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Summary

The soxB gene encodes the SoxB component of
the periplasmic thiosulfate-oxidizing Sox enzyme
complex, which has been proposed to be wide-
spread among the various phylogenetic groups of
sulfur-oxidizing bacteria (SOB) that convert thiosul-
fate to sulfate with and without the formation of
sulfur globules as intermediate. Indeed, the compre-
hensive genetic and genomic analyses presented in
the present study identified the soxB gene in 121
phylogenetically and physiologically divergent SOB,
including several species for which thiosulfate utili-
zation has not been reported yet. In first support of
the previously postulated general involvement of
components of the Sox enzyme complex in the thio-
sulfate oxidation process of sulfur-storing SOB, the
soxB gene was detected in all investigated photo-
and chemotrophic species that form sulfur glo-
bules during thiosulfate oxidation (Chromatiaceae,
Chlorobiaceae, Ectothiorhodospiraceae, Thiothrix,
Beggiatoa, Thiobacillus, invertebrate symbionts and
free-living relatives). The SoxB phylogeny reflected
the major 16S rRNA gene-based phylogenetic lin-
eages of the investigated SOB, although topological
discrepancies indicated several events of lateral
soxB gene transfer among the SOB, e.g. its inde-
pendent acquisition by the anaerobic anoxygenic
phototrophic lineages from different chemotrophic
donor lineages. A putative scenario for the proteo-
bacterial origin and evolution of the Sox enzyme
system in SOB is presented considering the phylo-
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genetic, genomic (sox gene cluster composition)
and geochemical data.

Introduction

The sulfur compound thiosulfate has been suggested to
fulfil a key role in the biological sulfur cycle in nature
(Joergensen and Nelson, 2004; Zopfi etal., 2004). A
variety of photo- and chemotrophic sulfur-oxidizing
prokaryotes (SOP) are able to use thiosulfate besides
sulfide and sulfur as electron donor for their photosynthetic
and respiratory energy-generating systems (Brune, 1995;
Nelson and Fisher, 1995; Kelly et al., 1997; Imhoff, 1999;
2001a,b; 2003; Briser etal., 2000; Robertson and
Kuenen, 2002; Kletzin et al., 2004; Takai et al., 2005). In
consequence of the phylogenetic and physiological diver-
sity of SOP, several different enzymatic systems and path-
ways appear to be involved in the dissimilatory oxidation of
thiosulfate. While the thiosulfate-converting enzymes of
the archaeal sulfur oxidizers, e.g. Acidianus ambivalens
(Kletzin et al., 2004), represent a convergently evolved
system, at least three thiosulfate oxidation pathways are
postulated to exist in the sulfur-oxidizing bacteria (SOB)
(Kelly etal., 1997; Bruser et al., 2000; Friedrich et al.,
2001; 2005). (i) The thiosulfate degradation process via
polythionate intermediates involves the enzymes thiosul-
fate dehydrogenase and tetrathionate hydrolase and
appears to be common in chemotrophic SOB living in
extreme habitats, such as Acidithiobacillus, Thermothioba-
cillus and Halothiobacillus (Pronk et al., 1990; Meulenberg
etal, 1993; Kelly etal, 1997); in addition, some
Pseudomonas and Halomonas species use the formation
of tetrathionate from thiosulfate as supplemental energy
source (Sorokin, 2003). However, no conclusive model for
the formerly termed ‘tetrathionate pathway’ exists and the
central role of tetrathionate has recently been disputed
(Bruser et al., 2000; and references therein). In addition, a
different model not involving tetrathionate has been devel-
oped for the oxidation of elemental sulfur in acidophilic
SOB (Rohwerder and Sand, 2003). (ii) The multienzyme
complex system (Sox)-mediated pathway has been
demonstrated to operate in photo- and chemotrophic
Alphaproteobacteria that convert thiosulfate to sulfate
without sulfur globule formation as free intermediate
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(Mukhopadhyaya et al., 2000; Appia-Ayme et al., 2001;
Friedrich et al., 2001; Kappler et al., 2001). The current
model of the Sox enzyme system comprises the four
periplasmic complexes SoxXA, SoxYZ, SoxB and
Sox(CD), that catalyse the thiosulfate oxidation according
to the following mechanism. First, the SoxXA complex
oxidatively couples the sulfane sulfur of thiosulfate to a
SoxY-cysteine-sulfhydryl group of the SoxYZ complex
from which the terminal sulfone group is subsequently
released by the activity of the SoxB component. Subse-
quently, the sulfane sulfur of the residual SoxY-cysteine
persulfide is further oxidized to cysteine-S-sulfate by the
Sox(CD), sulfur dehydrogenase complex from which the
sulfonate moiety is again hydrolysed off by SoxB, thereby
restoring SoxYZ; each of the previous proteins alone is
catalytically inactive (Friedrich et al., 2001; 2005). The
primary structure of the SoxB is about 30% identical to
zinc-containing 5’-nucleotidases; however, besides its
essential enzymatic activity as sulfate thioesterase com-
ponent in the Sox enzyme system, no other in vivo function
has been reported for this monomeric, dimanganese-
containing protein (Epel et al., 2005). (iii) The branched
thiosulfate oxidation pathway was postulated to operate in
those bacteria that form sulfur globules during thiosulfate
oxidation. This pathway proceeds via the interaction of two
spatially separated enzyme systems; the sulfone sulfur is
rapidly converted to sulfate in the periplasm, whereas the
sulfane sulfur accumulates as intracellularly or periplasmi-
cally deposited sulfur [S°] before further oxidation by cyto-
plasmic enzymes. Previously, the thiosulfate oxidation was
suggested to be initiated by the activity of periplasmic
thiosulfate reductases or rhodaneses via a reductive cleav-
age of the molecule (Brune, 1995; Bruser et al., 2000).
Increasing experimental data indicate that components of
the Sox enzyme system are instead involved in the initial
step of the branched thiosulfate oxidation pathway of
some sulfur-storing bacteria (Hanson and Tabita, 2003;
Friedrich et al., 2005; Hensen etal., 2006). In conse-
quence, the oxidation of reduced inorganic sulfur com-
pounds via components of the Sox enzyme system was
postulated to be a widespread mechanism among the SOB
(Friedrich etal., 2001; 2005; Hensen etal., 2006).
However, a comprehensive investigation of the phylogen-
tically diverse SOB had not been performed to confirm this
proposal. In first support, Petri and coworkers (2001)
proved the presence of SoxB encoding genes in eight
thiosulfate-utilizing reference strains from the Alpha-,
Beta- and Gammaproteobacteria as well as Chlorobia
lineage. Their presented SoxB phylogenetic tree was
based on a limited dataset not including representatives
of several major SOB lineages, e.g. Chromatiaceae,
Ectothiorhodospiraceae, Thiotrichaceae, invertebrate
symbionts and their free-living relatives, as well as Sulfu-
rimonas denitrificans (Takai et al., 2006).

To evaluate the former postulation by Friedrich and
coworkers, the previously published polymerase chain
reaction (PCR) assays (Petri et al., 2001) were used to
investigate the soxB distribution among 116 different
photo- and chemotrophically SOB strains considering
especially the thiosulfate-oxidizing, sulfur-storing species.
The comparison of the SoxB- and 16S rRNA gene-based
tree topologies indicated the occurrence of several puta-
tive lateral gene transfer (LGT) events of the soxB gene
among the SOB. A potential scenario for the origin and
evolution of the microbial thiosulfate oxidation processes
is presented in context with the gene composition of the
sox gene loci in SOB genomes and the geochemical data.

Results
Amplification of soxB genes by PCR from SOB

The PCR-based analysis confirmed the presence of the
soxB gene for 50 different photo- and chemotrophic sulfur-
oxidizing species from 116 investigated reference strains
(see Table 1 for details of PCR results; potential contami-
nation of the examined reference strains could be
excluded by 16S rRNA gene-based analyses). In general,
the amplification with soxB693F/soxB1446R and
soxB693F/soxB1164B (Table 2) resulted in single, correct-
sized PCR products (~750 bp and ~470 bp, respectively),
whereas the primer pair soxB432F/soxB1446R (Table 2)
frequently generated two amplicons of nearly identical
length (~1000 bp) with the consequence of ambiguous
direct sequencing results. Analysis of genome data
revealed that the highly degenerated primers are comple-
mentary to the target sites of Chlorobiaceae, Betaproteo-
bacteriaand most Gamma- and Alphaproteobacteria soxB
sequences. Therefore, the negative amplification results
obtained from several proven SOB species of, e.g. Chro-
matiaceae and Chlorobiaceae with the three different
primer sets were most probably not caused by inhibited
primer annealing but are indicative for the absence of this
gene in the respective strain (see Table 1). The results of
the PCR-based analysis are supported by: (i) the Southern
blot assays resulting in no hybridization signal for the
examined Chlorobiaceae species of the subclusters 2a
and 3b (except Chlorobium limicola DSM 1855) irrespec-
tive of soxB probes used (see Table 3; probe specificities
and stringency of hybridization conditions verified by the
negative hybridization results obtained with genomic DNA
from non-thiosulfate-oxidizing Desulfomicrobium bacula-
tum); and (ii) genome data (Table 4). In contrast, the target
sites of Hyphomicrobiaceae and Rhodopseudomonas
spp. (Alphaproteobacteria), Thiomicrospira crunogena
and ‘Candidatus Ruthia magnifica’ (Gammaproteobacte-
ria), as well as S. denitrificans (Epsilonproteobacteria),
harboured two or more mismatches at the 3’-end
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Table 1. Polymerase chain reaction (PCR) amplification results of soxB gene fragments from genomic DNA of sulfur-oxidizing reference strains.

PCR product obtained with primer set® Length of GenBank

obtained accession no.
soxB432F soxB693F soxB693F soxB soxB
Species? Strain® soxB1446B soxB1446B soxB1164B sequence
Archaea
Crenarchaeota phylum, Thermoprotei
Sulfolobaceae
Acidianus ambivalens 3772 - - n.d. - -
Metallosphaera sedulae® 53487 - - n.d. - -
Metallosphaera prunae® 10039 - - n.d. - -
Sulfolobus metallicus® 6482 - - n.d. - -
Bacteria
Chloroflexi phylum, Chloroflexi
Chloroflexaceae
Chloroflexus aggregans® 9485 - - n.d. - -
Chlorobi phylum, Chlorobia
Chlorobiaceae
1 Prosthecochloris aestuarii®® 2717 - - n.d. - -
Prosthecochloris sp.®° 2K - - n.d. - -
Prosthecochloris vibrioforme®? 260 - - n.d. - -
Prosthecochloris vibrioforme®¢ 1678 - - n.d. - -
2a  Chlorobium luteolum®d 2737 - - n.d. - -
Chlorobium luteolum®* 262 - - n.d. - -
2b  Chlorobium phaeovibrioides®? 269" - - n.d. - -
Chlorobium phaeovibrioides®' 265 + + n.d. database AJ294321
Chlorobium phaeovibrioides®® 261 - - n.d. - -
Chlorobium phaeovibrioides®® 270 - - n.d. - -
3a Chlorobium phaeobacteroides®® 266" - - n.d. - -
Chlorobium clathratiforme® 54777 + + n.d. database AJ294323
‘Chlorobium ferrooxidans™ 130317 - - n.d. - -
3b  Chlorobium limicola®® 2457 - - n.d. - -
Chlorobium limicola® 246 - - n.d. - -
Chlorobium limicola® 2323 + + + 1002 EF618588
Chlorobium limicola®" 1855 + + n.d. 1026 EF618591
Chlorobium limicola® 257 + + + 1026 EF618579
Chlorobium limicola®* 247 - - n.d. - -
Chlorobium limicola®*® 248 - - n.d. - -
4a  Chlorobaculum parvum? 2637 + + n.d. database AJ294320
Chlorobaculum parvum® 2352 + + n.d. 1026 EF618589
4b  Chlorobaculum limnaeum®! 1677 + + n.d. 1026 EF618590
Chlorobaculum thiosulfatiphilum® 2497 n.d. n.d. n.d. database AALG8888
Chlorobaculum thiosulfatiphilum® 2322 + + + 959 EF618587
Proteobacteria phylum, Alphaproteobacteria
Rhodospirillaceae
Rhodospirillum photometricum 1227 + n.d. 918 EF618569
Rhodobacteraceae
Rhodothalassium salexigens 21327 * + n.d. 679 EF618585
Rhodovulum adriaticum 2781 * + n.d. 972 EF618592
Rhodovulum sulfidophilum 13747 + + n.d. database AAF99435
Bradyrhizobiaceae
Rhodoblastus acidophilus 1377 - - n.d. - -
Hyphomicrobiaceae
Blastochloris viridis® 1337 - - n.d. - -
Rhodobiaceae
Rhodobium marinum® 26987 - - n.d. - -
Proteobacteria phylum, Betaproteobacteria
Hydrogenophilaceae
Thiobacillus aquaesulis 42557 + + n.d. 999 EF618597
Thiobacillus denitrificans 124757 + + n.d. 981 EF618607
Thiobacillus denitrificans 739 n.d. n.d. n.d. - -
Thiobacillus denitrificans 807 n.d. n.d. + 501 EF618581
Thiobacillus plumbophilus 66907 + + n.d. 765 EF618604
Thiobacillus thioparus 505" + n.d. n.d. database AJ294326
Neisseriaceae
Aquaspirillum sp. strain D-412° - - - n.d. - -
Aquaspirillum sp. strain D-415° - - - n.d. - -
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Table 1. cont.

PCR product obtained with primer set® Length of GenBank

obtained accession no.
soxB432F soxB693F soxB693F soxB soxB
Species? Strain® soxB1446B soxB1446B soxB1164B sequence
Proteobacteria phylum, Gammaproteobacteria
Chromatiaceae
Allochromatium minutissimum 13767 + + n.d. 1008 EF618582
Allochromatium vinosum 180" * + n.d. 1017 EF618570
Allochromatium warmingii® 1737 - - n.d. - -
Chromatium okenii® 6010 * + n.d. 729 EF618602
Halochromatium glycolicum 110807 + + n.d. 966 EF618605
Halochromatium salexigens 43957 + + n.d. 1018 EF618598
Isochromatium buderi® 1767 - - n.d. - -
Lamprocystis purpurea® 41977 + + n.d. 919 EF618595
Marichromatium gracile 2037 * + n.d. 1017 EF618572
Marichromatium purpuratum 15917 + + n.d. 1017 EF618584
Rhabdochomatium marinum 52617 + - + 713 EF618601
Thermochromatium tepidum® 37717 - - - - -
Thiocapsa pendens 236" + + - 990 EF618577
Thiocapsa rosea® 2357 + n.d - - -
Thiocapsa roseopersicina 2177 + + n.d 1023 EF618576
Thiocapsa roseopersicina® 4210 + + n.d. 1023 EF618596
Thiococcus pfennigii®® 226" - - n.d. - -
Thiococcus pfennigii® 227 - - - - -
Thiococcus pfennigii® 228 - - - - -
Thiocystis gelatinosa 2157+ n.d. - 950 EF618575
Thiocystis violacea 2077+ n.d + 984 EF618573
Thiocystis violacea 214 + + n.d. 1008 EF618574
Thiocystis violascens 1987 + + + 987 EF618571
Thiodictyon bacillosum®? 2347 - n.d. n.d - -
Thiodictyon sp. strain F4° - - - - - -
Thiohalocapsa halophila 62107 + n.d. + 981 EF618603
Thiolamprovum pedioforme 38027 + n.d. + 993 EF618593
Thiorhodococcus minor 115187 + n.d. + 1029 EF618606
Thiorhodovibrio winogradskyi® 6702" - - - - -
Ectothiorhodospiraceae
Ectothiorhodospira mobilis® 4180 + + n.d. 1011 EF618594
Ectothiorhodospira shaposhnikovii® 2437 + + n.d. 1011 EF618578
Halothiobacillaceae
Halothiobacillus hydrothermalis 71217 - + n.d. database AJ294325
Halothiobacillus kellyi 131627 + + n.d. 954 EF618609
Halothiobacillus neapolitanus 5817 + + n.d. database AJ294332
Thiovirga sulfuroxydans sp. strain A7 - + + n.d. 735 EF618610
Thiotrichaceae
Beggiatoa alba 14167 + + n.d. 858 EF618583
Beggiatoa leptomitiformis strain D-401¢ - n.d. n.d. n.d. - -
Beggiatoa leptomitiformis strain D-402 - n.d. n.d. n.d. - -
Leucothrix mucor 21577 - + + 465 EF618586
Leucothrix mucor' 621 - + + 669 EF618580
Macromonas bipunctata strain D-408¢ - + - n.d. - -
Thiothrix nivea 52057 n.d. + n.d. 738 EF618600
Thiothrix sp. 12730 n.d. + n.d. 765 EF618608
Piscirickettsiaceae
Thiomicrospira frisia 123517 - - - - -
Thiomicrospira kuenenii 123507 - - - - -
Thiomicrospira sp. 13163 - n.d. - - -
Thiomicrospira sp. 13164 - n.d. - - -
Thiomicrospira sp. 13189 - n.d. - - -
Thiomicrospira sp. 13190 - n.d. - - -
Uncertain affiliation
‘Thiobacillus prosperus’ 51307 + n.d. - 447 EF618599
Invertebrate symbionts and free-living relatives
Bathymodiolus azoricus symbiont - - - - - -
Bathymodiolus brevior symbiont - - - - - -
Bathymodiolus thermophilus symbiont - - - n.d. - -
Calyptogena magnifica symbiont - - - n.d. - -
Ifremeria nautilei symbiont' - + + n.d. 766 EF618614
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Table 1. cont.

PCR product obtained with primer set® Length of GenBank

obtained accession no.
soxB432F soxB693F soxB693F soxB soxB
Species? Strain® soxB1446B soxB1446B soxB1164B sequence

Inanidrilus exumae symbiont® - - - n.d. - -
Inanidrilus leukodermatus symbiont? - - - n.d. - -
Inanidrilus makropetalos symbiont® - - - n.d. - -

Oasisia sp. symbiont? - - - n.d. - -

Riftia pachyptila symbiont - + + n.d. 756 EF618617
sulfur-oxidizing bacterium OAII2 - + n.d. n.d. 993 EF618611
sulfur-oxidizing bacterium OBII5 - + + n.d. 975 EF618612
sulfur-oxidizing bacterium ODIII5 - - - n.d. - -
sulfur-oxidizing bacterium ODI4 - + n.d. + 936 EF618613
sulfur-oxidizing bacterium NDII1.2 - - n.d. + 501 EF618616
sulfur-oxidizing bacterium ‘manganese crust’ - + n.d. n.d. 972 EF618615

Proteobacteria phylum, Epsilonproteobacteria
Helicobacteraceae
Sulfurimonas denitrificans 12517 - - - database YP_392780
Spirochaeta phylum, Spirochaetes
Spirochaetaceae

Spirochaeta sp. strain P¢ - * + n.d. - -
Spirochaeta sp. strain BM¢ - + + n.d. - -
Spirochaeta sp. strain M-6' - * * n.d. 927 EF618568

a. Taxonomic classification of investigated SRP species according to the taxonomic outline of the prokaryotes, Bergey’s Manual of Systematic
Bacteriology, 2nd edition, release 5.0 May 2004 (http://dx.doi.org/10.1007/bergeysoutline); genomic DNA of sulfur-oxidizing reference strains
signed with e were received from the culture collection of J. Imhoff, University of Kiel.

b. DSM identification numbers of investigated species (laboratory-internal numbers of culture collection from J. Imhoff in italic type); (=) not
deposited in a culture collection; T, type strain.

c. soxB gene PCR results obtained from genomic DNA of sulfur-oxidizing reference strains are summarized with the following abbreviations: (-)
no amplicon; (+) correct-sized amplicon; (+) correct-sized amplicon with byproducts; (n.d.) PCR amplification not determined.

d. Thiosulfate-oxidizing ability not experimentally proven for respective species (Brune, 1995; Nelson and Fisher, 1995; Brinkhoff et al., 1999;
Howarth et al., 1999; Imhoff, 1999; 2001a,b,c; 2003; Kelly and Wood, 2000; Kuever et al., 2002; Cavanaugh et al., 2004; Dubinina et al., 2004;
Kletzin et al., 2004; Teske and Nelson, 2004; Takai et al., 2006).

f. Thiosulfate-oxidizing ability of soxB gene-harbouring SOB species not experimentally proven (Nelson and Fisher, 1995; Imhoff, 1999, 2001a;
2003; Kuever et al., 2002; Cavanaugh et al., 2004; Dubinina et al., 2004; Teske and Nelson, 2004).

g. Uncertain taxonomic classification (synonym Ectothiorhodospira marismortui).

sequence position of one or both primers of the applied Phylogeny of sulfate thioesterase (SoxB) of SOB

primer sets. While internally or at the 5’-end located, single

mismatches have only a limited effect on the primer The SoxB consensus tree presented in this work (Fig. 1)
annealing efficiency (Kwok etal., 1990; Simsek and is based on 124 sequences obtained from genetic and
Adnan, 2000), their position at the 3’-end of the primer genomic analyses (Tables 1 and 4). The integration of
sequence severely affects the PCR efficiency. In conse- 50 novel SoxB partial sequences from sulfur-storing
quence, the soxB PCR primer combinations used will have photo- and chemotrophic bacteria, e.g. Chromatiaceae,
failed to amplify gene fragments from certain examined Ectothiorhodospiraceae, Thiotrichaceae, thiotrophic sym-
genera, e.g. Thiomicrospira spp. and related symbionts of biont of invertebrates and their free-living relatives
the Vesicomyid mussels and Mytilid clam, S. denitrificans (Table 1) which were previously not considered (Petri
and putatively Rhodoblastus acidophilus. et al,, 2001), allowed new insights into the evolutionary

Table 2. Polymerase chain reaction (PCR) primers used for amplification of soxB gene fragments.

Primer? Sequence (in 5'—3’ direction)® Primer binding site®
soxB432F GAY GGN GGN GAY ACN TGG 432-450
soxB693F ATC GGN CAR GCN TTY CCN TA 693-713
soxB1164B AAR TTN CCN CGN CGR TA 1181-1166
soxB1446B CAT GTC NCC NCC RTG YTG 1446-1428

a. Source: Petri et al. (2001).

b. Degenerate positions are in boldface.

c. soxB primer binding sites are enumerated according to the nucleotide sequence of Paracoccus denitrificans str. GB 17 (GenBank accession
no. CAA55824).
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Table 3. Results of Southern blot assays with radioactively labelled soxB-specific probes and genomic DNA of sulfur-oxidizing and sulfate-

reducing bacteria.

Genomic DNA of SOB and SRB Strain® Southern blot hybridization results with soxB-specific probe®
species (EcoRI/Hindlll digestion)
Chlorobium Chlorobium Chlorobium Thiocapsa
limicola 1855 limicola 257 clathrathiforme 5477 roseopersicina 4210
Gammaproteobacteria
Thiocapsa roseopersicina 217 * * * ++
Thiocapsa roseopersicina 4210° * * * ++
Chlorobia
Chlorobium limicola 245° - - -
Chlorobium limicola 248° - - - -
Chlorobium limicola 1855°¢ ++ ++ + *
Chlorobium luteolum 262° - - - -
Chlorobium luteolum 273° - - -
Deltaproteobacteria
Desulfomicrobium baculatum 4028 - - - -

a. DSM identification numbers of investigated species (J. Imhoff laboratory-internal numbers are in italic type); cultures received from the culture

collection of J. Imhoff are marked with c.

b. Quality of hybridization results summarized with the following abbreviations: (=) no hybridization (+) hybridization signal (++) strong hybridization

signal.

path of soxB genes among SOB. The overall tree topology
was congruent with the previous one based on a limited
dataset of 13 validated SOB species (Petri et al., 2001).
However, with respect to the improved species coverage,
the enlarged database refined the resolution of the inter-
and intrafamily relationships in the major SoxB lineages.
Comparative analysis of the SoxB- and the 16S rRNA-
based phylogenetic tree (Fig.2; see also references
Imhoff, 1999; 2001a,b,c; 2003; Kelly and Wood, 2000;
Kuever etal., 2002; Cavanaugh etal., 2004; Buchan
et al., 2005; Takai et al., 2006) revealed several topologi-
cal discrepancies indicative for incorrect taxonomical clas-
sifications and even lateral soxB gene transfers among
SOB (marked by letters in the trees). According to the
SoxB phylogeny, the alphaproteobacterial Rhodobacte-
raceae and Bradyrhizobiaceae (Imhoff, 2001b) are not
monophyletic (see distinct branching position of Rhodo-
bacteraceae representatives Stappia aggregata and
Rhodothalassium salexigens and the cluster formation
of Bradyrhizobiaceae members), and Rhodospirillum
photometricum (Rhodospirillaceae) is affiliated with
Rhodopseudomonas spp. (Bradyrhizobiaceae). Indeed,
the current taxonomical classification of R. salexigens
and S. aggregata is also not well supported by the 16S
rRNA gene-based phylogeny. Potential LGT events
involving Alphaproteobacteria are indicated by the 16S
rRNA gene-incongruent close relationships of (i) Spiro-
chaeta sp. strain M-6 (Dubinina et al., 2004) to Sulfito-
bacter spp. (LGT a), and (ii) Acidiphilium cryptum,
Nitrobacter hamburgensis and Bradyrhizobium spp.
(Alphaproteobacteria II) to the Gammaproteobacteria
(LGTs b and c). Interestingly, the latter xenologous cluster
comprises species which harbour a second, non-LGT-
affected soxB gene in their genomes (Bradyrhizobium

spp.). The 16S rRNA gene-discordant affiliation of Anae-
romyxobacter dehalogenans (Deltaproteobacteria) and
Thiovirga sulfuroxydans strain A7 (Gammaproteobacte-
ria) with the Betaproteobacteria points to further lateral
transfers of soxB genes with the previous species as
recipients (LGTs d and e). According to the SoxB tree, the
Gammaproteobacteria were not monophyletic but formed
at least four distinct SOB groups consisting of the Thio-
trichaceae, ‘Thiobacillus prosperus’, Halothiobacillaceae,
free-living relatives of invertebrate symbionts and
Ectothiorhodospira spp. (cluster 1), the Piscirickett-
siaceae, Oceanospirillum sp., Beggiatoa alba, inverte-
brate symbionts and Chromatiaceae (cluster Il), the newly
described Congregibacter litoralis (cluster lll), and Halor-
hodospira halophila (cluster IV). The SoxB-proposed
separate branching positions of Thiothrix/Leucothrix and
Beggiatoa members are supported by the 16S rRNA
gene-based phylogeny (Fig. 2) and point to their incorrect
classification at the family level (Thiotrichaceae). Accord-
ing to the SoxB phylogeny, the Chromatiaceae and affili-
ated invertebrate symbionts are closest related to
members of the Piscirickettsiaceae and Oceanospirillum
(cluster Il). The affiliation of the Ectothiorhodospira spp.
with the Halothiobacillaceae (cluster I) while H. halophila
formed a distinct lineage (cluster 1V) is discordant to their
close relationship based on the 16S rRNA phylogeny
(Ectothiorhodospiraceae) and indicates independent
lateral transfers of soxB genes to the anaerobic anoxy-
genic phototrophic lineages (including the symbionts)
(LGTs f to h). The 16S rRNA gene-incongruent affiliation
of the Chlorobiaceae with the Gammaproteobacteria
cluster Il points also to a lateral soxB acquisition of the
green sulphur bacteria (LGT i). The detailed comparison
of the relative branching order within the Chlorobiaceae
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Fig. 1. SoxB consensus tree based on 124 SoxB sequences from the investigated SOB including the full-length SoxB sequences retrieved
from the public databases. Polytomic nodes connect branches for which a relative order could not be determined unambiguously by applying
distance matrix-based, maximum parsimony and maximum likelihood methods. Maximum likelihood bootstrap re-sampling values greater than
50% (100 re-samplings) are indicated near the nodes. The SoxB sequences of Sulfurimonas denitrificans, Aquifex aeolicus and Thermus
thermophilus ssp. were used as outgroup references. Sulfur-oxidizing bacteria (SOB) with putative laterally transferred soxB genes are in
boldface; proposed LGT events are indicated by letters (a—k). The 16S rRNA gene-based taxonomical classification of SOB species is
indicated. The scale bar corresponds to 10% estimated sequence divergence.

and Chromatiaceae revealed that the 16S rRNA gene-
based species relationships are not reflected in the SoxB
tree topology. Interestingly, the latter is consistent to the
AprBA-based tree topology (B. Meyer and J. Kuever,
2007b); both protein phylogenies point to an incorrect
classification of SOB strain DSM 214 as Thiocystis viola-
cea subspecies (see also Fig. 2). The 16S rRNA gene-
discordant affiliation of the epsilonproteobacterial
S. denitrificans (Takai et al., 2006) with the hyperthermo-
philic Aquifex aeolicus and Thermus thermophilus ssp.
near the root of the SoxB tree indicates their involvement
in LGT events (LGTs j and k).

Additional evidence for lateral transfer of soxB genes

Additional evidence for the inferred phylogenetic position
of the SOB taxa in the SoxB tree is given by the presence
of insertions and deletions (indels) at identical sequence
positions (see Table S1). The comparison of the aligned
SoxB sequences supports the distinct branching position
from S. denitrificans and representatives of the Aquificae
and Thermaceae by the presence of several unique
indels. The xenology of the SoxB from Spirochaeta sp.
strain M-6, T. sulfuroxydans strain A7, A. dehalogenans
and members of Alphaproteobacteria Il is confirmed
by the presence of Roseobacter-, Betaproteobacteria-
and Gammaproteobacteria cluster lll-specific indels
respectively. In addition, the 16S rRNA gene-discordant
affiliations of the anaerobic anoxygenic phototrophic SOB
lineages with the Gammaproteobacteria clusters | to Il
are supported by shared, distinctive indels, while the
separate branching position of H. halophila (cluster V) is
confirmed by Beta- and Gammaproteobacteria cluster
I-specific as well as two unique indels.

Atypical sequence characteristics, e.g. significant
deviations in G + C content and codon usage between the
proposed LGT-derived soxB gene and the recipient
genome, are useful as signposts for recent events of LGT.
In general, no indications for recent LGT events were
identified among the presumed LGT-affected SOB with
the exception of the T. sulfuroxydans strain A7. This strain
has a genome G + C content of 47.1%, while its soxB G +
C content (64.2%) and codon usage are nearly identical to
those of the putative donor strain Cupriavidus metallidu-
rans strain CH34 (G + C content of soxB and genome,
65.9% and 63.7%, respectively).

© 2007 The Authors

Correlation between the sox gene cluster composition
and the occurrence of dsr genes in genomes of
sulfur-storing SOB

Genome data concerning the sox gene cluster, soxX-
AYZBCD, were available from 61 different Proteobacteria
and Chlorobiaceae species, A. aeolicus and two T. ther-
mophilus strains. The comparison of the genomic gene
content revealed that the presence of the dsrAB/
dsrMKJOP correlated with the absence of soxCD genes:
all thiosulfate-oxidizing species that are known to interme-
diately deposit elemental sulfur lack the sulfur dehydro-
genase encoding genes of the periplasmic Sox enzyme
system but possess the genetic ability to oxidize the
stored sulfur via the cytoplasmic dissimilatory sulfite
reductase (DsrAB), e.g. (i) the Chlorobiaceae, (ii) Allo-
chromatium vinosum and H. halophila (as representatives
of the Chromatiaceae and Ectothiorhodospiraceae,
respectively), (iii) Thiobacillus denitrificans, and (iv)
‘Cdt. R. magnifica’. In contrast, the majority of sox gene-
containing Alpha-, Beta- and Gammaproteobacteria,
S. denitrificans and T. thermophilus ssp. harboured
a complete, Paracoccus pantotrophus-/Rhodovulum
sulfidophilum-homologous sox gene cluster (Appia-Ayme
et al., 2001; Friedrich et al., 2001) in their genomes and
lacked the dsrAB/dsrMKJOP genes. Notably, the pres-
ence of the sox gene cluster differed at the species
(Chlorobium, Silicibacter, Nitrobacter and Polaromonas)
and subspecies (Rhodobacter sphaeroides and Rhodo-
pseudomonas palustris) level.

Discussion

Distribution of soxB genes among photo- and
chemotrophic SOB

The members of the anaerobic anoxygenic phototrophic
Chlorobiaceae, Chromatiaceae and Ectothiorhodospi-
raceae and aerobic chemotrophic Beggiatoa, Thiothrix,
Thiobacillus, Thiomicrospira and free-living relatives of
invertebrate symbionts form intra- and extracellularly
stored sulfur globules as obligate intermediate during thio-
sulfate oxidation (Nelson and Fisher, 1995; Howarth et al.,
1999; Imhoff, 1999; 2001a; 2003; Kuever et al., 2002;
Robertson and Kuenen, 2002; Teske and Nelson, 2004).
Based on recent experimental results on sulfur-storing
Chlorobaculum tepidum (Hanson and Tabita, 2003),
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Fig. 2. Consensus tree based on the 16S rRNA gene sequences of the soxB gene-containing SOB species as indicated by the genetic and
genomic analyses of this study. Polytomic nodes connect branches for which a relative order could not be determined unambiguously by
applying distance matrix-based, maximum parsimony and maximum likelihood methods. Maximum likelihood bootstrap re-sampling values
greater than 50% (100 re-samplings) are indicated near the nodes. The 16S rRNA gene sequence of Aquifex aeolicus was used as an
outgroup reference. Sulfur-oxidizing bacteria (SOB) with putative laterally transferred soxB genes are in boldface; proposed LGT events are
indicated by letters (a—k, see Fig. 1). The scale bar corresponds to 10% estimated sequence divergence.

A. vinosum (Hensen etal., 2006) and T. denitrificans
(Beller et al. 2006), the truncated Sox enzyme system,
SoxXAYZB, was postulated to be functionally linked to the
reverse-acting enzymes of the cytoplasmic sulfate-
reduction pathway (Friedrich et al., 2005; Hensen et al.,
2006): in analogy to the P. pantotrophus-based mecha-
nism (Friedrich et al., 2001), the SoxXA would oxidatively
couple thiosulfate to a cysteine-sulfhydryl group of the
SoxYZ complex from which sulfate would be hydrolysed off
by SoxB. Due to the lack of the sulfur dehydrogenase
Sox(CD). component, the sulfane sulfur of thiosulfate
would be transferred to the sulfur globules and subse-
quently oxidized to sulfate via the reverse dissimilatory
sulfite reductase, APS reductase, ATP sulfurylase and
sulfite:acceptor oxidoreductase. Indeed, the previous pro-
teins have been identified in several members of the
anaerobic anoxygenic phototrophic SOB lineages as well
as chemolithotrophic T. denitrificans, marine Beggiatoa,
invertebrate symbionts and their free-living relatives
(Brune, 1995; Nelson and Fisher, 1995; Pott and Dahl,
1998; Dahl et al., 1999; 2005; Kappler and Dahl, 2001;
Sanchez etal., 2001; Kuever etal., 2002; Teske and
Nelson, 2004), whereas the general presence of Sox pro-
teins was unconfirmed for most sulfur-storing species. The
present study confirmed the ubiquitous presence of the
soxB gene in all known thiosulfate-oxidizing, sulfur-storing
chemo- and phototrophic SOB species but also for species
that have not yet been reported to use this sulfur com-
pounds as electron donor (e.g. C. limicola DSM 1855,
Thiocystis gelatinosa, Ectothiorhodospira marismortui,
Leucothrix mucor, Spirochaeta sp.) (see Table 1). As the
soxB is generally a part of the sox gene cluster (see
Table 4), its PCR-based detection in the respective SOB
species might be used as a first indication for the puta-
tive presence of components of the Sox enzyme system.
In context with the absence of soxCD genes and the
presence of genes coding for the reverse dissimilatory
sulfate-reduction pathway in the accessible genomes of
Chlorobiaceae, A. vinosum, H. halophila, T. denitrificans
and ‘Cdt. R. magnifica’ (Table 4), the recently postulated
model for a general involvement of the Sox enzyme system
in the thiosulfate oxidation in sulfur-storing bacteria is
therefore supported by the results of our study (Friedrich
et al., 2005; Hensen et al., 2006).

The PCR amplification results are most likely false-
negative for the examined Thiomicrospira spp. and related
symbionts of Mytilid mussels as well as Vesicomyid clams
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as T. crunogena and ‘Cdt. R. magnifica’ harbour soxB
genes with non-complementary primer target sites.
Indeed, the investigated Thiomicrospira spp. have been
demonstrated to oxidize thiosulfate to sulfate (Brinkhoff
etal., 1999) (note: T. crunogena deposits sulfur globules
despite the presence of a P. pantotrophus-homologous
sox gene cluster and the absence of dsrand aprgenes). In
contrast, the thiosulfate-oxidizing abilities of the symbiotic
bacteria have not been investigated in detail (Nelson and
Fisher, 1995; Cavanaugh et al., 2004). The soxB target
site of Endoriftia persephone and Olavius algarvensis
Gamma-1/-3 symbionts are complementary to the primers
used in the PCR assays; thus, the absence of the soxB
in certain symbiotic bacteria might be correct and
reflect the preferred utilization of sulfide as energy source,
as it is generally proposed for invertebrate symbionts
(Cavanaugh et al.,, 2004). Direct supply of thiosulfate to
their symbionts has only been reported for Bathymodiolus
thermophilus and Calyptogena magnifica that detoxify
sulfide by conversion to this less reduced sulfur compound
(Nelson and Fisher, 1995; Cavanaugh et al., 2004).

In support of the postulated wide distribution of the Sox
enzyme system-mediated pathway as a common mecha-
nism for bacterial thiosulfate oxidation (Friedrich et al.,
2001; 2005), the collected genomic data demonstrated
the complete sox gene cluster to be present in various
photo- and chemotrophic representatives of the
Proteobacteria as well as hyperthermophilic T. thermo-
philus ssp.; however, for most of these species the
ability to utilize thiosulfate has not been experimentally
confirmed (see Table 4), and thus the presence of an
operative, P. pantotrophus-/R. sulfidophilum-homologous
Sox enzyme system is speculative until experimentally
proven. Nevertheless, the abundance of sox genes in
aerobic photo- and non-phototrophic species of the
marine Roseobacter clade points to the energetical
benefit of the Sox enzyme system-mediated oxidation of
inorganic sulfur compounds for members of the latter
group that generally dominate the degradation of organic
sulfur compounds in the bacterioplankton community
(Buchan et al., 2005). In contrast, the capability to use
reduced inorganic sulfur compounds as photosynthetic
electron donors is restricted among anaerobic anoxygenic
phototrophic members of the Alphaproteobacteria to
certain genera (Brune, 1995; Imhoff, 2001b). This is
reflected by the limited detection of the soxB gene
in Rhodothalassium, Rhodospirillum and Rhodovulum
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species in the PCR assays of this study (Table 1),
although false-negative amplification results cannot be
completely ruled out, e.g. for thiosulfate-oxidizing R. aci-
dophilus as R. palustris-relative (Imhoff, 2001b).

In SOB living in extreme habitats, such as Acidithioba-
cillus, Halothiobacillus and Thermothiobacillus, the
complete oxidation of thiosulfate to sulfate has been sug-
gested to be performed via polythionates (Pronk et al.,
1990; Meulenberg etal., 1993; Kelly etal., 1997). For
acidophiles such a pathway makes perfect sense, allow-
ing rapid conversion of thiosulfate, which is chemically
unstable under acidic conditions, into an acid-stable inter-
mediate (tetrathionate). Interestingly, the soxB gene was
identified in the acidophilic ‘T. prosperus’ (Huber and
Stetter, 1989), which might be a first indication that the
Sox enzyme system is also present in some acidophilic
SOB; however, further experimental investigation is
needed for verification (note: Acidithiobacillus ferrooxi-
dans harbours no sox homologues in its genome). The
ability to use more than one thiosulfate-oxidizing enzy-
matic system/enzyme, e.g. the incomplete Sox system
plus Dsr and a thiosulfate dehydrogenase as reported for
A. vinosum (Hensen et al., 2006), allows an adaptation of
the energy conservation to the varying physico-chemical
conditions in environment.

Phylogeny of SoxB: evidence for LGT among SOB

Multiple events of lateral soxB gene transfer among the
SOB are the most reasonable explanation for (i) the
inferred close relationships of SoxB from SOB species
that are distantly related on the basis of the 16S rRNA
gene phylogeny, e.g. S. denitrificans, A. aeolicus and
T. thermophilus ssp., and (ii) the presence of two distantly
related soxB genes in the genome of the same organism,
e.g. Bradyrhizobium species (Figs 1 and 2). The betapro-
teobacterial and the gammaproteobacterial strains that
served as donors for the LGT-affected Bradyrhizobi-
aceae, Acetobacteraceae (Alphaproteobacteria lineage Il)
and A. dehalogenans respectively, are not apparent. The
Bradyrhizobium spp. and related N. hamburgensis strain
X14 might have acquired their soxB gene by independent
LGT events. Alternatively, a single LGT might have
affected their ancestor prior to the diversification of
Bradyrhizobium and Nitrobacter, which was followed by a
replacement of the authentic soxB gene by the xenolog in
the ancestor of Nitrobacter (the xenolog will have later
been lost by most Nitrobacter spp. except N. hamburgen-
sis strain X14, see Table 4). The high sequence identity
values of the partial SoxB sequences from Spirochaeta
sp. strain M-6 and T. sulfuroxydans strain A7 to those of
their putative donor strains, Sulfitobacter and Ralstonia
spp. (98.3% and 99.5%, respectively), are indicative for
recent lateral transfers. However, genome data of Spiro-

chaeta sp. strain M-6 are needed for verification. The
coexistence of recipient and potential donor strains have
been reported, e.g. in ‘Thiodendron’ sulfur bacterial mats
and sulfur-containing microaerobic wastewaters and
sludge (Qureshi et al., 2003; Dubinina et al., 2004; Ito
et al., 2004) that would have enabled interspecies gene
exchange.

According to the SoxB tree, the Gammaproteobacteria
are not monophyletic. The anaerobic anoxygenic pho-
totrophic lineages are 16S rRNA-discordantly affiliated to
the different chemotrophic SOB lineages (Gammaproteo-
bacteria | or ). Therefore, the genera of the Ectothiorho-
dospiraceae (Ectothio- and Halorhodospira) and the
Chromatiaceae (and affiliated invertebrate symbionts), as
well as the Chlorobiaceae, are proposed to have received
their soxB genes by four independent LGT events with
different chemotrophic SOB of the Gammaproteobacteria
having served as donors, e.g. moderate halophilic
Ectothiorhodospiraceae and habitat-sharing Halothioba-
cilli (Imhoff, 1999; Kelly and Wood, 2000). These transfers
most likely occurred before their diversification, which was
followed by a sox gene loss in those genera that are
described as metabolically less versatile, e.g. Thiococcus
and Prosthecochloris spp. (Imhoff, 1999; 2001a; 20083).
All proteobacterial SoxB lineages comprise chemotrophic
SOB with P. pantotrophus-/R. sulfidophilum-homologous
sox gene clusters in their genomes, whereas the xenolo-
gous anaerobic anoxygenic phototrophic SOB lineages
(including invertebrate symbionts) harbour truncated
gene loci. This might indicate that initially the ancestors of
the latter groups acquired the complete soxXAYZBCD
gene cluster from their chemotrophic donors [note: the
sox gene cluster is located on a endogenous plasmid in
certain green sulfur bacteria, and its successful lateral
transfer to non-thiosulfate-utilizing strains was demon-
strated (Mendez-Alvarez et al., 1994)]. In adaptation, the
Sox enzyme pathway could have been functionally linked
to the pre-existing cytoplasmic sulfide/elemental sulfur
oxidation pathway (DsrAB/DsrMKJOP) and the soxCD
genes were subsequently lost, which resulted in the rec-
ognized thiosulfate oxidation pathway via sulfur-globule
formation. Alternatively, this process could have hap-
pened in the potential sulfur-storing chemotrophic donors
of Chromatiaceae and Chlorobiaceae prior to the LGTs.

With regard to the 16S rRNA gene-discordant relation-
ship of S. denitrificans, A. aeolicus and T. thermophilus
ssp. at the root of the SoxB tree, there are two pos-
sible scenarios for the direction of LGT and the origin
of the SoxB protein. First, if the soxB of the hyperther-
mophilic species is assumed to be xenologous, a
(epsilon-)proteobacterial origin of the SoxB protein would
be consistent with the tree topology. In support, all cur-
rently available sequences of other non-proteobacterial
SOB species (Chlorobiaceae, Spirochaeta sp. strain M-6)
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seem to be laterally acquired from Proteobacteria.
Indeed, recent phylogenomic studies disputed the 16S
rBRNA gene-based basal branching of Aquifex but placed
it next to the Epsilon-/Deltaproteobacteria (Dutilh et al.
2004). Second, if the SoxB of S. denitrificans is assumed
to be xenologous, the tree topology would indicate a soxB
origin within the Aquificales or the Thermus lineage fol-
lowed by a LGT to the evolving proteobacterial lineages.
Irrespective of scenario, exchange of genetic material
between these phylogenetic groups would have been
possible, as various molecular studies confirmed their
coexistence and dominance at hydrothermal vents (Rey-
senbach et al., 2000; Takai et al., 2005; Campbell et al.,
2006).

Potential evolutionary scenario for the Sox enzyme
pathway in SOB

During the Proterozoic era, the ocean was proposed to
have been globally anoxic and sulfidic (Shen et al., 2003;
Canfield, 2005) with a widespread occurrence and pre-
dominance of planktonic ancestors of the Chromatiaceae
and Chlorobiaceae lineages as demonstrated by molecu-
lar fossils (Brocks et al., 2005). The anoxic formation of
thiosulfate via (i) chemical FeS; oxidation with MnO, and
(i) biogenic FeS oxidation by denitrifying bacteria (Schip-
pers, 2004) would have been absent. As the dissimilatory
sulfite and APS reductase phylogenies point to an ancient
origin of the sulfate reduction/sulfide oxidation pathway in
SRP and SOB (Boucher et al., 2003; Meyer and Kuever,
2007a) as early as 3.47 giga annum (Ga) (Shen and
Buick, 2004), the anaerobic anoxygenic phototrophs most
likely converted the abundant compounds sulfide/sulfur
by the reverse-operating enzymes of the sulfate reduction
pathway. During the Neoproterozoic, the atmospheric
oxygen increased to > 10% of the present levels until
1.05 Ga that resulted in (i) the deepening of the oxic/
anoxic interface in the ocean, (ii) the oxygenation of
coastal marine sediments, and (iii) decreased levels of
sulfide while less reduced inorganic sulfur compounds like
thiosulfate became more abundant (Canfield and Teske,
1996; Canfield, 2005). This change in the oxidation state
of Earth promoted the evolution and diversification of non-
photosynthetic, facultative aerobic or even strict aerobic
SOB with a wide-scale initiation of the oxidative sulfur
cycle postulated to have occurred lately in the Proterozoic
at 0.75-0.62 Ga (Canfield and Teske, 1996). Novel path-
ways that allowed the usage of the less reduced inorganic
sulfur compounds as respiratory electron donor evolved
simultaneously in the non-photosynthetic SOB. With
regard to the SoxB phylogeny, the Sox enzyme system
might have originated in an aerobic, chemotrophic proteo-
bacterial SOB that lacked the reverse sulfate reduction
pathway and became widespread among the thiosulfate-
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utilizing Proteobacteria. The reverse sulfate reduction
pathway persisted in some facultative anaerobic, chem-
olithoautotrophic SOB groups (e.g. in Thiobacillus, Thio-
thrix, invertebrate symbionts and their free-living relatives)
that employed the branched oxidation pathway for
thiosulfate oxidation. In adaptation to the changing
environmental conditions, the members of the anaerobic
anoxygenic phototrophic SOB lineages acquired novel
pathways that allowed thiosulfate utilization, e.g. the sox
gene cluster by lateral transfer from chemotrophic SOB.

Experimental procedures
Microorganisms

The investigated reference strains of photo- and
chemotrophic SOB (listed in Table 1) were obtained from the
DSMZ (Braunschweig, Germany) as actively growing
cultures. Genomic DNA of green sulfur bacteria and several
purple sulfur bacteria were received from the culture collec-
tion of J. Imhoff, University of Kiel. Extracted genomic DNA of
tissue material was provided by N. Dubilier (/nanidrilus spp.,
B. azoricus, B. brevior), A. D. Nussbauer (R. pachyptila,
B. thermophilus, C. magnifica, Oasisia sp.) and C. Borowski
(I. nautilei). Harvested cells of Beggiatoa spp., Aquaspirillum
spp., Macromonas bipunctata strain D-408 and Spirochaeta
spp. were received from G. Dubinina. The SOB strain ‘man-
ganese crust’ was isolated from enrichment cultures of sedi-
ment and seawater samples of the Caribbean Sea (Caribflux
project, SO-154).

DNA isolation

Genomic DNA from the investigated reference strains was
obtained by applying the DNAeasy Kit (Qiagen, Hilden,
Germany) or the NUCLEOBOND® Kit (MACHEREY-NAGEL,
Duren, Germany) according to the manufacturer's in-
structions. The DNA concentration and quality was estimated
spectrophotometrically, while its integrity was examined visu-
ally by gel electrophoresis on 0.8% (w/v) agarose gels run in
1x Tris-borate-EDTA (TBE) buffer and followed by ethidium
bromide staining (0.5 ug ml™).

Polymerase chain reaction (PCR) amplification of soxB
and 16S rRNA genes

Amplification of the soxB gene fragments was performed
using the primer sets (Table 2) and PCR protocols according
to Petri et al. (2001). Reaction mixtures (total volume of 50 ul)
contained 5 ul 10x REDTaqg PCR reaction buffer, 5 ul 10x
BSA solution (3 mg ml™"), 200 uM (dNTPs) mixture, 1 uM of
each primer, 2.5 U RED Taq DNA polymerase and 10—-100 ng
genomic DNA from the reference strains as template. 16S
rRNA gene fragments were amplified using the primer sets
GM3F/GM4R and GM5F-GC clamp/907R [for subsequent
denaturing gradient gel electrophoresis (DGGE) analysis]
with the PCR conditions as described elsewhere (Muyzer
et al., 1995).
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Cloning of PCR products

Cloning assays of 16S rDNA amplicons and subsequent
ARDRA analyses of the recombinant plasmids were per-
formed as described elsewhere (Meyer and Kuever, 2007a).

Double gradient (DG)-DGGE analysis of PCR-amplified
16S rRNA gene fragments

For DG-DGGE analysis, an acrylamide gradient from 6% to
8% acrylamide/bis-acrylamide stock solution, 37.5:1 (v/v)
(Bio-Rad), was superimposed over a co-linear denaturant
gradient from 20% to 70% of denaturant [100% denaturant
corresponds to 7 M urea and 40% formamide (v/v), deionized
with AG501-X8 mixed bed resin (Bio-Rad)]. Gradients were
formed using a Bio-Rad Gradient Former Model 385. poly-
merase chain reaction (PCR) samples were applied to the
gels in aliquots of 20 pl per lane. Further analysis was per-
formed using the D-CODE™ and D-GENE™ systems (Bio-
Rad) for electrophoresis runs in 1x Tris-acetate-EDTA (TAE)
buffer at 60°C for 3.5 h at 200 V as previously described by
Muyzer et al. (1995). After staining with ethidium bromide
(0.5 ug ml-"), DNA bands were visualized on a UV transillu-
mination table (Biometra, Géttingen, Germany), excised from
the polyacrylamide gel, eluted in 50 ul Tris-HCI, pH 8.0, and
re-amplified using the original PCR conditions and primer pair
without GC-clamp.

Nucleotide sequencing

The soxB and 16S rDNA amplicons of expected size were
purified using either the QIAquick PCR purification, the
QlAquick gel extraction kit (Qiagen, Hilden, Germany) or the
Perfectprep gel cleanup sample kit (Eppendorf, Hamburg,
Germany) following the supplier's recommendations. The
PCR products were directly sequenced in both directions
using the respective amplification primers and the ABI
BigDye terminator cycle sequencing kit (Applied Biosystems,
Foster City, USA). Sequencing reactions were run on an ABI
PRISM® 3100 Genetic Analyzer (Applied Biosystems).

Sequence analysis tools and phylogeny inference

The DNA sequence data of the soxB amplicons from each
SOB reference strain were assembled with subsequent
manual correction using the sequence alignment editor
program Bioedit (http://www.mbio.ncsu.edu/BioEdit/bioedit.
html). BLAST searches for homologous sequences of SoxB in
the public databases were performed at the NCBI website
(http://www.ncbi.nlm.nih.gov/BLAST/). Searches on the pre-
liminary sequence data of accessible SOB genomes
were performed at The Institute for Genomic Re-
search website (http://www.tigr.org) and at the DOE Joint
Genome Institute website (http://img.jgi.doe.gov/cgi-bin/pub/
main.cgi). The SoxB partial sequences obtained in this study
and the complete sequences of the public databases were
automatically aligned using the web server Tcoffee @igs
(http://igs-server.cnrs-mrs.fr/Tcoffee/). The corresponding
nucleic acid sequences of the soxB gene fragments were

aligned based on the manually corrected amino acids
alignment.

The phylogenetic analyses were based on a dataset of (i)
67 full-length SoxB sequences from publicly available
genome data of SOB (Table 4), (ii) 7 partial sequences of
chemotrophic SOB retrieved from the study of Petri and
coworkers (2001), and (iii) 50 novel partial sequences
obtained in this study (Table 1). Alignment regions of ambigu-
ous homology as well as indels not present in all investigated
sequences were omitted. Unrooted phylogenetic trees were
constructed using the tree inference methods included in the
ARB software package (http://www.arb-home.de) (distance
matrix, neighbour-joining, Fitch; maximum parsimony,
ProPars; maximum likelihood, ProML) on the basis of 118
SoxB sequences with 203 compared amino acid positions
respectively. The trees were calculated using the global rear-
rangement, randomized species input order options and JTT
matrix as amino-acid replacement model. The robustness of
phylogenetic trees was tested by bootstrap analysis with 100
re-samplings. Short partial sequences were individually
added to the initial trees using the QUICK_ADD parsimony
tool of ARB without allowing changes in the overall tree
topology. Finally, a SoxB-based consensus tree was con-
structed after comparing the topologies of the phylogenetic
trees calculated by distance matrix, maximum parsimony and
maximum likelihood analyses. The 16S rRNA gene-based
consensus tree was generated as described for the SoxB
phylogeny inference (16S rRNA gene sequences were
obtained from the public databases).

Southern blot analysis

Identical amounts of genomic DNA (5ug) from sulfur-
oxidizing and sulfate-reducing bacteria (Table 3) were
digested at 37°C with Hindlll and EcoRI overnight, precipi-
tated by ethanol, electrophoresed on 0.8% 1x TAE buffer at
100 V for 3 h, transferred to positively charged nylon mem-
branes (Hybond N + filter, Amersham) by capillary neutral
transfer and immobilized by UV cross-linking (Transillumina-
tor, Biometra). The DNA probes for soxB genes (0.7 kb in
length) were radioactively labelled with [0-**P]JdCTP by the
random priming method using the HexalLabel™ DNA Labeling
Kit (MBI Fermentas) according to the manufacturer's
directions. The membranes were placed into glass hybridiza-
tion bottles and prehybridized in 5x SSC (1x SSC is 0.15 M
NaCl, 0.015 M Na-citrate, pH 8.0), 50% formamide, 0.1%
sarcosyl, 7% SDS, 50 mM phosphate buffer, pH 7.0 and 2%
casein (‘Church’ hybridization solution) at 50°C for 1 h in a
hybridization oven (Biometra). Subsequently, a freshly dena-
turated, labelled DNA probe was added to the prehybridiza-
tion solution followed by incubation for 12—16 h at 50°C under
slow-speed rotation. The membranes were washed twice at
50°C for 30 min in 0.1x SSC-0.1% SDS, exposed to Phos-
phorlmaging screen cassettes (Molecular Dynamics, Krefeld,
Germany), scanned with a Typhoon Variable Mode Imager
and processed with Image Quant software (Amersham). The
membranes were stripped by two incubations for 15 min in
probe-stripping solution (consisting of 0.4 M NaOH and 0.1%
SDS) at 37°C under permanent agitation and re-probed,
starting from the prehybridization step of the hybridization
procedure.
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GenBank accession numbers

The nucleotide sequence data reported in this study have
been submitted to GenBank and are available under acces-
sion number EF618568-EF618617.
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The following supplementary material is available for this
article online:

Table S1. SoxB alignment showing indels among selected
representatives of the major phylogenetic SOB lineages, sup-
porting the inferred relationships including the postulated
LGTs of soxB among the investigated SOB species. Amino
acid positions according to the enumeration of Paracoccus
denitrificans str. GB17 proteins. Identical indel positions in
SoxB sequences are indicated by boxes.

This material is available as part of the online article from
http://www.blackwell-synergy.com
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