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Molecular analysis of aggressive renal cell
carcinoma with unclassified histology reveals
distinct subsets
Ying-Bei Chen1, Jianing Xu2, Anders Jacobsen Skanderup3,w, Yiyu Dong2, A. Rose Brannon1, Lu Wang1,

Helen H. Won1, Patricia I. Wang2, Gouri J. Nanjangud4, Achim A. Jungbluth1, Wei Li5, Virginia Ojeda5,

A. Ari Hakimi6, Martin H. Voss7, Nikolaus Schultz3, Robert J. Motzer7, Paul Russo6, Emily H. Cheng1,2,

Filippo G. Giancotti5,w, William Lee3,8, Michael F. Berger1,2, Satish K. Tickoo1, Victor E. Reuter1

& James J. Hsieh2,7,9

Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of

aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic

drivers in these tumours are unknown. Here we perform a molecular analysis of 62

high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing,

single-nucleotide polymorphism array, fluorescence in situ hybridization, immuno-

histochemistry and cell-based assays. We identify recurrent somatic mutations in 29 genes,

including NF2 (18%), SETD2 (18%), BAP1 (13%), KMT2C (10%) and MTOR (8%). Integrated

analysis reveals a subset of 26% uRCC characterized by NF2 loss, dysregulated Hippo–YAP

pathway and worse survival, whereas 21% uRCC with mutations ofMTOR, TSC1, TSC2 or PTEN

and hyperactive mTORC1 signalling are associated with better clinical outcome. FH deficiency

(6%), chromatin/DNA damage regulator mutations (21%) and ALK translocation (2%)

distinguish additional cases. Altogether, this study reveals distinct molecular subsets for 76%

of our uRCC cohort, which could have diagnostic and therapeutic implications.
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R
enal cell carcinoma (RCC) encompasses a heterogeneous
group of tumours and is mainly categorized based on
unique histopathological features. Major subtypes are clear

cell RCC (ccRCC, B75%), papillary RCC (pRCC, B15%) and
chromophobe RCC (chRCC, B5%)1–3. uRCC accounts for 4–5%
of RCC that is not classifiable as one of the major (45%) or the
rare (o1%) subtypes such as medullary, collecting duct,
mucinous tubular and spindle cell carcinoma, and MiTF family
translocation RCC2,3. uRCC represents a large proportion of
metastatic RCC that exhibits non-clear cell histology (nccRCC),
has no standard therapy4–6, and presents formidable diagnostic
and management challenges7–9. Large collaborative genomic
efforts, including The Cancer Genome Atlas projects, have
greatly extended our molecular understanding of common RCC
subtypes, including ccRCC10–13, chRCC14,15 and pRCC15–17.
However, as a rare and heterogenous group of tumours, uRCC
currently remains as the largest molecularly uncharacterized RCC
category with unknown oncogenic pathways.

To gain knowledge towards this unmet need in the diagnosis
and management of aggressive nccRCC, we conducted the first
in-depth molecular characterization of uRCC in a cohort of 62
primary tumours with high-grade histologic features, all of which
were re-reviewed by experienced genitourinary pathologists to
ensure their proper classification based on the current World
Health Organization and International Society of Urologic
Pathology consensus diagnostic criteria2,3. To study the
spectrum of this heterogeneous group of tumours and not to
exclude cases with only formalin-fixed, paraffin-embedded
(FFPE) archival tissue, we employ an integrated and step-wise
approach, combining targeted cancer gene sequencing, RNA
sequencing (RNA-seq), single-nucleotide polymorphism (SNP)
array, fluorescence in situ hybridization (FISH), immuno-
histochemistry and cell-based assays to focus on identifying
molecular alterations and pathways that are potentially clinically
informative. We find recurrent somatic mutations in 29 genes,
and identify distinct molecular subsets that are characterized by
NF2 loss, hyperactive mTORC1 signalling, FH deficiency,
chromatin/DNA damage regulator mutations or ALK
translocation and associated with varying clinical outcomes.

Results
Mutation landscape of uRCC by targeted gene sequencing. The
clinicopathologic features and outcomes of this 62-patient uRCC
cohort are summarized in Supplementary Table 1. At the time of
nephrectomy, 58% of cases were locally advanced (pT3 and
above), with 32% showing regional lymph node involvement.
Overall, 42% (n¼ 26) of patients developed metastatic disease
and 35% (n¼ 22) died of RCC, underscoring the aggressive
clinical behaviour and poor response to systemic therapies
observed in this uRCC cohort.

To investigate the molecular aberrations in uRCC, we first
employed the Integrated Mutation Profiling of Actionable Cancer
Targets (IMPACT) assay, a customized ultra-deep targeted next-
generation sequencing platform designed to capture all exons and
selected introns of 230 oncogenes, tumour suppressor genes, and
members of pathways deemed actionable by targeted therapies
(Supplementary Data 1)18,19. We identified 29 recurrently
mutated genes with an average of 2.6 (0–8) protein-coding
somatic mutations per patient tumour (Fig. 1; Supplementary
Data 2). NF2 (18%), SETD2 (18%) and BAP1 (13%) were the
three most frequently mutated genes. The incidence of NF2
mutations in our cohort is markedly higher than what is reported
in ccRCC (0–1%)10,11,20, pRCC (0–6%)15–17 and chRCC
(0%)14,15. In ccRCC, VHL mutations occur at B75%, and
SETD2 and BAP1 at 10–20% frequencies21, whereas in our uRCC

cohort, only a single VHL mutation was detected in one case
(T08). There were 13 genes mutated at 5–10%, among which 5
are epigenetic regulators: KMT2C (10%), KMT2D (5%), ATRX
(7%), DNMT3A (5%) and SMARCB1 (5%); 4 are mTORC1
pathway regulators: mTOR (8%), TSC1 (7%), TSC2 (5%) and
PTEN (7%); and 3 are transcription factors: KLF6 (5%), NOTCH2
(5%) and TP53 (5%). Four cases only harboured mutations in
non-recurrently mutated genes, whereas no mutations were
detected in nine cases (15%; Supplementary Data 2).

uRCC with NF2 loss and dysregulated Hippo–YAP signalling.
The enrichment of cases with NF2 mutations (11 of 62)
discovered in our uRCC cohort suggests that NF2 loss could
potentially define a molecular subset of uRCC. To assess the NF2
status in uRCC beyond mutations, we next assessed the status of
chromosome 22q12 where NF2 resides. Based on copy-number
plots generated by the IMPACT sequencing, 22q12 loss was
evident in 14 cases (23%), among which 9 also carried NF2
mutations. High-resolution, genome-wide SNP array analysis was
performed for 15 of the 16 uRCC cases carrying NF2 mutations
and/or exhibiting 22q12 copy-number loss (referred to as the
‘NF2 loss’ subset from here onwards; Fig. 2a,b; Supplementary
Fig. 1). Thirteen cases were confirmed to exhibit hemizygous loss
of 22q and the remaining two tumours (T22 and T64), known to
carry NF2 somatic mutations, showed copy-neutral loss of
heterozygosity (LOH) of 22q (Supplementary Fig. 1). Of note,
frequent, concurrent NF2 somatic mutation and chromosome
22q loss has not been reported in RCC. Furthermore, a three-
probe FISH assay was performed, which validated the 22q
hemizygous loss cases (n¼ 14) within the NF2 loss subset of
uRCC (Fig. 2c). Consistent with genomic analyses, the NF2
protein level assessed by immunohistochemistry was significantly
lower in the NF2 loss subset than in the remaining uRCC
(Fig. 2d).

Germline mutation of NF2 is the principal genetic event
underlying the human neurofibromatosis type 2 cancer predis-
position syndrome22,23. The role of NF2 as a tumour suppressor
gene is further demonstrated by mouse models in which genetic
loss of Nf2 results in various cancers24–26. NF2, a pleotropic
factor, plays key roles in cell–cell contact inhibition, growth factor
signalling, stem cell and Hippo developmental pathways22. We
first focused on the NF2–Hippo tumour suppressor network,
which was highlighted by a series of reports showing that NF2
enforces the Hippo tumour suppression signalling pathway
by phosphorylating, sequestering, degrading and suppressing
YAP/TAZ nuclear translocation, thereby disrupting oncogenic
transcription27–32. To evaluate whether YAP/TAZ is active in
subsets of our uRCC cohort, we determined YAP/TAZ protein
expression, phosphorylation and intracellular localization by
immunohistochemistry. When comparing uRCC with NF2 loss
(n¼ 16) to those without (n¼ 43), there was a statistically
significant stronger nuclear YAP/TAZ signal, correlating with
negative to very low phospho-YAP signal, in NF2 loss tumours
(Fig. 2e). To confirm that nucleus-accumulated YAP/TAZ
denotes an aberrant YAP/TAZ transcription program, we
performed RNA-seq on seven uRCC (four with NF2 loss and
three without). Gene Set Enrichment Analysis (GSEA)
demonstrated a significant enrichment of an established YAP/
TAZ transcription signature33 in the NF2 loss uRCC (Fig. 2f;
Supplementary Data 3). Taken together, these data suggest a
novel subset of 16 (26%) uRCC cases with NF2 loss that
demonstrates dysregulated Hippo signalling and YAP activation.
The importance of YAP/TAZ signalling in NF2 loss kidney
cancer was further assessed using ACHN and LB996-RCC cells,
two NF2 loss, nccRCC cell lines. Knockdown of YAP in ACHN or
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LB996-RCC cells resulted in a decrease of proliferating cells
(S and G2/M phases; Fig. 2g; Supplementary Fig. 2), as well as a
reduced colony formation in soft agar (Fig. 2h).

Among this NF2 loss subset of uRCC, chromosome 1p and/or
3p losses were also detected in 450% of cases (Fig. 2a,b).
Interestingly, while concurrent 3p loss and VHL inactivation were
reported in B90% ccRCC, our uRCC with 3p loss did not carry
VHL mutation or display histologic features of ccRCC. Further-
more, the occurrence of SETD2 (3p21) mutation was significantly
higher in the NF2 loss than in the remaining uRCC tumours
(44% versus 9%, Fisher’s exact test, P¼ 0.004). SETD2 encodes a
histone H3 lysine 36 (H3K36) methyl transferase. A complete
functional loss of SETD2 determined by the respective loss of
histone H3K36me3 mark was detected in all seven NF2 loss,
SETD2-mutated cases (Supplementary Fig. 3). In contrast, 54 of
the remaining 55 uRCC tumours retained the H3K36me3 mark.
Recurrent mutations of the other chromatin modulating genes
including BAP1 did not show significant enrichment in the NF2
loss subset.

The NF2 loss uRCC exhibited a range of architectural patterns
with multinodular or infiltrative growth (Supplementary Fig. 4).
The morphologic spectrum of our NF2 loss uRCC did not fulfill

diagnostic criteria of type 2 pRCC or collecting duct RCC2,3.
Nevertheless, as small number of RCC with NF2 mutations have
been recently reported in pRCC15,16 and collecting duct RCC34, it
remains to be determined whether these tumours were distinct
from or overlapped with our NF2 loss uRCC.

uRCC with hyperactive mTORC1 signalling. Somatic mutation
analysis of our uRCC cohort demonstrated that potentially
mTORC1 pathway activating mutations comprising MTOR (5),
TSC1 (4), TSC2 (3) and PTEN (4) occurred mutually exclusively
in 16 (26%) cases, which might indicate another distinct subset
(Fig. 3a). Mutations of these genes have been described in ccRCC
(12%)10, pRCC (8%)16 and chRCC (9%)14. Of the MTOR
mutations seen in this cohort (Fig. 3b), I1973F has been
described and shown to be hyperactive in cell-based assays35,36,
whereas L2427R (recurred three times in our uRCC cohort) and
V2475M mutations have not yet been reported. To interrogate
the functional impact of individual MTOR mutations, we
generated MTOR L2427R and V2475M mutants, and assessed
the mTORC1 activity by phosphorylation of S6K and 4EBP1, two
key mTORC1 downstream substrates37. When the MTOR
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Figure 1 | Recurrent somatic mutations identified in high-grade uRCC. (a) Key clinicopathological characteristics of our 62-patient uRCC cohort.

Pathological (pT) stage was determined according to the 7th edition of the American Joint Committee staging system for renal cancer. The status of

metastasis for individual patients was determined at their last follow-up visits or death. (b) Mutational landscape of recurrent somatic mutations based on

IMPACT assays. Mutated genes are listed on the left, and denoted by individual rows. Sixty-two individual patient tumours are presented as columns and

labelled at the bottom (T#). Mutation frequency (%) and absolute number of cases with non-silent mutations detected on individual genes are listed on

the right. Mutation frequency was calculated as the percentage of individual tumours with mutation(s) in the indicated genes.
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Figure 2 | Molecular characterizations of the NF2 loss uRCC subset. (a) Genome-wide frequency plot of DNA copy-number gains (blue) and losses (red)

across all chromosomes was determined by OncoScan SNP assay in 15 of the 16 uRCC tumours carrying NF2mutations and/or 22q loss. The y axis denotes

frequencies of alteration in individual chromosomal regions. Copy-neutral loss of heterozygosity (CN-LOH) is shown in Supplementary Fig. 1. (b) Summary

of NF2 mutations and frequent (450%) arm-level copy-number alterations (22q, 1p and 3p) detected by sequencing and SNP array analyses of the NF2

loss subset (n¼ 16). Truncating mutations include nonsense mutations, insertions or deletions that alter the reading frame and splice-site mutations.

(c) Representative hemizygous losses of chromosome 22q and the NF2 locus were demonstrated by a custom three-probe FISH assay (red, NF2; orange,

22q11; green, chromosome 10 centromere). Scale bar, 10mm. (d) Representative immunohistochemical stains of NF2 on NF2 wild-type (WT) and NF2 loss

tumours are shown. Scale bars, 50mm. Semiquantitative IHC scores (0—negative; 1—focal/weak staining; 2—moderate staining; 3—strong and

diffuse staining) comparing the NF2 loss subset and the other uRCC tumours are presented as a bar graph. Bars, mean values; error bars, 95% CI.

(e) Representative images of NF2 WTand NF2 loss uRCC tumours stained by YAP/TAZ and p-YAP antibodies (left panel) are shown. Scale bars, 100mm.

Immunostaining scores (H-scores) for YAP/TAZ and p-YAP nuclear and cytoplasmic staining were determined and presented as a bar graph on NF2 loss

(n¼ 16) or other uRCC (n¼43) tumours. H-Scores (H¼ intensity (0–3)� percentage of positive cells (1–100)). Bars, mean values; error bars, 95% CI.

(f) GSEA plot of the ranked list of differentially expression genes in uRCC with NF2 loss and those with WT NF2 generated using a previously established

YAP/TAZ-regulated gene set. (g) Immunoblots with the indicated antibodies (left) and a bar graph of cell cycle analysis in ACHN cells with YAP1 or control

(GFP) knockdown are shown. Bars, mean values; error bars, s.e.m.; replicates n¼ 3. (h) Representative images (left) and a bar graph of colony formed in the

soft agar after plating 105 YAP1 or control (GFP) knockdown cells are shown. Scale bars, 200mm. Bars, mean values; error bars, s.e.m.; replicates n¼ 3.

Statistical significance was determined by Mann–Whitney U-test in d and e, and by Student’s t-test in g and h. Statistical significance is indicated as

***Po0.001; **Po0.01; *Po0.05.
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mutant was co-expressed with HA-S6K in 293T human
embryonic kidney cells, L2427R exhibited higher activity,
whereas V2475M showed baseline mTORC1 kinase activity
comparable to the wild-type MTOR (Fig. 3c). Consistent with
cell-based assays, immunohistochemistry of the uRCC with
L2427R mutation displayed strong p-4EBP1 and p-S6 staining,
whereas that of V2475M did not (Fig. 3a,d). These findings
suggest that the recurrent I1973F and L2427R MTOR mutations
are likely pathogenic, whereas V2475M could be a passenger
mutation. Notably, all seven tumours with TSC1 or TSC2
mutations had high level of p-4EBP1 (H score¼ 300), whereas
only two of four tumours with PTEN mutations exhibited such
staining (Fig. 3a). Altogether, our integrated analysis
demonstrated that 13 of the 16 uRCC tumours with MTOR,
TSC1, TSC2 or PTEN mutations exhibited hyperactive mTORC1
signals (Fig. 3a,e).

While mTORC1 has been shown to be hyperactive in
NF2-deficient mesothelioma and meningioma cell lines38,39, we
did not observe hyperactive mTORC1 signalling in NF2 loss
uRCC (Fig. 3e). Within our uRCC cohort, the identified NF2 loss
(26%) and mTORC1 hyperactive (21%) subsets were mutually
exclusive (Fig. 4a).

Additional molecular subsets detected in uRCC. As germline
and somatic mutations of FH have been described in hereditary
leiomyomatosis RCC (HLRCC) and a small number of sporadic
type II pRCC6,16,40, we performed 2SC (2-succino-cystein) and

FH immunohistochemistry to investigate the recurrent FH
somatic mutations observed in three of our uRCC cases
(Fig. 1a). FH protein loss and 2SC (detects aberrant
protein succination) are highly specific markers for
FH-deficient RCC41–43. FH and 2SC assays were inversely
correlated in our uRCC cohort, and they identified four
tumours that were positive for 2SC and negative for FH
staining (Supplementary Fig. 5). Genetic testing revealed FH
germline mutations in three of these four patients, confirming
that they indeed represent HLRCC cases. The remaining
FH-negative/2SC-positive tumour (T41) harboured somatic
homozygous deletion of the FH gene, revealing a somatic
mechanism that can lead to FH functional loss (Supplementary
Fig. 5). On the other hand, one tumour (T71) with FH G401V
somatic mutation was found to be FH positive/2SC negative, and
lacked histologic features of HLRCC or FH-deficient RCC40,42,
suggesting that FH G401V might be better categorized as a
passenger mutation (Fig. 4a; Supplementary Fig. 5).

We also discovered by IMPACT that one uRCC (T12) carried a
TPM3–ALK fusion, which was further confirmed by FISH
analysis (Supplementary Fig. 6). The TPM3–ALK fusion has
been reported in human cancers44, including in one uRCC case45.
Reported rarely in children and adults, ALK translocation-
associated RCC is currently considered as an emerging entity,
awaiting further characterization3.

Collectively, these four distinct molecular subsets (NF2 loss,
mTORC1 hyperactive, FH-deficient and ALK translocation)
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accounted for 55% of our uRCC cohort (Fig. 4a). Of the
remaining 28 (45%) uRCC, 8 cases carried mutations of genes
involved in chromatin modulation (SETD2, BAP1, KMT2A/C/D
and PBRM1); 5 in DNA damage response (TP53, CHEK2 and
BRCA2); and 15 without recurrent molecular features based on
our analyses (Fig. 4a). The possibility of these tumours
representing other RCC subtypes (for example, TFE3/TFEB
translocation or SDHB deficiency) was also excluded by
established diagnostic assays46,47.

Commonly mutated in VHL-deficient ccRCC21, chromatin
modulators PBRM1, SETD2 and BAP1 were recurrently mutated
in uRCC that lacked VHL mutations. Our finding that these
mutations also recur in nccRCC is in line with the recently
reported mutations of SWI/SNF and chromatin modifier
pathways in type 1 and type 2 pRCC16. Given the presence of
mutations of chromatin modulation or DNA damage response
genes in a wide variety of cancers and their known implications in
tumorigenesis48,49, we tentatively grouped together the uRCC

cases with mutations in these pathways and lacking other
apparent driver alterations.

Among the 15 cases lacking recurrent features (‘other’ group),
T62 and T69 had non-recurrent MET (H1094Y) or BRAF
(Y472C) pathogenic mutations, respectively (Supplementary
Data 2)50,51. Together, there were seven cases in which no
mutation or other significant molecular alteration was detected by
our panel of analyses, but the clinicopathologic features of these
cases (for example, high-grade nuclear features, necrosis and so
on) excluded the possibility of them being reclassified as renal
oncocytomas. In addition, three uRCC tumours with somatic
SMARCB1 mutations (T23, T38 and T41) retained the INI1
protein expression (encoded by SMARCB1), and were
histologically distinct from renal medullary carcinoma that
exhibits characteristic INI1 loss and occurs in individuals with
sickle cell trait or other hemoglobinopathies52 (Supplementary
Fig. 7). These three tumours were assigned into different
molecular subsets (that is, mTORC1, NF2 loss or FH) based on
their other aberrations.
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Figure 4 | Clinical outcomes associated with molecular subsets of uRCC. (a) Overview of molecular features and clinicopathological characteristics of

uRCC subsets identified in our cohort. NF2 loss (NF2 loss, n¼ 16), mTORC1 (mTORC1 hyperactive, n¼ 13), FH (FH deficient, n¼4), ALK (ALK

translocation, n¼ 1), chromatin DNA damage (mutations in chromatin modulation or DNA damage response genes, n¼ 13) and other (tumours with no
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Differential clinical outcomes observed in molecular subsets.
Despite the relatively small patient sample size of our high-grade
uRCC cohort, differential cancer-specific outcomes were observed
among the above-defined molecular subgroups (Fig. 4b). NF2 loss
and FH-deficient uRCC appeared to have worse clinical outcome
than mTORC1 hyperactive and thus far unspecified uRCC,
whereas uRCC with mutations mainly in chromatin modulation
or DNA damage response genes fared intermediately (Fig. 4b).

SETD2 or BAP1mutation alone did not discern tumour subsets
with significantly different clinical outcomes in this uRCC cohort
(Supplementary Fig. 8).

Discussion
This study presents the first in-depth molecular characterization
of high-grade uRCC, a rare and heterogenous group of aggressive
tumours that poses one of the most important diagnostic and
therapeutic challenges among rare kidney cancers. Our inte-
grated, step-wise, molecular approach yields molecularly distinct
subsets accounting for B76% of the uRCC cohort, and we are
able to show differential clinical outcomes associated with these
molecular subsets. We identified 29 recurrently mutated genes
(Fig. 1) including NF2 (18%), SETD2 (18%) and BAP1 (13%) as
the most frequently mutated genes. Although some of these
mutations are present in certain established subtypes of RCC, the
overall mutation profiles, the frequencies of mutations in specific
genes and a lack of characteristic molecular features of established
RCC subtypes support the notion that these uRCC tumours are
largely distinct from the established RCC subtypes and harbour
their unique oncogenic pathways.

This study identifies a subset of uRCC that is characterized by
NF2 loss, dysregulated Hippo–YAP signalling and aggressive
clinical behaviour (Figs 2 and 4). The majority (69%) of this
subset demonstrates biallelic inactivation of NF2 with concurrent
NF2 mutation and LOH, a molecular feature that has not been
reported in RCC. In the remaining cases with only LOH of NF2,
low NF2 protein levels were observed. While NF2 has been shown
to be a haploinsufficient tumour suppressor in mice24, it is
possible that other mechanisms further inactivate its function
in these cases. As the regulation of Hippo signalling could
differ based on organ or cellular contexts53, the YAP activation
we observed predominantly in the NF2 loss subset of uRCC
suggests that NF2 inactivation is an essential mechanism
dysregulating Hippo signalling in RCC. The high prevalence of
NF2 loss in a distinct subset of uRCC suggests it acting as an early
driver event in the tumorigenesis, although this remains to be
further investigated. Other molecular features found in this subset
of tumours include the enrichment of SETD2 mutations, frequent
1p and 3p losses and aberrant histone methylation (absence of
H3K36me3) in cases with concurrent 3p loss and SETD2
mutation. The identification of this NF2 loss subset of uRCC
provides an opportunity to improve our diagnosis of this
particularly aggressive subset of tumours, and test new
therapeutic strategies such as those aimed at interfering with
YAP activity54, or the synthetic lethal interaction of WEE1
inhibition in H3K36me3-deficient cancer55.

The mTORC1 hyperactive uRCC displayed much higher levels
of mTORC1 signalling than the other uRCC, and was associated
with a better clinical outcome. This subset harbours molecular
alterations similar to those identified in a small cohort of ccRCC
patients who benefit long term from mTOR inhibitor therapy56,
and suggests a readily available targeted therapy venue for
patients with advanced uRCC that belong to this subset.

We detected three HLRCC cases with proven germline FH
mutations in our uRCC cohort, emphasizing the wide
histological spectrum observed in HLRCC-associated renal

tumours40,42. We also found one case harbouring somatic
alterations (homozygous deletion) that fully inactivate FH
function. Together, these four FH-deficient tumours showed
the worst clinical outcome in this cohort. Nonetheless, given
the rare incidence of FH somatic alterations reported to this
date in RCC16, it remains unclear whether the clinical
behaviour of a FH-deficient RCC due to somatic alterations
resembles that of HLRCC. The current histological criteria and
immunohistochemical markers for FH deficiency (FH and 2SC)
appear to be insufficient to reliably distinguish the latter
tumour from true HLRCC cases, and it remains critical to
recommend genetic counselling when pathologic assessment
raises a suspicion of HLRCC.

We also identified a tumour with TPM3–ALK fusion, a second
RCC case with this specific fusion reported in adults. Identifying
these specific driver events supports dissecting them out from the
uRCC category to facilitate future characterization of these
emerging RCC subtypes.

Similar to what have been described in ccRCC and
pRCC10,11,20,15–17, mutations in chromatin modulation genes
are relatively frequent in uRCC, although none of which
(for example, SETD2 and BAP1) was found to be significantly
associated with clinical outcomes in this cohort. We did not
observe specific patterns of distribution for these mutations,
except for the enrichment of SETD2 mutations in the NF2 loss
subset. Further validation studies are needed to clarify the roles of
these mutations in the oncogenesis of various types of RCC.

MET mutations have been predominantly, but not exclusively
detected in pRCC based on the recent genomic studies of
RCC10,15–17. While the discovery of MET H1094Y mutation in
one uRCC may suggest it represents a pRCC with atypical
histologic features, more importantly it provides a potential
therapeutic option for this patient.

Based on this molecular study of uRCC, it is tempting to
speculate that NF2 loss, mTORC1 hyperactivity, FH deficiency
and chromatin modulation/DNA damage defects could play
key roles in the tumorigenesis and help explain the highly
heterogeneous nature of uRCC. In conclusion, this study not
only demonstrates shared molecular features between uRCC
and other RCC subtypes, but also uncovers unique oncogenic
pathways to uRCC, which could have future diagnostic,
pathogenic and therapeutic implications for rare kidney cancer
patients.

Methods
Human tumour samples. Frozen or FFPE tissue samples were collected from
primary nephrectomy specimens performed at Memorial Sloan Kettering Cancer
Center (MSKCC) and processed according to MSKCC institutional review board
approved tissue collection protocols with informed consent from all patients. The
study was approved by our institutional review board. All cases have been reviewed
and confirmed to fulfill the diagnostic criteria of renal cell carcinoma, unclassified
(uRCC) by three genitourinary pathologists (Y.B.C., V.E.R. and S.K.T.) based on
the current World Health Organization classification and concensus diagnostic
criteria of International Society of Urological Pathology2,3. Ancillary studies such as
TFE3/TFEB immunohistochemistry and FISH were performed to exclude tumours
harbouring MiTF family translocations. Tissues were macro-dissected to ensure
470% tumour content. DNA was extracted from tumour or matched normal
tissue using DNeasy Blood and Tissue kit or QIAamp DNA FFPE Tissue kit
(Qiagen) for frozen or FFPE tissue, respectively, according to the manufacturer’s
instructions. Total RNA was purified from tumour and normal tissues using
mirVana miRNA Isolation kit (Ambion) according to the manufacturer’s
instruction for total RNA isolation. DNA from each sample was quantified using
Qubit fluorometer (ThermoFisher). RNA from each sample was analysed using
Bioanalyzer assay (Agilent Technologies).

Targeted sequencing and analysis. The IMPACT assay is a next-generation
sequencing platform that uses hybridization-based exon capture and massively
parallel DNA sequencing to capture all protein-coding exons and selected introns
of oncogenes, tumour suppressor genes and members of pathways deemed
actionable by targeted therapies18,19. It is suitable for DNA extracted from either
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fresh-frozen or FFPE samples. The assay used for this study included 230 key
cancer-associated genes (Supplementary Data 1). In brief, barcoded sequences were
prepared and captured by hybridization with custom biotinylated DNA probes for
all exons and selected introns of these 230 genes using 100–500 ng of input DNA.
Captured libraries were sequenced on an Illumina HiSeq (2� 100 bp paired-end
reads). The raw reads were aligned to the human genome (hg19) using Burrows-
Wheeler Alignment Tool (BWA-MEM), followed by duplicate read removal, base
recalibration and indel realignment using GATK (v 2.6–5)57. We obtained an
average sequence coverage depth of 348� per tumour and 280� per normal
samples. Somatic variants were called using MuTect (v 1.1.4)58 for single-
nucleotide variants and Somatic Indel Detector (GATK 2.3–9) for indels, and
annotated by Annovar for cDNA and amino-acid changes as well as presence in
dbSNP database (v137) and COSMIC database (v68) and 1000 Genomes minor
allele frequencies. Copy number was computed using tumour:normal ratios of
normalized coverage data to determine amplifications and deletions except for data
on chromosome X18. IMPACT was designed to focus on somatic mutation
detection by filtering out alterations also present in matched normal samples.
Matching normal was available for 61 out of 62 uRCC cases and the normal DNAs
were sequenced in parallel with the corresponding tumour DNAs. For the
remaining case (T02), a randomly selected normal DNA sample was used as
unmatched normal control.

SNP array analysis of the tumour genome. Genome-wide DNA copy-number
alterations and allelic imbalances were analysed by SNP array using Affymetrix
OncoScan FFPE Assay (Affymetrix). We used 80 ng of genomic DNA extracted
from FFPE tissue for each tumour sample. The samples were processed according
to the manufacturer’s guidelines. In brief, genomic DNA was annealed to MIP
probes, followed by gap filling, ligation, digestion, amplification and hybridization
to the microarrays using the Affymetrix GeneChip 3000 System. The data were
analysed by the OncoScan Console (Affymetrix) and Nexus Express (BioDiscovery)
softwares using Affymetrix TuScan algorithm. All array data were also manually
reviewed for subtle alterations not automatically called by the software.

RNA-seq and GSEA. RNA-seq libraries were prepared using the TruSeq RNA
Sample Preparation kit (Illumina) according to the manufacturer’s protocol.
Libraries were sequenced on the Illumina HiSeq2500 platform to obtain on
average, 80 million paired-end (2� 75 bp) reads per sample. Sequence data were
processed and mapped to the human reference genome (hg19) using STAR
(v2.3)59. Gene expression levels were quantified with HTSeq-count60 and
normalized using DEseq61. We used GSEA62 to statistically evaluate pathway or
gene set activity that may associate with NF2 status. We tested YAP/TAZ targeted
gene sets (differentially expressed genes between si-YAP/TAZ and non-targeting
control) derived from the previous study33 in the GSEA analysis (Supplementary
Data 3). We first removed genes expressed at low levels in all tumours (read count
o20 in all samples) from the analysis. The expressed genes (¼ 16,658) were tested
for differential expression between the NF2 mutated (n¼ 4) and wild-type (n¼ 3)
samples with RNA-seq data available. We used the voom method for differential
expression63, which applies an empirical Bayes approach suitable for small sample
sizes, to compute a moderated t-statistic for the null hypothesis that there is
no difference in expression between the two groups. Genes were sorted by this
t-statistic, and GSEA was used to evaluate the null hypothesis that genes in selected
gene sets were not differentially expressed in mutated versus wild-type samples
(using 1,000 permutations).

Immunohistochemistry. Immunohistochemistry was conducted in 5 mm FFPE
whole tissue or tissue microarray sections using automated Ventana Discovery
system or Ventana Benchmark system (Ventana Medical Systems). The primary
antibodies used included NF2 (1:100, D3S3W, Cell Signaling Technology),
YAP/TAZ (1:50, D24E4, Cell Signaling Technology), phospho-YAP (Ser127)
(1:500, D9W2I, Cell Signaling Technology), phospho-S6 (Ser235/236; 1:100,
D57.2.2E, Cell Signaling Technology), phospho-4EBP1 (Thr37/46; 1:400, 236B4,
Cell Signaling Technology), 2SC (Dr Norma Frizzell, Univ. of South Carolina)42,
FH (1:1,000, Clone J-13, Santa Cruz Biotechnology), INI1 (1:100, BAF47, BD
Bioscience) and H3K36me3 (1:200, MABI-0333, Active Motif). For the semi-
quantitive or quantitative (H-scores) analysis of staining, the pathologists were
blinded to the group designation of cases on tissue microarray slides.

Fluorescence in situ hybridization. NF2/22q FISH analysis was performed on
paraffin section (5mm) using a three-color probe mix as described in
Supplementary Table 2. Clone DNA was labelled by nick translation using
fluorochrome-conjugated dUTPs from Enzo Life Sciences Inc., supplied by Abbott
Molecular Inc. Hybridization, post-hybridization washing and fluorescence
detection were performed according to standard procedures. Slides were scanned
using a Zeiss Axioplan 2i epifluorescence microscope equipped with a megapixel
charge-coupled device camera (CV-M4þCL, JAI) controlled by Isis 5.2 imaging
software (Metasystems Group Inc, Waltham, MA). The entire section was scanned
under � 63 objective to assess copy-number change and possible intratumoral
heterogeneity. Representative regions were imaged through the depth of the tissue
(compressed/merged stack of 12 z-section images taken at 0.5 mm intervals under

the red, green and orange filter, respectively). A minimum of two to three tumour
image fields (4100 cells) were selected and the total number of signals scored for
each locus. Non-tumour area(s) or normal tissue including stromal cells or infil-
trating lymphocytes were also analysed and served as the internal control to assess
quality of hybridization. A minimum of 100 non-tumour cells were also scored.

Interphase FISH analysis on FFPE tumour tissue was perform to evaluate ALK
gene rearrangements, using dual-colour break-apart probes targeting ALK
gene (Abbott Molecular). The orange fluorochrome direct labelled probe
hybridizes distal (30) to ALK gene; the green fluorochrome direct labelled probe
hybridizes proximal (50) to ALK. Nuclei were counterstained with 4,6-diamidino-
2-phenylindole (blue), and interphase FISH signal scoring was performed. In a
normal interphase nucleus, two orange/green fusion signals are expected. Signals
for ALK gene rearrangement are either ‘broken apart’ signal or ‘single orange’
signal (deleted green signal for 50ALK). One-hundred interphase cells from the area
with high tumour content were analysed.

Plasmids. Flag-tagged mTOR (pcDNA3-Flag-mTOR wt) was a gift from Jie Chen
(Addgene plasmid # 26603). HA-GST-tagged S6K1 (pRK5-HA-GST-S6K1) was a
gift from Dr David Sabatini. The mTOR single mutations were generated by
introducing corresponding nucleotide changes into pcDNA3-Flag-mTOR using
QuikChange II XL site-directed mutagenesis kit (Agilent). All the constructs were
confirmed by DNA sequencing. The primers for site-directed mutagenesis
are as follows: mTOR L2427R, 50-CATCAGCCTCCAGTTCCGCAAGGGGT
CATAGAC-30 ; mTOR V2475M, 50-AATAGATTCTGGCATTGTGGTCCCC
GTTTTCTTATGGG-30 .

Short hairpin RNA-mediated knockdown. pLKO1-shYAP1_1 was a gift from
Kunliang Guan (Addgene plasmid # 27369). pLKO1-shYAP1_2 was obtained from
Sigma-Aldrich (TRCN0000107266). Lentiviral vectors carrying the indicated short
hairpin RNA were co-transfected with pCMVDR8.2 and pHCMV.VSVG into 293T
cells to generate lentivirus. ACHN and LB996-RCC cells infected with lentivirus
were under puromycin selection at 2 and 1 mgml� 1, respectively.

Cell culture and in vitro assays. 293T cells were cultured in DMEM (Invitrogen)
supplemented with 10% fetal bovine serum (FBS), non-essential amino acids,
L-glutamine, sodium pyruvate and antibiotics (Invitrogen). ACHN cells were
cultured in RPMI 1640 (Invitrogen) supplemented with 10% FBS, non-essential
amino acids, L-glutamine, sodium pyruvate and antibiotics (Invitrogen). LB996-
RCC cells were cultured in IMDM (Invitrogen) supplemented with 10% FBS,
GlutaMAX, G-5 supplements and antibiotics (Invitrogen). The ACHN cells were
provided by the National Cancer Institute Developmental Therapeutics Program
(Bethesda, MD), and the LB996-RCC cells were provided by Dr Van den Eynde
(Ludwig Cancer Research Center, Brussels), whose laboratory established this cell
line64. To assay cell proliferation, 1� 105cells were seeded onto a 35mm dish and
counted 4 days later. To assay cell cycle, cells were trypsinized, washed with PBS,
treated with 20mgml� 1 RNase A, and stained with 25 mgml� 1 propidium iodide
(PI) for 1 h before being subjected to cell cycle analyses. Flow-cytometric analyses
were performed using a FACSCalibur flow cytometer (Becton-Dickinson) to
measure DNA contents. And, data were analysed with FlowJo software (Tree Star).
To perform soft agar assay, 1� 105 cells were seeded onto a 6 cm dish containing a
top layer of 0.3% noble agar and a bottom layer of 0.6% noble agar base. Cells were
fed with media every 3 days. After 3 weeks, colonies with diameter 4200 mm were
scored. Three independent triplicate experiments were performed. For mTORC1
signalling experiments, 293T cells were seeded in 6-well plates (1.8� 106 cells per
well) 24 h before transfection by 1.5 mg of vectors expressing wild type or mutant
mTOR and 50 ng of vector expressing S6K using Lipofectamine 2000 (Invitrogen).
The cells were collected 48 h post transfection.

Protein blot analysis. Cells were collected in ice-cold PBS buffer, pelleted and
lysed in RIPA buffer (150mM NaCl, 1% NP-40, 1% Na deoxycholate, 0.01M
Sodium phosphate (pH 7.2), 0.1% SDS, 2mM EDTA and 50mM NaF) with
complete protease inhibitor (Roche) and phosphatase inhibitors (EMD/Millipore).
Protein concentration was determined by the BCA kit (Pierce). Protein samples
(20–40 mg) were resolved by 4–12% NuPAGE (Life Technologies), transferred onto
polyvinylidene difluoride membrane (Immobilon-P, Millipore) and detected by the
enhanced chemiluminescence method (Western Lightning, PerkinElmer) and
LAS-3000 Imaging system (Fujifilm). The blot images were analysed by Image-
Gauge software (Fujifilm).

Antibodies used for immunoblot analysis are as follows: anti-NF2 (ab88957,
Abcam), anti-YAP1 (no. 12395, Cell Signaling Technology), anti-pSer-127
YAP1 (no. 13008, Cell Signaling Technology), actin (A1978, Sigma), anti-pThr-389
S6K (no. 9205, Cell Signaling Technology), anti-HA (12CA5), anti-pSer-65 4EBP1
(no. 9451, Cell Signaling Technology), anti-4EBP1 (no. 9452, Cell Signaling
Technology), anti-pSer 235/236 S6 (no. 4858, Cell Signaling Technology), anti-S6
(no. 2217, Cell Signaling Technology), anti-Flag (F1804, Sigma), anti-RAPTOR
(no. 2280, Cell Signaling Technology). The dilution for all of the primary
antibodies for immunoblot analysis was 1/1,000. The dilution for all of the
secondary antibodies for immunoblot analysis was 1/5,000. The full blots from
these analyses are shown in Supplementary Fig. 9.
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Statistical analysis. Significant co-occurrence or mutual exclusivity was
determined using Fisher’s exact test. Statistical significance of quantified or
semi-quantified immunohistochemical staining between tumour groups was
determined by Mann–Whitney U-test. Statistical significance of cell line experi-
ments was determined by Student’s t-test. Significance of survival curves was
analysed using the log-rank test.

Data availability. The RNA-seq and Oncoscan SNP array data have been
deposited in the database of Gene Expression Omnibus under accession GSE85971.
The IMPACT targeted DNA sequencing and clinical data of the cohort are
available for public access at cBioPortal (http://www.cbioportal.org/study?-
id=urcc_mskcc_2016#summary)65. Any other data are contained within the article
and its Supplementary Information files or available from the authors on request.
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