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Abstract

The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary

location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular

alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we

reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently

seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel

therapeutic targets that will lead to better patient outcomes.

Introduction

Gastric cancer (GC) is the fourth most common cancer and

second leading cause of cancer-related deaths worldwide

[1]. Over 70% of GC cases (~677,000 per annum) occur in

the developing regions, mainly in Asia, Central and Eastern

Europe and Latin America [2–4]. Despite improvements in

GC incidence and mortality over the last decade, the disease

burden still remains high. The majority of patients present

with clinically advanced disease such that curative surgical

resection is no longer possible and current therapeutics are

poor at controlling the progression of metastatic disease.

More worryingly, there are suggestions that advancements

in GC treatment are likely to be surpassed by other diseases,

consequently some foresee that GC is on a rising trend as a

leading cause of death worldwide [5].

Metastasis is the main cause of cancer mortality (>90%)

and a critical step that hampers the development of anti-

cancer therapy due to its systemic nature and resistance to

existing therapeutic drugs [6, 7]. Metastasis of gastric ade-

nocarcinoma is no exception. It represents a multistep bio-

logical cascade that ultimately leads to widespread

dissemination of carcinoma cells in various tissue sites [6, 8,

9]. In this review, we take you step-by-step through the GC

metastatic cascade and the current understanding of the

spectrum of molecular alterations involved. We look for-

ward to this update being a guide for future research, and at

the same time, highlighting its potential for translation into

therapeutic strategies.

GC metastasis cascade

GC most commonly metastasises to the liver, peritoneum,

lung, bone and lymph nodes [10] either through direct

invasion or more distant seeding via the blood, lymphatic

system and intraperitoneal spread. Notwithstanding these

differences, they share the following series of sequential and

interrelated events: (1) local invasion into the surrounding

tumour-associated stroma, (2) intravasation into the hae-

matopoietic or lymphatic systems, or intraperitoneal spread,

(3) survival in vasculature transition or intraperitoneal fluid

circulation, (4) extravasation into 'fertile soil' at distant

organs with pre-metastatic niches and (5) colonisation and

proliferation to form detectable metastases (Fig. 1) [7, 11–

13]. These cellular events are normally kept in check under
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the orchestration of both intrinsic and extrinsic molecular

pathways; however, aberrant molecular alterations allow the

transformation of nascent tumour cells to highly invasive

malignancies, which further lead to incurable metastatic

disease with systemic spread and therapeutic resistance [6].

Local invasion into surrounding tumour-
associated stromal microenvironment

Local invasion occurs when tumour cells no longer

obey the delineation of the basement membrane (BM),

and the invasive front infiltrates the neighbouring

tumour-associated stroma and surrounding normal tissues.

Three major players facilitate this process:

epithelial–mesenchymal transition (EMT), matrix metallo-

proteinases (MMPs) and the stromal environment, within

which alterations and interactions amongst various mole-

cular processes determine the tumour cells’ invasive pro-

pensity [14].

EMT

EMT describes the dissociation of tightly knitted epithelial

cells and subsequent transdifferentiation into motile and

invasive mesenchymal cells [15]. In the mesenchymal cell

state, these cancer cells possess novel ability to invade into

the surrounding microenvironment. Thus, EMT is con-

sidered to be the crucial step in the initiation of local

invasion, and hence subsequent dissemination [14]. The

transition involves relocalisation, dissolution and degrada-

tion of adherens junctions, subapical tight junctions, des-

mosomes and gap junctions between epithelial cells,

ultimately leading to the loss of cell polarity and cytoske-

leton changes [14–16]. As EMT becomes more established,

mesenchymal phenotypes become more prominent, and the

cells start to possess the ability to degrade extracellular

matrix (ECM) proteins (Fig. 2) [15].

In GC, a number of signalling pathways have been found

to regulate EMT, with the PI3K/AKT, MEK/ERK and

WNT/β-Catenin pathways taking leading roles (Fig. 3).

Transcription factors (TFs) and microRNAs, as described

below, are the primary modulators. Although either can act

independently, there is often some cross-modulation and

interdependence that provides further complexity to their

role in the regulation of signalling pathways.

Transcription factors

EMT is tightly regulated by TFs. Apart from the prominent

TFs, such as Slug [17], Snail [18], Twist1/2 [19, 20],

FOXQ1 [21] and ZEB1/2 [22–25] in GC, there are emer-

ging novel TFs that have also been found to regulate EMT.

For example, runt-related TF 3 (RUNX3), which has a role

in suppressing EMT through the TGF-β-activated SMAD

pathway, has been observed to be frequently downregulated

[26, 27]. Similarly, there is loss of RUNX3-dependent miR-

30a activation which normally inhibits vimentin expression

and EMT [28]. In addition, a study based on array profiling

identified significant upregulation of serum response factor

(SRF) in metastatic GC cells. SRF functions to promote

Fig. 1 Metastatic routes and

sites in gastric cancer. Major

routes of distant metastasis in

gastric cancer: intraperitoneal,

lymphatic and haematogenous

spread, and direct invasion into

neighbouring organs. Common

sites of metastases: spleen,

pancreas, colon, liver,

peritoneum, ovary, lymph

nodes, lung and bone
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EMT through miR-199a-5p-mediated decrease in E-

cadherin expression [29]. Also of interest, HOXB9 has

been shown to halt GC progression. Studies have

shown that restoration of HOXB9 expression in GC cells

led to inhibited invasion and migration, at the same time

stimulated the reversal of EMT process [30].

microRNAs

EMT can also be modulated by microRNAs [28]. For

example, miR-544a induces EMT, as shown by the

decreased expression of E-cadherin, APC2 and AXIN2,

which stabilises the nuclear import of β-catenin and acti-

vates Wnt signalling to promote cell invasiveness in GC cell

lines [31]. miR-2392 inhibits EMT through downregulating

TFs, such as Slug and Twist1, in GC cells [32]. miR-223

promotes GC cell invasion and resistance to cisplatin

by targeting FBXW7 [33, 34]. Conversely, miR-338-3p

suppresses EMT through downregulating ZEB2, a TF that

plays a vital role in promoting EMT in GC [25]. miR-506

suppresses EMT directly and its low expression is

correlated with poor prognosis which indicates that it

can serve as an independent prognosis fact in GC patients

[27, 35]. Therefore, microRNAs can also be utilised

as a potential therapeutic target for blocking EMT

progression. For example, AC1MMYR2, a specific small-

molecular inhibitor that can block the maturation of

pre-miR-21 to miR-21, has been shown to reverse EMT

and eventually lead to the suppression of GC cell

metastasis [36].

Other molecules

In addition to TFs and microRNAs, EMT can be regulated

by many other endogenous molecules. For example,

Jumonji domain-containing protein 2B (JMJD2B) and

erythropoietin-producing hepatocellular A2 (EphA2) which

belongs to hydroxylase superfamily and protein-tyrosine

kinase family, respectively, have both been suggested to

induce EMT via the Wnt/β-catenin signalling pathway and

further stimulate GC development and metastasis [37, 38].

Another example is melatonin, which a recent in vitro study

Fig. 2 Epithelial–mesenchymal transition and tumour–stromal inter-

actions in gastric cancer. Main phenotypic changes of EMT in gastric

cancer include loss of cell polarity, degradation of cell-anchoring

junctions, cytoskeleton changes, acquisition of invasiveness and ulti-

mately degradation of basement membrane. Interactions within

between key components of the stromal environment. EMT

epithelial–mesenchymal transition, ECM extracellular matrix, CAF

cancer-associated fibroblast, MSC mesenchymal stem cell, MMP

matrix metalloproteinase
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revealed suppression of EMT in GC cells via the induction

of endoplasmic reticulum stress and inhibition of β-catenin

activity. Melatonin therapy decreased peritoneal dis-

semination in mice [39]. A more comprehensive list of the

genes and microRNAs involved in regulating EMT are

listed in Tables 1 and 2.

MMP

The BM is an important regulator of cellular behaviour in

addition to its passive role in supporting surrounding tissues

[40]. In cancer, BM functions as a mechanical barrier that

prohibits cancer cells from penetrating the neighbouring

stroma [41]. MMPs are proteolytic enzymes with a phy-

siological role in degrading ECM proteins. However, dys-

regulation of MMPs, as seen in cancer cells, lead to

uncontrolled proteolytic activity, tissue remodelling and

disproportionate degradation of BM, thereby granting

tumour cells stromal access [42, 43]. MMPs are upregulated

in nearly all cancers, and their increased expressivity is

generally associated with a poorer prognosis. Accumulating

evidence has highlighted the role of MMPs in lymph

node metastasis, peritoneal metastasis and distant metastasis

[44–49].

MMP-1

MMP-1 is an interstitial collagenase that plays a role in the

degradation of type I collagen (a major ECM component of

stomach mucosa) [50–52]. One study reported that Heli-

cobacter pylori infection can stimulate the upregulation of

MMP-1, which could further enhance the potential of GC

metastasis [51].

MMP-2 and MMP-9

MMP-2 and MMP-9 belong to the family of type IV col-

lagenases or gelatinases. Both have been reported to con-

tribute to vessel invasion and lymph node metastasis in

intra-mucosal GC by degrading type IV collagen, which

enabled infiltration of lymph capillaries [44, 53]. Certain

oncogenic proteins play a role in regulating expression of

MMP-2/9 in promoting cell invasion. For example, Bcl-w,

which belongs to Bcl-2 protein family, has been demon-

strated to induce MMP-2 expression via a sequential

Fig. 3 Molecular mechanisms of

EMT in gastric cancer. Major

signalling pathways that regulate

EMT in gastric cancer. PI3K/

AKT, WNT/β-Catenin, ERK,

TGF-β/SMAD and Snail

signalling pathways promote

EMT; Notch1/2 inhibits EMT in

gastric cancer
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activation of PI3K, Akt and Sp1, thereby enhancing cell

invasiveness and GC metastasis [54]. Similarly, androgen

receptor, which is believed to play vital roles in various

types of cancers, has been reported to bind directly to the

promoter region of MMP-9, which upregulates MMP-9

expression and in turn promotes GC cell migration and

invasion [55]. Furthermore, lipocalin-2, which is regarded

as neutrophil gelatinase-associated lipocalin, has recently

been shown to prevent auto-degradation of MMP-9. Col-

lectively, both MMP-2 and MMP-9 are highly expressed in

GC and their expression is positively associated with the

poor survival of GC patients [56].

MMP-7

MMP-7 (matrilysin) is another MMP that is highly

expressed in GC [57, 58]. It is the smallest (molecular

weight) member of MMP family but with most efficient

ECM-degrading activity on a wide spectrum of matrix

substrates, such as proteoglycans, elastin, caseins, laminins,

fibronectins, collagens, gelatins, entactins, vitronectins [59–

61]. The expression level of MMP-7 at the invasive front of

the tumour is relatively higher than the core, which indi-

cates that the upregulation of MMP-7 is associated with

cancer aggressiveness in GC [60]. Interestingly, several

studies indicate that psychological stress-related changes

may be involved in promoting cancer metastasis through

stimulating the expression of MMPs [62–64]. For instance,

it has been reported that catecholamines, which are stress-

Table 1 Molecular alterations that promote EMT

Molecular alterations Signalling pathways References

ACh M3R/AMPK/MACC1 [155]

ACK1 AKT/POU2F1/ECD [156, 157]

AEP AKT/MARK [158]

CCR7 TGFβ/ERK/PI3K/Snail [159–161]

CUL4A Hippo [162]

CUL4B PI3K/AKT [163]

ECM1 ITGB4/FAK/SOX2/HIF-1α [164]

EGF Arf6-ERK [22, 165–167]

EphA2 WNT/β-Catenin [38, 168, 169]

FOXK1 C-jun [170]

FOXM1 – [171]

FOXO3a – [172]

HIF-1α Snail [173]

HOTAIR HGF/CMet/Snail [174]

IFITM2 IGF1/IGF1R/STAT3 [175]

IL-6 JAK2/STAT3 [176]

IL-17 STAT3 [177]

JMJD2B WNT/β-Catenin [37, 178, 179]

MICAL2 – [180]

Orai1, STIM1 – [181]

Rab11-FIP2 – [182]

RBP2 TGFβ1/Smad3 [183]

RhoGDI2 NFκB/Snail [18, 184, 185]

SALL4 – [186]

SENP3 – [187]

Shh PI3K/AKT [188]

SPOCK1 – [17, 189, 190]

SRF – [29, 191]

TBL1XR1 βcatenin/MMP7/EGFR/ERK [192]

TMPRSS4 – [193]

ZIPK AKT/IκB/NFκB [194]

miR-21 – [36]

miR-130 TGFβ [195]

miR-181a-5p MAKP [196]

miR-181b TGFβ/SMAD2/3/4 [197]

miR-363 – [198]

miR-421 – [199]

miR-544a WNT [31]

miR-940 – [200]

Table 2 Molecular alterations that suppress EMT

Molecular alterations Signalling pathways References

ARID1A – [201]

CBL-B AKT/ERK [202]

CMTM3 STAT3/Twist1/EMT [203]

DDAH1 WNT/β-Catenin [204]

FBXL5 – [205]

FBXW7 RhoA/p53 [33, 34, 206–211]

HOXB9 – [30, 212, 213]

NMI NFκB/p65 [214]

PAQR3 Raf/MAPK PI3K/AKT [19, 215, 216]

PDK1 – [217]

PPARγ – [218]

Rap1GAP – [219]

RKIP Notch1 [220–222]

TOP1MT – [223]

miR-BART6-3p – [224]

miR-7 IGF [225]

miR-22 – [69]

miR-23b Notch2 [226]

miR-128 PI3K/AKT [227]

miR-143, miR-145 – [228]

miR-200b – [229]

miR-216a JAK2/STAT3 [230]

miR-338-3p MET/AKT/PTEN [25, 231–233]

miR-551b – [234]

miR-1271 – [21]

miR-2392 – [32]
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inducible hormones responsive to stress, depression or

panic, can upregulate MMP-7 expression through AP-1 and

STAT3 stimulation [59].

MMP-11

MMP-11, also known as Stromelysin-3, is distinct from

other MMPs as it can only weakly degrade the main com-

ponents of ECM. Additionally, it needs to be proteolytically

cleaved and activated intracellularly by Furin-like serine

proteinases prior to its relocalisation to the cell membrane

[65, 66]. MMP-11 was first identified as a breast cancer-

related gene which was later found to be highly expressed in

most metastatic primary tumours as well as in some of their

metastases when compared to matched normal tissues. Not

only was this evident in GC, it could also be seen in renal,

colon and lung cancers [67]. Moreover, one study found

that MMP-11 levels were markedly elevated in the serum of

GC patients compared with those from healthy subjects, and

the enhanced expression of MMP-11 was well associated

with metastases in these GC patients [66].

MMP-14

MMP-14 belongs to one of the six membrane-anchored

MMPs, unlike the majority which are secreted proteins [68].

MMP-14 is normally located at the leading edge or inva-

dopodia of a cell, which facilitates the degradation of ECM

and guides cells to invade in a specific direction [68].

Additionally, MMP-14 promotes the secretion and activa-

tion of pro-MMP-2 and pro-MMP-9 [68, 69]. A recent

meta-analysis showed that MMP-14 levels were sig-

nificantly higher in GC tissues, and the increased MMP-14

expression correlated to higher clinical stage and metastases

[70].

While most of the studies thus far focus on cancer cells-

derived MMPs, emerging evidence indicate that MMPs

(including MMP-2 and MMP-9) can also be secreted by the

surrounding stromal cells, such as endothelial cells, fibro-

blasts, myofibroblasts and inflammatory cells [65]. These

findings imply the importance of the tumour micro-

environment in GC metastatic progression, as discussed

below (Table 3).

Stromal environment

When cancer cells reach the surrounding stroma following

EMT and BM penetration, the next step involves over-

coming the barriers to allow further infiltration. Recent

studies revealed that tumours function as a complex mul-

ticellular organ composed of both cancer cells and tumour

stroma with significant interactive cross-talks [71]. It is thusT
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unsurprising that tumour progression may be driven by

molecular alterations in cancer cells as well as the tumour-

associated stromal microenvironment [71–74]. GC cells

invading into surrounding stroma will thus be confronted

with neutrophils [75], carcinoma-associated fibroblasts

(CAFs) [72, 74, 76], and a range of bone marrow-derived

cells such as mesenchymal stem cells (MSCs) [72, 77, 78]

and tumour-associated macrophages (TAMs) [79]. In

response, it has been shown that cancer cells generate a

variety of growth factors, chemokines and proteases that

modulate surrounding stroma to establish a tolerant and

contributory stromal environment for tumour progression

[71].

Stromal cells

Stromal cells can heighten the aggressiveness and inva-

siveness of cancer cells through different molecular sig-

nalling pathways. For instance, interactions between

neutrophils and MSCs via an IL-6–STAT3 axis lead to

neutrophil activation and MSCs differentiation into CAFs,

which provide a pro-inflammatory habitat. These stromal

cells in turn collaboratively induce angiogenesis and inva-

siveness of GC cells to stimulate metastatic dissemination

[75]. Furthermore, CAFs, derived from bone marrow, and

MSCs are frequently enriched during progression into

dysplasia. They express cytokine IL-6, glycoprotein Wnt5α,

bone morphogenetic protein BMP4, as well as exhibit DNA

hypomethylation and induce invasive growth [72]. Addi-

tionally, enhanced IL-17B expression in GC tissues leads to

MSCs activation and increased migration and stemness,

which further accelerates GC cell migration [77]. Interest-

ingly, a recent study showed that MSCs are recruited and

reprogrammed in tumour-specific manner. For example,

lung cancer cell characteristics are independent of their

MSC counterparts while GC cell proliferation, migration

and invasion are dependent on the activation of hepatocyte

growth factor (HGF)/c-MET signalling pathway specifically

induced by HGF from GC-MSCs [78]. Moreover, gene-

expression profiling of GC patients has identified a 'stromal-

response' expression signature, which is highly enriched in

inflammation-, ECM-, cytokine- and growth factor-related

proteins. Most of these genes are specifically expressed in

the surrounding stroma, but not cancer cells themselves,

indicating the important role of stromal cells in promoting

GC cell migration and metastasis [79].

Angiogenesis

Angiogenesis represents a tumour response to the hypoxic

and nutrient-deficient environment driven by uncontrolled

cellular proliferation and consequent explosive enlargement

of tumour bulk [80, 81]. This process is fine-tuned by

multiple signalling molecules and pathways in the tumour

microenvironment. For example, miR-130a and miR-495

mediated downregulation of RUNX3, a suppressor of

tumour angiogenesis, induces the metastatic ability of GC

cells [82]. Based on the hypothesis that neovasculature can

be formed through sprouting new vessels from existing

blood vessels, emerging evidence indicate that tumour-

associated angiogenesis can be initiated by cells recruited

from the bone marrow or differentiated from putative cancer

stem-like cells [81, 83]. Tumour-induced neovascularisation

serves to supply sufficient oxygen and nutrients to meet the

metabolic needs of uncontrolled tumour growth. Further-

more, studies show that tumour-associated angiogenesis are

usually leaky and tortuous with high permeability, which

could increase the chance of surrounding tumour cells

intravasating into the blood circulation and disseminating to

distant sites [12, 81, 84].

Lymphangiogenesis

Recent studies have shown that the growth of lymphatic

vasculature, also known as lymphangiogenesis, either

around the tumour or in the sentinel lymph nodes, is asso-

ciated with increased incidence of lymphatic metastasis [85,

86]. In GC patients, lymph nodes are among top metastatic

destinations, and accumulating evidence has shown that LN

metastasis predicts GC prognosis [87, 88]. A study reported

that the lymphatic vessel density (LVD) within lymph

nodes is closely associated with nodal metastasis and

malignancy of GC. Concomitantly, GC patients with high

LVD showed notably poorer prognosis compared to low-

LVD group, suggesting that intranodal lymphangiogenesis

is tightly correlated with lymph node metastasis and poor

prognosis in GC patients [86]. Mechanistic studies have

highlighted the molecular mechanisms underlying the reg-

ulation of lymphangiogenesis. For instance, it has been

shown that VEGF-C, VEGF-D and VEGFR-3 have an

inducive role in promoting lymphangiogenesis in various

cancers [85, 89–91], including GC [86, 92, 93]. Using

human lymphatic endothelial cells co-cultured with VEGF-

C-induced high-lymphangiogenesis GC cell line MKN45

and SGC-7901, the researchers identified several

lymphangiogenesis-associated microRNAs such as upre-

gulation of miR-648, miR-5002-3p and downregulation of

miR-3178, miR-593-5p, miR-4485 [92]. Rosiglitazone [87],

a peroxisome proliferator-activated receptor γ (PPARγ)

agonist, has shown promising suppressive effect on lym-

phangiogenesis by concurrently downregulating the

expression of VEGF-C and VEGFR-3 in GC xenograft

mice models [93].

Collectively, these findings provide evidence that inter-

actions between cancer cells and the tumour-associated

stromal microenvironment could establish a potential

Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer 4909



positive-feedback loop, which provides substantial con-

tributions to GC progression and metastasis. Accordingly, it

is reasonable to hypothesise that tumour malignancy may be

suppressed or even reversed by normalising the stromal

environment.

Intravasation into the circulation

During the path of local invasion, cancer cells may

encounter blood vessels or lymphatics to facilitate move-

ment towards distant pre-metastatic niches. Alternatively,

they may reach and penetrate beyond the serosa to initiate

intraperitoneal seeding or direct invasion into neighbouring

organs. Here we focus on intravasation which describes the

process in which cancer cells gain access into the tumour-

associated vasculatures located in the gastric submucosa

[10, 43, 93].

Intravasation can be accelerated by molecular alterations

that improve the potency of cancer cells in transendothelial

invasion. Accumulating evidence has shown the positive

correlation among vascular invasion, intratumoral angio-

genesis and distant metastasis [94, 95]. For example, the

first cloned member of CCN family, Cysteine-rich 61

(Cyr61), was shown to enhance the IL-8-dependent che-

motactic migration of GC cells through inducing CXCR1/

CXCR2 function, which promotes transendothelial invasion

and intravasation [96].

Apart from its role as passive channels for tumour cell

dissemination, emerging evidence also illustrated that

lymphatic vessels actively stimulate recruitment of tumour

cells to lymph nodes, immune regulation and cancer cell

survival [85, 89]. The quantity of lymphatic vessels in the

vicinity of primary tumours correlates with the rate of

lymph node metastasis, and lymphatic metastasis is a key

factor for prognosis and tumour staging in majority of

cancers [85, 90, 97].

Intraperitoneal spread after serosal
penetration

In addition to distant metastasis, ~10–20% of GC patients

were found to harbour peritoneal metastasis that have likely

arisen from exfoliated cancer cells through penetration of

the gastric serosa [13, 98, 99]. However, this is likely to be

an underestimation as intraperitoneal seeding was subse-

quently found in some who had undergone radical gas-

trectomy [98]. These microscopic metastases can initially be

difficult to identify by imaging or even during surgery, and

is only realised when patients present with progressive

disease despite curative surgery. The field has yet to identify

any molecular alterations that facilitate this pathway.

Survival within vasculature transition and
intraperitoneal environment

Following successful intravasation into the circulation, the

disseminating cancer cells, now termed circulating tumour

cells (CTCs), must survive the precarious microenviron-

ment en route to new sites of dissemination. The exposure

to blood introduces stressors such as haemodynamic shear

forces and recognition by the innate immune system. Fur-

thermore, CTCs must also gain the ability to survive in the

absence of substratum [100–102].

Anoikis resistance

The concept of 'anoikis' represents a form of programmed

cell death triggered by loss of ECM attachment in epithelial

cells [103]. Anoikis is crucial for maintaining epithelial

architecture by prohibiting abnormal proliferation in

unwanted locations after detachment. Cancer cells are fre-

quently resistant to anoikis, which enable them to survive

and thrive even after detachment from its substratum.

Anoikis resistance is mechanistically facilitated by cell

adhesion molecules, integrins and apoptosis modulators

[103, 104], which promotes cell survival and dissemination

in the periphery, thereby increasing the possibility of

metastatic spread. For example, the peritoneal dissemina-

tion of GC cells can be inhibited by Caspase-8-augmented

anoikis, which reduced cell survival in vitro and in vivo

[105]. Meanwhile, tight junction protein Claudin-1 can

induce anoikis resistance through β-catenin-modulated

cell–cell adhesion and survival signals [106]. Of interest,

RhoA, which belongs to Rho family GTPases, is upregu-

lated in primary GC and its activation has been suggested to

be essential for anoikis resistance by eliciting pro-survival

responses [4, 107]. Hypoxia-induced ANGPTL4A in GC

cells also induces increased resistance to anoikis by acti-

vating ANGPTL4A-dependent FAK/Src/PI3K-Akt/ERK

pathway, leading to elevated peritoneal metastasis in scir-

rhous GC cells [108].

Platelets

Auxiliary pro-metastatic signals exist during intravascular

transition in the circulation to aid cancer metastasis.

Emerging evidence has shown that the interaction between

platelets and cancer cells, more specifically the formation of

emboli, are constructive in priming CTCs for intravascular

survival [100, 109–111]. On the one hand, the platelet-

coated tumour cells can protect them from blood flow shear

forces, substratum absence and direct lysis by natural killer

cells [112]; on the other hand, their association could also

induce EMT in cancer cells [109], enhance adhesion to

endothelial cells [111], or even disrupt the function of
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endothelial barrier, making it more porous for extravasation

of cancer cells [101]. One recent study postulated an asso-

ciation between microRNAs and platelets using microRNA

microarray analysis of MKN45 cell line. The group iden-

tified miR-4670-5p as the most significantly upregulated

microRNA that promoted GC cell proliferation and that its

proliferation-promoting effects are inhibited by aspirin

in vivo [113]. This finding is consistent with five large

randomised clinical trials showing that platelet inhibition by

low-dose aspirin is beneficial in reducing the incidence of

cancer metastasis [114]. Platelet micro-particles (PMP),

submicroscopic vesicles shed by activated platelets mem-

brane, are significantly upregulated in GC patients as

compared to healthy subjects. Plasma PMP can be used as a

platelet activation marker for GC diagnosis and to screen

GC patients with increased potential for metastasis [115].

These results indicate that interaction between platelets and

CTCs function as intrinsic determinants for distant metas-

tasis through promoting cancer cell survival during intra-

vascular transition, thereby raising the prospect of

developing platelet inhibition drugs to aid anti-metastasis

therapy.

Extravasation into 'fertile soil' at distant pre-
metastatic niches

Despite the theoretical possibility that CTCs can be

deposited at any metastatic niche within or surrounding

both circulation systems, clinical observations have shown

that certain cancer types have a higher probability of giving

rise to metastasis in certain target organ(s) because of

exosome-initiated pre-metastatic niches formation. For

example, GC tends to form distant metastasis in the liver,

peritoneum, lung, bone and lymph nodes [10]. Two

hypotheses have postulated the pattern of metastasis trop-

ism: (1) passive transfer, whereby the site of dissemination

is dependent on vessel diameter as circulating cancer cells

are arrested as they reach the microvasculature, which

suggests that the metastatic pattern could be influenced by

the layout of circulation systems [116]; (2) active homing,

whereby the CTCs have genetically programmed

receptor–ligand signalling that have predetermined pre-

dilections to target specific organs [6].

Extravasation

Extravasation represents the exiting of circulating cancer

cells out of the vessel lumen to establish new sites of

metastasis. There are two recognised forms of extravasation

dependent on vessel diameter. Firstly, CTCs with adhesive

molecules on the surface can attach to and penetrate the

endothelium of the vessel walls irrespective of vessel size

[6]. Alternatively, CTCs may be arrested and trapped at the

microvasculature due to their relatively larger diameters of

20–30 μm compared to that of around 8 μm [6]. Once

trapped, CTCs tend to grow into microcolonies which dis-

rupt the luminal wall and invade into the surrounding tissue

environment. Emerging evidence shows that the latter

choice is the prevalent pathway by which CTCs grow into a

distant metastasis, as single extravasated cancer cells may

easily be eliminated by the surrounding microenvironment

[117].

Naturally, factors that promote vasculature permeability

are associated with increased extravasation. Calponin h1, an

actin-binding protein which is mainly expressed in smooth

muscle cells, plays a role in stabilising the actin filament

system. Calponin h1 deficiency can induce the fragility of

blood vessels and peritoneum, leading to the increased

incidence of extravasation and tumour metastasis [118].

Accumulating evidence has shown that ANGPTL-4 plays a

role in promoting metastasis by inducing the permeability of

vasculatures in cancers that metastasise to the lungs [119,

120], and that ANGPTL-4 can increase the frequency of

venous invasion. The potential role of ANGPTL-4 in dis-

rupting vascular permeability in promoting GC metastasis

requires further investigation [121].

Furthermore, studies focusing on targeting extravasation

has led to the discovery of a double anti-angiogenic decoy

receptor, double anti-angiogenic protein (DAAP), which

simultaneously targets VEGF-A and angiopoietins to block

tumour-associated angiogenesis and vascular leakage [122].

Hence this suggests that there is potential for analogues to

be developed that can limit primary tumour growth as well

as inhibit distant spread.

Exosome and pre-metastatic niche formation

Exosomes are membranous nanoparticles 40–50 nm in

diameter and they can be released by both tumour cells and

surrounding stromal cells, which will interact reciprocally to

modulate immune responses, remodel tumour micro-

environments and facilitate cancer metastases [123–125].

The role of GC-derived exosomes in metastasis has been

extensively studied over the years.

GC-derived exosomes can modulate immune responses.

For example, GC-derived exosomes can stimulate macro-

phages to generate a pro-inflammatory microenvironment

via activation of nuclear factor κB (NFκB) signalling

pathway, resulting in increased cell proliferation and

migration [126]. Similarly, GC-derived exosomes envel-

oped with miR-451 can be translocated to infiltrating T cells

and induces mTOR signalling pathway activation, which in

turn leads to T-helper 17 (Th17) cells differentiation [127].

Hence, GC-derived exosomes may play important roles in

mediating immune surveillance escape.
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In terms of tumour microenvironment remodelling and

cancer metastasis, mounting evidence indicates that GC-

derived exosomes can initiate or accelerate pre-metastatic

formation [124, 128, 129]. For example, EGFR-containing

exosomes secreted by GC cells can be transported to liver

and activate hepatocyte growth factor (HGF), which inter-

acts with c-MET on disseminated GC cells in a paracrine

fashion, thereby further promotes their colonisation and

proliferation [130]. In addition, another study demonstrated

that GC-derived exosomes can bolster pre-metastatic niche

formation in peritoneum by inducing fibrosis and the dis-

ruption of mesothelium, which originally functions as a

protective barrier to restrain peritoneal metastasis [131].

Similarly, GC-derived exosomes can promote expression of

adhesion-related molecules, such as fibronectin 1 (FN 1)

and laminin gamma 1 (LAMC 1), in mesothelial cells,

which result in a favourable microenvironment for dis-

seminating cancer cells to colonise and initiate metastasis

[132].

Nevertheless, researchers are utilising the unique features

of exosomes for drug delivery. Exosomes are loaded with

drugs or siRNA to target the tumour regions [133, 134].

Exosomes loaded with HGF siRNAs have shown promising

efficacy in inhibiting tumour growth, migration and angio-

genesis in vitro and in vivo [133]. Exosomes isolated from

heat stress-treated malignant ascites of GC patients showed

elevated immunogenicity and might be employed as a

cancer vaccine. Such exosomes can induce dendritic cell

maturation and stimulate a tumour-specific cytotoxic T

lymphocyte response [135].

Despite intensive efforts, limitations still exist in the

study of exosomes as they are mainly restricted to in vitro

co-culture or in vivo injection using labelled-exosomes,

which is markedly different from their physiological loca-

tion and concentration [123]. These concerns accentuate the

necessity of developing novel models to overcome the

limitations in exosome studies.

Colonisation and proliferation reactivation
into clinical detectable metastases

Given the divergent microenvironment of the metastasised

sites from that of the stomach, successfully extravasated

cells need to adapt to the foreign microenvironments in

order to survive and colonise. Currently, there are two

universally acknowledged mechanisms by which cancer

cells adapt to their new microenvironment: (1) cell auton-

omous programmes and (2) non-autonomous programmes

[6].

For cell autonomous programmes, disseminating tumour

cells (DTCs) acquire molecular alterations to increase

their colonising ability. Colonising abilities are normally

evaluated by detecting pulmonary metastases after intrave-

nous (IV) injection in immune-deficient mice. For example,

ectopic expression of RUNX3 repressed lung colonisation

of GC cells in nude mice [28]. Similarly, the silencing of

IL-32 in GC cells inhibited cell motility, invasion and lung

colonisation in severe combined immunodeficiency (SCID)

mice [136]. In the case of peritoneal metastasis after serosa

penetration, increased expression of connexin 43 (Cx43) in

GC cells exfoliated into peritoneal cavity was found to

enhance their heterocellular gap-junctional intercellular

communication (GJIC) with peritoneal mesothelial cells,

which in turn mediated heterocellular gap junction and

accelerated the infiltration of GC cells into peritoneal

mesothelium for further colonisation [137]. This finding

provides implications for further studies on GC cells seeded

onto the lining mesothelial layer. Another mechanism is

based on ligand-receptor interaction. For example, the

expression of stromal cell-derived factor-1, together with its

sole interactive receptor CXCR4, correlated with increased

probability of lymph node and liver metastases [138]. For

non-autonomous programmes, certain organ sites provide

supportive niches which better facilitate the survival of

DTCs. A recent retrospective study found that patients with

STAT3 activation in cancer cell-free lymph nodes demon-

strated higher rate of metastasis and poorer prognosis,

which implicated the possibility of p-STAT3-induced pre-

metastatic niches in lymph nodes [139]. Indeed, STAT3

blockade in myeloid cells abrogated the formation of pre-

metastatic niches [140]. Moreover, the inflammatory cyto-

kine tumour necrosis factor-α (TNFα) has been reported to

induce morphological changes of mesothelial cells and

regulate interactions between peritoneal mesothelial cells

and DTCs, which in turn promotes peritoneal metastasis of

GC cells in the intraperitoneal (IP) injected mouse model

[141]. Hence, cytokines and chemokines also play a role in

the shaping of pre-metastatic niches for GC peritoneal

metastasis. Collectively, both autonomous and non-

autonomous programmes promote cancer cells’ colonisa-

tion in pre-metastatic niches.

However, clinical observations showed that relapses are

often detected long after removal of the primary tumour,

spanning from months to years even when there was no

previous evidence of metastasis [142]. This implies that

these patients already carry DTCs in the body, where those

DTCs remain dormant in two modes: (1) cellular dormancy

and (2) tumour mass dormancy [143]. For example, in some

GC patients, dormant DTCs can be detected harbouring

inside bone marrow and they eventually develop into

detectable metastasis in brain after 10 years, illustrating that

dormant DTCs derived from GC retained both metastatic

and growth ability for long periods of time [143, 144].

Latency represents a state in which metastatic cancer

cells undergo proliferative quiescent in order to escape from
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immune clearance, attack from the new microenvironment

and the surrounding growth inhibitory signals. They remain

latent until certain, currently unknown factors re-activate

their proliferative potency. At present, our knowledge of the

underlying mechanisms of latent metastasis is limited due to

the lack of mouse models that faithfully recapitulates the

metastatic process and microenvironment.

Conclusion and perspective

Over the past decades, research progress on GC metastasis-

related molecular alterations has provided valuable knowl-

edge for deciphering this complex biological phenomenon.

Although by no means comprehensive, we have rapidly

gained an appreciation for the importance of stromal cells

and the microenvironment. Nevertheless, due to the com-

plexity and systemic nature of metastasis, a number of

fundamental questions concerning the mechanisms of GC

metastasis remain unanswered.

The major hurdle in the study of tumour metastasis is the

lack of a mouse model with a competent immune system

that can perfectly mimic the entire metastatic cascade.

Therefore, this bottleneck imposes restrictions on in-depth

study of the latter stages in the GC metastatic cascade.

Attempts to establish a better metastatic mouse model have

recently achieved intriguing progress, such as the imple-

menting genome-wide or high-throughput screening

approaches into immune-competent mice for identification

of novel regulators of metastases [145, 146]. In this way,

researchers can evaluate both tumour-cell-intrinsic (mole-

cular manipulation of cancer cells) and tumour-cell extrinsic

factors (tumour microenvironment of genetically engineered

mice or drug treated mice) that modulates the metastasis

cascade. Interestingly, a recent study used vascular endo-

thelial growth factor receptor (VEGFR3) as an 'lymphor-

ecporter' and established a novel mouse model that allows

whole-body imaging of lymphovascular niches, which shed

new lights on pre-metastatic niches [147]. These innovative

technologies can all be considered as tools for future GC

metastasis study.

Metastatic cancer cells that have successfully intrava-

sated into the circulation system can survive and extravasate

efficiently (>80%) [145]. This phenomenon suggests that

effective mechanisms exist to protect CTCs from being

eliminated during the transition. Mounting evidence has

shown the correlations between neutrophil/lymphocyte ratio

(NLR) and GC patients outcome that high NLR predicts

poor prognosis and survival status [148–150]. However,

few research has done on the mechanism by which neu-

trophils interact with CTCs in the circulation system to

promote metastasis progression. Meanwhile, the role of

other tumour-infiltrating immune cells, such as TAMs,

natural killer (NK) cells, CAFs, also deserves further

investigation.

Mechanistically, apart from the widely reported function

of MMPs in the degradation of ECM, recent studies

have revealed alternative roles of MMPs in metastasis,

such as regulation of growth signals, apoptosis, tumour

vasculature, inflammation and non-proteolytic functions

[42]. Moreover, long noncoding RNAs (lncRNAs) are also

gaining attention, since emerging data indicate that the

deregulation of lncRNAs might contribute to tumour

metastasis [151–154]. Apart from cell intrinsic alterations

that contribute to GC metastasis, tumour-derived exosomes

also showed great influences on inducing pre-metastatic

niches [128]. These potential targets also deserve further

exploration.

We hope that our understanding of the evolution of

cancer metastasis continues to excel at this impressive pace,

and that some of these findings will be translated into

clinical use, especially in light of the current proportion of

patients with metastatic GC.
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