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Abstract 

Background: The high crystallinity of cellulosic biomass myofibrils as well as the complexity of their intermolecular 

structure is a significant impediment for biofuel production. Cloning of celB-, celC-encoded cellulases (cel12B and 

cel8C) and peh-encoded polygalacturonase (peh28) from Pectobacterium carotovorum subsp. carotovorum (Pcc) was 

carried out in our previous study using Escherichia coli as a host vector. The current study partially characterizes the 

enzymes’ molecular structures as well as their catalytic performance on different substrates which can be used to 

improve their potential for lignocellulosic biomass conversion.

Results: β-Jelly roll topology, (α/α)6 antiparallel helices and right-handed β-helices were the folds identified for 

cel12B, cel8C, and peh28, respectively, in their corresponding protein model structures. Purifications of 17.4-, 6.2-, and 

6.0-fold, compared to crude extract, were achieved for cel12B and cel8C, and peh28, respectively, using specific mem-

brane ultrafiltrations and size-exclusion chromatography. Avicel and carboxymethyl cellulose (CMC) were substrates 

for cel12B, whereas for cel8C catalytic activity was only shown on CMC. The enzymes displayed significant synergy 

on CMC but not on Avicel when tested for 3 h at 45 °C. No observed β-glucosidase activities were identified for cel8C 

and cel12B when tested on p-nitrophenyl-β-D-glucopyranoside. Activity stimulation of 130% was observed when a 

recombinant β-glucosidase from Pcc was added to cel8C and cel12B as tested for 3 h at 45 °C. Optimum temperature 

and pH of 45 °C and 5.4, respectively, were identified for all three enzymes using various substrates. Catalytic efficien-

cies (kcat/Km) were calculated for cel12B and cel8C on CMC as 0.141 and 2.45 ml/mg/s respectively, at 45 °C and pH 5.0 

and for peh28 on polygalacturonic acid as 4.87 ml/mg/s, at 40 °C and pH 5.0. Glucose and cellobiose were the end-

products identified for cel8C, cel12B, and β-glucosidase acting together on Avicel or CMC, while galacturonic acid and 

other minor co-products were identified for peh28 action on pectin.

Conclusions: This study provides some insight into which parameters should be optimized when application of 

cel8C, cel12B, and peh28 to biomass conversion is the goal.
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Background
Production of biofuels from renewable resources has 

markedly increased in response to irregularities in the 

oil market and potential increases in fuel cost [1]. Sec-

ond generation biofuel production from lignocellulosic 

biomass is an alternative strategy to mitigate greenhouse 

gas emissions and the high costs foreseen for first-gener-

ation biofuels derived from food crop resources [1]. Cel-

lulose, a polymer of β-1,4-linked glucose, hemicellulose, 

a heteropolymer of -xylose, -arabinose, -mannose, 
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-glucose, -galactose, -glucuronic acid, and lignin, a 

polymer of some phenolic components, in various pro-

portions constitute the framework structure of plant 

biomass [2]. Enzymatic conversion of these polymeric 

compounds into various chains of fermentable sugars is 

one of the approaches for ethanol production [3]. How-

ever, the high crystallinity index of cellulosic microfibrils 

[3], and the complexity of the inter- and intramolecular 

hydrogen bonds and van der Waals interactions of the 

glucose residues [4], may counteract enzyme-surface 

accessibility and, hence, impede cellulose hydrolysis 

[5, 6]. Strain engineering, molecular analysis of native 

enzyme structures, protein synergies, and factors regu-

lating enzyme biosynthesis have been outlined among 

several other factors in an attempt at improving the effi-

ciency and cost of many lignocellulosic biomass conver-

sion systems [7].

Designing a genetically modified bio-catalytic system 

with promise for lignocellulosic biomass conversions 

was carried out in the previous investigation [8]. Genes 

encoding cellulases, cel12B and cel8C, and polygalactu-

ronase, peh28, of Pectobacterium carotovorum subsp. 

carotovorum (Pcc) have been selected in the previous 

investigation for their crucial role in plant cell wall mac-

eration, as reported before [9, 10]. Escherichia coli (E. 

coli) was chosen as a convenient source of biocatalysts 

for biofuel production, due to its significant fermentation 

capacity with glucose [11], as well as several pentoses and 

other hexoses [12]. Genetic engineering of E. coli with 

the selected gene isolates of Pcc using a pTAC-MAT-2 

expression vector and qualitative determination using 

CMC [13], for cel12B and cel8C, and polygalacturonic 

acid [14], for peh28, have been carried out [8]. �e cloned 

genes were sequenced and their glycoside hydrolase (GH) 

families were identified with respect to the conserved 

domain sequences in the National Center for Biotechnol-

ogy Information (NCBI) database [8]. Accordingly, GH 

families 12, 8, and 28 were the identified domain families 

for celB, celC, and peh, respectively. �e conserved amino 

acid residues of the catalytically active sites were also 

assigned for each enzyme.

Cellulases of GH families operate through an acid–

base catalytic mechanism with either inversion of con-

figuration at the anomeric center, as in the GH-8 family, 

or retention, as in GH-12 family [15]. Cellulases with 

endolytic activity (endo-cellulases) generally have open 

active-site clefts that can bind to any region in the cel-

lulose microfiber and hydrolyze the β-1,4-glycosidic link-

ages. On the other hand, the characteristic exo-cellulase 

active sites are tunnel-like to accommodate the end of a 

substrate [16], to produce oligosaccharides of different 

lengths [6]. Glutamic acid, Glu, and aspartic acid, Asp, 

are the conserved domain residues in the cel8C active 

site while two Glu, are the conserved domain residues 

in the cel12B active site [8]. �e role of an Asp residue 

in the mechanistic pathway is to destabilize the inter-

nal sugar chain and direct the scissile glycosidic bond to 

the area of the proton donor [17]. �e two Glu residues 

of the GH-12 family were found on opposite sides of the 

substrate-binding cleft and were proposed as the cata-

lytic nucleophile and the Brønsted acid/base, effecting 

their catalytic actions in a double displacement, retention 

mechanism [18, 19]. Besides the catalytic domain of cel-

lulases, other accessory domains such as carbohydrate-

binding modules (CBMs) may also exist [20]. �e role of 

a CBM in increasing the enzyme concentration on the 

polysaccharide surface [21], facilitating cellotetrose dis-

sociation, [22], decreasing the biomass crystallinity index 

and increasing the yield of hydrolytic products [23], have 

been proposed [24].

On the other hand, the GH-28 family includes mem-

bers with endo- and exo-polygalacturonase activi-

ties that may engage with other glycoside hydrolases in 

pectin disassembly [25]. Both endo-polygalacturonase 

(E.C.3.2.1.15) and exo-polygalacturonase (E.C.3.2.1.67) 

act by hydrolyzing the α-1,4-linked galacturonic acid 

residues of the homogalacturonan chains located in 

the smooth region of pectin. Endo-polygalacturonases 

hydrolyze the -galacturonic acid residues within a set 

of homogalacturonan chains, while the non-reducing 

ends of galacturonan chains are the sites of activity in the 

case of exo-polygalacturonase [26]. Oligogalacturonates 

are the main products of the random hydrolysis pattern 

of endo-polygalacturonases (E.C. 3.2.1.15) on pectic 

acid, whereas monogalacturonate is the product of exo-

polygalacturonase (E.C. 3.2.1.67) terminal action on the 

same substrate [27]. Asp active-site residues, Asp228, 

Asp249, and Asp250, were reported in our earlier inves-

tigation of the deduced amino acid sequence of peh28 

[8]. �ese residues were found conserved among exo- 

and endo-acting polygalacturonases according to Abbott 

and Boratson [28]. Endo-polygalacturonases utilize the 

internal residues of the polymeric compounds by open-

ing the surface cleft of the active site [29]. Loop insertion 

of certain amino acid residues was proposed to convert 

the active site from endo- into exo-activity by preventing 

enzyme accessibility to the internal residues of oligoga-

lacturonates [28].

In this study, some of the molecular and mechanis-

tic catalytic properties of cel12B, cel8C, and peh28 

were investigated. �e classification to Carbohydrate-

Active enZymes (CAZymes) hydrolase families and 

the identification of the secondary and tertiary protein 

native structural features were facilitated using enzyme 

sequence homology modeling. �e enzymes in their 

partially purified forms were characterized for their pH 
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and temperature optima, substrate preferences, kinetic 

parameters, and product hydrolytic pattern. �e synergy 

among cellulases was examined on crystalline and soluble 

cellulose derivatives using Avicel and carboxymethyl cel-

lulose (CMC), respectively. Details for the structure and 

mechanism of action of the recombinant enzymes are 

provided in order to better characterize their industrial 

potential for biofuel production. �is study is presented 

as a framework for our ongoing research on dynamic 

thermal characteristics as well as lignocellulosic biomass 

conversion using the tested enzymes.

Methods
Strains and media

Strains of E. coli DH5α (Lucigen, cat. no. 95040-456, 

Middleton, WI) harboring celB, celC, or peh plasmids; 

isolates of Pectobacterium carotovorum subsp. carotovo-

rum (Pcc), ATCC™ no. 15359, [8], were used as sources 

of cel12B, cel8C, and peh28, respectively. Clones stored 

at −20 °C were cultured in Luria Bertani (LB) broth (cat. 

no. L3022), containing 100 µg/ml of ampicillin and incu-

bated overnight at 37 °C with aeration. �e freshly grown 

cultures of each respective clone were used for gene 

expression and enzyme extraction in the protocols dis-

cussed below. In this study, all chemicals were purchased 

from Sigma-Aldrich (St. Louis, MO) unless otherwise 

stated. Deionized water (DI H2O), nano-purified with a 

Barnstead Diamond™ Ultrapure water system (cat. no. 

D11901-7143, �ermo Scientific, Rockford, IL), was used 

throughout.

Sequence analysis and homology modeling

�e putative nucleotide sequences of cel12B, cel8C, 

and peh28 encoded genes have been analyzed and pre-

viously configured [8]. �e nucleotide sequence simi-

larities with other known published sequences were 

previously identified using BLAST-nucleotide (BLAST-

n) of National Center for Biotechnology Information 

(NCBI) web-portal program (https://blast.ncbi.nlm.nih.

gov/Blast.cgi) [8]. �e isolated enzymes were designated 

for their respective glycoside hydrolase families using the 

BLAST server against NCBI-Conserved Domain Data-

base (CDD), v 3.14 (NCBI-CD-BLAST) [8]. �e molec-

ular masses of the purified protein products of cel12B, 

cel8C, and peh28 were estimated using SDS-PAGE [8]. 

In this study, the homology of peh28′s deduced sequence 

to that of several pectate lyase and polygalacturonase 

I superfamily proteins of GH-28 was carried out using 

the NCBI-CD-BLAST program. Investigation of the 

carbohydrate-binding domain (CBD) with auxiliary and 

non-catalytic functions in both of the cel12B- and cel8C-

deduced sequences was also carried out using the NCBI-

CD-BLAST program. Protein–protein alignment-specific 

threshold value, bit score value, and the alignment sig-

nificance expectation-value (E-value), were predicted 

for all of the tested protein residues with their corre-

sponding aligned sequences using the NCBI reverse-

position-specific-BLAST (RPS-BLAST) and the model’s 

position-specific scoring matrix (PSSM-47363), respec-

tively. �eoretical isoelectric values and the potential 

N- and O-glycosylation sites in the deduced amino acid 

sequences were predicted using the JustBio-bioinformat-

ics web-portal server (http://www.justbio.com/hosted-

tools.html). Homology modeling was conducted using 

Phyre2-ProteinModel recognition, (v.2.0), web-portal 

server (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.c-

gi?id=index) [30]. �e corresponding enzyme templates 

for cel12B, cel8C, and peh28 were selected based on their 

high relative identities to that of protein model native 

structure. �e model proteins were tested for their align-

ment confidence with their template structures using 

Phyre2 server [28] in which both degrees of identities 

and the root mean square distance (rmsd) values of the 

aligned residues were assessed. �e amino acid residues 

involved in the binding site clefts of the protein native 

structures were predicted using the web-portal 3DLi-

gandSite recognition server (http://www.sbg.bio.ic.ac.

uk/~3dligandsite/) [31], based on the similarity to other 

protein native structures. An open-source Java viewer 

for 3D-protein chemical structures (Jmol) (http://www.

jmol.org/) was used for general analysis to the 3D-mod-

els generated. �e high accuracy homology modeling of 

Phyre2 (core of the protein within 2–4 Å rmsd between 

the aligned set pairs) provides insight into the functional 

properties of the enzyme protein native structures.

Biochemical characterization of recombinant 
cel12B, cel8C, and peh28
Gene expression, enzyme extraction, and puri�cation

Freshly inoculated E. coli strains harboring celB, celC, or 

peh were grown separately in LB broth containing 100 µg/

ml ampicillin to an optical density of 0.5 at 595 nm. Gene 

expression was then induced by the addition of 0.1  mM 

isopropyl β--1-thiogalactopyranoside (IPTG) (≥99% 

(TLC), ≤0.1% dioxane, cat. no. 16458), and cells were har-

vested by centrifugation after 5  h, in the case of cel12B 

and cel8C, and 7 h, in the case of peh28. �e empty vec-

tor strain was propagated and induced in the same man-

ner as a negative control. Overexpressed soluble proteins 

were extracted and partially purified using the B-PER® 

bacterial protein extraction kit (�ermo Scientific, cat. 

no. 90078, Rockford, IL) with DNAse (1, 2 and 500 U/ml), 

lysozyme (50  mg/ml), and a mild non-ionic detergent, 

such as Triton X-100, in 20 mM Tris–HCl buffer (pH 7.5). 

EDTA-free Halt Protease Inhibitor cocktail (�ermo Sci-

entific, cat. no. 78425, Rockford, IL) was used at a final 1X 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.justbio.com/hosted-tools.html
http://www.justbio.com/hosted-tools.html
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.c-gi%3fid%3dindex
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.c-gi%3fid%3dindex
http://www.sbg.bio.ic.ac.uk/%7e3dligandsite/
http://www.sbg.bio.ic.ac.uk/%7e3dligandsite/
http://www.jmol.org/
http://www.jmol.org/
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conc. per ml of cell lysate mixture to prevent the possible 

proteolytic degradation during the process of cell lysis. 

Approximately 35  ml of the extract was then subjected 

to desalting and concentration using modified polyether-

sulfone, PES, ultrafiltration (UF) centrifugal techniques 

with different molecular weight cut-off (MWC), 50  mm 

PES membranes with 30 and 100 kDa MWCs (respective 

cat. no. MAP030C36 and MAP100C36, Pall Corpora-

tion, NY), and a 30  mm VIVASPIN® 20 PES membrane 

with 50 kDa MWC (Sartorius, prod. no. VS2031, �ermo 

Scientific, MA) were used. In all cases, approximately 

10 ml of the extracted protein solutions were introduced 

to the 100 kDa separating membrane, and centrifugation 

at 5000×g at 4  °C was performed for approximately 1 h. 

Sodium citrate buffer at 50 mM and pH 5.0 was used as 

exchange and washing buffer throughout the centrifu-

gation period for both cellulase extracts, while sodium 

acetate at 50  mM and pH 5.0 was the exchange buffer 

used for polygalacturonase. �e permeate fractions were 

then applied to the 50 and 30  kDa MWC membranes 

under similar conditions in order to concentrate further. 

�e retentates of the 30 kDa separating device were col-

lected in the cases of cel8C and PGase, however, the 

permeate fractions of the 30  kDa membrane treatment 

were collected in the case of cel12B. �e extracted frac-

tions were further purified by gel filtration chromatog-

raphy using Sephadex G-100 (cat. no. G100120,) with a 

flow rate 0.75  ml/min in a CHROMAFLEX™ column of 

120 cm length and 2.5 cm diameter (KONTES®, cat. no. 

4208301210), using 50 mM sodium citrate buffer at pH 5.0 

in case of the cellulases. Fifty mM sodium acetate at pH 

5.0 was used as the elution buffer in polygalacturonase-

containing fractions. A total of 60 fractions were collected 

and were tested for their cellulolytic or pectinolytic activi-

ties using 3,5-dinitrosalicylic acid (DNS) for cellulases, 

and copper and arsenomolybdate reagents, for polygalac-

turonase as described below. �e fractions with the high-

est cellulase or polygalacturonase activities were selected 

for further characterization and purity determination. 

Sodium dodecyl sulfate-polyacrylamide gel electrophore-

sis, SDS-PAGE, was used previously for molecular mass 

identification of those eluted fractions with the high-

est activities [8]. �e collected fractions were also ana-

lyzed for their protein content using a bicinchoninic acid 

(BCA) assay kit (cat. no. 23225, �ermo Scientific, Rock-

ford, IL) with bovine serum albumin as the standard. �e 

reduction of cupric ions, Cu2+ by the protein samples 

was detected using BCA working reagent, and the reac-

tion was performed in an alkaline medium according to 

manufacturer’s instructions. �e purple-colored solution 

thus generated was measured spectrophotometrically at 

562  nm in reference to a blank of protein-free working 

reagent mixture.

Polygalacturonase, cellulase, and β-glucosidase activity 

assays

Polygalacturonase activity of peh28 was measured based 

on a modified Nelson–Somogyi (NS) method [32, 33] 

with copper and arsenomolybdate reagents. �e method 

is based on a redox reaction in an alkaline environment 

carried out by cupric ions of the Somogyi’s copper rea-

gent on aldehyde groups in the hydrolysis products. �e 

resulting reduced ion reacts further with the arsenomo-

lybdate reagent forming a blue-colored product that can 

be detected at 520  nm within 0–250  µmol/ml product 

concentration range. In the typical assay, 0.2 ml enzyme 

solution was added to 0.5 ml of a 40 °C preheated mixture 

of 0.5% of polygalacturonic acid (sodium salt from citrus 

fruit, ≥75% titration, cat. no. P3850) dissolved in 50 mM 

sodium acetate buffer (pH 5.0). DI H2O was added to a 

final volume of 1.0  ml and the reaction was incubated 

for 1 h at 40 °C. �e reaction was terminated by adding 

one volume of Somogyi’s copper reagent to each reaction, 

and the solution was boiled for 10 min in a dry bath.

After cooling to room temperature, one volume of Nel-

son’s arsenomolybdate reagent was carefully added with 

intermittent gentle mixing followed by the addition of 

9.5 ml DI H2O and incubation for 10 min at room tem-

perature for color stabilization purposes. �e reaction 

mixture was centrifuged at 13,000  rpm for 1  min, and 

the change in the absorbance of the supernatants was 

detected at 520  nm using an Odyssey spectrophotom-

eter model DR/2500 (cat. no. 5900000, Hach, Loveland, 

CO). A set of diluted standards was prepared and incu-

bated in the same way using approximately 1  Unit/mg 

(U/mg) purified polygalacturonase from Aspergillus niger 

(E.C.3.2.1.15; cat. no. 17389). One unit of polygalacturo-

nase activity is defined as the amount of enzyme releasing 

1 µmol of reducing sugars per minute from polygalactu-

ronic acid under the assay conditions.

Cellulase activities of cel12B and cel8C were deter-

mined using a modified 3,5-dinitrosalicylic acid (DNS) 

method of Miller [34]. �e method is based on the oxi-

dation of sugar aldehyde groups by DNS under alkaline 

condition with the formation of orange colored prod-

ucts which can be detected at 540  nm within the 100–

500  μmol/ml concentration range. Both Avicel (50  μm 

particle size, cat. no. 11365) and the sodium salt of car-

boxymethyl cellulose (low viscosity, cat. no. C5678) were 

used as substrates for exoglucanase and endoglucanase 

activity determinations, respectively. Typically, crude/

partially purified enzyme was added to a 45  °C pre-

heated mixture of 2.0% substrate in 50 mM sodium cit-

rate buffer (pH 5.0) and DI H2O was used to adjust the 

volume to 1  ml of reaction mixture. �e reaction was 

incubated for 1  h at 45  °C and was terminated by add-

ing 2.0 ml of DNS reagent and boiled 10 min in a 100 °C 
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water bath. �e samples were cooled to room tempera-

ture and the absorbance of the resulting products was 

measured at 540  nm. A 0.13  U/mg sample of cellobio-

hydrolase I (E.C.3.2.1.91) from Hypocrea jecorina (cat. 

no. E6412) and an approximately 1 U/mg purified prod-

uct of 1,4-(1,3:1,4)-β--Glucan 4-glucanohydrolase 

(E.C.3.2.1.4) from A. niger (cat. no. 22178) were utilized 

for the calibration of standard curves for exoglucanase 

and endoglucanase activities, respectively, under similar 

assay conditions. One unit of cellulase activity is defined 

as the amount of enzyme releasing 1  µmol of reducing 

sugars per minute from CMC or Avicel under the assay 

conditions.

β-Glucosidase activities of cel12B and cel8C were 

determined using a modified method described by 

Parry et  al. [35]. In this method, p-nitrophenyl-β--

glucopyranoside (pNPG) (cat. no. N7006) was utilized 

as the substrate in a microtiter plate screening system 

(Benchmark microplate reader, cat. no. 170-6850, Bio-

Rad, Hercules, CA). �e method was based on an indi-

rect spectrometric quantification of the yellow colored 

product, p-nitrophenol. To initiate the reaction, the 

enzyme solution (crude or partially purified) was added 

to a 50 °C preheated mixture of 10 mM pNPG in 50 mM 

of sodium acetate buffer (pH 5.0) and DI H2O was used 

to make a final of 200  µl of reaction mixture. �e reac-

tion was incubated 30 min at 50  °C and was terminated 

by adding an equivalent amount of 0.4 M glycine–NaOH 

buffer (pH 10.8). �e change of the absorbance at 405 nm 

was measured using the multi-well plate reader. A 

β-glucosidase calibrator equivalent to 0.25 U/ml (cat. no. 

KA1611, Abnova, Walnut, CA) was utilized to prepare a 

set of diluted standards. One unit of β-glucosidase activ-

ity is defined as the amount of enzyme releasing 1 µmol 

of p-nitrophenol per minute from pNPG under the assay 

conditions.

A triplicate set of reactions was set up for each enzyme 

measurement and substrate and enzyme colorimetric 

blanks were prepared following the enzyme assay pro-

tocol with water replacing that of substrate/enzyme 

complex. Possible enzyme interference with some other 

proteins of E. coli metabolism was excluded by including 

a control of lysates from an empty vector control strain. 

In all assay experiments, cel12B, cel8C, and peh28 were 

initially added at approximate concentrations of 0.8, 0.3, 

and 0.2  U/ml, respectively, based on a previous assess-

ment of the enzyme optimum level producing activity.

Mode of activity and substrate speci�city of cel12B 

and cel8C

�e substrate specificity of cel12B and cel8C and their 

modes of action as endoglucanase, exoglucanase, and/or 

β-glucosidase were investigated using 20  mg/ml CMC, 

20  mg/ml Avicel, and 10  mM pNPG substrates, respec-

tively. �e enzymes were incubated individually with 

each substrate and were assayed using the correspond-

ing assay method described above for cellulases and 

β-glucosidase.

Reaction rate and catalytic rate constants of recombinant 

cel12B, cel8C, and peh28 on their respective substrates

Values of the Michaelis–Menten constant (Km), maxi-

mum enzyme velocity (Vmax), turnover number (kcat), 

and the specificity constant (kcat/Km) were assessed by 

measuring the enzyme initial activities over defined con-

centration ranges of their substrates. CMC at 1.0–40 mg/

ml was used for cel12B or cel8C, while 0.05–0.55 mg/ml 

polygalacturonic acid was used for peh28. Enzyme initial 

activities were determined using the same experimental 

and assay conditions described above for each enzyme.

Fitting the initial activity and substrate concentration 

data to the Michaelis–Menten Eq.  (1) was performed 

using GraphPad Prism v.5.1 (GraphPad Software Inc., 

La Jolla, CA), where S is the substrate concentration (in 

mg/ml), Vmax is the enzymatic reaction rate (in µmol/

ml/min) in which the enzyme active site is saturated 

by the substrate, and Km is the substrate concentration 

necessary for an enzyme to attain half of its maximum 

reaction rate. �e data were utilized in calculating the 

enzyme turnover number (kcat), Vmax/ET, and the enzyme 

specificity constant (kcat/Km) on each substrate. ET is the 

enzyme’s molar concentration in mM of a kinetic run 

which can be obtained by dividing the concentration of 

total protein in mg per ml of reaction solution by the 

enzyme’s molecular weight in mg per mmol.

Determination of pH and temperature optima 

for maximum substrate conversions with the recombinant 

enzymes

Optimum pH for cel12B, cel8C, and peh28 activities 

was investigated using 25 mg/ml of CMC for cel12B and 

cel8C and 4.0 mg/ml of polygalacturonic acid for peh28. 

�e assays were performed following a similar proto-

col described above for cellulase and polygalacturonase 

activities except that a broader pH range, 3–10, was used 

herein. For pH adjustments, 50 mM sodium citrate buffer 

(pH 3.0–6.2), 50 mM Tris–HCl buffer (pH 7.0–9.0), and 

50  mM glycine–NaOH buffer (pH 9.0–10.0) were used 

for cel12B and cel8C, while 50 mM sodium citrate buffer 

(pH 3.0–3.4), 50 mM sodium acetate buffer (pH 3.6–5.6), 

50 mM citrate phosphate buffer (pH 5.8–7.0) along with 

the defined range of Tris–HCl and glycine–NaOH buff-

ers were used for peh28.

Temperature optima for cel12B, cel8C, and peh28 

activities were determined by setting up the assay 

(1)v = (Vmax[S])/(Km + [S])
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experiments at various temperatures in the range 

15–80 °C. �e enzyme assays were performed at pH 5.4 

in 50 mM sodium citrate and 50 mM sodium acetate for 

cellulase and polygalacturonase activities, respectively, 

using the same substrates and substrate concentrations 

described above for optimum pH investigation.

Synergism of cel12B and cel8C on Avicel and CMC

Cel12B and cel8C were tested for their synergistic actions 

on CMC and Avicel by comparing their individual and 

combined activities on each substrate. �e reaction 

mixture consisted of 50  mM sodium citrate buffer (pH 

5.4), 5 mM MgSO4, 25 mg/ml CMC or Avicel, 0.334 U/

ml of cel12B, and/or 0.816 U/ml cel8C. To rule out pos-

sible product inhibition, synergism of the tested cellu-

lases with 0.5  U/ml of recombinant β-glucosidase was 

also examined using similar experimental conditions. 

β-glucosidase is a Pcc-Bgl pTAC-MAT recombinant clone 

overexpressed in E. coli and partially purified by PES 

membrane ultrafiltration and size-exclusion chromatog-

raphy using Sephadex G-100 (Ibrahim et al., unpublished 

data). �e reactions were allowed to proceed for 3  h at 

45  °C with samples taken every 10 min in the first hour 

and every 20  min in the following hours for product 

quantifications. Measurement of the enzymatic hydroly-

sis products was carried out using the DNS assay method 

described above.

Product analysis

Mono- and di-saccharide hydrolysis products were moni-

tored over 3 h of combined activities of cel12B, cel8C and 

β-glucosidase on Avicel or CMC, using gas chromatog-

raphy coupled with mass spectrometry (GC–MS). �e 

reaction mixture consisted of 50  mM sodium citrate 

buffer (pH 5.4), 25 mg/ml CMC, or Avicel, 2.70, 1.81 and 

0.5  U/ml cel12B, cel8C, and β-glucosidase, respectively. 

Hydrolysis by peh28 on pectin from citrus peel extract 

(cat no, P9135) was also monitored over 4 h using GC–

MS. Pectin stock solution was made by dissolving 2% 

(w/w) pectin (Pectin from citrus peel, Galacturonic acid 

≥74.0% (dried basis), Cat no. 9000-69-5) in DI H2O with 

1N NaOH added to bring the pH to 5.4. �e solution was 

then incubated at 45  °C for as long as 16–18  h and the 

microbial growth was inhibited by including tetracycline, 

cycloheximide, and chloramphenicol (cat. no. 87128, 

C104450, and C0378, respectively) at a final concentra-

tion of 0.1  mg/ml for each antibiotic. Peh28 was then 

added at 1.78  U/ml to a pectin solution (final concen-

tration of 4 mg/ml) to initiate the reaction. All reactions 

were incubated at 45 °C and pH 5.4 and the hydrolysate 

aliquots were collected every 30 min and quenched with 

four volumes of ethanol (99.9%, HPLC grade, cat. no. 

V002075). �e resulting suspensions were centrifuged for 

5 min at 13,000 rpm at room temperature, and the reduc-

ing sugar products were analyzed in the supernatants as 

follows. Samples in appropriate quantities were dried in 

1.5 ml amber glass GC vials (Supelco, cat. no. 27084-U, 

Bellefonte, PA) with thermoseal liners (Supelco, cat. no. 

27191, Bellefonte, PA), under a stream of nitrogen in a 

concentration system (Barvap 12, Glas-Col, LLC, cat. no. 

109A 11-12000, Terre Haute, IN) at 60 °C for 30–60 min. 

A blank containing the same set of reaction constituents 

was prepared for each enzyme and was terminated at 

time zero (t = 0) using ethanol.

Derivatization of hydroxyl groups of reducing sugar 

products via their N,O-bis[Trimethylsilyl]trifluoroaceta-

mide (BSTFA) derivatives in the presence of other cata-

lysts such as pyridine and trimethylchlorosilane (TMCS) 

has been previously reported [36]. Oxime derivative 

formation using hydroxylamine has been suggested as 

a precursor step to that of TMS-derivative formation to 

avoid sugar tautomer formation by the cyclic anomers 

of the latter compounds [37]. Parameter optimization 

for maximum oxime and TMS-derivative formation was 

carried out by Rivas et  al. (unpublished data) based on 

the method of Willis [38]. For oxime formation, 300  µl 

of pyridine solvent (99.8%, anhydrous, cat. no. 270970), 

300  µl of hydroxylamine hydrochloride (50  mg/ml in 

pyridine, cat. no. 159417), and 100  µl of salicin inter-

nal standard (2 mg/ml in pyridine, cat. no. S0625) were 

added to the dried sugars formed in the preceding steps. 

�e reaction was incubated in a dry bath at 85  °C for 

30  min and cooled to room temperature before pro-

ceeding to the next step. For TMS-derivative formation, 

300 µl of BSTFA +1% TMCS (CAS#25561-30-2 (BSTFA) 

and CAS#75-77-4 (TMCS), Regis Technologies Inc., 

Morton Grove, IL) was added to the previous reaction 

mixture to make a total volume of 1.0 ml. �e solutions 

were mixed thoroughly and were incubated for 30 min at 

90 °C and for another 10 min at room temperature before 

analysis by GC–MS. �e GC–MS analysis was carried 

out using gas chromatography (GC) (model 6890) cou-

pled to a mass selective detector (MSD) (5973) and auto 

injector with a split/splitless capillary inlet system (model 

7683) (Agilent Technologies, Inc. Hewlett-Packard, Santa 

Clara, CA). A 5% diphenyl, 95% dimethylpolysiloxane 

(HP-5MS) non-polar column (30  m length, 0.25  mm 

inner diameter, 0.25 µm film thickness, cat. no. 19091S-

433, Agilent Technologies, Inc, J&W Scientific, Santa 

Clara, CA) was used for chromatographic separation of 

the derivatized compounds. Helium, at an inlet pressure 

of 14.9 psi and constant flow rate of 1.0 ml/min, was used 

as a carrier gas. �e oven temperature was programmed 

to proceed from 180 to 300  °C at 15  °C/min over the 

course of 15  min. �e MSD was operated in Electron 

Multiplier Voltage (EMV) mode at 1400 EM, mass range 
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of 50–550  m/z at interface, and source temperatures of 

150 and 230  °C, respectively. �e injector was operated 

in a split mode with a split ratio of 1:10, injection port 

temperature of 250 °C, and injection volume of 1 µl. Data 

acquisition was done using MSD ChemStation software 

(E.02.01.1177, Agilent Technologies, Inc. Hewlett-Pack-

ard). �e total ion current (TIC) chromatogram of GC 

elution and selective fragment ion (SFI) spectra of MS 

were used for sugar-identification where the SFI inten-

sity and TIC retention time were used throughout for 

each eluted fragments as separated by GC–MS. Stand-

ard sugar oximes and/or TMS derivatives at 0-2.0  mg/

ml concentrations of anhydrous -(+)-glucose, -(+)-

galactose, -(+)-mannose, -(+)-xylose, -rhamnose, 

-(−)-fructose, sucrose, -(+)-cellobiose, and -(+)-

galacturonic acid (cat. no. G8270, G0750, M6020, X1500, 

R3875, F0127, S0389, C7252, and 48280, respectively) 

were formed by the same procedure and used for peak 

identification. �e mass spectrum of each standard was 

verified with the corresponding mass-spectrometry data 

of the National Institute of Standards and Technology 

(NIST) (http://webbook.nist.gov/cgi/cbook.cgi).

Statistical analysis

Data in triplicate sets were analyzed using Graph-

Pad  Prism 6.0 (GraphPad software Inc., La Jolla, CA) 

and were compared using one-way analysis of variance 

(ANOVA) and Tukey post-test analysis as offered by the 

program.

Results and discussion
Sequence analysis and homology modeling

Successful cloning of full length DNA of celB, celC, and 

peh into E. coli, encoding for cel12B, cel8C, and peh28, 

respectively, has been previously reported [8]. �e clones 

were confirmed for their sequence identities to that of 

Pcc polygalacturonase and cellulases as reported in acces-

sion numbers (Acc. No.) AAC02965.2, ZP_03832232.1 

and AAA03624.1 of NCBI’S database [8]. Cel12B, cel8C, 

and peh28 were assigned to glycoside hydrolase (GH) 

families 12, 8, and 28, respectively, based on the homolo-

gies to the correlated domain sequences as described 

[8]. �e work here is extended to further investigate the 

domain sequence similarities with others related in the 

NCBI database and to give some insight into the enzyme 

molecular structures based on the protein sequences of 

cel12B, cel8C, and peh28. Sequence homology of peh28 

with endo-polygalacturonase (peh-1) and pectate lyase 

(pel-3) from Pcc, Acc. No. gb|L32172 was 99% based 

on NCBI-BLASTP analysis [39, 40] (figure not shown). 

However, peh28 was assigned to pectate lyase family 6, 

Acc. No. cl19188, based on the homology to that of con-

served domain sequences of related proteins from other 

sources (Fig.  1a). Investigation of a carbohydrate-bind-

ing domain (CBD) in the cel12B and cel8C sequences 

was carried out using NCBI-CD-BLAST server. A CBD 

site of class II family with two conserved tryptophan (T) 

residues was found in the cel12B sequence as shown in 

Fig.  1b. �e implication of conserved tryptophan resi-

dues in binding to crystalline cellulose has been previ-

ously investigated [41, 42]. No CBD site was, however, 

found in the cel8C sequence based on the same analysis.

Enzyme molecular weights of 29.5, 40, and 41.5  kDa 

were previously determined using SDS-PAGE for cel12B, 

cel8C, and peh28, respectively, [8], identical to the pre-

dicted values of each corresponding enzyme using the 

JustBio server (Table  1). �eoretical isoelectric points 

were also calculated for each protein sequence which 

were considerably higher for cel12B, 9.17, and peh28, 

9.46, than that of cel8C, 7.73 (Table 1). �is might indi-

cate the presence of more positive residues on the protein 

surfaces of cel12B and peh28, relative to cel8C. Similar pI 

values were previously reported with other polygalactu-

ronases and cellulases from different sources such as pIs 

of 8.73 and 8.45 for polygalacturonases NfPG I and NfPG 

III, respectively, from Neosartorya fischeri [43], pI 9.18 

for endo-polygalacturonase-I from Achaetomium sp. [44] 

and pI 7.4 for an endoglucanase from Trichoderma har-

zianum (T. harzianum) [45]. Understanding the electro-

static interactions of the enzyme-ligand surface charges 

could have implications for enzyme productive binding 

in optimum biomass conversions [46].

Several N-glycosylation sites were similarly predicted 

for the cel12B and peh28 sequences, unlike cel8C where 

only one site was detected (Table  1). N-glycosylation at 

the loop regions and/or near aromatic amino acid resi-

dues was found to provide structural stability to enzymes 

as discussed by Price et  al. [47] and Culyba et  al. [48]. 

�e role of glycosylation in the cellulose-binding affinity 

of cellobiohydrolase has been previously reported [49]. 

No significant alteration in endoglucanase activity was 

detected, however, the enzyme hypo-glycosylation and 

hyper-glycosylation were carried out by expressing into 

E. coli and S. cerevisiae, respectively [50, 51].

Figure  2a–c show the protein model structures of 

cel12B, cel8C, and peh28, respectively, as predicted by 

Phyre2-protein model recognition server [30]. Accord-

ingly, β-jelly roll topology was the fold architecture for 

the cel12B structure which showed 68% homology and 

1.78  Å rmsd [30], with endo-β-1,4-glucanase chain B 

sequence from Bacillus licheniformis [52]. Cel8C, how-

ever, showed an α-barrel fold architecture with a pair 

of parallel six-helix domains located at opposite align-

ments and forming inner and outer rings in the model 

structure (Fig. 2b). �e structure showed 58% structural 

identity and 2.20  Å rmsd [30], with that of Mazur and 

http://webbook.nist.gov/cgi/cbook.cgi
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Zimmer for a related GH-8 endoglucanase sequence, 

BcsZ, from modified E. coli [53]. On the other hand, a 

fold of single-stranded right-handed β-helices with 10 

full turns was identified for the predicted peh28 struc-

ture as shown in Fig. 2c. �e similarity to that of endo-

polygalacturonase I sequence from A. niger [54], was 

Fig. 1 a Alignment of peh28-deduced residues with those of pectate lyase-6, cl19188, superfamily member PLN02793 as carried out using NCBI-

CD-BLAST web-portal server. The Accession Numbers, gi 18412685, gi 224058683, gi 225442879, gi 255553121, and gi 297839921 represent the 

putative or hypothetical protein sources of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Vitis vinifera, Ricinus communis [58], while the tested 

peh28 sequence represented the line query. The black-shaded area represents the non-aligned sequences among all represented species compared 

to the others shown in the non-shaded region of the display. Peh28 showed high confidence similarity with the aligned protein sequences with 

overall domain specific threshold, bit score, of 116.13 and expectation-value, E value, 4.70e−29 from RPS-BLAST and PSSM mode of NCBI-CD-BLAST 

server, respectively. b Carbohydrate-binding domain (CBD) type II in cel112B protein sequence based on the alignment with those of other species 

using NCBI-CD-BLAST web-portal server. It shows two tryptophan residues that were found conserved among CBD-II of Pcc cel12B, query line, and 

the published sequences of endoglucanase D from Clostridium cellulovorans, 3NDZ_E, endoglucanase CelA from Streptomyces lividans, gi 121809, 

Cel12B from Cellulomonas fimi, gi 121813, and xylanohydrolase B from Cellvibrio japonicas, gi 294862476 according to Marchler-Bauer et al. [58]. The 

black-shaded area represents the non-aligned sequences among all represented species compared to the others shown in the non-shaded region 

of the display. Cel12B showed high confidence similarity with the aligned protein sequences with overall domain-specific threshold value, bit score, 

of 110.21 and E value, 1.40e-29 from the NCBI RPS-BLAST and PSSM mode servers, respectively

Table 1 Isoelectric point (pI), molecular weight, and N-glycosylation sites predicted for cel12B, cel8C, and peh28

a The predicted molecular weights are in agreement with those identi�ed for the enzymes using SDS-PAGE [8]

Enzyme pI value Molecular weight (kDa)a
N-Glycosylation sites

Cel12B 9.17 29.5 Asn226, Asn230, Asn235, Asn280, Asn287, Asn308, Asn333. Asn393, Asn440

Peh28 9.46 41.5 Asn128, Asn161, Asn167, Asn207, Asn256

Cel8C 7.73 40 Asn128
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determined for the peh28-deduced sequence, with over-

all 95% homology and 1.90 Å rmsd [30]. Figure 2d shows 

the alignment confidence of Pcc’s peh28 and A. niger’s 

endo-polygalacturonase I sequences based on Phyre2-

model-alignment assessment of Kelley et  al. [30]. As 

illustrated, peh28 has high alignment confidence with the 

conserved domain residues of endo-polygalacturonase 

I as well as with other non-conserved residues such as 

those of the Arg96 residue. Arg96 has been suggested to 

guide the processive behavior of A. niger’s endo-polyga-

lacturonase I through a flexible binding due to the sub-

strate negative surface alignment with the enzyme active 

site [54]. �e authors, van Pouderoyen et  al., reported 

that mutagenesis of Arg96 to Ser yielded a non-processive 

mutant of endo-polygalacturonase I, thereby establish-

ing the function. �e high alignment of such a residue 

with that of Pcc’s peh28 suggests the processivity func-

tion of the latter enzyme. Moreover, the high homology 

of peh28 to the conserved domain sequences of A. niger’s 

endo-polygalacturonase I and that of pectate lyase fam-

ily 6 would suggest the multi-domain characteristic and, 

hence, the dual functional properties of peh28. �e tight 

linkages reported of pectate lyase, pel-3, and polygalac-

turonase, peh-I, genes in the Pcc chromosome [55] sup-

port our findings. A similar observation was previously 

made by Tu et al. [56] for pectinase SX6 from Penicillium 

oxalicum with two separate catalytic domains for pectin 

methylesterase and polygalacturonase activities.

Fig. 2 Schematic view of the protein 3D-model structures of a cel12B with β-jelly roll topology shown in the gray-ramped illustration. The pre-

dicted acid/base catalytic residues, Glu158 and Glu246, are shown in purple and fuchsia ball and stick representations in distinguishing from that of 

yellow, blue, green, gold, red, aqua, brown, white, and violet representations for Trp56, Tyr92, Trp142, Met160, Trp162, Pro170, Ala171, Ile192, Trp200, and Phe248 

catalytic residues, respectively. b cel8C with α-barrel-fold architecture of six (α/α) helices structure shown as inner and outer layers of pinkish car-

toon representations. The predicted catalytic residues, Glu55 and Asp243, are shown in the groove center in green and blue ball and stick representa-

tions in distinguishing from that of red and black representations for Tyr244 and Phe335 catalytic residues, respectively. c peh28 with right-handed 

β-helical-fold of ten full turns showing the gray-ramped cartoon representation. The predicted catalytic residues, Asp228, Asp249, Asp250, and His277, 

are shown in the upper area within the T-loop region with blue, red, purple, and green ball and stick representations in distinguishing from that are 

shown in the bottom-sided area with yellow, aqua, gold, violet, lime, white, and brown representations for Ser27, Asp28, Ser29, Arg30, Asn237, Asn265, 

Asn290 catalytic residues, respectively. Cys115 and Trp160 residues at the peripheral loop region, and Asn370, Val367, Val368, Trp351, and Val330 at the C-ter-

minus are seen as red, yellow, black, blue, orange, white, and green stick representations, respectively. d Peh28 showing the alignment confidence 

values with endo-polygalacturonase I protein template of van Pouderoyen et al. [54]. High alignment values are shown in red and yellow representa-

tions, while the green displayed areas are of moderate alignment values according to Phyre2-model alignment investigation, [30]. The space-filling 

representations shown in the side and the center of the T-loop region are of Arg96+ and the catalytic residues of peh28, respectively. Those residues 

are at a high degree of alignment with those of polygalacturonase I as indicated by the yellow-colored representation shown in their displayed areas
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Figure 2a–c also demonstrate the enzyme-binding sites 

as predicted for cel12B, cel8C, and peh28 sequences, 

respectively, based on analysis using the 3D-LigandSite 

recognition server [31]. Twelve residues were identi-

fied in the predicted binding site for cel12B as shown 

in Fig.  2a. �e two carboxylated glutamate residues, 

Glu158 and Glu246, are the catalytically active nucleophile 

and acid/base residues suggested for cel12B based on 

the similarity to those of Gloster et  al. [52] for endo-β-

1,4-glucanase B from B. licheniformis. Proline residue, 

Pro170, at the cel12B active site (Fig.  2a), may represent 

the C-terminus of an acidic flexible linker (FL) in the 

demonstrated structure. A similar residue was sug-

gested before to form hydrogen bonds with the central 

protein region for a related GH-12 cellulase structure, 

LC-CelA, from Rhodothermus marinus, providing sta-

bility to the defined system [57]. �e presence of an FL-

related domain (Fibronectin type 3 domain, accession # 

cl21522 [58]) was found in the cel12B sequence using the 

NCBI-CD-BLAST server (results not shown). �e FL has 

been reported to catalyze separation of a hydrophobic 

signal peptide that anchors the enzyme to the cell from 

the catalytic core [57, 59], and also to play a critical role 

in the enzyme processivity on crystalline cellulose [60, 

61]. Future investigations of the predicted structure are 

planned to be carried out using site-directed mutagenesis 

and other related methodologies.

On the other hand, Glu57, Tyr244, Asp245, and Phe335 

were the only residues identified for cel8C in the predicted 

binding site (Fig. 2b), which dominate the groove center of 

a substrate-binding pocket [62], (Fig. 2b). Glu57 and Asp245 

are the catalytically active residues suggested for cel8C by 

comparison to that of Mazur and Zimmer [53].

Peh28 residues Ser27, Asp28, Ser29, Arg30, Asn237, 

Asn265, and Asn290 were identified in the active site of the 

predicted structure, as shown in Fig.  2c. �ese residues 

comprise the potential N- and/or O-glycosylation sites 

similar to those reported by van Pouderoyena et al. [54]. 

However, the similarity to A. niger’s endo-polygalacturo-

nase I conserved domain sequences (Fig.  2d), suggests 

Asp228, Asp249, Asp250, and His277 to be the catalytic acid/

base residues for peh28.

Other molecular target motifs were also noted for 

peh28 such as Cys115 and Trp160 at the peripheral loop 

region, and Asn370, Val367, Val368, Trp351, and Val330, were 

found proximal to the C-terminus in the enzyme model 

structure (Fig. 2c). Similar residues have been previously 

investigated for hydrophobicity and/or protein stability 

related functions in the protein structure of polygalactu-

ronase PehA from Erwinia carotovora (P. carotovorum) 

[63]. �e contribution of such identified residues in 

the peh28 stability could be validated in future studies 

through site-directed mutagenesis.

Biochemical characterization of recombinant 
cel12B, cel8C, and peh28
Puri�cation of cel12B and cel8C and polygalacturonase

�e crude protein extracts, partially purified with B-PER 

accessory reagents, were desalted and concentrated by 

multiple phases of ultrafiltration using PES membranes 

with different MWCs. �e concentrated fractions were 

subjected to further purification by gel filtration using 

Sephadex G-100. A summary of each purification step 

is depicted in Table 2 for cel12B, cel8C, and peh28. �e 

ultimate purification-fold values were calculated to be 

17.4, 6.2, and 6.0 for cel12B, cel8C, and peh28, respec-

tively. SDS-PAGE following final gel filtration revealed 

the appearance of other protein bands along with the 

identified enzyme bands as investigated before [8]. �e 

presence of such impurities of other protein bands along 

with the enzyme bands suggests partial purification of 

the three enzymes. Similar observations have been previ-

ously reported by Tari et  al. [64] for exo-polygalacturo-

nase from Aspergillus sojae, who suggested that stability 

of the enzyme might be negatively affected by their puri-

fication due to the possible synergistic effect from other 

proteins found in solution with the desired enzyme com-

ponents as originally proposed by Naidu and Panda [65]. 

�us, the partially purified cel12B, cel8C, and peh28 are 

further characterized in the subsequent sections.

Mode of enzyme action and substrate speci�city of cel12B 

and cel8C

Exoglucanase, endoglucanase, and β-glucosidase activi-

ties were determined for cel12B and cel8C using 20 mg/

ml of Avicel, 20 mg/ml of CMC, and 10 mM of p-NPG, 

respectively. �e soluble cellulose derivative, CMC, is 

commonly used as substrate for endolytic-cellulase activ-

ities [66], while Avicel is a crystalline cellulose prepara-

tion, similar in crystallinity index to pretreated natural 

cellulose [67]. Both amorphous and crystalline cellulosic 

regions are part of the natural cellulose framework but 

the latter regions contribute to the complexity of the 

material’s enzymatic degradation [67]. �e data in Table 3 

indicate that both cellulases showed an apparent endo-

lytic activity on CMC. However, activity on Avicel was 

not detected with cel8C. Moreover, the activity deter-

mined for cel12B on CMC was minimal compared with 

those reported for several typical endoglucanases such as 

those of Irwin et al. [68]. �e activity found for cel12B on 

Avicel as well as its minimal activity on CMC would sug-

gest that it is an atypical endoglucanase. �e correspond-

ing Avicelase activity has been previously reported with 

related GH-12 cellulases such as those from Trichoderma 

reesei [69]. �e presence of the CBD-II site noted above 

in the cel12B protein sequence would suggest an exolytic 

function on Avicel’s crystalline domains. An increase in 
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the enzyme-binding affinity to the cellulose crystalline 

parts was previously reported in the presence of a CBD-II 

related structure [41]. �e lack of the corresponding CBD 

motif in the cel8C protein sequence may explain its inac-

tivity on Avicel. Mazur and Zimmer [53] also reported 

the absence of a CBD site in a related GH-8 cellulase. 

�e high activity observed on CMC, as compared with 

cel12B, would suggest cel8C is a typical endoglucanase. 

�e lower CMCase activity of cel12B might be related to 

the CBD and its inhibition of enzyme desorption follow-

ing adsorption on the substrate [70, 71]. Table  3 shows 

that neither cel12B nor cel8C activities were detected on 

p-NPG and, thus, the enzymes’ β-glucosidase function 

can be dismissed. Similar findings have been reported for 

endoglucanases from different sources tested on p-NPG 

and cellobiose as substrates [72, 73].

Kinetics of recombinant cel12B, cel8C, and peh28 

with their respective substrates

Enzyme kinetic parameters, Vmax, Km, and kcat and 

kcat/Km, given in Table 4, were estimated using direct fit 

to the Michaelis–Menten equation (figures not shown) 

over a 1–40 mg/ml range of CMC for cel8C and cel12B, 

and a 0.05–0.55  mg/ml range of polygalacturonic acid 

for peh28. All kinetic measurements were carried out at 

45  °C for cel12B and cel8C, and 40  °C, for peh28 using 

Table 2 Puri�cation steps of cel12B, cel8C, and peh28 overexpressed in E. colia

All values are given as a mean of triplicates ± SE

a Cel12B, cel8C, and peh28 are clones of Pcc for genes encoding cellulase B, cellulase C, and polygalacturonase, respectively, that were transformed into E. coli using 

pTAC-MAT expression vector

b Crude extracts are cell-free extracts of E. coli cell-free lysates. The cultures were stimulated for enzyme induction for 5 h, for cel12B and cel8C, and for 7 h, for peh28, 

at 37 °C using 10 mM IPTG

c One Unit of enzymatic activity is de�ned as the amount of enzyme releasing 1 µmol of reducing sugars per minute from the substrate under the assay conditions 

(pH 5.0 at 40 °C, for cel12B and cel8C, and pH 5.0 at 40 °C, for peh28)

d All protein concentrations are in mg per ml of enzyme solution at each fractionation stage

e Ultra�ltration

f Polyethersulfone

g Molecular weight cut-o�

h Gel �ltration was carried out using Sephadex G-100

Enzyme Puri�cation method Fractions Total enzyme 
activity (units)c

Total protein 
(mg)d

Speci�c activity  
(U/mg protein)

Puri�cation 
fold

Yield (%)

cel12B Crude extractb 4.49 73.2 0.061 0 100

UFe-PESf—MWCg 
(100 kDa)

Permeate 3.73 38.0 0.098 1.6 83.1

UF-PES—MWC (50 kDa) Permeate 2.76 11.0 0.251 4.1 61.4

UF-PES—MWC (30 kDa) Permeate 1.91 2.32 0.823 13.4 42.6

Gel filtrationh 1.32 1.24 1.06 17.4 29.3

cel8C Crude extract 28.7 75.3 0.381 0 100

UF-PES—MWC (100 kDa) Permeate 25.8 44.5 0.579 1.5 89.7

UF-PES—MWC (50 kDa) Retentate 23.1 27.4 0.844 2.2 80.5

UF-PES—MWC (30 kDa) Permeate 18.2 7.39 2.47 6.5 63.4

Gel filtration 14.4 6.08 2.36 6.2 50.0

peh28 Crude extract 1.58 88.8 0.0178 0 100

UF-PES—MWC (100 kDa) Permeate 1.37 52.2 0.0262 1.5 86.5

UF-PES—MWC (50 kDa) Retentate 1.31 31.2 0.0419 2.4 82.6

UF-PES—MWC (30 kDa) Permeate 1.00 11.3 0.0888 5.0 63.4

Gel filtration 0.708 6.56 0.108 6.0 44.7

Table 3 Exoglucanase, endoglucanase, and  β-glucosidase 

activities of  cel12B and  cel8C on  Avicel, CMC, and  p-NPG, 

respectively

The reactions were conducted for 1 h at 45 °C, pH 5.0 using 20 mg/ml Avicel or 

CMC for exoglucanase and endoglucanase activities, respectively, and for 30 min 

at 50 °C, pH 5.0 using 10 mM p-NPG for β-glucosidase activity

All values are given as a mean of triplicates ± SE

a A unit of enzyme activity (U) is de�ned as the amount of enzyme releasing 

1 µmol of reducing sugars per minute for exoglucanase and endoglucanase 

activities on Avicel and CMC, respectively, and 1 µmol p-nitrophenol per minute 

for β-glucosidase activity on p-NPG under the assay conditions

Enzyme Exoglucanase 
activity (U/ml)a

Endoglucanase 
activity (U/ml)

β-Glucosidase 
activity (U/ml)

Cel12B 1.53 ± 0.09 1.21 ± 0.02 –

Cel8C – 14.7 ± 0.6 –
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the appropriate buffer system at pH 5.0. Cel12B exhibited 

16-fold lower activity with CMC than cel8C as shown 

by the corresponding Vmax values. However, the Km 

value of cel8C with CMC, 35 mg/ml, was about twofold 

higher than that of cel12B on CMC but the Km values of 

both enzymes on CMC are lower than those reported 

for other cellulases by Kim et al. [74] and Lin et al. [75] 

for modified endoglucanases of EngZ (K94R/S365P) 

and cel8  M at 42.5  °C, pH 7.0 and 40  °C, respectively. 

On the other hand, cel12B’s catalytic efficiency in terms 

of kcat/Km, 0.14  ml/mg/s, was 17-fold lower than that 

of cel8C on CMC (Table 5), which is eight times higher 

than that of a modified thermally stable endoglucanase 

EngZ (K94R/S365P) [74]. Although cel12B pales in com-

parison to cel8C, it displays a similar kcat value, 2.7  s−1, 

to that reported by Okada et al. [19] for a related GH-12 

endoglucanase from T. reesei. �e difference in the cata-

lytic performance of cel12B and cel8C on CMC might be 

attributed to the dissimilarities in their substrate prefer-

ences as well as the presence of a CBD as discussed above 

in the substrate specificity section. Preliminary kinetic 

assessment of cel12B acting on the solid substrate Avi-

cel was also consistent with a Michaelis–Menten model 

(data not shown) but consideration of it will be left to a 

future study in order to incorporate mass-transfer effects 

to and from the solid surface into the model, as discussed 

by Cruys-Bagger et al. [76], and also to consider hetero-

geneity within Avicel itself between its crystalline and 

amorphous regions [77, 78]. 

Table  4 indicates that the Km of peh28 with polyga-

lacturonic acid, 0.87 mg/ml, is similar to those of com-

mercial polygalacturonases [25]. On the other hand, 

the Vmax of peh28 on polygalacturonic acid, 2.01 µmol/

ml/min at 40  °C and pH 5.0, is higher than those of 

Ortega et  al. [79], for commercial pectinases at 30  °C 

and pH 4.2, and lower than that of Joshi et  al. [80], for 

a marine pectinase from Bacillus subtilis at 40  °C and 

pH 8.0. Such variations in Vmax might be due to the dis-

similar reaction conditions, including enzyme molar 

concentration; the better comparator would be kcat, if 

those concentrations were known. Activities of polyga-

lacturonases are generally affected by the substrate-

esterification, substrate surface charges, and the enzyme 

pI values [81]. Low substrate-esterification, for instance, 

can lower the enzymatic activity by increasing the non-

productive binding as reported for polygalacturonic 

acid with an endo-polygalacturonase from Verticillium 

alboatrum [81]. Exo-polygalacturonases were also found 

to have lower activities than endo-polygalacturonases as 

reviewed by Niture [25]. �us, the lower activity found 

for peh28 relative to those of Joshi et  al. can be due to 

the low degree of esterification of polygalacturonic acid 

or due to the possible enzyme exolytic action on the 

substrate. �e catalytic efficiency of peh28 was 4.87 ml/

mg/s, which was higher than those reported by Maisu-

ria et  al. [82] at pH 8.5 and 50  °C and Joshi et  al. [80] 

at pH 9.0 and 40  °C for polygalacturonases/pectinases 

from different sources. �ese observations indicate 

the industrial potential of peh28 and also highlight the 

importance of feedstock characterization for maximum 

biomass conversion by the tested enzyme.

pH and temperature optima for substrate conversions 

with the recombinant enzymes

�e optimum pH values for enzyme activities were 

investigated over a broad pH range of 3.0–10.0. Reac-

tions were conducted for 1 h at 45 °C using 25 mg/ml of 

CMC for cel12B and cel8C, and at 40 °C using 4 mg/ml 

of polygalacturonic acid for peh28. �e pH profile for the 

enzymes is shown in Fig. 3a. No activity was detected for 

cel8C at pH 3.0–3.4 but activity was detected at pH 3.6. 

On the other hand, cel12B and peh28 showed activity at 

all the tested pH levels. However, all enzymes displayed 

their maximum activities at a pH range of 5.4–6.2. Simi-

lar pH optima have been previously reported with other 

cellulases/endoglucanases of related GH-8 and GH-12 

families and polygalacturonases/pectinases of related 

GH-28 family such as those reported by Yeh et  al. [72] 

Table 4 Enzyme kinetic parameters for cel12B, cel8C, and peh28a

a The parameters were determined at 40 °C and pH 5.0 for peh28 using 0.05–0.55 mg/ml polygalacturonic acid and at 45 °C and pH 5.0 for cel12B and cel8C using 

1–40 mg/ml CMC. Parameters are given as a mean of triplicates ± SE

b Maximum velocity (at substrate saturation)

c Michaelis–Menten constant (half-saturation constant)

d Turnover number (enzyme concentration-independent speci�c rate at saturation)

e Catalytic e�ciency (speci�city constant)

Enzyme Substrate V
b
max (µmol/ml/min) Km

c (mg/ml) k
d
cat (s

−1) kcat/Km
e (ml/mg/s)

cel12B CMC 2.4 ± 0.2 19 ± 3 2.7 ± 0.2 0.14 ± 0.03

cel8C CMC 39 ± 4 35 ± 6 85 ± 9 2.5 ± 0.7

peh28 Polygalacturonic acid 2.0 ± 0.5 0.87 ± 0.29 4.2 ± 1.0 4.9 ± 2.8
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for a GH-12 endoglucanase from rice straw compost, Lin 

et  al. [75] for a GH-8 cellulase from E. coli K12 strain, 

and Maisuria et al. [83] and Maller et al. [84] for GH-28 

polygalacturonases from Pcc-BR1 and Aspergillus niveus, 

respectively. Figure  3a also displays a similar decline in 

activity for each enzyme in the alkaline pH range, 7.0–

10. �e enzymes exhibited variations in the decrease 

in activity at pH 7.0 as shown by the corresponding 90, 

50, and 78% reductions from optimal activity for cel12B, 

cel8C, and peh28. Such significant decline in cel12B and 

cel8C activities at high pH has been seen before in related 

glycoside hydrolase families such as a GH-12 endo-

glucanase from T. reesei, a GH-12 xyloglucanase from 

Fusarium graminearum and a GH-8 cellulase mutant 

from E. coli K12 strain, as reported by Karlsson et al. [69], 

Habrylo et al. [85], and Lin et al. [75], respectively. Based 

on these findings, pH 5.4 was selected as optimal for all 

subsequent experiments.

Temperature optima for enzyme activities were deter-

mined over a range of 20–80 °C at pH 5.4, using 25 mg/ml 

of CMC for cel12B and cel8C, and 4.0 mg/ml of polyga-

lacturonic acid for peh28. �e temperature profiles for the 

enzymes shown in Fig. 3b indicate that the cel8C exhib-

ited a different temperature-dependence than cel12B and 

peh28. In fact, there was complete inactivation of cel8C 

but not cel12B and peh28 at temperatures higher than 

Fig. 3 a pH profile of recombinant cel12B, cel8C, and peh28 incubated for 1 h at 40 °C with 25 mg/ml CMC, for cel12B and cel8C, and 4 mg/ml 

polygalacturonic acid, for peh28. b Temperature profile of recombinant cel12B, cel8C, and peh28 incubated for 1 h at pH 5.4 with 25 mg/ml CMC 

for cel12B and cel8C, and 4 mg/ml polygalacturonic acid for peh28. One unit of enzyme activity was defined as the amount of enzyme releasing 

1 µmol of reducing sugars per minute from the substrate under the assay conditions. Values presented are given as a mean of triplicates ± SE
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60  °C. �e lower stability of cel8C has been previously 

noted for several cellulases of the GH-8 family [75]. Sig-

nificant increases in enzyme activities were observed 

over the temperature range 20–45  °C, each reaching a 

maximum about 45 °C. Optima of 45 °C were previously 

found for several GH-8 cellulases as discussed by Lin et al. 

[75]. Activity of cel8C gradually decreased by 23–77% as 

the temperature increased from 50 to 60  °C relative to 

the activity at 45 °C (Fig. 3b). On the other hand, no sig-

nificant change was observed in cel12B and peh28 activi-

ties when the temperature increased from 45 to 55  °C 

(Fig. 3b). �us, cel12B and peh28 exhibited their maxima 

over a broad temperature range of 45–55  °C. Similar 

optimum temperatures have been previously reported 

with related GH-12 cellulases and GH-28 polygalacturo-

nases from different sources as reported by Karlsson et al. 

[69], Amore et al. [86], and Picart et al. [87] for cellulases, 

and Kaur et  al. [88] for polygalacturonase. �e stabil-

ity of cel12B and peh28 at high temperatures was shown 

by their 77, 52–66, and 30% activities retained at 60, 65, 

and 70 °C, respectively, relative to their average activities 

over 45–55 °C. �e activity retained by peh28 at 60 °C or 

higher was atypical compared to other GH28-polygalac-

turonases such as that of NfPG I from Pan et al. [43]. �e 

kinetic and thermodynamic stabilities of the current mod-

ified systems at industrially relevant temperatures will be 

discussed in detail in a future publication.

Examination of synergism of cel12B and cel8C on Avicel 

and CMC substrates

An experiment was carried out to examine the poten-

tial synergy of cel12B and cel8C to achieve maximum 

hydrolysis on CMC and Avicel substrates. Total quanti-

ties of reducing sugars formed in separate and combined 

reactions of cel12B and cel8C with the substrates were 

measured and compared. �e synergetic response was 

also investigated in the combined activities of cel12B and 

cel8C on each substrate in the presence of β-glucosidase. 

All synergies were investigated at intervals through-

out a 3 h period of incubation at 45 °C and pH 5.4 using 

CMC and Avicel at 25  mg/ml as shown in Fig.  4a, for 

CMC, and 4b, for Avicel. Figure 4a shows that a cel12B 

and cel8C mixture achieved maximum substrate con-

versions at 80 min which was half the time for the indi-

vidual enzymes on CMC. �ere was also a significant 

1.4-fold increase in the corresponding total reducing 

sugars formed as compared with the sum of their indi-

vidual activities on CMC. Synergism of endoglucanases 

on CMC has been reported by Rao et al. [89] and Zhou 

and Ingram [90] for endoglucanases from Fusarium lini 

and Erwinia chrysanthemi, respectively.

�e synergism displayed by cel12B and cel8C on CMC 

may be correlated with their retention and inversion 

modes of action, respectively, on the substrate as investi-

gated earlier [8]. �is, in turn, might be due to the diffi-

culty cel12B has to demonstrate its retention mechanism 

on cellohexaose-like substrates compared to smaller 

degradation products, e.g., cellotetraose and cellopen-

taose as explained below (see Product analysis section, 

below). Zhou and Ingram [90], explained the synergy 

between two endoglucanases, CelZ and CelY, from E. 

chrysanthemi, as due to the inability of CelY to utilize 

the soluble degradation products cellotetraose and cello-

pentaose which could be readily utilized by CelZ. Prod-

ucts averaging 10.7 glucosyl units were reported by the 

authors for the action of CelY, while average fractions of 

3.6 glucosyl units arose by the combined action of CelZ 

and CelY. �e lower activity found for cel12B by itself 

on CMC is similar to that of CelZ from E. chrysanthemi. 

Moreover, the CelY from E. chrysanthemi was assigned 

to the same GH-8 family ascribed to the present cel8C. 

�ese observations suggest relative substrate prefer-

ences as a possible mechanism for the enzyme synergy 

observed with cel12B and cel8C. Zhou and Ingram also 

reported that sequential hydrolysis of CMC by their two 

Fig. 4 Test of synergism among recombinant products of cel12B and 

cel8C with/without β-glucosidase as compared to their individual 

actions on a CMC and b Avicel substrates. The reactions were con-

ducted for 3 h with the activities being tested every 10 min in the first 

hour and every 20 min in the next 2 h at 45 °C using 2.5% (w/v) CMC/

Avicel in 50 mM sodium citrate buffer (pH 5.4). Values presented are 

given as a mean of triplicates ± SE
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enzymes, CelZ and CelY, improved the synergy between 

them, when CelY was used first. �ey suggested that 

CelY increased the substrate digestibility for the ensuing 

action of CelZ on the partially hydrolyzed CMC. �us, 

the low synergy observed herein might be improved if 

similar sequential hydrolysis had been used, cel8C first, 

then cel12B. Further investigation of the complemen-

tary actions of cel8C and cel12B is a promising focus for 

future research.

On the other hand, no detectable activity was shown on 

Avicel in the case of cel8C over all periods of incubation 

unlike cel12B (Fig. 4b). �e maximum total reducing sugar 

products achieved on Avicel by cel12B was about 7.0 mM 

at 180 min incubation. No significant change was detected 

in the hydrolysis of Avicel when cel12B was combined with 

cel8C. �is may be due to Avicel’s high level of crystallinity 

that prevents the enzyme access and, hence, the synergism 

as implied by Kostylev and Wilson [91]. Absence of a CBD 

in the cel8C sequence could explain the enzyme’s inactivity 

on crystalline cellulose as discussed above. �e absence of 

cellulase synergy on crystalline cellulose has been reported 

with cellobiohydrolase I and endoglucanases I and II using 

cellulose microcrystals [92].

�e insignificant activity observed for cel8C on Avicel 

and/or its lack of synergy with cel12B might be attributed 

to the formation of long insoluble products of six or more 

glucosyl units by cel8C that tend to not be further hydro-

lyzed and, in turn, must be removed by centrifugation 

prior to analysis. A similar explanation has been given 

for CelY and CelZ from E. chrysanthemi, for their lack of 

synergy on Avicel [90]. On the other hand, the synergy of 

CelY and CelZ on CMC was explained due to the forma-

tion of intermediate fragments by CelY that could be fur-

ther utilized by CelZ to form more diffusible substrates 

and/or products [90], similar to the synergy observed for 

the present cel8C and cel12B on CMC.

Activity stimulation of 28–30% was observed when 

β-glucosidase was added to the mixture of cellulases 

using CMC or Avicel as substrates (Fig.  4a, b). Simi-

lar activity stimulation has been previously reported 

with β-glucosidase in conjugation with other cellu-

lases from different sources such as those reported by 

Zhang and Lynd [93], Ng et al. [94], and Zhao et al. [95]. 

β-Glucosidase may enhance the cellulases’ function by 

eliminating the cellobiose-mediated inhibition encoun-

tered in many cellulolytic systems through the conver-

sion of cellobiose to glucose as proposed by Andrić et al. 

[96], Ng et al. [94], and Zhao et al. [95]. �e time for max-

imum total reducing sugar products from the mixture of 

cellulases on CMC was reduced to 60  min in the pres-

ence of β-glucosidase as shown in Fig. 4a. No change was 

detected, however, in the duration taken for cel12B to 

achieve maximum activity on Avicel upon β-glucosidase 

addition as shown in Fig.  4b. �ose variations in the 

duration of incubation needed to achieve maximum 

total reducing sugar product formation on each substrate 

might be attributed to the formation of less hydrolyzable 

cellulose clusters generated as time progresses, as dis-

cussed by Turon et al. [97]. �e synergy shown by the cel-

lulases on Avicel or CMC may highlight the candidacy of 

such tailored catalyst cocktails for lignocellulosic biomass 

conversion. Further investigations using high-resolution 

microscopy are suggested for improved understanding of 

the mechanism of enzyme synergy for maximal biomass 

saccharification using the present enzymes. Adjusting the 

relative enzyme molar concentrations and understand-

ing the kinetics of enzyme synergies are also anticipated 

milestones in our ongoing studies to achieve maximum 

enzymatic conversion of the substrates [98].

Product analysis

Investigation of cel8C and cel12B and β-glucosidase com-

bined actions and the hydrolytic products formed over 

3  h on Avicel or CMC has been carried out using gas 

chromatography coupled with mass spectrometry (GC–

MS) as shown in Fig.  5a, b, respectively. Identification 

of each product generated during the enzymatic time 

courses on Avicel and CMC has been carried out using 

the retention times as well as the molecular ion frag-

ments of their sugars given in Table 5 and Fig. 6.

Due to the GC limitations in quantification of the tri- 

and higher-oligomers, glucose and cellobiose were seen 

as dominant hydrolytic products from Avicel or CMC 

using the defined enzyme cocktail, as shown in Fig.  5a, 

b. In general, lower cellobiose and glucose concentra-

tions arose from Avicel than CMC, which is likely a 

consequence of the soluble CMC being freely accessible 

whereas the solid Avicel is less accessible due to diffu-

sional mass-transfer resistance. A similar explanation has 

been made for the GH-8, CelY, and GH-5, CelZ, endoglu-

canases from E. chrysanthemi, and their combined activi-

ties on Avicel and CMC [90]. �is is further evidence of 

the inactivity of cel8C on Avicel, as discussed above.

Glucose and cellobiose were the hydrolysis products 

found in various combination reactions of other enzymes, 

such as CelY and CelZ [90], or individual actions of vari-

ous GH-12 cellulases [69, 73, 98] on Avicel or CMC. �is, 

in part, accounts for the progressive simultaneous activi-

ties of cel8C, as a typical endoglucanase, and cel12B, as 

non-typical endoglucanase, along with β-glucosidase on 

the substrates studied here. �e variable substrate uti-

lization by cel8C and cel12B was also considered with 

respect to their anomeric configuration-inverting and 

-retaining mechanisms, respectively, as reported earlier 

[8]. �is may explain the partial dependency of cel12B on 

the preceding action of cel8C, to facilitate the retaining 
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activity of the former through the actions on CMC. A 

similar explanation has been made previously for con-

figuration-retaining cellulases [99], and for the synergy 

between CelZ and CelY endoglucanases [90]. Formation 

of cellotriose, with or prior to cellobiose, was also dem-

onstrated with cellulases and/or endoglucanases hav-

ing different modes of action as reported by Zhou and 

Ingram [90] and Karim et al. [99]. �is supports the com-

plementary roles suggested for cel12B and cel8C in their 

actions on CMC as explained above. Further investiga-

tion using isothermal calorimetry coupled with HPLC, 

could improve the understanding of end-product effects 

and/or enzyme synergy within the current modified sys-

tem on each substrate.

Glucose concentration increased steadily in the CMC 

reaction over 2  h then leveled off (Fig.  5a). Cellobiose 

concentration, on the other hand, only varied after 1.5 h; 

the concentration at 2.0  h was almost double those 

at 1.5  h or earlier. �e concomitant leveling off of glu-

cose concentration after 2 h and the onset of cellobiose 

accumulation may be indicative of β-glucosidase inhi-

bition by glucose, which has been seen before [95, 96]. 

�is finding is in agreement with the maximum product 

formation shown at 80 min incubation as demonstrated 

above by the enzymes respective activities on CMC 

(Fig. 4a).

On the other hand, cellobiose and glucose concentra-

tions were essentially constant over the time course for 

the enzyme cocktail acting on Avicel (Fig. 5b). �is cor-

relates with the enzymes’ inhibition at relatively lower 

concentrations of glucose and cellobiose, as compared 

to those from CMC. Variable sensitivity to end-product 

inhibition by both glucose and cellobiose was previously 

found among cellulases from similar sources and with 

different modes of action [100]. �is suggests that con-

tinuous enzyme loading as the reaction proceeds might 

overcome the deactivation due to products formation. A 

similar suggestion has been made for analogous inhibi-

tion of GH-5 and GH-8 endoglucanases from E. chrysan-

themi acting on Avicel [90].

�e extent of substrate conversion was calculated for 

CMC and Avicel as 11.4 and 4.0%, respectively, based 

on the corresponding glucose and cellobiose products 

accumulated during the course of the cocktail activity on 

both substrates (Fig. 5a, b). It is also noted that the extent 

of substrate conversion did not vary over the course 

of enzymatic actions on Avicel, which is in agreement 

with the constant glucose and cellobiose concentrations 

observed over the course of reaction. Similar conversions 

to that achieved on Avicel have been previously reported 

for modified Trichoderma cellulase (Novozyme® 50013) 

and β-glucosidase (Novozyme® 50010) in their initial 

activities on Avicel which was attributed to the utiliza-

tion of the easily accessible amorphous cellulose on the 

substrate surface [78]. However, these authors (Gao et al. 

[78]) observed an increase in the substrate conversion 

after prolonged incubation with Avicel, which is not the 

case with the current modified system. Gao et  al. cor-

related the increase in the substrate conversion at pro-

longed incubation with consumption of the crystalline 

cellulose parts. �us, the constant product concentra-

tions and substrate conversion over the time course seen 

in the current study suggest that the enzymes were only 

capable of digesting the accessible amorphous substrate 

surfaces of Avicel, which they did rather quickly (first 

30 min). Further analysis at longer incubation times may 

be required to examine the enzyme long-term stability 

and/or activity on crystalline and amorphous cellulose 

surfaces.

Fig. 5 Product profiles and extents of polysaccharide conversion. 

a Glucose and cellobiose from CMC through combined activities of 

cel12B, cel8C, and β-glucosidase; b Glucose and cellobiose from Avi-

cel through combined activities of cel12B, cel8C, and β-glucosidase; 

c Galacturonic acid (monogalacturonate) and galactose from pectin 

through activity of peh28. All reactions at 45 °C and pH 5.4; all sugar 

products were detected as trimethylsilyl and/or trimethylsilyl-oxime 

derivatives using GC–MS. Values presented are given as a mean of 

triplicates ± SE
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Peh28 activity on pectin over 4 h was also investigated 

by GC–MS, and the hydrolysis product concentrations 

are given in Fig. 5c. Identification of the peh28 hydrolytic 

products has been carried out using the corresponding 

retention time and molecular ion masses given in Table 5 

and Fig.  7. Monogalacturonate was the main product 

detected for the peh28 activity on pectin over the time 

course as shown in Fig.  7. Galactose was also found as 

shown in Fig.  7, along with other minor peaks, which 

might be xylose, arabinose, and/or rhamnose as reported 

with other polygalacturonases from different sources 

[101, 102]. Figure  5c indicates that monogalacturonate 

Table 5 Fragmentation patterns of  selective fragment ions (SFI) for  trimethylsilyl and  trimethylsilyl-oxime derivatives 

as analyzed by GC–MSa

The identi�ed derivatives represent the mono- and di-saccharide products estimated throughout a 3-h period by cel12B, cel8C, and/or peh28 during the course of 

hydrolysis on their respective substrates

a The mass spectra and characterization of the derivatized compounds are shown in detail in Fig. 6 for INSD, CA, G1, G2, G3, G4, C1, and C2 and Fig. 7 for GA1, GA2, 

GA3, GA4, and Gal. The m/z represents the masses of the fragmentation ions detected for each theoretically derivatized compound relative to the corresponding 

abundance in integrator units/ng (Iu/ng) as shown in Figs. 6 and 7

Compounds Trimethylsilyl and tri-
methylsilyl-oxime 
derivatives

Derivative structure Molecular weight (g/
mol)

Retention time (min) Selective total frag-
ment ions (SFI) m/za

Salicin internal standard 
(INSD)

Salicin-5-(TMS) 633.157 INSD:9.123 73, 147, 217, 361

Citric acid (CA) Citric acid (4TMS) 480.848 CA:4.716 73, 147, 273

α- and β-D-
glucopyranose

(G 1-2)

D-Glucopyranose, 
1,2,3,4,6-pentakis-O-
(TMS)-

541.0615 G1:5.294
G2:5.859

73, 147, 191, 204

Glucose (syn/anti-
oximes)

(G 3-4)

Glucose-oxime-hexakis-
(TMS)

628.2572 G3:6.042
G4:6.185

73, 147, 205, 319

α- and β-D-cellobiose
(C 1-2)

D-glucopyranose, 
4-O-[1,2,3,6-tetrakis-
O-(trimethylsilyl)-β-
D-glucopyranosyl]- 
-2,3,4, 
6-tetrakis-
O-(trimethylsilyl)-

919.7454 C1:10.700
C2:10.855

73, 147, 204, 361

α- and β-D-
Galactopyranuronic 
acid

(GA 1-2)

D-Galacturonic acid, 
O-pentakis (TMS)

555.0450 GA1:5.436
GA2:5.591

73, 147, 218

Galacturonic acid (syn/
anti-oximes)

(GA 3-4)

Galacturonic acid 
oxime-hexakis-o- 
(TMS)

618.22 GA3:6.328
GA4:6.539

73, 147, 218, 333

D-galactose (Gal) Galactose oxime-hexa-
kis (TMS)

628.2572 Gal:5.962 73, 147, 205, 319
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(See figure on previous page.) 

Fig. 6 a GC–MS total ion chromatogram (TIC) and mass spectra (insets) of the trimethylsilyl (TMS) and trimethylsilyl-oxime (TMS-oxime) derivatives 

for compounds of CMC hydrolysis at 45 °C and pH 5.4 using a cel12B, cel8C and β-glucosidase cocktail b predicted fragmentation pattern showing 

the prominent mass ions of O-pentakis-TMS, (1), and oxime-hexakis-O-TMS, (2) and (3), derivatives of glucose relative to what was reported by 

Peterson [104] and Kennedy and Robertson [105], respectively. As shown in the elution profile, glucose (G) existing in two different configurations 

corresponds to that of the open-chain (oxime-hexakis-O-TMS), G1 and G2, and cyclic-pyranose (O-pentakis-TMS), G3 and G4. On the other hand, 

corresponding peaks for cellobiose are C1 and C2 which exist as the main product of CMC hydrolysis along with that of glucose. The two peaks of 

different retention time and similar fragmentation patterns detected for each of glucose and cellobiose derivatives represent the alpha- and beta-

stereoisomers, in the case of TMS-glucose and cellobiose derivatives, and syn- and anti-oxime isomers in the case of TMS-oxime glucose derivative. 

The absence of those glucose and cellobiose peaks in GC-blank profile, figure not shown, confirms the current investigation. Other peaks such as 

CA and INSD were found to belong to citric acid buffer and salicin internal standard, respectively, according to mass spectrometric analysis

Fig. 7 a GC–MS total ion chromatogram (TIC) and mass spectra (insets) of the trimethylsilyl (TMS) and trimethylsilyl-oxime (TMS-oxime) derivatives 

for compounds of pectin hydrolysis at 45 °C and pH 5.4 using peh28. b Predicted fragmentation pattern of oxime-TMS derivative of galacturonic 

acid showing prominent ions of m/z = 218, (1), and m/z = 333, (2), relative to what was reported by Peterson [104]. As shown in the elution profile, 

galacturonic acid (GA) exists in two different configuration forms of open-chain and cyclic-pyranose which correspond to TMS (GA1-2) and TMS-

oxime (GA3-4) derivatives. Galacturonic acid is the main product displayed relative to the other less dominant compound galactose (Gal). Those 

components were not identified in the blank profile, figure not shown, and were expected as a result of pectin hydrolysis using peh28. Two peaks 

with different retention times and identical mass fragments were detected in case of TMS and TMS-oxime derivatives of galacturonic acid in their 

alpha- and beta-stereoisomers and syn- and anti-oxime stereoisomers, respectively
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concentration steadily increased until 1.5 h, then leveled 

off. On the other hand, galactose concentrations were 

much smaller and varied over the entire course of reac-

tion (Fig. 5c).

Formation of monogalacturonate as a major hydrolytic 

product has been previously reported by Kuivanen et al. 

[101] and Mertens and Bowman [103], for polygalactu-

ronases from filamentous fungi (T. reesei  Δlgd1and A. 

niger ΔgaaB) and Rhizopus oryzae RPG1, respectively. 

Formation of monogalacturonate products during the 

enzymatic reaction on pectin might be correlated with its 

processive action while continuously bound to the sub-

strate, as explained by Mertens and Bowman [103]. �is 

supports the processive function hypothesized for Arg96 

in the corresponding peh28 model structure, similar to 

what was previously described by van Pouderoyen et al. 

[54] (See Sequence analysis and homology modeling 

section, above). Mertens and Bowman [103] also corre-

lated monogalacturonate production with simultaneous 

enzyme action on multiple subsite loci in the binding to 

the substrate. �is supports the anomeric configuration-

retaining mode of action suggested for peh28 as previ-

ously explained [8]. Moreover, the monogalacturonate 

production along with the low specific activity demon-

strated on polygalacturonate (Table 4) would support the 

enzyme’s dominant exolytic action on the substrate.

�e extent of substrate conversion was calculated for 

peh28 in its activity on polygalacturonate as 36.5% over 

the 4 h period shown in Fig. 5c, based on the correspond-

ing galacturonyl residues produced. �is finding is not in 

agreement with that of Mertens and Bowman [103], who 

noted lower monogalacturonate production only in the 

first few minutes of the reaction, which may highlight the 

enhanced processivity and/or tolerance to end-product 

inhibition of the present peh28. �e lower rate of con-

version observed as the time progresses may, however, 

indicate substrate depletion and/or enzyme deactivation. 

Further investigation is thus necessitated to characterize 

enzyme behavior over a prolonged incubation period.

Production of glucose and cellobiose by the current-

modified cellulases and β-glucosidase activities on Avicel 

or CMC as well as the monogalacturonate production 

by peh28 validates their relevance for industrial biofuel 

production. �e process of product optimization over 

a prolonged time period will be necessary for achiev-

ing maximum hydrolysis using the current-modified 

enzymes system.

Conclusions
�e study provided some molecular characterization as 

well as biochemical analysis for the behavior of recom-

binant cel12B, cel8C, and peh28 enzymes, alone and in 

certain combinations, from Pectobacterium carotovorum 

subsp. carotovorum (Pcc) on cellulose and pectin sub-

strates. �e enzymes were assigned for their molecular 

similarity to glycoside hydrolase families 12, 8, and 28, 

respectively, and their catalytic domain residues were 

identified based on the analysis of their model structures. 

�ese outcomes suggest that some residues of cel12B and 

peh28 related to conformational and thermal stability 

are targets for further analysis. �e presence of a CBD-

II site in the cel12B sequence could partially explain the 

enzyme’s apparent function on the crystalline cellulose 

domains of Avicel. �e relative thermal instability of cel8C 

at higher temperatures could also be predicted from its 

structural similarity to other GH-8 cellulases. �e high 

catalytic activity of cel8C on CMC and the absence of 

similar activity on Avicel are correlated with typical endo-

glucanase characteristics. On the other hand, the lower 

CMCase activity of cel12B and its apparent activity on 

Avicel indicate atypical endoglucanase behavior. Enzyme 

processivity was concluded for peh28 from its close 

similarity to endo-polygalacturonase I from A. niger and 

from the existence of monogalacturonate as its dominant 

hydrolytic end-product. Moreover, the close sequence 

similarity to that of endo-polygalacturonase-I and pectate 

lyase-6 domains suggests the multi-domain activities of 

peh28. �e relative substrate conversion values in terms 

of glucose and cellobiose formation from CMC and Avi-

cel, and monogalacturonate from pectin for the current-

modified system, suggest the enzymes’ candidacy for 

biofuel production. Site-directed mutagenesis, to promote 

sequential cel12B and cel8C hydrolysis and integration 

with other cellulolytic systems, is suggested for improving 

the cellulolytic synergy of the applied mixture. Overall, 

this study provides justification for further optimization 

of the enzymes’ catalytic performance in saccharification 

of lignocellulosic materials in future work.
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