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Abstract

The rate of tumor recurrence post resection suggests that there are underlying molecular changes in

nearby histologically normal tissue that go undetected by conventional diagnostic methods that utilize

contrast agents and histochemistry. MALDI MS is a molecular technology that has the specificity

and sensitivity to monitor and identify molecular species indicative of these processes. The current

study utilizes this technology to assess molecular distributions within a tumor and adjacent normal

tissue in clear cell renal cell carcinoma biopsies. Results indicate that the histologically normal tissue

adjacent to the tumor expresses many of the molecular characteristics of the tumor. Proteins of the

mitochondrial electron transport system are examples of such distributions. This work demonstrates

the utility of MALDI MS for the analysis of tissue biopsies in the elucidation of molecular processes

in the tumor microenvironment.
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Introduction

One of the foremost concerns in clinical oncology and pathology is ensuring complete tumor

removal 1. Currently, histopathological assessment of the resected tumor is the primary post-

operative, and in some cases intraoperative, method for assessing surgical margin status 2.

Despite these assessments, local tumor recurrence remains a problem in many cancers such as

lung 3, breast 4, soft tissue 5, 6, head and neck 2, 7, and brain 8. Depending on the tissue type,

recurrence may occur a few months to a few years after removal of the primary tumor,

suggesting there are underlying molecular processes present in the remaining tissue that go

undetected using current histopathological techniques. Since molecular alterations precede

phenotypic changes, the environment outside of the tumor margin may appear normal upon

histological assessment, which renders conventional histological methods unsatisfactory in

being the only determinant of successful resection. The discovery of new molecular markers

for such processes has the potential to provide an additional, complimentary approach to

identifying an aberrant tissue environment 2.
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Previous studies of tumor margins have utilized antibody-directed approaches for several

cancer types; however, these targeted approaches limit the information obtainable and may be

insufficient for determining the extent of the abnormal cellular environments beyond the

histological tumor border 2, 7, 9. Antibody-based approaches for assessing tumor margins often

suffer from unknown cross-reactivities while nuclear staining procedures are limited to

visualization of cellular morphology 10. Proteomic studies can facilitate the understanding of

the changes in the environments of the tumor and adjacent normal tissue and provide an

estimate of the distance beyond the histologically-defined margin that these changes occur.

Proteomic tools, such as gel electrophoresis and mass spectrometry (MS), have been

successfully applied to facilitate the discovery of potential disease biomarkers 11–14. In

particular, direct tissue analysis by profiling and imaging MALDI (matrix-assisted laser

desorption ionization) MS provides spatial information in addition to molecular specificity,

high sensitivity, and a relatively large dynamic range for the detection of drugs and their

metabolites 15 as well as intact proteins and peptides 16, 17. Studies utilizing this technology

have resulted in the identification of prognostic and diagnostic markers for patients with brain

tumors 18, 19 and non-small-cell lung cancer 20 biomarkers indicative of glomerulosclerosis
21, the prediction of tumor response to molecular therapies 22, further understanding of

Parkinson’s disease progression 14 and the effect of TGF-beta in mammary tumor development
23. Recently, the potential applicability of this technology to the analysis of tumor margins was

illustrated with a soft tissue sarcoma biopsy 24. The current research utilizes this technology

for assessment of the tumor microenvironment in clear cell renal cell carcinoma resection

specimens.

Each year there are approximately 36,160 new cases and 12,660 deaths in the United States

attributed to cancer of the kidney or renal pelvis 25. Of these, approximately 75–80% 26 are

renal cell carcinoma (RCC), which includes a group of unique histological subtypes: clear cell

(conventional) RCC, papillary (chromophil) RCC, chromophobe cell RCC, collecting duct

RCC, medullary RCC, and other unclassified tumors. The majority (80%) of RCC cases are

classified as clear cell RCC (ccRCC), called such because of their high content of lipid and

cholesterol, creating a yellow appearance grossly and clear cytoplasm histologically 27, 28.

Clear cell RCC is the most malignant of renal tumors, having the worst prognosis of all subtypes
26.

For cancers such as ccRCC, it is critical to study the molecular characteristics of both the tumor

and surrounding tumor margin. Such studies would not only facilitate a better understanding

of tumor invasion, but also provide potential markers to aid in histological assessments that

help ensure complete tumor removal. The radical nephrectomy procedure for ccRCC has

become the standard treatment; however for patients with RCC in a solitary functioning kidney

or those with RCC arising bilaterally, alternative approaches are needed. Partial nephrectomy

procedures are desired for these patients and patients with small tumors as well as for

individuals in whom the normal contralateral kidney could be under potential future threat from

hypertension, diabetes mellitus, or hereditary cancer syndromes such as von Hippel-Lindau
29. Unlike radical nephrectomies, the oncologic effectiveness of partial nephrectomies has been

questioned with concern over tumor involvement of the surgical margin. Standard guidelines

are lacking on how large of a surgical margin is needed to ensure complete tumor removal

while maximizing the amount of spared kidney 30.

We report studies using profiling/imaging MALDI MS of snap frozen ccRCC resection

specimen tissue to examine the characteristics of the tumor microenvironment and tumor

margin. Utilizing a high-throughput MS platform, we were able to characterize protein

signatures that implicate abnormal tissue in some cases far beyond the histological margin.

The subsequent identification of one group of such proteins suggests a major role of the
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mitochondrial electron transport system in tumor involvement of tissue beyond the ccRCC

histological border.

Materials and Methods

Sample Processing

Human kidney samples from patients undergoing nephrectomies were obtained from the

Vanderbilt University Ingram Cancer Center-Human Tissue Acquisition and Pathology

Resource and the National Institutes of Health Cooperative Human Tissue Network. Each

sample (n of 34) contained ccRCC and attached adjacent normal renal tissue. Samples were

snap frozen in liquid nitrogen 30 minutes or less after removal from the patient and stored at

−80°C until use. For MALDI profile analysis, three 12 um sections were cut and thaw mounted

with random positioning onto a gold-coated MALDI target plate followed by fixation by

submersion in graded alcohols (70% for 20 s, 70% for 20 s, and 95% for 10 s)31. After drying,

MALDI plates were stored in a desiccator until matrix deposition. Sections adjacent to those

used for MALDI analysis were cut and mounted onto microscope slides and stained with

hematoxylin and eosin according to standard protocols. Stained serial sections were reviewed

by a board-certified pathologist (M.E.S.) and regions of tissue (e.g. tumor, normal, and

histological border) were marked.

Matrix Deposition and MALDI MS Analysis

A robotic matrix spotter (LabCyte, Sunnyvale, CA) was used to deposit matrix droplets of

~120 pL volumes. A detailed description of the device and its operational conditions are

described elsewhere 32. For each sample, the matrix was spotted in an array (~400 μm × 400

μm spot-to-spot) spanning the tumor and attached adjacent normal. Sinapinic acid matrix

solution was prepared at 25 mg/ml in 50% acetonitrile/0.1% TFA (v/v). Matrix was deposited

on each sample in cycles of 13 drops dispensed at 10 Hz at each designated coordinate in the

array. A total of 6 cycles, or passes, was determined to be optimal for matrix coverage on renal

tissue. After deposition, the final matrix spots had a diameter of approximately 250 μm.

Spectra were acquired using an Ultraflex II MALDI-TOF/TOF mass spectrometer (Bruker

Daltonics, Billerica, MA) equipped with a SmartBeam™ laser. The instrument was operated

under automated, linear-mode acquisition parameters with a method optimized for acquisition

at a mass-to-charge ratio of 2,000 to 30,000 using a 200 Hz laser. A total of 400 laser shots

were collected for each matrix spot in increments of 50 shots beginning at the center of each

spot and randomly rastering at different positions within the spot. Automated profile

acquisition required the creation of custom plate geometry files that involved the determination

of the relative coordinate of each matrix spot from an optical image of the prepared MALDI

plate. These x-y coordinates of each spot were then written to file in the native target geometry

format of the mass spectrometer control software. Three spots from the outer corners of the

array were selected for final plate alignment using a standard instrument protocol.

Spectral Processing and Data Interpretation

Prior to statistical analyses, mass spectra were baseline-corrected, normalized and aligned

using ProTS Data software (Biodesix Inc., Steamboat Springs, CO). Multiple spectra from

each individual patient were averaged for each of the four regions of the biopsy: tumor, normal,

margin-tumor and margin-normal. Peaks lists were extracted from the average spectra using

ProTS Data, peaks were binned and peak amplitudes were calculated.
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Statistical Analysis: Identification of differentially expressed features

Comparisons of tumor versus normal and margin-normal versus normal were carried out using

the Significance Analysis of Microarrays (SAM) and permutation t-test for paired data 33, 34.

Features identified as significant by both methods with a false discovery rate (FDR) less than

0.01 were considered as potentially significant. For the differentially expressed features

identified in the two comparisons of tumor versus normal and margin-normal versus normal,

a support vector machine (SVM) classifier was used to assess the class prediction ability of

each individual feature. The prediction accuracy was estimated using a leave-one-out-cross-

validation (LOOCV) algorithm (Supporting Information: Tables 1 and 2) 35. The class

prediction accuracy of the SVM classifier using multiple input features was also evaluated,

and the optimal set of differentially expressed features that attained the maximum prediction

accuracy was identified. In order to visualize dissimilarities among tissue samples from

different histological regions, the first two multidimensional scaling (MDS) coordinates of the

optimal set of features used in SVM classifier were plotted against each other for each tissue

sample. Tissue samples from different histological regions were plotted in different colors

(Supporting Information: Figures 1A and 1B, respectively).

Statistical Validation of Feature Identification Procedure

A bootstrap procedure was used to validate the procedure of feature identification 35. The

original data were randomly sampled with replacement to simulate a virtual sample of size n,

where n is equal to the size of the original data set. For each of these bootstrap samples, the

same statistical analysis procedure was followed to identify the significant feature. Features

identified as significant by both methods with a false discovery rate (FDR) less than 0.01 were

considered potentially significant. This process was repeated for 100 bootstrap replications in

order to observe how the lists of significant features behave over each repetition. A highly

consistent list of significant features from the 100 bootstrap replications implies good

reproducibility of the result from the original data and highly consistent performance of the

statistical analysis procedure.

Protein Identification

Tissue was homogenized with tissue protein extraction reagent buffer (Pierce Biotechnology,

Rockford, IL) according to the manufacturer’s protocol. Proteins from homogenized tissue

were digested and loaded onto immobilized pH gradient gel (IPG) strips for isoelectric focusing

of peptides. IPG strips were cut into 15 pieces followed by peptide extraction and desalting

with C18 resin using a stepwise elution gradient of 20%, 40%, 60% and 80% acetonitrile. The

ability to match an identified peptide with its experimental isoelectric point enables elimination

of false positive identifications36, 37. In a second method, proteins (~300 μg) from

homogenized tissue were separated by RP-HPLC on a C8 column (Grace Vydac, Hesperia,

CA) with the following stepwise gradient: 5%–25% B for 5 min, 25–60% B for 55 min, and

60–95% B for 10 min (mobile phase A: 0.1% TFA in H2O, mobile phase B: 0.1% TFA in

ACN). Fractions were collected in 1 min intervals. To identify fractions containing the proteins

of interest, fractions were vacuumed to dryness, re-suspended in 20–30 μl of ~40% ACN and

spotted, with matrix (25 mg/ml sinapinic acid, 50/50/0.1 of H2O/acetonitrile/trifluoroacetic

acid (% v/v/v)) on a MALDI plate using an LC-MALDI robotic spotter (Symbiot, Applied

Biosystems, Framingham, MA). Each fraction was profiled using MALDI-TOF MS and each

m/z value of interest was confined to one well or two consecutive wells. The fraction of interest

was further interrogated by one of two methods: an in-solution digest (trypsin, Promega

Corporation, Madison, WI) or separation on a 1D polyacrylamide gel (10–20% Tricine,

Invitrogen Corporation, Carlsbad, CA) followed by in-gel trypsin digestion. Peptides were then

analyzed by LC-MS/MS on a Deca XP Plus ion trap and/or an LTQ linear ion trap mass

spectrometer (Thermo Scientific, Waltham, MA), equipped with a nanospray source containing
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a RP-C18 column (70 μm i.d., mobile phase A: 0.1% formic acid, mobile phase B: 0.1% formic

acid and 2% acetonitrile). Sequest38 was used for database (UniProtKB/Swiss-Prot, human-

nonredundant) searching and ProteinProphet39, 40 software was used to determine the

probability that a protein had been correctly identified based on the available peptide sequence
41. The observed and experimental masses matched within 1 Da.

Feature Mapping—Mass spectra were collected in a way that allows mapping of feature

expression (m/z signal) from tumor into adjacent normal tissue. Because tumor margins are

not linear, the analysis of these features requires that the distance of each matrix spot to the

margin be measured accurately. Thus, a feature can be mapped according to its distance from

the histologically-defined tumor margin. The optical image of a hematoxylin and eosin stained

section was designed to define the tumor border on the optical image of the spotted tissue. A

custom program was designed to calculate the distance of the matrix spot to the closest point

along the defined histological margin and a spreadsheet was created containing the distance of

each matrix spot from the histological margin and its corresponding mass spectrometry file.

To best represent the data, the feature amplitude (log2 scale) from each matrix spot was plotted

against its distance from the histological margin. A locally-weighted-regression scatter-plot

smoothing (LOWESS) curve was laid over the scatter plot to show the trend of change of

feature amplitude across the histological margin. The first derivative of the LOWESS trend

line was plotted to show the position where the maximum rate of change of feature amplitude

occurs. In an independent analysis (Biodesix, Inc.) the feature amplitude (absolute intensity)

from each matrix spot was plotted against its distance from the histological margin. Manual

interpretation was used to determine the distance of cellular compromise and correlate with

results from the first method.

Results

Molecular Analysis of Tumor Margins by MALDI MS

MALDI MS analysis was performed on frozen tumor tissue from 75 patients with ccRCC and

matched normal kidney tissues. Of the tissue samples from the 75 patients, 34 samples

consisted of tumor and attached adjacent normal tissue, and 41 samples included separated but

patient matched tumor and normal kidney. Overall, approximately 32,000 individual mass

spectra were acquired, and approximately 200–300 individual molecular features were

observed between the m/z range of 2,000 and 25,000 from each spot (~200 μm in diameter)

on the tissue. The intra-patient reproducibility of mass spectral measurements was assessed for

both normal and tumor tissue. The average concordance correlation coefficient for the multiple

mass spectral measurements from within the same patient was 0.6 (± 2) for tumor tissue and

0.7 (± 1) for normal tissue. These assessments indicated an acceptable level of intra-sample

reproducibility of these measurements.

Mass spectral profiles were compared among four different regions of tissue: 34 samples with

tumor and attached adjacent normal and 41 samples with separate but patient-matched tumor

and normal tissue. Figure 1 highlights the regions of interest for the analysis. These four regions

consist of tumor, margin-tumor, margin-normal, and normal. Generally, normal is defined to

be approximately 6 mm or greater from the histological margin in samples that contained tumor

and adjacent normal. Regions were grouped independently of their respective tumor grade 42

or stage diagnosis 26. Prior to statistical analyses, the mass spectrometric data was processed,

averaged by region for each patient, and grouped into four categories. Two statistical methods,

the Significance Analysis of Microarrays (SAM) and permutation t-test, were used to identify

differential features between different regions. The comparisons included tumor versus normal

from all 75 samples (Figure 2A; Supporting Information: Table 1) and margin-normal versus
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normal from 34 samples (Figure 2B; Supporting Information: Table 2). Features identified by

both statistical methods were considered as differentially expressed between two regions.

Statistical analysis of the data demonstrated that there are feature patterns resembling tumor

in the margin-normal microenvironment outside of the histological tumor border.

Approximately 120 differentiating features between tumor and normal tissue regions were

found. A subset of those differential features showing the best classification accuracy is

highlighted in bold in Table 1. The estimated prediction accuracy of a support vector machines

(SVM) classifier based on these six features was 95%. Comparison of the normal region and

the margin-normal region was done to determine if there were significant differences and if

any of these features were also significant between the tumor and normal tissue regions. Results

of this analysis revealed ~50 features that are under-expressed in the margin-normal as

compared to the normal, most (~95%) of which were also under-expressed in the tumor as

compared to the normal using the SVM classifier. Nine features, represented in bold in Table

2, were able to predict the samples based as normal and margin-normal with an accuracy of

75%. A plot of the first two multidimensional scaling (MDS) coordinates was used to show

the dissimilarities among the tissue samples in terms of the multiple features used in the SVM

classifier (Supporting Information: Figures 1A & 1B respectively). The MDS plot of margin-

normal versus normal regions illustrates some similarity between the two regions, as would be

expected. There is, however, a subset of features that are dissimilar between the two regions.

Assessing Patterns of Molecular Change in Tumor Margins

Another objective of this work was to determine how the features of interest change in and

around the tumor margins and how their expression patterns relate to tumor aggressiveness. It

was expected that some features would show a correlation to the histological border, while

others would show changes occurring beyond the histological border, namely the features

whose expression patterns in the margin normal resembled their counterparts in the tumor. A

schematic of possible trends is presented in Figure 3 and is further discussed below.

Mass spectra were acquired from tissue containing tumor and attached normal tissue, which

allowed for the mapping of proteins in tumor and adjacent normal tissue. However, since the

histological tumor border is usually not a straight line, the analysis of expression patterns

required that the distance of each matrix spot to the margin be measured accurately. To obtain

the distance, the optical image of a hematoxylin and eosin stained section was used to define

the tumor border. A custom program was then used to calculate the distance of the matrix spot

to the closest point along the defined histological margin. The information was transferred to

a spreadsheet which correlated the distance of each matrix spot with the corresponding mass

spectral data.

For interpretation of molecular trends, 40 significant features were plotted for 25 patients. For

graphical representation, samples with fewer than 4 mm of tumor or less than 7 mm of normal

were excluded from the assessment. These features represented m/z values that were

determined as under-expressed and over-expressed in the ccRCC tumors as well as aberrant

molecular features present outside of the histological margin. To represent the data, the feature

amplitude from each matrix spot was plotted against its distance to the histological margin. A

locally-weighted-regression scatter-plot smoothing (LOWESS) curve was constructed to show

the change in feature amplitude across the histological margin. The first derivative of the

LOWESS trend line was plotted to determine the position where the maximum rate of change

of feature amplitude occurs [Figure 4]. Together, the LOWESS and first derivative lines

suggest that while are numerous features that change near the histological margin, there are

several features that are under-expressed in the tumor and the margin-normal as compared to

the normal [see line labeled “D” in Figure 3]. The focus of this project was to determine the

characteristics in margin normal tissue that resemble the tumor. After reviewing the LOWESS
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trends and statistics, the features chosen to assess these patterns were m/z values 4888, 5351,

6717, 8577, 9368, 10611, 12274 [Figure 4C]. Identification of these proteins (features) is

presented below.

Another goal was the correlation of the molecular changes in the tumor-normal tissue with

tumor aggressiveness. As with most tumors, there are no molecular markers for tumor

aggressiveness in renal cell carcinoma, thus the attempt was made to determine if these patterns

correlate with the current standards of clinical diagnoses, which are Fuhrman grade and TNM

stage. Multiple characteristics of the plot and of the patient information were considered in

order to find the best trend in the data. Most samples expressed protein patterns exemplified

by line “D” in Figure 3, where features are under-expressed in the tumor and the margin-normal

as compared to the non-tumor tissue. The characteristics monitored were the point at which

the maximum rate of change occurred and the point at which the feature amplitude began to

plateau. A summary of observations is listed in Table 3 of the Supporting Information.

There was not a clear correlation between the pathological diagnosis and the distance of

compromised tissue beyond the histological tumor border. For the m/z features noted,

expression patterns in most samples followed the aforementioned pattern illustrated in Figure

3. There was a small group of samples in which margin trends could not be assessed. This

group includes four high stage tumors and three low stage tumors as well as three high grade

tumors and four low grade tumors.

Identifying Differentially Expressed Biological Features and Validating Protein Signatures

In the protein identification process, emphasis was placed on those signals suggestive of

abnormal environments outside of the histological margin, though others were also identified.

From this study, 12 proteins were identified [Table 1] and those over-expressed in tumor

include calpactin I and calgizzarin. Proteins under-expressed in tumor include calcyclin,

cytochrome c, NADH-ubiquinone oxidoreductase MLRQ subunit, a ubiquinol-cytochrome c

reductase complex protein, and several cytochrome c oxidase polypeptides (VIC, VB, VIIA2,

VIIC, VIII2). The proteins that indicated a compromised environment outside of the

histological margin were cytochrome c, the cytochrome c oxidase polypeptides, and the

NADH-ubiquinone oxidoreductase MLRQ subunit. To validate the observed molecular

signatures, the distribution of cytochrome c oxidase activity was also assessed by

immunohistochemistry. As seen in Figure 5, the staining pattern follows the same trend

observed in the LOWESS graph.

Discussion

Biological Perspectives

This study utilized MALDI MS to characterize the molecular microenvironment adjacent to

histological tumor margins and determine if there are indications of aberrant molecular

expression beyond these margins. Molecular features in the histologically normal-appearing

tissue adjacent to the histological tumor border that have an increased or decreased expression

relative to the same proteins in the tumor may represent regions of aberrant cellular function

indicative of an abnormal microenvironment.

Results of this study showed that there were many proteins over-expressed and under-expressed

in ccRCC tumors as compared to adjacent normal; however, those of particular interest are the

proteins that showed abnormal patterns outside of the histologically defined tumor margin. For

example, proteins involved in the mitochondrial electron transport system were consistently

under-expressed in the tumor as well as in the histologically normal tissue adjacent to the tumor.
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The decreased expression of these proteins has been previously observed in tumors of clear

cell renal cell carcinoma 43, 44 but has not been reported in the adjacent normal tissue.

Mitochondrial deficiency in cancer cells was recognized almost eighty years ago by Otto

Warburg 45. The Warburg effect is described as the dependency of tumors on glycolysis rather

than oxidative phosphorylation for ATP, even in the presence of oxygen 46. Although the

production of ATP through glycolysis is less efficient than its production through

mitochondrial oxidative phosphorylation, cancer cells appear to preferentially utilize

glycolysis.

Although the deficiency of the mitochondrial electron transport system and related events in

clear cell renal cell carcinoma have been described 47, the mechanisms by which they may

facilitate tumor spread or invasion remain unclear. Interestingly, the results of this work suggest

that this phenomenon persists into the adjacent normal tissue, although it is not known whether

the mitochondrial deficiency is a primary or secondary event. Several mechanisms, including

oxygen sensing processes 48–52 and pH-mediated invasion 53, 54, may give rise to the

observations reported in this study.

Factors governing tumor mediated molecular changes beyond the histological margin into

‘normal’ tissue may correlate with tumor aggressiveness. Currently, there is no marker to define

ccRCC tumor aggressiveness. In this study, tumor stage and grade were both utilized as an

assessment of aggression in order to determine if the extent of compromised tissue (i.e. the

distance from the histological margin at which molecular changes were significant) could be

correlated with aggressiveness. Our results showed that such distance measurements could not

be correlated with tumor stage or grade, indicating either that this measurement is independent

of tumor aggressiveness or the currently used methods cannot effectively make this distinction.

The current clinical inspection of the tumor is based on anatomical location of the tumor and

its cellular morphology, which may not best represent the molecular state and aggressiveness

of the tumor and that there are molecular events occurring in the tumor and its adjacent tissue

that cannot be visualized with current histology procedures. Alternatively, the extent of

compromised tissue beyond the histological border may correlate with patient outcome;

however, patient follow-up information was not available for this study.

Results from this study demonstrate that many intriguing yet complex events occur at tumor

borders that contribute to the aberrant molecular changes occurring outside of the histological

margin. One hypothesis is the aberrant cells outside of the tumor margin are infiltrative tumor

cells that go undetected by conventional histology. Alternatively, these cells could be pre-

cancerous cells that have already undergone malignant transformation at the molecular level

yet show no phenotypic characteristics of tumor cells. Another possibility is the aberrant

cellular characteristics of these seemingly normal cells result from cross-talk or secretory

interactions between the tumor and surrounding tissue. This signaling pathway could cause

cells outside of the histological margin to express some molecular features characteristic of

the tumor.

Technology Perspective

The applicability of MALDI MS to the rapid evaluation of tumor margins has been proposed
55 and the supportive work presented here is the first, in-depth molecular assessment of tumor

margin microenvironments by this technology. Previous studies have resulted in the

identification of disease-state and patient prognostic-specific protein patterns. Collectively,

these studies suggest that proteomic information will become increasingly important in

assessing disease progression, prognosis, and response to therapy.
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With the ability to rapidly analyze thin tissue sections and provide for the visualization of

hundreds of proteins simultaneously, it is anticipated that profiling and imaging MALDI MS

technology will become an invaluable tool in diagnostic pathology and diagnostic labs to

enhance the quality of information provided to clinicians 55, 56. Conventional approaches rely

on histomorphology and immunohistochemistry procedures that represent a challenge in the

interoperative setting. Histochemistry, such as hematoxylin and eosin staining, only allows for

morphological characterization. Immunohistochemistry procedures, however, are difficult to

standardize, require procedures taking hours or overnight and in most cases must be performed

separately for each antibody. For many proteins, antibodies are not readily available and there

is no standard, rigorous procedure for assessing their cross-reactivity. Microarray analysis of

antibody cross-reactivity produces uncertain results because of numerous cross-reactivities

with both monoclonal and polyclonal antibodies, as well as substantial binding to non-specific

proteins 10. MALDI MS technology allows for the visualization of many hundreds of individual

proteins in the molecular weight range from 2000 to 100,000. Its application to direct tissue

analysis allows direct correlation of individual protein signals with their distributions within

specific regions of tissue. It is also well suited for discovery studies in that it does not require

prior knowledge of protein composition and does not require molecular-specific reagents.

MALDI MS technology offers a molecularly specific process for analyzing tumor margins to

complement the current clinical diagnostic tools to ensure successful tumor extirpation.

Conclusions

Elucidation of the events that drive tumor recurrence will not only provide additional insights

into the molecular mechanisms of tumor invasion, but also facilitate the discovery of molecular

markers to aid in current histological procedures that better define molecular tumor margins

in an effort to reduce local recurrence. Identifying biological changes and understanding the

molecular events in and around tumor margins is vital to understanding therapeutic resistance

and designing new therapeutic agents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Regions of interest for statistical analysis of tumor margin profiles. (Top) Optical image of

tumor and attached adjacent normal section on a MALDI plate with regions of interest marked;

(Bottom) Optical image of a corresponding H&E stained section marked by a pathologist.
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Figure 2.

SAM statistics. (A) SAM statistics plot of results of tumor versus normal tissue (n = 75). Red

circles indicate significant features that are over-expressed in tumor. The green circles indicate

features significantly under-expressed in the tumor. (B) SAM statistics plot of results of margin

normal versus normal tissue (n = 34). Green circles indicate features significantly under-

expressed in margin normal tissue. Red circles indicate features significantly over-expressed

in the margin normal tissue. Dotted lines represent the significance threshold (Δ) corresponding

to FDR <0.01. Features have been arranged by their degree of difference in expression. Points

to the right (top) or left (bottom) of the first point outside of the dotted line are called significant.
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Figure 3.

Expected and observed molecular patterns. This figure illustrates the observed patterns of the

molecular features traversing the histological tumor margin. Lines A and C represent features

that begin changing at the histological margin; while lines B and D represent features that

change after the histological margin.
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Figure 4.

Demonstration of margin plot analysis. (A) LOWESS fit line of scatter plot data. (B) Top:

LOWESS line of 40 selected significant features; Bottom: First Derivative of all LOWESS

lines (x-axis error approximately +/−400 μm). (C) LOWESS and corresponding 1st derivative

plots of 7 selected features for two representative samples. The notation “mz” represents m/z,

or mass-to-charge ratio.
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Figure 5.

Cytochrome oxidase activity assay confirms localization of features. (A) Microscope images

of tumor (1) and normal (2) regions of the tissue. (B) Scanned image of stained section shows

localization. (C) LOWESS trend of features involved in mitochondrial electron transport.
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