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Introduction: Genetic epilepsy is a large group of clinically and genetically

heterogeneous neurological disorders characterized by recurrent seizures, which

have a clear associationwith genetic defects. In this study, we have recruited seven

families fromChina with neurodevelopmental abnormalities in which epilepsy was

a predominant manifestation, aiming to elucidate the underlying causes andmake

a precise diagnosis for the cases.

Methods: Whole-exome sequencing (WES) combined with Sanger sequencing

was used to identify the causative variants associated with the diseases in addition

to essential imaging and biomedical examination.

Results: A gross intragenic deletion detected in MFSD8 was investigated via

gap-polymerase chain reaction (PCR), real-time quantitative PCR (qPCR), and

mRNA sequence analysis. We identified 11 variants in seven genes (ALDH7A1,

CDKL5, PCDH19, QARS1, POLG, GRIN2A, and MFSD8) responsible for genetic

epilepsy in the seven families, respectively. A total of six variants (c.1408T>G in

ALDH7A1, c.1994_1997del in CDKL5, c.794G>A inQARS1, c.2453C>T in GRIN2A,

and c.217dup and c.863+995_998+1480del inMFSD8) have not yet been reported

to be associated with diseases and were all evaluated to be pathogenic or likely

pathogenic according to the American College ofMedical Genetics andGenomics

(ACMG) guidelines.

Methods: Based on the molecular findings, we have associated the intragenic

deletion in MFSD8 with the mutagenesis mechanism of Alu-mediated genomic

rearrangements for the first time and provided genetic counseling, medical

suggestions, and prenatal diagnosis for the families. In conclusion, molecular

diagnosis is crucial to obtain improved medical outcomes and recurrence risk

evaluation for genetic epilepsy.
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1. Introduction

Epilepsy, characterized by recurrent seizures, is a heterogeneous group of conditions

with different clinical presentations, drug responses, etiologies, and prognoses (EpiPM

Consortium, 2015). As one of themost common neurological disorders, epilepsy has affected

∼ 0.5–1% of the global population (Thurman et al., 2011; Beghi, 2020). Epilepsy can be

roughly subdivided into two forms: common epilepsy, which accounts for ∼ 95% of the

total affected cases and manifests variable symptoms and complicated etiologies, and the

rare form, some cases of which could exhibit typical Mendelian inheritance (Thakran et al.,

2020). The International League against Epilepsy (ILAE) used to categorize epilepsy into
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idiopathic generalized and focal conditions, depending on whether

a single or both cerebral hemispheres are involved (Guerri et al.,

2020); nevertheless, untypical seizures like infantile spasms belong

to neither of them (Berg et al., 2010). As per the latest ILAE

guideline released in 2017, etiology has been utilized as the

classification criteria: genetic, structural, infectious, metabolic,

immune, and unknown epilepsy (Thakran et al., 2020).

Genetic epilepsy constitutes a proportion of all human epilepsy

where genetic defects are the only or dominant factor leading to

seizures and other neuropsychiatric comorbidities (Willmore and

Ueda, 2002; Pandolfo, 2013). Copy number variations (CNVs)

in specific loci of the chromosomes have been confirmed as

susceptible to epilepsy (Striano and Minassian, 2020). For example,

researchers have associated chromosomes 8q13–q21 (FEB1), 19p

(FEB2), 2q23–q24 (FEB3), 5q14–q15 (FEB4), 6q22–q24 (FEB5),

and 18p11 (FEB6) with febrile seizures that are induced by high

fever (Audenaert et al., 2006). In addition, an increasing number of

genes have been identified as responsible for genetic epilepsy with

definitive Mendelian inheritance (George, 2004).

The inclusion standard of genes related to genetic epilepsy

has been controversial due to the heterogeneous phenotypes of

the corresponding neurological syndromes and developmental

encephalopathies (Dunn et al., 2018). Guerri et al. (2020)

summarized that at least 96 genes had been associated with genetic

disorders characterized by epilepsy. The functions of these epilepsy-

related genes are various, including but not limited to neuronal

excitability, synaptic transmission, network development, and

especially neuronal metabolism (Pandolfo, 2013). The interference

of neuronal metabolism generally results from inborn errors

of metabolism (IEM) and presents as biochemical pathway

dysfunction and finally, epileptic seizures (Vitiello et al., 2012).

There was an estimation that ∼ 42% of monogenic disorders with

epilepsy belong to IEM (Tumiene et al., 2018). The pathophysiology

ofmetabolic epilepsy could be a disturbance in substrates, products,

by-products, energy utilization, etc. (Reddy and Saini, 2021).

The majority of genetic epilepsy manifests as neurological

syndromes or developmental encephalopathies with multiple

neurodevelopmental abnormalities (Walsh and Mccandless, 2001).

The common comorbidities of monogenic disorders characterized

by epileptic seizures consist of intellectual/psychomotor

development delay, myoclonus, autism spectrum disorders,

electroencephalogram (EEG) abnormalities, hypotonia,

microcephaly, and characteristic faces. Apart from the overlapping

phenotypes among different genetic disorders with epileptic

seizures, variable expressivity and incomplete penetrance are

also common in these conditions. Although most genetic

disorders characterized by genetic seizures face the dilemma of

negative response to anti-epileptic drugs, irreversible neurological

symptoms, or unsatisfying clinical outcomes, precision treatment

to certain monogenic epilepsy syndromes, especially those caused

by IEM, has been proven to be effective (Sharma and Prasad, 2017).

Consequently, elucidating the molecular basis of epilepsy involved

with monogenic defects is expected to facilitate the precise

diagnosis, pathogenesis, and prognosis and, finally, satisfying

treatment concerning the diseases.

In this study, we recruited seven unrelated families from China

with unidentified syndromes characterized by epileptic seizures.

We collected the clinical information, including ultrasound,

computed tomography (CT), magnetic resonance imaging (MRI),

and EEG examination, if available, and performed high throughput

sequencing to detect the potential genetic causes of the conditions

and make a precise diagnosis accordingly.

2. Materials and methods

2.1. Subjects

We recruited seven families suspected of genetic epilepsy with

candidate variants from China since November 2021 (G003, G029,

G046, G053, G060, G064, and G065), including three male and five

female patients (two of the affected individuals G064-1 and G064-

3 were daughter and father) and excluding those with negative

genetic findings. All probands and their parents signed the written

informed consent (the signature of participants under the age of 18

years was acquired from their parents) and were recruited in this

project. Available clinical information of the affected individuals

and peripheral blood samples of the subjects were obtained. This

study was approved by the Institutional Review Board (IRB) of the

Fujian Maternity and Child Health Hospital (2023KYLLR01016).

2.2. WES

All probands (and their parents) underwent WES to detect

candidate variants responsible for the phenotypes. Genomic

DNA was extracted from peripheral blood and purified on the

KingFisher Flex System (Thermo Fisher Scientific, Waltham, MA);

it was then treated with ultrasonic fragmentation, followed by

purification through 60M Agilent SureSelect Human All Exon

V6 kit (Agilent, Santa Clara, CA). Paired-end sequencing was

subsequently performed for captured DNA fragments via NovaSeq

6000 Sequencing System (Illumina, San Diego, CA).

Raw data were processed with the general bioinformatics

analytic pipelines. The human GRCh37/hg19 genome was used as

the reference sequence. Clean reads were trimmed from the raw

data with the removal of adapters using the tool Trimmomatic

(version 0.39) (Bolger et al., 2014) and were aligned to the

reference genome using the Burrows-Wheeler Aligner (BWA)

software package (Li and Durbin, 2009). The variant discovery was

performed using the single nucleotide polymorphism (SNP) calling

software Genome Analysis Toolkit (GATK, version 4.2.1.0; Broad

Institute, Cambridge, MA). NxClinical (version 5.0; BioDiscovery,

Hawthorne, CA) was run in parallel to detect single nucleotide

variants (SNVs), CNVs, and loss of heterozygosity (LOH).

Variants were annotated through ANNOVAR and InterVar

(http://wintervar.wglab.org/) sequentially (Wang et al., 2010; Li

and Wang, 2017). Databases for annotation involving population

frequency are as follows: Exome Aggregation Consortium (ExAC;

http://exac.broadinstitute.org/), Genome Aggregation Database

(gnomAD; http://gnomad.broadinstitute.org/), 1,000 Genomes

Project (http://www.1000genomes.org/), and the database of SNP

(dbSNP; http://www.ncbi.nlm.nih.gov/snp/); bioinformatics

prediction tools involved are as follows: Polymorphism

Phenotyping v2 (PolyPhen-2, version 2.2.3; http://genetics.

bwh.harvard.edu/pph2/), Scale-Invariant Feature Transform
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(SIFT, version 1.1.5; http://sift.jcvi.org/), Mutation Taster 2021

(https://www.genecascade.org/MutationTaster2021/), Combined

Annotation Dependent Depletion (CADD, version 1.6; http://

cadd.gs.washington.edu/), and the integrated database VarCards

(http://varcards.biols.ac.cn/) (Kumar et al., 2009; Adzhubei et al.,

2010; Kircher et al., 2014; Li et al., 2018; Steinhaus et al., 2021);

and phenotypes or disorders are as follows: Online Mendelian

Inheritance in Man (OMIM; https://www.omim.org/), ClinVar

(http://www.ncbi.nlm.nih.gov/clinvar/), and Human Phenotype

Ontology (HPO; http://hpo.jax.org/app/). The pathogenicity

of variants was classified as pathogenic (P), likely pathogenic

(LP), variants of uncertain significance (VUS), likely benign

(LB), and benign (B) in conformity with the American College

of Medical Genetics and Genomics (ACMG) guidelines. After

annotation of the variants, candidate variants supposed to be

responsible for the diseases were selected based on the symptoms

of patients, inheritance mode, genotype-phenotype correlations,

and pathogenicity of the variants.

2.3. CNV-seq

Six probands (G003-1, G029-1, G046-1, G053-1, G064-1, and

G065-1) were also subjected to CNV-seq in order to detect any

pathogenic chromosomal imbalance. Genomic DNA was first

broken into random fragments, followed by library construction

via NEBNext Ultra II DNA Library Prep Kit for Illumina

(New England Biolabs, Ipswich, MA) in accordance with the

manufacturer’s instructions. Paired-end DNA fragments were

also sequenced on NovaSeq 6000 Sequencing System (Illumina)

with an average production of read amount over 60M (3×).

Similar to WES, raw data from CNV-seq were processed with

Trimmomatic and BWA to obtain clean reads and align to

the reference human genome, followed by CNV calling via

NxClinical. Numerous databases were used for the annotation

and interpretation of CNVs, including gnomAD, OMIM, ClinVar,

HPO, ClinGen (http://www.clinicalgenome.org/), and Database of

Genomic Variation and Phenotype in Humans using Ensembl

Resources (DECIPHER; http://www.deciphergenomics.org/).

2.4. Sanger sequencing

Sanger sequencing was conducted to verify the prospective

pathogenic variants detected in the probands through WES

and perform co-segregation analysis in the family. Reference

sequences (hg19) of the genes ALDH7A1 (NM_001182.5),

CDKL5 (NM_003159.3), PCDH19 (NM_001184880.2), QARS1

(NM_005051.3), POLG (NM_002693.3), GRIN2A (NM_000833.5),

and MFSD8 (NM_152778.4 and NC_000004.11) were acquired

from the University of California, Santa Cruz (UCSC) Genome

Browser database (http://genome.ucsc.edu/). Primers were

designed using the software Primer Premier 5 (version 5.00;

PREMIER Biosoft, Palo Alto, CA) as appropriate (listed in

Supplementary Table S1). Targeted regions containing the

candidate variants were amplified using polymerase chain

reaction (PCR) with LA Taq DNA Polymerase with GC Buffer

(TaKaRa, Shiga, Japan) and were then sequenced using the Applied

Biosystems 3500xl DNA Analyzer (Thermo Fisher Scientific,

Waltham, MA). Sequencing results of the amplicons were aligned

to reference sequences via the CodonCode Aligner (version 6.0.2;

CodonCode, Centerville, MA).

2.5. Real-time quantitative PCR

Real-time qPCR was performed to detect the deletion of exon

10 (c.863+995_998+1480del) in MFSD8 for family G065. Primers

targeted for the deletion region and internal reference sequence

in chromosome 21 were listed in Supplementary Table S1. The

reaction was run with TBGreen Premix Ex Taq II (Tli RNaseH Plus;

TaKaRa) on the Applied Biosystems StepOnePlus Real-Time PCR

System (Thermo Fisher Scientific), following the manufacturer’s

instructions. At least three technical replicates for each sample

were required.

2.6. RNA analysis

To investigate how the deletion of exon 10 in MFSD8 affects

the splicing pattern and mRNA expression, fresh peripheral blood

of G065-1 to G065-3 was treated with RNAiso Blood (TaKaRa)

and extracted as per standard procedures. After concentration

measurement through NanoDrop 2000 Spectrophotometers

(Thermo Fisher Scientific), 2 µg RNA of each sample was treated

with the removal of genomic DNA and reverse transcription (RT)

into cDNA using the PrimeScript RT reagent Kit with gDNA Eraser

(TaKaRa). Targeted cDNA sequences of the three individuals were

amplified and subjected to T-clone sequencing (primers listed in

Supplementary Table S1).

2.7. Prenatal diagnosis

Based on the molecular findings, we provided prenatal

gene diagnosis for five families where variants supposed to be

responsible for the genetic epilepsy were identified (G003, G029,

G053, G060, and G065). Amniocentesis was performed to collect

a reasonable amount of amniotic fluid for molecular testing of the

fetuses. Amniotic fluid cells both before (directly from centrifuge of

the original amniotic fluid) and after cell culture were, respectively,

extracted to obtain genomicDNAusing theQIAampDNAMini Kit

(QIAGEN, Hilden, Germany). Ultrasound and MRI examinations

were taken as assisted evidence for disorders where the affected

fetuses might have imaging phenotypes, if appropriate.

3. Results

3.1. Clinical manifestations

3.1.1. Overview
Eight patients with neurological syndromes characterized by

epilepsy from seven unrelated families were included in this

study (Figure 1). Among them, only one pedigree had a positive
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FIGURE 1

Pedigrees recruited in this study. (A–G) Pedigrees and genotypes of families G003, G029, G046, G053, G060, G064, and G065. Wild types and carriers

of the corresponding variants were denoted with the plus (+) and minus signs (−), respectively. Male hemizygotes with only one allele in

chromosome X were marked with the pound sign (#).

family history (G064). As shown in Table 1, all patients exhibited

various degrees of intellectual disability and other neurological

symptoms in addition to epileptic seizures, and two probands

died of complications of the diseases (G029-1 and G060-1).

Various abnormalities were found in the MRI (4/5) and EEG (3/5)

examination of most patients. Other common symptoms included

small for gestational age (2/8) and patent foramen ovale (2/8).

3.1.2. MRI
G003-1: Symmetrically distributed abnormal signal intensity in

the brain white matter of bilateral ventricles and subcortical

areas of bilateral cerebral hemispheres indicated a high

possibility of metabolic encephalopathy. Furthermore, the

morphological changes of bilateral frontal, temporal, and

parietal lobes suggested the occurrence of neuronal migration

disorders (macrogyria).

G029-1: Mild external physiological hydrocephalus was

observed (extracerebral space slightly expanded).

G046-1: No obvious abnormality was found.

G053-1: Extensive edema changes were seen in the brain

white matter of bilateral cerebral hemispheres. The cerebral sulcus

of bilateral cerebral hemispheres was shallow and sparse, and

the surface of the brain was smooth, indicating the possibility

of macrogyria.

G065-1: Partial extracerebral space slightly expanded, which

indicated the possibility of decreased cerebral parenchymal volume.

Other patients (G060-1, G064-1, and G064-3) did not undergo

MRI, or their examination results were unavailable.

3.1.3. CT
G053-1: Decreased density of the brain white matter

(leukoaraiosis) was observed in bilateral frontal, temporal,

and parietal lobes, which indicated the possibility of

congenital atelencephalia.

G060-1: No abnormality was found in intracranial regions.

Other patients (G003-1, G029-1, G046-1, G064-1, G064-3,

and G065-1) did not undergo CT, or their examination results

were unavailable.

3.1.4. EEG
G003-1 and G029-1 showed abnormal EEG, while no obvious

abnormality was found in G046-1 or G065-1.

G060-1: No obvious abnormality of background rhythms and

epileptiform discharge was found in awake EEG. Sporadic sharp

waves and spike-and-wave complexes were occasionally seen in the

right parietal-occipital brain regions.
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TABLE 1 Clinical manifestations of patients recruited in this study.

Patient Gender Age at
last
visit

Family
history

Epilepsy Developmental
delay

MRI CT EEG MS/MS GC-MS Neuropsychic
examination

Remarks

G003-1 F 4 yr N Y Global, moderate Abnormal signal

intensity,

morphological

changes

N/A Abnormal N/A N/A N/A Microcephaly

G029-1 F 3 mo N Y Global, severe Physiological

hydrocephalus

N/A Abnormal Normal Normal N/A Anemia, died after last

visit

G046-1 M 4 yr N Y Intellectual, mild Normal N/A Normal N/A N/A N/A Ocular hypertelorism,

high arched palate

G053-1 F 2 yr N Y IGR; global, moderate Macrogyria Leukoaraiosis N/A N/A N/A N/A Maternal diabetes, SGA,

metabolic acidosis, PFO,

hypertonia

G060-1 M 4 mo N Y Global, severe N/A Normal Sporadic sharp

wave, spike-

and-wave

complexes

Normal Increased

LAC, PA,

3-HBA,

3-HIBA,

2,4-HPLA

HINE: 38 SGA, myocardial

damage,

hypoammonemia,

hyperlactatemia, hepatic

insufficiency, PFO,

tricuspid regurgitation;

died at 6 months old

G064-1 F 27 yr Y Y Intellectual, moderate N/A N/A N/A N/A N/A WAIS-RC FSIQ: 18 Autism spectrum

disoder

G064-3 M 49 yr Y Intellectual, moderate N/A N/A N/A N/A N/A N/A Father of G064-1

G065-1 F 4 yr N Y DR; global, moderate Extracerebral

space expanded

N/A Normal N/A N/A Mean GDS DQ:

34.1, ASLS: 18,

CARS: 35

Gait instability, slight

hypertonia of right knee,

visual deterioration

2,4-HPLA, 2,4-hydroxyphenyllactic acid; 3-HBA, 3-hydroxybutyrate; 3-HIBA, 3-hydroxyisobutyric acid; ASLS, Infant-Junior Middle School Student’s Ability of Social Life Scale; CARS, Childhood Autism Rating Scale; CT, computed tomography; DQ, developmental

quotient; DR, developmental regression; EEG, electroencephalogram; F, female; FSIQ, full scale intelligence quotient; GC-MS, gas chromatography-mass spectrometry; GDS, Gesell Developmental Schedules; HINE, Hammersmith Infant Neurological Examination;

IGR, intrauterine growth retardation; LAC, lactic acid; M, male; mo, month; MRI, magnetic resonance imaging; MS/MS, tandem mass spectrometry; N, no; N/A, not available; PA, pyruvic acid; PFO, patent foramen ovale; SGA, small for gestational age; WAIS-RC,

Wechsler Adult Intelligence Scale-Revised by China; Y, yes; yr, year.
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Other patients (G053-1, G064-1, and G064-3) did not undergo

CT, or their examination results were unavailable.

3.1.5. Biomedical analysis
G029-1: No obvious abnormality for the IEM examination

of blood tandem mass spectrometry (MS/MS) or urine gas

chromatography-mass spectrometry (GC-MS) was found.

G060-1: The patient was negative for blood MS/MS but

showed increased lactic acid, pyruvic acid, 3-hydroxybutyrate,

3-hydroxyisobutyric acid (suggesting ketonuria), and

2,4-hydroxyphenyllactic acid (probably secondary to hepatic

function damage) for urine GC-MS.

Other patients (G003-1, G046-1, G053-1, G064-1, G064-3, and

G065-1) did not undergo biomedical analysis, or their analysis

results were unavailable.

3.1.6. Neuropsychic examination
G060-1: A total score of 38 (functions of the cranial nerves: 7,

body posture: 3, movement: 6, tone: 18, and reflexes and reactions:

4) for the Hammersmith Infant Neurological Examination (HINE),

an early examination tool for infants between 2 and 24 months old

suspected of cerebral palsy, was evaluated at the age of 3 months

and 16 days (for infants between 2 and 4 months of age, a HINE

score under 57 is predicted to be cerebral palsy, with a score under

40 almost cerebral palsy).

G064-1: The score for the Wechsler Adult Intelligence Scale-

Revised by China (WAIS-RC) was 27, 24, and 18, respectively,

for verbal intelligence quotient (VIQ), performance IQ (PIQ), and

full-scale IQ (FSIQ), which all fell at the 0.10th percentile.

G065-1: The developmental quotient (DQ) of Gesell

Developmental Schedules (GDS) was 44.0 (16.5 months),

32.0 (12.0 months), 41.0 (15.5 months), 24.0 (9.0 months), 30.4

(11.5 months), and 34.1 (12.9 months) for gross motor, fine

motor, adaptability, language, social skill, and general development

(average) at the age of 37.8 months, which was classified as severe

intellectual disability. The Infant-Junior Middle School Student’s

Ability of Social Life Scale was 18 (standard score: 8) and classified

as mild intellectual disability. The total score of the Childhood

Autism Rating Scale (CARS) was 35 and was evaluated as no

child autism.

Other patients (G003-1, G029-1, G046-1, G053-1, and G064-3)

did not undergo neuropsychic examination, or their examination

results were unavailable.

3.2. CNV-seq

No P/LP CNVs were detected in any of the six probands

(G003-1, G029-1, G046-1, G053-1, G064-1, and G065-1).

3.3. Gross deletion in MFSD8

The WES analysis of family G065 suggested heterozygous

loss of the tenth exon of MFSD8 in G065-1 and her mother

G065-3, while the copy number of adjacent exon 9 and exon

11 was normal. We performed real-time qPCR for validation of

the deletion and prenatal diagnosis (Figure 2G). To determine

the exact breakpoints, multiple pairs of primers were designed

to amplify and sequence the fragment containing the deletion

(Supplementary Table S1). The variant turned out to be a 2,788-bp

deletion (c.863+995_998+1480del) including the whole of exon

10 and part of intron 9 and intron 10 (Figure 3). RNA analysis

suggested that the gross deletion led to the skipping of exon

10. Given that exon 10 is present in all currently known

transcripts of MFSD8, the gross deletion was considered to

meet the PVS1 standard of the ACMG guidelines (see Section

3.5). Unexpectedly, the absence of exon 11 was also observed

in various transcripts of individuals with and without gross

deletion (Figure 4).

3.4. Candidate variants

According to the clinical characteristics and results of WES,

11 candidate variants in seven different genes were identified in

each of the pedigrees (Table 2; Figure 2): c.965C>T/p.(Ala322Val)

and c.1408T>G/p.(Trp470Gly) in ALDH7A1 in family G003

with pyridoxine-dependent epilepsy (EPD; OMIM 266100),

c.1994_1997del/p.(Lys665Argfs∗118) in CDKL5 in family G029

with developmental and epileptic encephalopathy 2 (DEE2;

OMIM 300672), c.595G>C/p.(Glu199Gln) in PCDH19 in family

G046 with DEE9 (OMIM 300088), c.794G>A/p.(Arg265His)

and c.1485dup/p.(Lys496∗) in QARS1 in family G053 with

progressive microcephaly with seizures and cerebral and cerebellar

atrophy (MSCCA; OMIM 615760), c.452T>C/p.(Leu151Pro)

and c.3218C>T/p.(Pro1073Leu) in POLG in family G060 with

mitochondrial DNA depletion syndrome 4A (MTDPS4A; OMIM

203700), c.2453C>T/p.(Ala818Val) in GRIN2A in family G064

with focal epilepsy with speech disorder and with or without

impaired intellectual development (FESD; OMIM 245570),

and c.217dup/p.(Thr73Asnfs∗12) and c.863 + 995_998 +

1480del/g.128850371_128853158del in MFSD8 in family G065

with neuronal ceroid lipofuscinosis 7 (CLN7; OMIM 610951).

There were seven missense variants, three out-of-frame small

deletions/duplications, and one gross deletion among the

11 variants. Co-segregation validation was carried out in all

seven pedigrees (Figure 1). In family G064 with autosomal

dominant (AD) inheritance, the variant was detected in the

proband G064-1 and her affected father G064-3. For other

pedigrees, the inheritance modes were either X-linked dominant

(XLD) with de novo variants (2/7) or autosomal recessive (AR)

from both carrier parents (4/7). The population frequency

and bioinformatics prediction of the variants are listed in

Supplementary Table S2.

3.5. Pathogenicity of the variants

Four variants identified have been associated with

corresponding diseases as per previous research studies and/or

archived as P/LP variants in the databases such as HGMD and

ClinVar: c.965C>T in ALDH7A1 (Ville et al., 2013; Yang et al.,
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FIGURE 2

Validation of variants identified by whole-exome sequencing (WES). (A–F) Electropherograms of the variants detected in families G003, G029, G046,

G053, G060, and G064. (G) Small variant and gross deletion in family G065 were confirmed using Sanger sequencing and real-time quantitative

polymerase chain reaction (qPCR), respectively. The numbers (1) and (2) separately represent the samples extracted from amniotic fluid cells of the

fetus G065-4 before and after cell culture. Ctrl, control.

2014), c.595G>C in PCDH19 (Depienne et al., 2009), c.1485dup in

QARS1 (Zhang et al., 2014; Kodera et al., 2015), and c.3218C>T

in POLG (Kurt et al., 2010; Baruffini et al., 2011). The variant

c.452T>C in POLG has only been reported to be responsible

for sensory ataxic neuropathy, dysarthria, and ophthalmoparesis

(OMIM 607459) (Li et al., 2021), a disorder with some overlapping

phenotypes with MTDPS4A from which the proband G060-1

suffered; this variant was then interpreted to be LP (PM2 +

PM3 + PP3 + PP4) according to the ACMG guidelines. In

addition, we have also identified six causative variants that have

not been previously reported: c.1408T>G in ALDH7A1 (LP: PM2

+ PM3 + PP3 + PP4); c.1994_1997del in CDKL5 (P: PVS1 +

PS2 + PM2); c.794G>A in QARS1 (LP: PM2 + PM3 + PP1

+ PP4); c.2453C>T in GRIN2A (LP: PM1 + PM2 + PM5 +

PP1) (Strehlow et al., 2019); and c.217dup (P: PVS1 + PM2 +

PM3) and c.863+995_998+1480del (P: PVS1 + PM2 + PM3)

in MFSD8. All six aforementioned novel variants have been

submitted to ClinVar (accessions: SCV003853240, SCV003853245,

and SCV003853278-SCV003853281).

3.6. Prenatal diagnosis

Prenatal diagnosis through amniocentesis was provided for

five families (G003, G029, G053, G060, and G065). Family G029

had a strong desire for prenatal gene diagnosis, although we had

informed them that the recurrence risk of a de novo variant is

extremely low, except for the rare cases of genital gland chimera.

The molecular diagnosis of the amniotic fluid cells confirmed that

the fetus G029-4 was of wild type for the mutant site. For the

other four families with a typical AR inheritance, two (G003-4 and

G053-4) carried neither of the variants from parents, and the other

two (G060-4 and G065-4) were carriers of the maternal variants

(Figure 1).

4. Discussion

In this study, we identified the monogenic defects for each

of the seven families with genetic epilepsy from China. In

addition to the common symptom of epileptic seizures as a

predominant phenotype, these individuals also exhibited various

forms of developmental delay and neuropsychiatric manifestations

including cerebral structural and EEG abnormalities. For example,

the probands G003-1 and G053-1 were suggested to manifest

macrogyria or pachygyria, which is defined as the increased

size of cerebral gyri (often with a decreased number of

cerebral sulci). Macrogyria/pachygyria falls on the wide spectrum

of cortical developmental malformations, and its most severe

form is known as lissencephaly (complete agyria), caused by

variants in genes involving centrosome proteins (PAFAH1B1/LIS1),

tubulins (TUBA1A, TUBB, TUBB2A, TUBB2B, TUBB3, TUBB4A,
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FIGURE 3

Alu recombination-mediated intragenic deletion identified in MFSD8. (A) Schematic diagram of the genomic deletion involving loss of exon 10 in

MFSD8 triggered by the recombination between two homologous Alu elements with a 13-bp identical core sequence (the red blocks). (B)

Electropherograms of the sequences around the breakpoints of the deletion. The red box denotes the common fusion sequence as marked in (A).

(C) Gap-PCR suggests a gross deletion in family G065. Primer pairs of MFSD8-Gap-F and MFSD8-Gap-R (Supplementary Table S1) were used to

amplify the fragments covering the 2,788-bp deletion. The results indicate that the proband G065-1 and her mother G065-3 were heterozygous

carriers of intragenic deletion. M, DL 10,000 DNA Marker; 1, G065-1; 2, G065-2; 3, G065-3.

TUBG1, TUBGCP2, and TUBGCP6), microtubule motor proteins

(DYNC1H1), actin-associated proteins (DCX), reelin (RELN and

VLDLR), and forebrain development (ARX) (Mochida, 2009;

Koenig et al., 2021; Kolbjer et al., 2021). Macrogyria or simplified

gyri was a common imaging phenotype in patients with QARS1

variants (Chan et al., 2022), and Johannesen et al. (2019) reported

that 56% (10/18) of the QARS1-associated patients exhibited

cortical structural anomalies including macrogyria. To the best of

our knowledge, macrogyria has not been previously described in

EPD although other malformations of cortical development were

generally observed (Mercimek-Mahmutoglu et al., 2012; Jansen

et al., 2014; Coci et al., 2017). Nevertheless, diffuse swelling

of the cerebral gyri was reported in the autopsy findings of

a patient with ALDH7A1 causative variants (Marguet et al.,

2016). We hypothesize that the cortical anomalies of macrogyria

in G003-1 were secondary to seizures of recurrent intractable

epilepsy. This resemblance in neurological characteristics suggested

that multiple genes are involved in the neurodevelopmental

process, and turbulences in these different pathways can result in

overlapping phenotypes like epilepsy (Guerri et al., 2020). Based on

the molecular findings of clinically indistinguishable epilepsy, the

complex etiology of epileptic seizures and the significance of gene

diagnosis of neurological disorders on suspicion of genetic epilepsy

were highlighted (Lindy et al., 2018; Striano and Minassian,

2020).

Despite having numerous similar neuropsychiatric symptoms,

the patients recruited in this study showed a wide range of severity

in the phenotypic spectrum from mild intellectual disability

to premature death in infancy. Furthermore, disease-specific

phenotypes were observed in the corresponding affected

individuals. For example, patient G003-1 with EPD presented

a favorable response to pyridoxine supplementation, and the

seizures stopped completely upon treatment as the causative

gene ALDH7A1 encodes the alpha-aminoadipic semialdehyde

dehydrogenase involved in the catabolic pathways of lysine;

characteristic liver failure was observed in proband G060-1, which

was a common cause of death besides the status epilepticus for

patients with MTDPS4A before the age of 3 years (Table 1).
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FIGURE 4

RNA analysis of the intragenic deletion covering exon 10 of MFSD8. (A) cDNA fragments targeting exons 6 to 11 of family G065. Multiple transcripts

were observed in both the wild type (G065-2) and heterozygotes of the deletion (G065-1 and G065-3). M, DL 2,000 DNA Marker; 1, G065-1; 2,

G065-2; 3, G065-3. (B) Schematic diagram of the sequence composition of transcripts detected in the wild type and heterozygotes of the deletion.

Exons previously known to be involved in alternative splicing (exons 6–8) are marked in yellow, constitutive exons (exon 9) in green, exons within the

deletion (exon 10) in red, and exons accidentally found to be subjected to alternative splicing (exon 11) in blue. E, exon; –, absence (of certain exons).

Thus, compared to common epilepsy that generally does not

severely affect mental or cognitive functions, genetic epilepsy

could be deemed a neurological syndrome with seizures

as the predominant external manifestation (Thakran et al.,

2020).

In family G065, WES analysis suggested a heterozygous loss

of exon 10 of MFSD8 in proband G065-1 and her mother G065-

3, while the copy numbers of adjacent exons all remained normal.

We then confirmed the deletion and provided prenatal diagnosis

using samples from the amniotic fluid of fetus G065-4 using

real-time qPCR (Figure 2G). Gap PCR primers that targeted the

prospective deletion region (from the upstream of intron 9 to the

downstream of intron 10) were designed in order to determine the

exact breakpoint of the intragenic deletion overlapping exon 10.We

tried multiple pairs of primers due to the homologous sequences in

this region and amplification failure and managed to find two pairs

of primers that could amplify both the wild-type and mutant alleles

(Figure 3; Supplementary Figure S1). It turned out that the CNV

was a 2,788-bp deletion from intron 9 to intron 10 and had a 13-bp

sequence identical at both ends (5′-AAGTAGCTGGGAC-3′). The

deletion was described as c.863+995_998+1480del in conformity

with the 3′rule nomenclature of the Human Genome Variation

Society (HGVS) (den Dunnen et al., 2016).

Further analysis revealed that the two common fusion

sequences at both ends of the breakpoints were located within

two Alu elements, AluJb (chr4:128852983–128853282) and AluSc8

(chr4:128850195–128850507), respectively. The similarity of the

two repetitive sequences was 75%, which was calculated by the

multiple sequence alignment tool Clustal X (version 2.1; Conway

Institute, University College Dublin, Dublin, Ireland) (Larkin et al.,

2007). The Alu element is named after its recognition site for the

restriction endonuclease AluI (5′-AGCT-3′) and belongs to the

short-interspersed elements (SINEs) family (Hancks and Kazazian,

2012). Alu elements are generally 300 bp long and have more than

500 thousand copies in the human genome, constituting ∼10% of

all nucleotide sequences (Deininger and Batzer, 1999; Babatz and

Burns, 2013; Kaer and Speek, 2013). Alu elements share a high level

of sequence identity and consist of three major lineages classified

by the 18 diagnostic nucleotides in them (Shen et al., 1991; Kim

et al., 2016): AluJ, AluS, and AluY. The Alu element is a type of

mobile element called retrotransposons, which amplify through a

copy-and-paste mechanism (Callinan and Batzer, 2006). The Alu

element can alter the human genome by either a de novo insertion

event or Alu-mediated genomic rearrangement, resulting in a

disruption of the open reading frame (ORF) via direct insertion into

the exons, alternative splicing, genetic deletions, and duplications
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TABLE 2 Variants associated with genetic epilepsy.

Proband Gene Phenotype
(OMIM#)

Reference
sequence

Inheritance Zygote
type

Origin Location Nucleotide
change

Amino acid
change

Pathogenicity Novelty

G003-1 ALDH7A1 EPD (266100) NM_001182.5 AR C-het F E11 c.965C>T p.(Ala322Val) P: PS4+ PM2+ PM3+

PP3+ PP4

N

M E15 c.1408T>G p.(Trp470Gly) LP: PM2+ PM3+ PP3+

PP4

Y

G029-1 CDKL5 DEE2 (300672) NM_003159.3 XLD het de novo E13 c.1994_1997del p.(Lys665Argfs∗118) P: PVS1+ PS2+ PM2 Y

G046-1 PCDH19 DEE9 (300088) NM_001184880.2 XLD hemi de novo E1 c.595G>C p.(Glu199Gln) LP: PS2+ PM2+ PP3 N

G053-1 QARS1 MSCCA (615760) NM_005051.3 AR C-het F E10 c.794G>A p.(Arg265His) LP: PM2+ PM3+ PP1+

PP4

Y

M E16 c.1485dup p.(Lys496∗) P: PVS1+ PS4+ PM2+

PM3

N

G060-1 POLG MTDPS4A

(203700)

NM_002693.3 AR C-het F E2 c.452T>C p.(Leu151Pro) LP: PM2+ PM3+ PP3+

PP4

N

M E20 c.3218C>T p.(Pro1073Leu) P: PS4+ PM2+ PM3+

PP3+ PP4

N

G064-1 GRIN2A FESD (245570) NM_000833.5 AD het F E13 c.2453C>T p.(Ala818Val) LP: PM1+ PM2+ PM5+

PP1

Y

G065-1 MFSD8 CLN7 (610951) NM_152778.4 AR C-het F E5 c.217dup p.(Thr73Asnfs∗12) P: PVS1+ PM2+ PM3 Y

M I9–I10 c.863+995_998+

1480del

p.? P: PVS1+ PM2+ PM3 Y

AD, autosomal dominant; AR, autosomal recessive; C-het, compound heterozygous; CLN7, neuronal ceroid lipofuscinosis 7; DEE, developmental and epileptic encephalopathy; E, exon; EPD, pyridoxine-dependent epilepsy; F, father; FESD, focal epilepsy with speech

disorder and with or without impaired intellectual development; hemi, hemizygous; het, heterozygous; I, intron; LP, likely pathogenic; M, mother; MSCCA, progressive microcephaly with seizures and cerebral and cerebellar atrophy; MTDPS4A, mitochondrial DNA

depletion syndrome 4A; N, no; OMIM, Online Mendelian Inheritance in Man; P, pathogenic; XLD, X-linked dominant; Y, yes.
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or conversions by homologous recombination (HR) between Alu

elements. Alu-mediated genomic rearrangements are present in

two forms: non-homologous end joining (NHEJ) and non-allelic

homologous recombination (NAHR), which is a special form of

HR, and the latter can be subdivided into interchromosomal

and intrachromosomal NAHR (Kim et al., 2016). There have

been estimations that mutagenesis associated with Alu elements

may account for 0.1–0.3% of human genetic disorders (Callinan

and Batzer, 2006; Kim et al., 2016; Geng et al., 2018). Hence,

we hypothesized that the intragenic deletion in which either

side of the breakpoints was located within two Alu elements

with high sequence identity occurring via the intrachromosomal

recombination mechanism where the two repetitive sequences

crossed over within the same gene. The identical 13-bp segment

might act as the core sequence in the Alu recombination-mediated

deletion (Figure 3).

To investigate how the intragenic deletion containing exon 10

affected the expression mode of MFSD8, cDNA analysis through

RT-PCR and T-clone sequencing was performed for individuals

both with (G065-1 andG065-3) andwithout (G065-2) themutation

(Figure 4). Multiple sequences that lacked one or two of the

alternatively spliced exons 6–8 (absence of exons 6, 7, 6 and

7, or 7 and 8) were detected in the RNA of peripheral blood

collected from all participants. The loss of exon 10 was identified

in the heterozygotes of the gross deletion in conformity with our

expectations. However, the absence of exon 11 was ubiquitously

observed in various transcripts regardless of the carrier status

of the deletion or repetition of the experiments and was the

predominant form for most transcripts detected except for the

common whole-length transcript, like NM_152778.4. Since exon

11 is present in all 10 currently known transcripts in the UCSC

Genome Browser database, it was substantially unlikely that the loss

of exon 11 originated from alternative splicing. Further research

into the expression pattern of the gene MFSD8 might be needed

given that only the samples of peripheral blood were analyzed in

this study.

Despite the negative results of CNV-seq and biomedical

screening analysis for most probands in this study, pathogenic

CNVs and IEM are responsible for a considerable number of

epilepsy cases. Multiple research studies have suggested that

P/LP CNVs have a relatively high detection rate (10.7–16.1%)

in epilepsy patients with other comorbidities or negative for

pathogenic SNVs (Borlot et al., 2017; Tsuchida et al., 2018;

Coppola et al., 2019), compared to <3% detected in those with

common epilepsy (Niestroj et al., 2020). In addition, a certain

number of IEM could contribute to metabolic dysfunctions in

biomedical pathways targeting neuronal networks and manifest

epileptic seizures and other neurological conditions that are

responsible for a large portion of monogenic disorders involved

with epileptic seizures (Vitiello et al., 2012; Sharma and Prasad,

2017; Tumiene et al., 2018; Reddy and Saini, 2021). Thus, it

is essential to perform a comprehensive molecular examination

consisting of WES, CNV-seq, and biomedical analysis (like MS/MS

and GC-MS) for clinically undiagnosed patients with epilepsy and

other neurological comorbidities.

In conclusion, we made the molecular diagnosis in seven

unrelated Chinese families with genetic epilepsy. Eleven causative

monogenic variants were identified in seven genes responsible

for the corresponding disorders in the pedigrees, including six

novel variants (c.1408T>G in ALDH7A1, c.1994_1997del in

CDKL5, c.794G>A in QARS1, c.2453C>T in GRIN2A, and

c.217dup and c.863+995_998+1480del in MFSD8). To the best

of our knowledge, this is the first study to associate the gross

deletion in MFSD8 with the mechanism of Alu-mediated

genomic rearrangements, which might shed light on the

pathogenesis of this genetic disorder. The findings of this

study were expected to provide guidance to the treatment,

prognosis, genetic counseling, and prenatal diagnosis for these

families and new insights into the pathogenic mechanism of

genetic epilepsy.
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