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Tumor necrosis factor alpha (TNF-�) is a cytokine which plays opposing roles in the context of infectious disease pathogenesis.
TNF-� is essential for the development of a protective immune response to some pathogens, for example, Mycobacterium
tuberculosis, by synergizing with other cytokines. However, exorbitant or uncontrolled TNF-� activitymay also drive pathology and
disease symptoms in many infectious diseases. In order to elucidate the bene�cial and detrimental roles of TNF-� in tuberculosis
(TB) and other diseases for which the guinea pig is the small animal model of choice, recombinant guinea pig (rgp)TNF-� has been
produced using prokaryotic expression systems. However, it is unknown whether posttranslational modi�cations which cannot
be made in the prokaryotic expression systems may be important for rgpTNF-� structure and function. �erefore, we carried
out a comparative study by expressing rgpTNF-� in prokaryotic and eukaryotic expression systems and analyzed the eukaryotic-
expressed rgpTNF-� for the presence of posttranslational modi�cations by subjecting it to NanoLC-MS/MS. We conclude that
the eukaryotic-expressed rgpTNF-� lacks posttranslational modi�cations, and we found no signi�cant di	erence in terms of the
biological activity between prokaryotic- and eukaryotic-expressed rgpTNF-�. Taken together, results from our study show that a
prokaryotic expression system can be used for generating large amounts of rgpTNF-� without concern for the biological integrity.

1. Introduction

Tumor necrosis factor alpha (TNF-�) plays important and
contradictory roles in the pathogenesis of many infectious
diseases, including tuberculosis (TB) [1, 2]. TNF-� synergizes
with other cytokines in contributing to a protective immune
response in the host in TB by promoting the formation and
maintenance of granulomatous lesions which are considered
to be an essential part of the host’s attempts to control both
the local accumulation and dissemination of the pathogen
[3, 4]. Defective granuloma formation was observed in
TNF-de�cient mice infected with virulent Mycobacterium
tuberculosis [5]. Humans treated with TNF-blocking drugs
are at high risk of developing reactivation TB, reinforcing the
critical role of TNF-� in the maintenance of host resistance
[6]. On the other hand, uncontrolled TNF-� contributes
to disease symptoms (e.g., fever and weight loss), tissue

destruction, and organ pathology in TB and other chronic
diseases [7]. Understanding these apparently contradictory
functions of TNF-� will require the necessary reagents to
study the molecule in both in vitro and in vivo studies in
the small experimental animals of choice. Animal models
such as mice, guinea pigs, rabbits, and monkeys are widely
used in TB research [8]. �e guinea pig model of pulmonary
TB mimics human TB in many important ways, including
the formation of typical, human-like granulomas, and other
characteristic features which makes it a gold standard for
evaluating novel vaccine candidates during preclinical trials
[9]. Our laboratory has cloned and expressed several guinea
pig cytokine and chemokine genes such as interleukin-8
(IL-8/CXCL-8) [10], regulated upon activation, normal T-
cell expressed and secreted (RANTES/CCL5) [11], interferon-
gamma (IFN-�) [12], interleukin-4 (IL-4) [13], interleukin-
10 (IL-10) [14], interleukin-1beta (IL-1beta) [15], monocyte
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chemoattractant protein-1 (MCP-1) [16], and interleukin-17
[17]. We have previously reported the generation of rgpTNF-
� using a prokaryotic expression system [18] and have used
this reagent to study the contributions of TNF-� to the
response of both phagocytic cells and whole animals to
infection with virulentM. tuberculosis [19].

�e rgpTNF-� can be produced using either prokaryotic
or eukaryotic expression systems. �e advantages of prok-
aryotic expression systems are that a large amount of recom-
binant protein can be produced without the complication
of maintaining large volumes of eukaryotic cell culture and
purifying the protein from a complex matrix composed of
other eukaryotic proteins [19]. On the other hand, eukaryotic
expression systems have the advantage that the proteins pro-
duced may undergo posttranslational modi�cations which
are required for their structural and biological integrity [20].
Posttranslational modi�cations were observed in cytokine
and chemokine genes of humans and other species [21, 22].

All of our previous work with rgpTNF-� has been carried
out with protein produced by E. coli [17, 23]. However,
rgpTNF-� has not been generated using a eukaryotic expres-
sion system and the impact of posttranslationalmodi�cations
on the structure and activity of this molecule remains to be
determined. �erefore, in this study, we generated rgpTNF-
� using an e�cient eukaryotic expression system, analyzed
the resulting protein for the presence of posttranslational
modi�cations, and compared the biological activities of
prokaryotic- and eukaryotic-expressed rgpTNF-�.

2. Materials and Methods

2.1. Prokaryotic Expression of Guinea Pig TNF-Alpha. �e
cloning of guinea pig TNF-� was accomplished by using
the Concanavalin A-stimulated guinea pig splenocytes as
described previously [24]. �e construct containing coding
sequence of guinea pig TNF-� was a generous gi� from Dr.
TeizoYoshimura,NationalCancer Institute,USA.�emature
peptide region of guinea pig TNF-� (accession number-
AF119622) was subcloned into the BamHI and HindIII site of
pQE-30 vector (Qiagen, Chatsworth, CA) and transformed
with M15 competent cells as described previously by our
group [17]. Fresh transformants were obtained by streaking
M15 bacterial culture containing subcloned guinea pigTNF-�
in pQE-30 vector onLuria-Bertini (LB) agar plates containing
100 �g/mL ampicillin (Sigma, St. Louis, MO) and 100�g/mL
kanamycin (Sigma).

One of the transformants was inoculated into 5 milliliter
(mL) of Difco-Luria-Bertini (LB) broth containing appro-
priate antibiotics and grown overnight at 37∘C. 5mL of
the overnight culture was added to 100mL of identical
culture medium in a 250mL �ask the following day and was
cultured on a shaker (220 rpm) at 37∘C. When the OD600
of the culture reached 0.6, protein expression was induced
by adding isopropyl-�-d-thiogalactoside (IPTG; Sigma) to a
�nal concentration of 1.0mM, followed by incubation for 5
hours at 37∘C.

�e cells were harvested by centrifugation and the pellet
was resuspended in 5mL lysis bu	er following the manu-
facturer’s instructions [25]. �e sample was sonicated and

centrifuged to obtain the cleared lysate that contains rgpTNF-
�.

�e cleared lysate was puri�ed by Immobilized Metal
A�nity Chromatography (IMAC) employing the Ni-NTA
matrix (Qiagen) as described previously for other soluble
recombinant guinea pig proteins [15]. All the puri�cation
steps were performed at 4∘C. �e nickel-charged Ni-NTA
agarose resin was added to the cleared lysate in a polypropy-
lene column (Qiagen) in a ratio of 1 : 4 and placed on an
orbital shaker for 1 hour. A�er equilibrating the column with
5mL lysis bu	er, the column was subjected to washing twice
with 10mL of wash bu	er, followed by �nal elution of theHis-
tagged protein by the addition of the elution bu	er (5mL). A
small fraction of the eluted samples were run on Novex 10–
20% Tricine gel (Invitrogen, Carlsbad, CA) and the gel was
stained with Coomassie brilliant blue. �e eluted fractions
containing TNF-�were pooled and concentrated using Ami-
con centrifugal �lter devices (Millipore) and the concentrated
protein content was estimated using the Bradford assay kit
(Bio-Rad).

2.2. Eukaryotic Expression of Guinea Pig TNF-�. �e eukary-
otic expression vector pCEP-Pu [26] used in this study does
not contain the His tag. In order to add the His tag, the
mature peptide region of TNF-� cloned into BamHI and
HindIII restriction sites of the pQE-30 vector were ampli�ed
with primer sequences (Invitrogen) designed to contain
NheI/XhoI recognition sequences so that, upon ampli�cation
from the 5� end, the product contained the NheI �anking
sequence-His tag-mature peptide region of the guinea pig
TNF-�-Xho I �anking sequence. �e forward and reverse
primers containing NheI and XhoI recognition sequences
used for ampli�cation were 5�-TAG CTA GCG CAT CAC
CAT CAC CAT CAC GGA-3� and 5�-TAC TCG AGC AAG
CTT CTA GTT TGT TAA TTT-3�. �e italicized parts of
the primer sequences are complementary to the nucleotide
sequences of the guinea pig TNF-� cDNA whereas the 5�

overhangs (bolded and underlined) are �anking restriction
sites designed to facilitate cloning. �e ampli�ed products
were digested with the NheI/XhoI enzymes (New England
Biolabs), and gel eluted prior to ligation with the pCEP-Pu
vector containing the same restriction sites.�e ligated prod-
uct was used to chemically transform XL1-Blue competent
cells (Agilent Technologies, Santa Clara, CA) according to the
manufacturer’s instructions and the presence of the inserts in
the transformants was analyzed by restriction analysis with
NheI and XhoI and subjected to Sanger sequencing.

2.3. Transfection of pCEP-Pu Vector Containing the TNF-
� Gene. Human embryonic kidney (HEK) 293-EBNA cells
(Invitrogen) grown in Dulbecco’s Modi�ed Eagle Medium
(Invitrogen) according to our previously published procedure
[14] were grown to three-fourth con�uency and transfected
for 24 h with Lipofectamine 2000 (Invitrogen) using di	erent
concentrations of pCEP-Pu plasmid DNA containing the
gpTNF-� cDNA.�e transfectionmediumwas then replaced
with CD-293 medium without serum containing puromycin
(0.05 �g/mL) and the cells were incubated at 37∘C for 48 h
before collecting the supernatant �uid. Puri�cation of cell
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lysates containing the putative rgpTNF-� was performed in
a similar manner to that described above for prokaryotic
expressed rgpTNF-�.

2.4. Validation of Eukaryotic Expressed rgpTNF-� by Western
Blot Analysis. �e generation of polyclonal rabbit antiserum
against prokaryotic-expressed rgpTNF-� has been described
earlier [18]. In brief, the rgpTNF-� was mixed with the
adjuvant TiterMax Gold (CytRx Corp, Norcross, GA) and
injected subcutaneously into New Zealand white rabbits
in four injections that were spaced at 3-week intervals.
�e animals were exsanguinated 5 weeks following the last
booster and sera were collected by centrifugation of blood at
1500 rcf for 20 minutes. �e serum was aliquoted and stored
at −80∘C until it was used in the Western blot assay.

Approximately 200 ng of eukaryotic-expressed rgpTNF-
� protein was run on a 10–20% tricine gel (Invitrogen) and
blotted onto a nitrocellulose membrane using the semidry
Minitrans blot electrophoretic transfer cell apparatus (Bio-
Rad).�e identity of the eukaryotic-expressed rgpTNF-�was
determined by its reaction to the polyclonal anti-rgpTNF-�
antiserum by Western blot analysis using the WesternBreeze
chromogenic kit (Invitrogen) following the manufacturer’s
instructions with anti-rabbit (IgG) antibody as the secondary
antibody (Invitrogen).

2.5. LC-MS/MS Analysis of Eukaryotic-Expressed rgpTNF-
� for Posttranslational Modi	cations. �e eukaryotic-
expressed rgpTNF-� (approximately 500 nanograms) was
run on a SDS-Tricine gel and the band corresponding to
rgpTNF-�was excised from the gel and subjected to nanoLC-
MS/MS. In silico digestion analysis was performed to judge
the protease best suited for obtaining peptides in the correct
mass range prior to subjecting it to LC-MS/MS [27]. Protein
digests were separated by capillary rp-HPLC prior to in-line
analysis of their masses and fragmentation patterns. Final
data generated were analyzed using Sca	old so�ware (http://
www.proteomeso�ware.com/Sca	old/Sca	old viewer.htm).

2.6. Biological Activity of Prokaryotic- and Eukaryotic-
Expressed rgpTNF-�. �e biological activity of prokaryotic-
and eukaryotic-expressed rgpTNF-� was analyzed by mea-
suring their cytotoxicity on L929 �broblasts as previously
described [28]. In brief, the L929 cell suspension in RPMI
1640 without phenol red and supplemented with 2 �M L-
glutamine, 100 Units of penicillin/mL, 100 �g of strepto-
mycin/mL, and 2% FBS, at a concentration of 4 × 105

cells/mL, were seeded in 100 �L aliquots onto 96-well plates
and incubated at 37∘C overnight in a 5% CO2 incuba-
tor. �e following day, 50�L of serially diluted rgpTNF-�
samples and 50 �L of an 8-�g/mL actinomycin D solution
(�nal concentration, 2�g/mL) were added to each well
and incubated for an additional 20 h. Tetrazolium reagent
(WST-1; Dojindo, Kumamoto, Japan), and 1-methoxymethyl
phenazinium methyl sulfate (Dojindo) were dissolved at 6
and 0.4mM, respectively, in phosphate-bu	ered saline (PBS).
�ese were mixed at a ratio of 1 : 1, and 20 �L was added
to each well. �e cells were incubated for 2 hours in a 5%

CO2 incubator at 37∘C to allow for the color reaction to
develop and the reaction was terminated by adding 25 �L
of 1N sulphuric acid (H2SO4). �e optical density at both
450 nm (OD450) and 630 nm (OD630) in each well was
measured with a microplate reader for the test and reference
wavelengths. �e net change (net OD450 − OD630) for each
well was calculated as follows: net OD450−OD630 = [(OD450−
OD630 of test well) − (OD450 − OD630 of TNF-�-treated
control)]. Data obtained was analyzed with a standard curve
generated using recombinant human TNF-� (R&D Systems
Inc., Minneapolis, Minn.).

3. Results

3.1. Con	rmation of Prokaryotic Expressed rgpTNF-�. Upon
streaking on LB plate supplemented with antibiotics, bacte-
rial transformants containing the cloned guinea pig TNF-
� gene were obtained. Upon induction with IPTG, those
transformants, generated of a protein that was visible as a
17 kDa band on a tricine gel. �e rgpTNF-� protein was
puri�ed under native conditions using Ni-NTA columns,
as the protein was obtained in the soluble form and was
con�rmed by its speci�c binding to antiserum obtained from
rabbits immunized with prokaryotic expressed rgpTNF-�
protein as described previously by our group [18].

3.2. Con	rmation of Eukaryotic-Expressed rgpTNF-�. Trans-
formation of pCEP-Pu with the mature peptide region of
the gpTNF-� gene residing in the pQE-30 vector resulted in
the generation of putative transformants. All �ve clones that
were randomly selected for restriction digestion analysis con-
�rmed the presence of the insert. PlasmidDNA sequencing of
these clones revealed that the TNF-� sequence was cloned in-
frame with the His tag and thrombin cleavage site of pQE-30
vector from the 5� end.�e culture supernatantswere puri�ed
on NI-NTA columns (Qiagen) to produce a band which was
approximately ∼19 kDa and was identi�ed as a putative 6His-
rgpTNF-� in the eluted fractions by SDS-PAGE analysis.
Importantly, transfection of HEK-293 EBNA cells with the
empty pCEP-Pu vector (not containing the gpTNF-� gene
generated using Klenow polymerase) did not generate any
protein band when analyzed on a Coomassie Blue stained
SDS-gel (Figure 1(a)). �e eukaryotic expressed rgpTNF-�
was con�rmed by its speci�c and strong binding to antiserum
obtained from rabbits immunizedwith prokaryotic expressed
rgpTNF-� protein (Figure 1(b)).

3.3. Analysis of Posttranslational Modi	cations in Eukaryotic-
Expressed rgpTNF-�. �e expression of eukaryotic genes
cloned in E. coli lack posttranslational modi�cations. To
determine whether such modi�cations were introduced into
rgpTNF-� by a eukaryotic expression system, the eukar-
yotic-expressed rgpTNF-� protein was subjected to LC-MS/
MS. Analysis by Proteome so�ware showed that 83% of
the mature peptide region was detected and there are no
posttranslational modi�cations in those regions (see Table 1
in Supplementary Material available online at http://dx.doi
.org/10.1155/2015/619480). However, intentional modi�ca-
tions such as carbamidomethylation and deamidation were
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Figure 1: (a) Coomassie blue-stained SDS-PAGE analysis of eukaryotic protein elutions from cells transfected with 18�g of pCEP-Pu plasmid
DNAwithout any gene (vector control) or pCEP-Pu plasmid DNA (18�g) containing TNF-� gene.�e arrow indicates a ∼19 kDa band which
was recognized as rgpTNF-�. Absence of band in the vector control is also shown. MM: molecular marker; V: vector control elutions, and
T: TNF-alpha elutions. (b) Coomassie blue-stained SDS-PAGE analysis of prokaryotic expressed rgp-TNF-�. rgpTNF-� was expressed using
prokaryotic expression system (pQE-15) and analyzed on SDS-PAGE gel. MM: molecular marker. (c) Identi�cation of eukaryotic expressed
rgpTNF-� by polyclonal antiserum (1 : 2000 dilution) from immunized rabbits. Approximately 200 nanograms of rgpTNF-� was run on
10–20% tricine gel and analyzed by western blot analysis for checking its speci�city. �e ladder was stained with Coomassie Brilliant Blue.

seen (Supplementary Table 1). �e carbamidomethylation is
a result of reduction and alkylation. It is an intentional car-
boxymethylation on Cys to prevent reformation of Cys-Cys
disul�des and allow complete denaturation and digestion.
�e deamidation is a common artifact of protein puri�cation.
Glutamine, and sometimes asparagines, are easily deami-
dated as is oxidation of methionine (proteins are oxidized
when exposed to oxidizing atmosphere a�er cell disruption
and the cell is a reducing environment).

3.4. Biological Activity of Prokaryotic- and Eukaryotic-
Expressed rgpTNF-�. Both the prokaryotic- and eukaryotic-
expressed rgpTNF-� exhibited cytotoxicity on L929 �brob-
lasts, a standard and widely used assay for TNF-� biolog-
ical activity [28] (Figure 2). A dose-dependent increase in
cytotoxicity was observed with both of the recombinant
proteins (Figure 2). Importantly, there was no signi�cant
di	erence in dose-dependent cytotoxicity between prokary-
otic and eukaryotic-expressed rgpTNF-�. �us, prokaryotic-
expressed rgpTNF-� is as biologically active as eukaryotic-
expressed rgpTNF-� at the same concentration in this stan-
dard bioassay.

4. Discussion

�is is the �rst comparative biochemical characterization of
rgpTNF-� produced in prokaryotic and eukaryotic expres-
sion systems. TNF-� contributes to both host resistance
and disease pathology in TB and other chronic diseases
[1]. �e importance of TNF-� in the control of latent or
persistent mycobacteria has been revealed by the high risk of

L929 cytotoxicity assay
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Figure 2: Bioactivity of prokaryotic and eukaryotic expressed
guinea pig TNF-�. Prokaryotic and eukaryotic expressed rgpTNF-�
proteins in the concentration ranging from 0 to 10�g/mL were ana-
lyzed for their cytotoxicity on L-929 �broblasts and the percentage
of cytotoxicity was calculated.

reactivation TB observed in patients undergoing anti-TNF-
therapy for autoimmune diseases [29]. Since approximately
one-third of the world’s population is latently infected with
TB [30] there is immense need to understand the role of
this cytokine in the control of latent infection and precisely
how its pharmacological suppression results in reactivation
of TB. Such an understanding could drive the development
of novel therapeutics which could be used to suppress
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Human MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQR 60
Chimpanzee MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQR 60
Dog MSTESMIRDVELAEEPLPKKAGGPPGSRRCFCLSLFSFLLVAGATTLFCLLHFGVIGPQR 60
Cow MSTKSMIRDVELAEEVLSEKAGGPQGSRSCLCLSLFSFLLVAGATTLCCLLHFGVIGPQR 60
Pig MSTESMIRDVELAEEALAKKAGGPQGSRRCLCLSLFSFLLVAGATTLFCLLHFEVIGPQK 60
Mouse MSTESMIRDVELAEEALPQKMGGFQNSRRCLCLSLFSFLLVAGATTLFCLLNFGVIGPQR 60
Rat MSTESMIRDVELAEEALPKKMGGLQNSRRCLCLSLFSFLLVAGATTLFCLLNFGVIGPNK 60
Guinea pig MSTESMIRDVELAEEQLPKKAGGPQGSRRCWCLSLFSFLLVAGATTLFCLLHFGVIGPQR 60

Human
Chimpanzee
Dog
Cow
Pig
Mouse
Rat
Guinea pig

Human ELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPC 177
Chimpanzee
Dog ELTDNQLIVPSDGLYLIYSQVLFKGQGCPSTHVLLTHTISRFAVSYQTKVNLLSAIKSPC 177
Cow KLEDNQLVVPADGLYLIYSQVLFRGQGCPSTPLFLTHTISRIAVSYQTKVNILSAIKSPC 177
Pig
Mouse DLKDNQLVVPADGLYLVYSQVLFKGQGCP-DYVLLTHTVSRFAISYQEKVNLLSAVKSPC 179
Rat DLKDNQLVVPADGLYLIYSQVLFKGQGCP-DYVLLTHTVSRFAISYQEKVSLLSAIKSPC 179
Guinea pig GLSDNQLVVPSDGLYLIYSQVLFKGQGCP-SYLLLTHTVSRLAVSYPEKVNLLSAIKSPC 178

Human QRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL 233
Chimpanzee QRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL 232
Dog QRETPEGTEAKPWYEPIYLGGVFQLEKGDRLSAEINLPNYLDFAESGQVYFGIIAL 233
Cow HRETPEWAEAKPWYEPIYQGGVFQLEKGDRLSAEINLPDYLDYAESGQVYFGIIAL 233
Pig QRETPEGAEAKPWYEPIYLGGVFQLEKDDRLSAEINLPDYLDFAESGQVYFGIIAL 232
Mouse PKDTPEGAELKPWYEPIYLGGVFQLEKGDQLSAEVNLPKYLDFAESGQVYFGVIAL 235
Rat PKDTPEGAELKPWYEPMYLGGVFQLEKGDLLSAEVNLPKYLDITESGQVYFGVIAL 235
Guinea pig QKETPEGAERKPWYEPIYLGGVFQLQKGDRLSAEVNLPQYLDFADSGQIYFGVIAL 234

******************* *** * *****:::*::: :***:***::.**.

******* **** **** ** *** ***** ** ** **:: : *::: :: : *** : ***:: ** .

**** * ** ****** : : ::*::: : :***:*** *. . .. ..

****** ** ***** ***** ********* ******** : :*:: ::*** *** *..

ELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPC 176

KLKDNQLVVPTDGLYLIYSQVLFRGQGCPSTNVFLTHTISRIAVSYQTKVNLLSAIKSPC 176

DEKFPNGLPLISSMAQTLTLRSSSQNSSDKPVAHVVANHQVEEQLEWLSQRANALLANGM 120
EEKFPNGLPLISSMAQTLTLRSSSQNSSDKPVAHVVANHQAEEQLEWLSQRANALLANGM 120
EEQFSSGPPFR-PLAQTLTLRSASQNDNDKPVAHVVANQQAEEELQWLSKRANALLANGM 119

EE-FPRDLSLISPLAQAVR--SSSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGV 117
EE-FPRDLSLISPLAQAG---SSSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGV 116
EE-LPNGLQLISPLAQTVK--SSSRTPSDKPVAHVVANPEAEGQLQWLSRRANALLANGV 117
EE-SPGGPSINSPLVQTLR--SSSQASSNKPVAHVVADINSPGQLRWWDSYANALMANGV 117
EE-FPAGPLSINPLAQGLR--SSSQTS-DKPVAHVVANVKAEGQLQWQSGYANALLANGV 116

Figure 3: Amino acid sequence comparison of TNF-� from di	erent species showing the presence of conserved putative phosphorylation
sites. Amino acid sequences of human (AAA63207), chimpanzee (ABM91951), Squirrel monkey (AAK92045), Cow (AAA19011), Pig
(AAA74410), Woodchuck (AY253723), Mouse (AAA39275), Rat (AAA41425), and Guinea pig (JN020146) were aligned by EBI Clustal W.
Shading emphasizes identical amino acids and numbers on the right represent the position of amino acid.

the detrimental e	ects of TNF-� in autoimmune diseases
without interfering with the essential host defense mecha-
nisms that keepM. tuberculosis in check [31]. Such studieswill
bene�t greatly from the availability of small animal models
in which detailed mechanistic investigations of TNF-� at the
molecular and cellular level can be conducted.�e guinea pig
is widely accepted to be the small animal model of choice for
TB, however, knowledge of the basic biology of guinea pig
cytokines and reagents with which to study them are only
now developing [32].

In our work by us and others, the function of gpTNF-
� was examined in a series of studies in which rgpTNF-�
and polyclonal antisera were used to enhance or suppress,
respectively, the cytokine’s functions ex vivo in guinea pig
phagocytic cells or in vivo in whole animals infected with
virulent M. tuberculosis [7, 17, 18, 24]. �e choice of a
prokaryotic expression system for those early studies was
based upon the advantages of ease ofmanipulation of bacteria
versus eukaryotic cells, and the high yield of protein [20].
While those studies yielded important new information
about the contributions of TNF-� to TB resistance, there was
always a concern that the prokaryotic-expressed rgpTNF-�

did not contain posttranslational modi�cations which might
be important for TNF-� function in the guinea pig.�erefore,
we undertook the task of expressing rgpTNF� in a eukaryotic
expression system and examining the protein for such modi-
�cations.

Posttranslational modi�cations have signi�cant e	ects
on the structure and function of many mammalian pro-
teins [33, 34]. No published information is available on the
posttranslational modi�cation of any guinea pig protein.
Posttranslational modi�cations are reported to exert signif-
icant e	ect on the activity of cytokine proteins [35, 36]. In
recombinant TNF-� from humans, mice and rats, three of
the �ve potential posttranslational modi�cation sites are in
the signal peptide region, where as the other two are in the
mature peptide region. (http://www.phosphosite.org/protein-
Action.do?id=8542247&showAllSites=true). Interestingly, all
the �ve potentially phosphorylated amino acids are also
conserved in the guinea pig (second, third, and ��h amino
acids -S, T, S) as well as other mammalian species (Figure 3).
However, since the mature peptide region was cloned with-
out the need for the signal peptide region, the �rst three
modi�cations were not observed. Peptides corresponding
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to the last two modi�cations were obtained in our analysis
but posttranslational modi�cations were not observed in our
analysis.

We observed no posttranslational modi�cations in our
eukaryotic-expressed rgpTNF-� and no di	erence in the
dose-dependent biological function in the standard L929
cell cytotoxicity assay (Figure 2; Supplementary Table 1). In
addition, rabbit polyclonal antisera developed in response to
prokaryotic-expressed rgpTNF� cross-reacted strongly with
the eukaryotic-expressed protein (Figure 1). Additional work
with the recombinant proteins, including another functional
assay to validate these �ndings, was not possible because the
laboratory in which these studies were performed has closed
due the retirement of the principal investigator.�us, we con-
clude that the prokaryotic expressed rgpTNF-� can be used
in future studies without concern that the expression system
has failed to introduce modi�cations which alter the protein’s
biological function signi�cantly. �e prokaryotic expression
system is preferred because of the ease of manipulation and
the relatively higher yield. In studies comparing the yield of
rgpTNF-� in the two expression systems, we observed at least
20-fold increase in the protein yield from E. coli compared to
the HEK cells (Data not shown). Given the importance of the
guinea pig as a small animal model of TB and other diseases
[37, 38], we believe that our observations will facilitate future
studies of the role of TNF-� using recombinant protein
expressed in prokaryotic systems.
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[20] J. Andréll and C. G. Tate, “Overexpression of membrane
proteins in mammalian cells for structural studies,” Molecular
Membrane Biology, vol. 30, no. 1, pp. 52–63, 2013.

[21] P. Proost, S. Struyf, and J. van Damme, “Natural post-
translational modi�cations of chemokines,” Biochemical Society
Transactions, vol. 34, no. 6, pp. 997–1001, 2006.

[22] K. L. Fuson,M. Zheng,M.Craxton et al., “Structuralmapping of
post-translational modi�cations in human interleukin-24: role
of N-linked glycosylation and disul�de bonds in secretion and
activity,”�e Journal of Biological Chemistry, vol. 284, no. 44, pp.
30526–30533, 2009.

[23] J. C. Kramp, D. N. Mcmurray, C. Formichella, and A. Jeevan,
“�e in vivo immunomodulatory e	ect of recombinant tumour
necrosis factor-alpha in guinea pigs vaccinated with Mycobac-
terium bovis bacille Calmette-Guérin,” Clinical & Experimental
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