBN
eliminated the drug’s ability to interact with the protein
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Figure 1: Various T-cell signaling pathways are upregulated after lenalidomide treatment. Lenalidomide is known to have no direct mitogenic
activity, therefore it cannot induce proliferation directly. Upon TCR ligation, lenalidomide (LEN) increases phosphorylation of tyrosines
within the intracytoplasmic tail of CD28, through an unknown mechanism, increasing downstream signaling and activation of PKC-θ,
MAPK, and potentially other signaling pathways. These pathways lead to the activation of classic T-cell transcription factors like AP-1,
NFAT-1, and NF-κB that induce secretion of the T helper type 1 (Th-1) cytokines interleukin-2 (IL-2), tumor necrosis factor-α (TNF-
α), and interferon-γ (IFN-γ). Though it is controversial which transcription factors are ultimately increased upon lenalidomide treatment
(indicated by a question mark). Upregulation of these pathways potentially reverses T-cell defects, aids in breaking tolerance, and leads to
greater CD4+ T-cell help to DCs, NK cells, and CD8+ T cells, augmenting eradication of the tumor cells.

and prevented its effects on limb formation. Decreased
cereblon expression in MM cells was also recently found to be
associated with lenalidomide and pomalidomide resistance
[36]. CRBN functions within an E3 complex containing
several components including DDB1 and Cullin 4 (Cul4A
or Cul4B) that polyubiquitinate (Ub) substrate proteins and
mediate their degradation [35]. CRBN and other members
of this E3 complex play no known role in T-cell signaling.
However, increased Cul4A expression was recently linked to
thalidomide response in prostate cancer [37]. Lenalidomide
was shown recently by our group to stabilize mouse double
minute 2 protein (MDM2) by blocking its autoubiquitina-
tion [38]. Since MDM2, like CRBN, is a RING finger E3
ubiquitin ligase, it is possible that IMiDs mediate a class-
selective suppressive action against Ub-ligating enzymes,
potentially mediating the increase in T-cell signaling.

3. Lenalidomide in B-CLL and MM

Lenalidomide has proven efficacy in several hematologic
malignancies, including MDS, B-CLL, MM, and even some
solid tumors attributed to T-cell and NK cell functional
reconstitution. B-CLL is the most common leukemia in
the United States, and although treatment with nucleo-
side analog-based chemoimmunotherapies has significantly
enhanced outcomes in patients, nearly all of the patients ulti-
mately relapse [39]. Lenalidomide combination treatments

for patients with relapsed, refractory, and primary CLL,
have resulted in durable hematologic improvement [40–
42]. Exposure of primary CLL cells to lenalidomide in vitro
leads to the induction of costimulatory molecules like CD80,
CD86, and FASL on the tumor cells [43], restoring immuno-
logical synapse formation and improving autologous tumor
cell recognition by T cells [44, 45] (Figure 2). The improved
immune synapse formation between T cells and tumor cells
was also evident in vitro when studied in NHL [46].

The ability of lenalidomide to augment IL-2, IFN-γ,
and TNF-α production from T cells in vitro has been
described extensively. Similar increases in TNF-α production
in CLL have been confirmed [47]. Cytokine production and
increased T-cell function in CLL is thought to contribute
to the tumor flare response (TFR), which is an adverse side
effect of lenalidomide treatment that is positively associated
with hematologic improvement when properly managed
[48]. Since TFR occurs in association with an increase in
circulating CD8+ T cells and NK cells, and release of proin-
flammatory cytokines, it suggests that immunomodulation
is important for success of the drug clinically by enhancing
the reactivation of immune effector responses against the
tumor [47, 48]. Continuous treatment of relapsed refractory
CLL patients with lenalidomide was associated with a stable
increase in T-cell number in the peripheral blood, which was
indicative of a sustained immune response [42]. In B-CLL,
both thalidomide and lenalidomide lead to improved tumor
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Figure 2: Lenalidomide augments direct CD8+ T-cell killing of B-CLL cells. B-CLL cells are able to evade immune detection through high
levels of PDL-1, low levels of costimulatory molecules like B7-1, and a variety of immune-suppressive cytokines in the microenvironment.
Lenalidomide treatment (Len) is able to overcome the immune suppression through upregulation of costimulatory molecules like CD40 and
B7-1 (CD80/86) on the CLL cells, upregulation of Fas expression, as well as decreasing PDL-1. Through the alteration of surface molecule
expression, as well as the increase in T-cell signaling as shown previously, lenalidomide induces better immune synapse formation allowing
for increased killing by the CD8+ T cells.

recognition. The drug-induced induction of costimulatory
molecules on the B-cell tumor cells in CLL resulting in
enhanced immune-mediated killing, and decreased tumor
burden.

Impaired differentiation and activation of T and B-
cells, as well as NK and dendritic cells, is an important
mediator of disease progression in MM [49, 50]. MM is,
at present, an incurable B-cell malignancy with abnormal
cells accumulating in bone and the bone marrow, which
suppress normal hematopoiesis and disrupt the bone mar-
row microenvironment [51]. Lenalidomide is known in MM
to disrupt cellular interactions and adherence of MM to
stromal constitutions, decrease growth factors such as IL-
6, and induce apoptosis of the neoplastic cells, therefore
blocking disease progression [52–54]. The dysregulation of
hematopoiesis and increased inflammatory cytokine milieu
within the bone marrow microenvironment also contributes
to impaired immune effector cell function. Lenalidomide
treatment in MM, similar to B-CLL and MDS, reverses T-
cell defects directly, but also reverses dendritic cell (DC)
dysfunction. DCs from patients with MM have reduced
expression, or even absence, of costimulatory molecules [55]
and this, along with high levels of IL-6, IL-10, and TGF-β
within the bone marrow microenvironment, contributes to
impaired T-cell costimulation and activation [55, 56].

Although an increase in immune activation is associated
with drug response and a decrease in tumor burden in
CLL, efficacy of the drug has not been definitively shown
to be mediated by a direct cytotoxic effect of T cells against
the malignant B-cells. Christensen et al. first demonstrated
such activity in MM, as lenalidomide treatment in patients
in vivo increased the killing of HM1.24+ myeloma cells by
MART-1 specific T cells [34, 57]. Lenalidomide’s action on
T-cell cytokine secretion, specific tumor cell recognition,
and ability to enhance costimulation derived from dendritic
cells may all participate in lenalidomide’s efficacy for the
treatment of MM.

4. Immunomodulatory Drugs Increase
Natural Killer Cell Recognition and
Cytotoxicity of Leukemia Cells

In addition to the potentiating effect on T and B cells,
immunomodulatory drugs have a profound effect on the
innate immune response, namely, natural killer (NK) cells.
NK cells are an important component of the innate immune
system where they play major roles in tumor rejection,
viral clearance, and DC regulation [58–60]. Thalidomide
was shown to enhance the cytotoxic effects of NK cells, as
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well as increase their cell numbers in MM patients [61].
This enhanced killing effect requires cytokine support from
accessory lymphocytes, like T cells, as there is no measurable
increase in direct killing of the K562 human leukemia cell
line by purified NK cells in the presence of high doses of
lenalidomide or pomalidomide [62]. PBMCs depleted of NK
cells were not able to kill K562 at all, nor were PBMCs in
a transwell experiment, suggesting that NK cells and their
contact with the tumor cell is a necessary component of
lenalidomide-mediated tumor cell apoptosis [62]. Support
from T cells, in the form of IL-2 secretion, is extremely
important for NK-cell-mediated cytotoxicity of MM after
lenalidomide treatment [21]. Although the combination of
lenalidomide with dexamethasone has been shown to have
significant activity, IL-2 production was abrogated in vivo
when MM patients received this combination simultaneously
[63]. Hsu et al. demonstrated that dexamethasone treatment
suppressed IL-2 production from CD4+ helper T cells,
impaired NK cell-mediated cytotoxicity, and countered the
immunostimulatory effects of lenalidomide in MM patients.
Pharmacodynamic studies may maximize the efficacy of this
combination therapy in MM.

There are multiple mechanisms postulated for increased
NK cell killing in the various disease settings. Both pomalido-
mide and lenalidomide upregulate the expression of CD56,
which normally decreases NK killing capacity, but in this
setting had no detriment to NK cell killing [62]. Carbone et
al. showed that the expression of natural cytotoxic receptors
(NCR) and NK receptor member D of the lectin-like receptor
family (NKG2D) is necessary for myeloma cell recognition
[64] and NKG2D blockade abrogated the effect of lenalido-
mide in solid tumors [65]. It was recently shown by Benson
et al. that the addition of a murine anti-inhibitory killer
immunoglobulin receptor (KIR) antibody with concurrent
lenalidomide therapy mediated rejection of lenalidomide-
resistant tumors in a mouse model [66]. This is similar to
their IPH2101 human anti-inhibitory KIR antibody that also
increases in vitro NK cell cytotoxicity specifically against MM
cell targets, but not normal cells, suggesting that clinical
testing in combination with lenalidomide is warranted [66].

A schematic of the various mechanisms of NK cell-
mediated killing in MM after lenalidomide treatment in
combination with various monoclonal antibodies is shown
in Figure 3. MM cells, like most tumor cells, express
the programmed death receptor-1 ligand (PD-L1) which
downregulates the immune response against malignant cells
through programmed death receptor-1 interactions on T
cells [67, 68]. Recently, it was shown that NK cells from
MM patients express PD-1, and the PD-1/PD-L1 interaction
decreased NK cell-mediated killing [69]. A novel anti-PD-
1 antibody, CT-011, can increase NK cell-mediated killing
of autologous MM cells from patients, without effecting
normal cells [69]. This new monoclonal therapy, along with
lenalidomide’s action of decreasing PD-L1 on MM cells, may
improve response rates to this combination therapy.

Enhanced antibody-dependent cytotoxicity (ADCC) by
NK cells is also an extremely important mechanism in
IMiD function in CLL, MM, and even solid tumors [21,
65, 70]. ADCC is a process where antibodies bind to their

ligand antigens on target cells, which then bind to FcR-γ
receptors on NK cells, and trigger cell lysis through perforin
and granzyme-dependent pathways [71]. Lenalidomide- and
pomalidomide-induced killing correlates with an increase
in Fas ligand (FasL) and granzyme B expression in NK
cells, leading to increased ADCC in multiple tumor settings
[70]. Thalidomide plus rituximab (RTX), an anti-CD20
monoclonal antibody commonly used in CLL, was found to
increase complete response rates in relapsed and refractory
MCL patients [72]. Further study of the mechanism showed
that the drug-antibody combination increased growth arrest
of MCL cell lines, as well as primary cells, compared
to RTX alone [73]. Mechanistically, they discovered that
lenalidomide enhanced CD20-mAb-dependent apoptosis of
the MCL cells by upregulating activation of caspase-3, -8,
-9 and the cleavage of PARP, as well as enhanced ADCC
by CD16 induction on NK cells [73]. An increase in NK-
mediated ADCC is also implicated in the success of RTX
and lenalidomide combination therapy in CLL and NHL,
although unproven in vivo [74, 75]. Ofatumumab, another
anti-CD20 monoclonal antibody, binds to a different epitope
and induces greater complement-dependent cytotoxicity
and has shown evidence of activity in fludarabine and
rituximab-refractory CLL [76, 77]. Another CD20 mAb, the
glycoengineered GA-101 antibody, induces greater ADCC
in vitro than RTX and has shown promising preclinical
activity in animal models of NHL and B-CLL [78–82].
Lenalidomide therapy is currently being tested with ofatu-
mumab [83] and elotuzumab [84] in advanced, relapsed
or refractory patients and has shown therapeutic potential.
Therefore, concurrent lenalidomide therapy with these anti-
bodies may prove beneficial in refractory patients to aug-
ment antitumorigenic activity through NK cell potentiating
effects.

As an immunomodulatory agent in solid tumors,
lenalidomide has been used to reverse tolerance to tumor
antigens [85, 86]. As such, lenalidomide may prove beneficial
as an adjuvant to vaccine therapies. Wu et al. demonstrated
that lenalidomide enhances NK cell killing in a variety of
solid tumor cell lines (breast, colorectal cancer, ovary, head
and neck, lung cancer, bone sarcoma) treated with cetuximab
or trastuzumab [65]. The treatment of hematologic and solid
tumors with specific monoclonal antibody therapy concur-
rently with lenalidomide could potently increase NK cell-
mediated tumor lysis and enhance response rates. Lenalido-
mide induces NK cells to produce granulocyte-macrophage
colony-stimulating factor (GM-CSF), TNF-α, and various
immune recruiting chemokines including RANTES, IL-8,
MCP-1, and MIP-1α/β in response to antibody-coated tumor
cell lines, which contributes to a more effective immune
response [65]. The IMiDs enhance immunosurveillance in
solid and liquid tumor settings through recruiting and
activating T and NK cells to suppress malignant growth.

5. Summary

This paper summarizes the current information about
lenalidomide in proliferative neoplasms and describes our
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Figure 3: Lenalidomide alone, or in combination with a variety of therapeutic monoclonal antibodies, increases NK-cell-mediated killing
of multiple myeloma cells. Lenalidomide (LEN) increases IL-2 secretion from by-standing T helper cells which augments NK cell activity.
Lenalidomide, as described previously, upregulates Fas expression and costimulatory molecules on MM cells leading to greater Fas-mediated
apoptosis. Lenalidomide has also been shown to augment the ADCC effect of various monoclonal antibodies like Rituximab (anti-CD20),
GA-101 (glycoengineered anti-CD20), and CT-011 (anti-PDL-1). CT-011 blocks PD-1 ligand on the MM cells, interfering with binding to
PD-1 and inhibiting NK cell activity. Binding of the anti-CD20 antibodies to their targets on MM cells increases complement-dependent
cytotoxicity (CDC), as well as NK-cell recognition and killing of the MM cells. IPH2101 is an anti-inhibitory KIR that has been shown in
combination with lenalidomide to increase NK-cell killing as well, as blocking the inhibitory signals allows for NK activation and detection
of the tumor cells.

understanding of the molecular mechanism of action in lym-
phocytes. Based on the overwhelming success of lenalido-
mide for the treatment of several hematologic malignancies,
there is potential for therapies that augment host immune
responses to be extended from the relapsed and refractory
setting, to primary therapy. Studies over several decades
have elucidated the importance of immunosurveillance in
malignancy. The seminal discoveries that lenalidomide can

potently augment T-cell cytokine secretion and activation
in the absence of a secondary signal and augment NK-
mediated ADCC in the presence of antibody therapy have
only begun to shed light on the mechanism of lenalidomide
immune modulating activity. The potential in furthering
lenalidomide in combination therapy with therapeutic anti-
bodies, vaccines, and chemotherapy depends on improving
our understanding of the molecular mechanism of the drug.
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The mechanism of action and the important molecular
and cellular determinants that mediate the immunomod-
ulatory function are poorly understood, yet many cancer
patients have benefited from this therapy. T cells and NK cells
are rendered anergic or ignorant by the tumor cells through
multiple mechanisms related to the lack of costimulation
and immunosuppressive signals within the tumor microen-
vironment. Because of the importance of costimulation in
determining the immune response, therapeutic manipula-
tion with lenalidomide has generated particular interest. The
mechanism of action is clearly linked to changes in the bone
marrow microenvironment, cytokine secretion, regulation
of angiogenesis and host antitumor immunity. Since this
agent has significant activity in MM, MDS, CLL, NHL, and
MCL, a better understanding of the leukemia biology and
the molecular targets that mediate the immunomodulatory
activity is needed to harness the full potential of this agent in
combination therapies.
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