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Background. Tumor necrosis factor (TNF) family members play a vital role in anticancer therapy. *is study aimed to screen the
critical markers for the prognostic analysis of pancreatic adenocarcinoma (PAAD) by analyzing the clustering patterns of TNF
family members in PAAD.Methods. In this study, the NMF clustering method was adopted to cluster samples from *e Cancer
Genome Atlas (TCGA) to acquire the clustering pattern of the TNF family in PAAD. Differential gene analysis was performed
according to TNF family gene clusters.*e support vector machine (SVM)method was conducted for further gene screening, and
the risk score model of the screened genes was constructed by Lasso. *e single sample gene set enrichment analysis (ssGSEA)
method was adopted for immunoenrichment analysis and tumor immune cycle analysis. Genes associated with risk scores were
analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results. We
clustered PAAD into two groups based on TNF family genes. Nineteen TNF family genes were significantly associated with the
clinical characteristics of PAAD patients. *e risk score formula was composed of RHOD, UBE2C, KLHDC7b, MSLN, ADAM8,
NME3, GNG2, and MCOLN3. GSE57495 and GSE62452 datasets verified that patients in the high-risk group had a worse
prognosis than those in the low-risk group. *e risk score-related genes analyzed by GO and KEGG were mainly involved in the
modulation of chemical synaptic transmission and synaptic vesicle cycle pathway. *ere were significant differences in the
expression of 15 immune cells between the high-risk group and the low-risk group. *e risk score was positively correlated with
HCK, interferon, MHC-I, and STAT1. *e expression of genes relevant to chemokine, immunostimulator, MHC, and receptor
was strongly associated with the risk score. Conclusion. *e risk score model based on the TNF family can predict the prognosis
and immune status of PAAD patients. Further research is needed to verify the clinical prognostic value of risk scores.

1. Introduction

Pancreatic adenocarcinoma (PAAD) has a 5-year survival
rate of less than 10%, which is one of the most aggressive
malignant tumors with the worst prognosis [1, 2]. About
90% of PAADs are ductal adenocarcinomas originating from
the glandular epithelium. In recent years, the morbidity and
mortality of the disease have increased significantly. Studies
have predicted that PAAD may become the second leading
cause of cancer-related death after 2030 [3]. Low immu-
nophenotype and low tumor sensitivity to cytotoxic drugs
are the primary causes for the low survival rate in PAAD
patients [4]. *e cytotoxic chemotherapy for PAAD is
primarily limited to the absence of molecular markers to
predict the efficacy of chemotherapy [5]. *e lack of a

specific tumor prognostic model is a serious challenge in the
treatment of PAAD. *erefore, more efforts are urgently
needed to understand the specific prognostic markers and
immune function of PAAD.

TNF and TNF receptor (TNFR) superfamily (TNFSF/
TNFRSF) consist of nineteen ligands and twenty-nine re-
ceptors [6]. TNF family members are expressed naturally by
the immune system and kill tumor activity [7]. In addition,
tumor necrosis factor- (TNF-) related ligands have high
expectations in anticancer therapy due to their induction of
apoptosis [8]. For example, tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL), a member of the TNF
family, has been shown to selectively induce apoptosis in
cancer cells by binding or trimerizing its functional re-
ceptors [9]. In PAAD tissues, tumor-infiltrated immature
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M0 macrophages exhibit antitumor activity by secreting
TNF-α [10]. Although a large body of evidence has shown
that TNF family members play an essential role in many
cancers, including PAAD, the role of TNF family members
in PAAD is still not systematically understood.

In recent years, bioinformatics analysis of biodata in-
formation obtained from the public databases has played a
very positive role in better understanding and treatment of
several diseases, including cancer. Using algorithms such as
ssGSEA, the expression level of markers can reflect the
infiltration of specific cell types in tumor tissue. *rough
the complete follow-up data of multiple cohorts, the rel-
evance between the relative infiltration level of specific cell
types and the survival rate of patients can be determined
[11]. For instance, based on the epigenetic properties of
immunomodulatory cytokine genes, methylation of these
genes has been found to be related to overall survival (OS),
disease-specific survival, and disease progression in PAAD
patients [12]. Yao et al. discovered differential splicing of
AS events between PAAD and normal tissues and suc-
cessfully constructed a prognostic model to predict the
prognosis of PAAD patients using survival-related splicing
factors [13]. More recently, Zhang et al. constructed a
prognostic model based on the TNF family to predict the
prognosis and immune status of lung adenocarcinoma
(LUAD) patients [14]. In addition, it has been found that
ubiquitin-specific protease 4 (USP4) plays a tumor-pro-
moting role in PAAD and can be used as a prognostic
indicator and therapeutic target in patients with PAAD
resection [15]. However, no details of expression of TNF
family members in PAAD and their clinical significance
have been reported.

*is study was a systematic study of expression patterns
of TNF family members and their clinical significance in
PAAD.We aimed to establish a prognostic model for PAAD
based on the TNF family by in-depth analysis of relevant
data from the TCGA and gene expression integration (GEO)
databases. We hope that the prognostic risk score of this
study will contribute to the prognosis of PAAD and the
formulation of phase immunotherapy strategies.

2. Materials and Methods

2.1. Datasets and Preprocessing. *e TCGA pancreatic ade-
nocarcinoma dataset (TCGA-PAAD) was downloaded from
the TCGA website, and 178 samples were included in the
analysis. GSE57495 and GSE62452 datasets were downloaded
from GEO (https://www.ncbi.nlm.nih.gov/geo/). Affymetrix
generated raw data from the microarray dataset. *e RMA
algorithm in the Affy package was then applied to perform
quantile normalization and background correction for
Affymetrix raw data. GSE57495 included 63 samples, and
GSE62452 included 66 samples.

2.2. Clustering Based on the TNF Family. TNF family was
obtained as per the previous paper [14]. TCGA-PAAD was
clustered by the NMF clustering method, and the clustering
pattern based on the TNF family was obtained.

2.3. Establishment of the Risk Score Model. According to the
TNF family gene cluster, the differential gene analysis was
performed for the two clusters. *e differential gene of
standard was defined as |logFC|> log2(1.5) with P< 0.05.
*e independent prognostic significance of TNF family
members was assessed by univariate Cox regression analysis
(P< 0.05). HR> 1 was considered a prognostic risk gene,
while HR< 1 was considered a protective prognostic gene.
Univariate analysis was carried out for differential genes, and
then SVMwas used for further screening. *e selected genes
were modeled using Lasso, and the risk score was the sum of
gene expression value ∗ Lasso coefficient.

2.4. Immunoinfiltration Analysis. *e ssGSEA method was
used for immunoinfiltration analysis. *e expression levels
of twenty-eight types of cells were mainly analyzed, in-
cluding immature dendritic cell, immature B cell, activated
B cell, activated CD4 T cell, activated CD8 T cell, macro-
phage, mast cell, MDSC, memory B cell, monocyte, activated
dendritic cell, CD56bright natural killer cell, CD56dim
natural killer cell, central memory CD4 T cell, central
memory CD8 T cell, effector memory CD4 T cell, effector
memory CD8 T cell, natural killer cell, natural killer T cell,
neutrophil, plasmacytoid dendritic cell, regulatory T cell,
follicular T-helper cell, type 1 T-helper cell, type 17 T-helper
cell, type 2 T-helper cell, eosinophil, and gamma delta T cell
[16]. Tumor immune-cycle analysis mainly analyzed seven
steps of immune activity [17].

2.5. Pathway Analysis. Correlation analysis was performed
on risk score and all genes, and the correlation standard was
defined as |cor| > 0.6. Related genes were analyzed for
functional enrichment, mainly by GO and KEGG analysis.

2.6. Statistical Analysis. *e R package SurvMiner was used
to draw all survival curves. *e normality of variables was
checked by the Shapiro–Wilk normality test. *e unpaired
Student’s t-test was used to compare the differences between
the two groups for variables that conform to the normal
distribution. *e nonnormally distributed variables were
analyzed by the Wilcoxon test. *e Kaplan–Meier method
was used to generate and visualize subgroup survival curves.
*e logarithmic rank test was used to determine the sta-
tistical significance of the differences in each dataset. All heat
maps were generated based on PHEATMAP. All statistical
analyses were performed in R (https://www.r-project.org/,
version 3.5.1). All the tests were two-sided, and P val-
ues< 0.05 were considered statistically significant.

3. Results

3.1. TNF Family Gene Clustering. First, we conducted a
centralized association analysis of TNF family genes in-
cluding 29 TNFRSF members and 18 TNFSF members
(Figure 1(a)). According to TNF family genes, PAAD was
clustered into TNF-Cluster1 and TNF-Cluster2
(Figure 1(b)). Based on the survival probability of the two
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Figure 1: Continued.
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TNF clusters, we found that the survival probability of TNF-
Cluster1 (n� 64) was significantly lower than that of TNF-
Cluster2 (n� 114) (P� 0.008) (Figure 1(c)). *e expression
of TNF family genes in the two TNF clusters is shown in
Figure 1(d), among which 19 TNF family genes (TNFRSF6B,
CD70, TNFSF9, TNFRSF14, TNFRSF25, RELT, TNFRSF18,
TNFRSF4, FASLG, CD40LG, TNFSF8, LTB, TNFSF18,
EDA, EDA2R, CD40, TNFRSF12A, LTBR, and TNFSF15)
were significantly correlated with the clinical characteristics
(M, N, T, stage, grade, gender, and age) of PAAD patients.
Among 47 TNF family genes, we found 14 dangerous
prognostic genes and 1 protective prognostic gene (p＜ 0.05,
Figure S3).

A total of 566 genes were identified based on differ-
ential analysis of the two TNF family genes (Figure 2(a)),
377 genes were obtained after single-factor screening and
34 genes were obtained by the SVM method (Figure 2(b)).
*en, the model established by SVM back-deduced the
clustering type, and the ROC reached 0.927 (Figure 2(c)).
After Lasso analysis of the screened genes, a risk score
model containing 8 genes (RHOD, UBE2C, KLHDC7B,
MSLN, ADAM8, NME3, GNG2, and MCOLN3) was
obtained (Figures 2(d) and 2(e)). *e expression levels of
these 8 genes and the corresponding regression coeffi-
cients were used to construct the risk formula: risk
score �−0.0787∗MCOLN3 + 0.1609∗KLHDC7B + −
0.1329∗GNG2 + 0.1735∗RHOD+ −0.4003∗NME3 +

0.0913∗UBE2C + 0.0983∗MSLN+ −0.0752∗ADAM8.
Among the 8 genes, rhoD, UBE2C, KLHDC7B, MSLN,
and ADAM8 with HR higher than 1 were regarded as
high-risk factors, while the other 3 (NME3, GNG2, and
McLN3) with HR less than 1 were regarded as protective
factors (Figure 2(f )). According to the risk score formula,
the optimal cutoff value �−1. Patients were divided into
the high-risk group (risk score ≥ -1) and the low-risk
group (risk score < −1) to assess the robustness of these 8
genes in predicting the OS in clinical practice of PAAD
patients (Figure 3(a)). *e low-risk group had better OS
status than the high-risk group (Figure 3(b)). As can be
seen from the TCGA survival analysis in Figure 3(c), the
prognosis of PAAD patients in the high-risk group was
worse than that in the low-risk group. *e time-depen-
dent ROC diagram showed that the AUC value of the
model was relatively high in 1 year (AUC � 0.714), 3 years
(AUC � 0.794), and 5 years (AUC � 0844), suggesting that
the model is more accurate and has strong applicability
(Figure 3(c)). Survival analysis of the GSE57495 and
GSE62452 datasets showed that patients in the high-risk
group had a worse prognosis (Figures 3(d) and 3(e)).
Analysis in combination with the risk model and clinical
factors (including age, gender, grade, stage, T, N, and M)
indicated that the risk score was an independent prog-
nostic risk factor (P < 0.01, HR � 4.286, 95%
CI � 2.516–7.301) (Figures S1A and S1B).
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Figure 1: TNF family genes clustering in PAAD. (a) Correlation analysis of TNF family genes in the TCGA-PAAD dataset. Red is
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3.2. Functional Analysis of the Prognostic Model. To un-
derstand the function of the obtained risk score-related
genes, we first conducted correlation analysis of risk score-
related genes and clinical characteristics, as shown in
Figure 4(a). To further understand the potential functions of
these genes, GO and KEGG enrichment analyses were
performed, respectively. As shown in Figure 4(b), GO
analysis revealed that these genes mainly participate in the
modulation of chemical synaptic transmission, regulation of
trans-synaptic signaling, neurotransmitter secretion, signal
release from synapse, regulation of exocytosis, calcium ion-
regulated exocytosis, regulation of membrane potential,
vesicle-mediated transport in synapse, signal release, regu-
lation of calcium ion-dependent exocytosis, regulation of
synaptic plasticity, synaptic vesicle transport, establishment
of synaptic vesicle localization, synaptic vesicle exocytosis,
and synaptic vesicle cycle. KEGG analysis presented that
these genes were primarily connected with synaptic vesicle
cycle, insulin secretion, and dopaminergic synapse. *ese
results manifest that the functions of these genes are mainly
embodied in the regulation of information transmission
between cells and the transfer of nanoparticles.

In addition, we conducted GSEA to comprehensively
define the features of risk score. *e hallmark gene set
enrichment analysis showed that risk score-related genes
were enriched in MYC targets V2 and TGF-β signaling
(Figure S5A). GO enrichment analysis found that the genes
were enriched in pore complex assembly and cysteine-type
endopeptidase activity involved in the apoptotic process
(Figure S5B). KEGG enrichment analysis revealed that the
genes were concentrated in pathways involving pentose
phosphate pathway (Figure S5C).

3.3. Immune Infiltration and Inflammation Analysis. It is
well known that immune cell infiltration is closely related
to inflammation. To this end, the ssGSEA method was
used for immunoenrichment analysis of 28 kinds of

immune cells. As shown in Figure 5(a), the expression of
15 kinds of immune cells showed a notable difference
between the high-risk group and low-risk group, in-
cluding activated B cell, activated CD8 T cell, CD56dim
natural killer cell, effector memory CD4 T cell, effector
memory CD8 T cell, eosinophil, immature B cell, im-
mature dendritic cell, macrophage, mast cell, MDSC,
monocyte, plasmacytoid dendritic cell, T follicular helper
cell, and type 1 T-helper cell. *en, the immune-cycle
activity scores of the two groups were statistically ana-
lyzed. We noted that Step2 (cancer antigen presentation),
Step4 (including CD4 T cell, dendritic cell, macrophage,
T cell, TH17 cell, and Treg cell recruitment), and Step6
(recognition of cancer cell by T cell) displayed statistical
differences in anticancer immunity between the two
groups (Figure 5(b)). As the risk score changed, the ex-
pression of genes in different inflammatory marker gene
sets also changed accordingly, as shown in Figure 5(c).
Genome set variation analysis (GSVA) was used to analyze
the results of these 7 gene classes: HCK, IgG, interferon,
LCK, MHC-I, MHC-II, and STAT1. After analyzing the
correlation between the risk score and inflammatory in-
dicators, we noticed that the risk score was significantly
positively correlated with HCK, interferon, MHC-I, and
STAT1 (P< 0.05) (Figure S2).

3.4. Prediction of the Risk Score for Immunotherapy Response.
We used the TIDE algorithm to verify the risk score of the
anti-PD-1 immunotherapy cohorts IMvigor 210 and
GSE78220. In the GSE78220 cohort, the risk score in the
complete/partial response (CR/PR) group was low com-
pared to the stable/progressive disease (SD/PD) group
(P� 0.04, Figure S6A). *e CR/PR group had a higher
percentage of scores than in the SD/PD group in the IMvigor
210 cohort (Figures S6B and S6C). Besides, the GSE79668
cohort confirmed that the prognosis of the high-risk group
was worse than that of the low-risk group (Figure S6D).
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Figure 3: Analysis of TNF family genes and the prognosis of PAAD. (a) A composite graph consisting of risk score, survival status, and gene
expression. (b) TCGA survival analysis indicated that patients with a high-risk score had a poor prognosis. (c) *e time-dependent ROC
diagram showed the AUC values of the model in 1 year, 3 years, and 5 years. (d) Survival analysis based on the GSE5749 dataset. (e) Survival
analysis based on the GSE62452 dataset.
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Figure 5: Immune and inflammatory analysis. (a) Differences in the expression of immune cells between the high-risk score group and low-
risk score group. (b) Differences in the expression of immune-cycle activity scores between the high-risk score group and low-risk score
group. (c) Changes in gene expression of different inflammatory marker gene sets.
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3.5. Immune Checkpoint Analysis. We found that 21 im-
mune checkpoints in chemokines were significantly corre-
lated with the risk score, such as CCL5, CCL7, CCL13,
CCL14, CCL16, CCL18, CCL20, and CCL28. 10 immune
checkpoints such as CD160, CD274 and VTCN in Immu-
noinhibitor were associated with riskscore strongly.
Immunostimulators included 21 immune checkpoints in-
cluding CD276, CD40, CD70, CD80, and CD86, which were
statistically correlated with the risk score. 17 immune
checkpoints (including B2M, HLA-B, -C, -DMA, -DMB,
and -DOA) in MHC and 6 immune checkpoints (CCR1,
CCR10, CXCR3, CXCR5, XCR1, and CX3CR1) in receptors
were significantly correlated with the risk score (Figure 6(a)).
*e expression of immune checkpoints changed as the risk
score changed from low to high.

We also analyzed the correlation between risk scores and
classical immune checkpoint molecules based on antigen
present, cell adhesion, coinhibitor, costimulator, ligand,
receptor, and other classifications. We found that the risk
score was positively correlated with MICA, ICAM1, CD276,
CD80, and TNFSF9 (P< 0.05, Figures S7A–E), and nega-
tively correlated with ADORA2A and AEG1 (P< 0.05,
Figures S7F–G).

4. Discussion

*rough bioinformatics analysis, we noted that the TNF
family genes were significantly associated with the clinical
characteristics of PAAD patients. Our prognostic model
based on TNF family genes has been proved clinically
adaptable in predicting OS in PAAD patients. *e risk score
is an independent prognostic risk factor. In the PAAD
prognostic model, the expression of immune cells, immune-
cycle activity, and inflammatory markers was closely cor-
related with risk assessment. *ere was also obvious rela-
tivity between risk scores and immune checkpoints.

*e tumor microenvironment of PAAD is highly im-
munosuppressive [18]. *e complex tumor microenviron-
ment has become one of the challenges that impedes PAAD
treatment and leads to immune escape of pancreatic ma-
lignant cells [19]. TNF is not only a pleiotropic cytokine that
triggers NF-κB activation or RIPK1 kinase-dependent cell
death but also a major mediator in inflammation [20]. As a
type II transmembrane protein, TNF-α binds to tumor
necrosis factor receptor 1 (TNF-R1) and TNF-R2, which
subsequently activates downstream signaling pathways [7,
21]. Interestingly, TNF plays a “double-edged sword” role in
cancer, largely depending on the role of TNF-R1 and TNF-
R2 [22, 23]. TNF acts as a cancer suppressor by binding to
TNF-R1. TNF-R2, on the other hand, can transform the
tumor-suppressive TNF into the tumor promoter [24]. TNF-
α and TGF-β, members of the TNF family, also play an
important role in regulating TME [25, 26]. Low levels of
TNF-α could increase tumor growth by inducing recruit-
ment of endothelial phenotypes of monocytes to the tumor
site [27]. Some researchers have proposed that local en-
hancement of endogenous TNF-α activity can accelerate the
death of tumor cells without the associated systemic toxicity
[28]. TNF/TNFR superfamily proteins are the major

regulatory factors of T cells, among which Fas, TNF-R1, and
TRAILR play an important role in promoting apoptosis and
inhibiting T-cell activity [29]. Besides, TNFSF10 polymor-
phism has been identified as a possible prognostic factor for
survival in patients undergoing surgery for invasive breast
cancer [30].*ese encouraging studies hint at the potential of
TNF family members in their efforts to diagnose and predict
cancer. In this study, we clustered PAAD into two classes
according to TNF family genes, acquired nineteen TNF
family genes that were significantly correlated with the
clinical characteristics (M, N, T, stage, grade, gender, and
age) of PAAD patients, and further screened and established
a risk score model. *is model has been shown to have
certain clinical prognostic value in PAAD.

Stimulation or inhibition of TNF superfamily signaling
pathways may influence tumor progression [31]. We com-
pared our model with the model established by Rong et al.
[32]. In terms of sample size, our study included more
samples (n� 178). Moreover, based on the time-dependent
ROC results, the AUC of our model at 1 year, 3 years, and 5
years are 0.714, 0.794, and 0.844, relatively (Figure 3(c)). *e
1-year, 3-year, and 5-year AUCs in the model established
previously were 0.707, 0.75, and 0.795, respectively (Figure
S4). *is means that our model has better adaptability. We
also noticed an interesting finding that the sensitivity of risk
scores to predict 1-year, 3-year, and 5-year survival rates
gradually increased. *e risk factors included in our model,
such as UBE2C and ADAM8, and their high expression
levels are associated with poor clinical outcomes [33, 34].
*erefore, we speculate that the increased sensitivity of the
risk score to survival may be due to the stronger expression
of related genes with the development of PAAD.

Immune cells account for nearly 50% of the components
of pancreatic ductal adenocarcinoma cells, but only a few are
antitumor effector cells [35]. A novel study pointed out that
monocytes may be an effective predictor of response to
treatment in patients with glioma [36]. Our research also
noticed that monocytes were significantly different between
the high-risk group and low-risk group. Immunoinfiltration
of macrophages has been used as a prognostic factor to assess
the immune microenvironment of pancreatic ductal carci-
noma [37]. *is study found a significant correlation be-
tween the TNF family-related risk score model and the
immune infiltration and inflammatory indicators. Immune
checkpoint blockade (ICB) therapy is one of the most
promising immunotherapies, especially in inhibiting me-
tastasis. However, due to the immunosuppressive tumor
microenvironment and extensive fibrotic matrix, immu-
notherapy is still greatly hindered in the treatment of
pancreatic cancer [38]. For example, ICBs with programmed
cell death protein-1 (PD-1)/programmed cell death ligand 1
(PD-L1) antibodies showed a sustained response rates in
immunogenic tumors [39]. Patients with a large number of
tumor-infiltrating lymphocytes in pancreatic ductal ade-
nocarcinoma after ICB apparently have a better prognosis,
while patients with mismatched repair defects have a better
outcome, suggesting the possibility of a comprehensive
immune enhancement that reverses the tumor microenvi-
ronment [40]. *rough the analysis of different categories of
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immune checkpoints, we found that immune checkpoints
changed as risk scores changed from low to high, and there
was a strong correlation between the two. Zhang et al.
proposed that the exploration of more valuable PD-L1 and
CTLA-4 modulators to improve the efficacy of immuno-
therapy is currently an effective strategy to promote per-
sonalized cancer therapy [41].

In conclusion, the risk score model based on TNF family
has good clinical value and adaptability in the prognosis of
PAAD. Patients with high-risk PAAD tend to have a poorer

prognosis, particularly with respect to immune infiltration
and inflammation. In addition, we noted a strong correlation
between risk scores and immune checkpoints. Our study
may provide novel guidance for the diagnosis, prognosis,
and treatment of PAAD.

Data Availability

All data supporting this study are available from the cor-
responding author upon reasonable request.
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Figure 6: Expression of immune checkpoints as risk scores varied from low to high. ∗A correlation with the immune score.
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